JP2017504177A5 - - Google Patents

Download PDF

Info

Publication number
JP2017504177A5
JP2017504177A5 JP2016519996A JP2016519996A JP2017504177A5 JP 2017504177 A5 JP2017504177 A5 JP 2017504177A5 JP 2016519996 A JP2016519996 A JP 2016519996A JP 2016519996 A JP2016519996 A JP 2016519996A JP 2017504177 A5 JP2017504177 A5 JP 2017504177A5
Authority
JP
Japan
Prior art keywords
particles
thermally conductive
core
conductive particles
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016519996A
Other languages
Japanese (ja)
Other versions
JP6654562B2 (en
JP2017504177A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2014/059239 external-priority patent/WO2015051354A1/en
Publication of JP2017504177A publication Critical patent/JP2017504177A/en
Publication of JP2017504177A5 publication Critical patent/JP2017504177A5/ja
Application granted granted Critical
Publication of JP6654562B2 publication Critical patent/JP6654562B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この成形品の横断面を電子顕微鏡で観察したとき、黒鉛含有複合物41とその表面をコートする絶縁層42とを含有する熱伝導性粒子が図4に示されるように観察された。さらに、熱伝導性粒子は樹脂43内でほとんど平行に整列された。
以下、本明細書に記載の主な発明について列記する。
(1) 複合コアと、
絶縁層とを含む熱伝導性粒子であって、
前記複合コアが複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
絶縁材料が前記複合コアの少なくとも一部をコートし、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示す、熱伝導性粒子。
(2) 前記コア粒子が炭素をベースとする粒子である、(1)に記載の熱伝導性粒子。
(3) 前記炭素をベースとする粒子が黒鉛である、(1)に記載の熱伝導性粒子。
(4) 前記コア粒子が、3:2〜99:1の比の天然黒鉛およびフレーク状の炭素をベースとする粒子であり、
前記フレーク状の炭素をベースとする粒子が、前記天然黒鉛の平均厚さよりも小さい平均厚さを有する、(1)または(2)に記載の熱伝導性粒子。
(5) 前記コア粒子が100体積部であり、
前記有機バインダーが前記コア粒子の体積の3〜25体積部の範囲であり、前記絶縁材料が前記コア粒子の4〜48体積部の範囲である、(1)または(2)に記載の熱伝導性粒子。
(6) 前記コア粒子が、3:2〜99:1の比の天然黒鉛およびフレーク状の炭素をベースとする粒子であり、
前記フレーク状の炭素をベースとする粒子が、前記天然黒鉛の平均厚さよりも小さい平均厚さを有する、(5)に記載の熱伝導性粒子。
(7) 前記有機バインダーが熱硬化性樹脂である、(1)または(2)に記載の熱伝導性粒子。
(8) 前記有機バインダーが熱硬化性樹脂である、(6)に記載の熱伝導性粒子。
(9) 前記熱伝導性粒子の平均粒径が0.5μm〜300μmの範囲である、(1)または(2)に記載の熱伝導性粒子。
(10) 前記熱伝導性粒子の平均粒径が0.5μm〜300μmの範囲である、(8)に記載の熱伝導性粒子。
(11) 前記絶縁材料が、セリサイト、ベーマイト、タルク、マイカ、およびこれらの混合物からなる群から選択される、(1)または(2)に記載の熱伝導性粒子。
(12) 前記絶縁材料が、セリサイト、ベーマイト、タルク、マイカ、およびこれらの混合物からなる群から選択される、(10)に記載の熱伝導性粒子。
(13) 複合コアを絶縁材料で少なくとも部分的にコートする工程を含む熱伝導性粒子を製造する方法であって、
前記複合コアが、複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
前記絶縁材料が、セリサイト、ベーマイト、タルク、マイカ、およびこれらの混合物からなる群から選択され、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示す、方法。
(14) 前記複合コアが、圧縮力および剪断力を適用して前記コア粒子を前記有機バインダーと混合させることによって形成される、(13)に記載の方法。
(15) 熱伝導性粒子と、
からなる群から選択される樹脂とを含む樹脂組成物であって、
前記熱伝導性粒子が複合コアと絶縁層とを含み、
前記複合コアが複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
絶縁材料が前記複合コアの少なくとも一部をコートし、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示し、
前記熱伝導性粒子が、樹脂組成物の全体積の10〜70体積%の範囲である、樹脂組成物。
When the cross section of this molded product was observed with an electron microscope, thermally conductive particles containing the graphite-containing composite 41 and the insulating layer 42 coating the surface thereof were observed as shown in FIG. Furthermore, the thermally conductive particles were aligned almost parallel in the resin 43.
The main inventions described in this specification are listed below.
(1) a composite core;
A thermally conductive particle comprising an insulating layer,
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
An insulating material coats at least a portion of the composite core;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 Thermally conductive particles exhibiting a volume resistivity in the range of 10 Ω · cm.
(2) The thermally conductive particle according to (1), wherein the core particle is a carbon-based particle.
(3) The thermally conductive particles according to (1), wherein the carbon-based particles are graphite.
(4) the core particles are particles based on natural graphite and flaky carbon in a ratio of 3: 2 to 99: 1;
The thermally conductive particles according to (1) or (2), wherein the flaky carbon-based particles have an average thickness smaller than an average thickness of the natural graphite.
(5) The core particle is 100 parts by volume,
The heat conduction according to (1) or (2), wherein the organic binder is in the range of 3 to 25 parts by volume of the core particles, and the insulating material is in the range of 4 to 48 parts by volume of the core particles. Sex particles.
(6) the core particles are particles based on natural graphite and flaky carbon in a ratio of 3: 2 to 99: 1;
The thermally conductive particles according to (5), wherein the flaky carbon-based particles have an average thickness smaller than the average thickness of the natural graphite.
(7) The thermally conductive particles according to (1) or (2), wherein the organic binder is a thermosetting resin.
(8) The thermally conductive particles according to (6), wherein the organic binder is a thermosetting resin.
(9) The thermally conductive particles according to (1) or (2), wherein the average particle diameter of the thermally conductive particles is in the range of 0.5 μm to 300 μm.
(10) The thermally conductive particles according to (8), wherein the average particle diameter of the thermally conductive particles is in the range of 0.5 μm to 300 μm.
(11) The thermally conductive particles according to (1) or (2), wherein the insulating material is selected from the group consisting of sericite, boehmite, talc, mica, and a mixture thereof.
(12) The thermally conductive particles according to (10), wherein the insulating material is selected from the group consisting of sericite, boehmite, talc, mica, and a mixture thereof.
(13) A method of producing thermally conductive particles comprising the step of at least partially coating a composite core with an insulating material,
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
The insulating material is selected from the group consisting of sericite, boehmite, talc, mica, and mixtures thereof;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 A method of indicating a volume resistivity in the range of 10 Ω · cm.
(14) The method according to (13), wherein the composite core is formed by applying a compressive force and a shearing force to mix the core particles with the organic binder.
(15) thermally conductive particles;
A resin composition comprising a resin selected from the group consisting of:
The thermally conductive particles include a composite core and an insulating layer;
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
An insulating material coats at least a portion of the composite core;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 Shows volume resistivity in the range of 10 Ω · cm,
The resin composition, wherein the thermally conductive particles are in the range of 10 to 70% by volume of the total volume of the resin composition.

Claims (3)

複合コアと、
絶縁層とを含む熱伝導性粒子であって、
前記複合コアが複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
絶縁材料が前記複合コアの少なくとも一部をコートし、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示す、熱伝導性粒子。
A composite core,
A thermally conductive particle comprising an insulating layer,
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
An insulating material coats at least a portion of the composite core;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 Thermally conductive particles exhibiting a volume resistivity in the range of 10 Ω · cm.
複合コアを絶縁材料で少なくとも部分的にコートする工程を含む熱伝導性粒子を製造する方法であって、
前記複合コアが、複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
前記絶縁材料が、セリサイト、ベーマイト、タルク、マイカ、およびこれらの混合物からなる群から選択され、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示す、方法。
A method of producing thermally conductive particles comprising the step of at least partially coating a composite core with an insulating material comprising:
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
The insulating material is selected from the group consisting of sericite, boehmite, talc, mica, and mixtures thereof;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 A method of indicating a volume resistivity in the range of 10 Ω · cm.
熱伝導性粒子と、
からなる群から選択される樹脂とを含む樹脂組成物であって、
前記熱伝導性粒子が複合コアと絶縁層とを含み、
前記複合コアが複数のコア粒子と前記コア粒子を一緒に結合する有機バインダーとを含み、
前記コア粒子が熱伝導性であり、金属粒子、セラミック粒子、炭素をベースとする粒子、およびこれらの混合物からなる群から選択され、
絶縁材料が前記複合コアの少なくとも一部をコートし、
前記熱伝導性粒子が、10mmの直径および3.0mmの高さを有する前記熱伝導性粒子のシリンダー上で500Vの印加電圧で測定された時に、少なくとも1×104Ω・cm〜1×1010Ω・cmの範囲である体積抵抗率を示し、
前記熱伝導性粒子が、樹脂組成物の全体積の10〜70体積%の範囲である、樹脂組成物。
Thermally conductive particles;
A resin composition comprising a resin selected from the group consisting of:
The thermally conductive particles include a composite core and an insulating layer;
The composite core includes a plurality of core particles and an organic binder that binds the core particles together;
The core particles are thermally conductive and are selected from the group consisting of metal particles, ceramic particles, carbon-based particles, and mixtures thereof;
An insulating material coats at least a portion of the composite core;
When the thermally conductive particles are measured at an applied voltage of 500 V on a cylinder of the thermally conductive particles having a diameter of 10 mm and a height of 3.0 mm, at least 1 × 10 4 Ω · cm to 1 × 10 6 Shows volume resistivity in the range of 10 Ω · cm,
The resin composition, wherein the thermally conductive particles are in the range of 10 to 70% by volume of the total volume of the resin composition.
JP2016519996A 2013-10-04 2014-10-06 Thermally conductive electrical insulating particles and compositions Active JP6654562B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013209304 2013-10-04
PCT/US2014/059239 WO2015051354A1 (en) 2013-10-04 2014-10-06 Thermally conductive electrically insulating particles and compositions

Publications (3)

Publication Number Publication Date
JP2017504177A JP2017504177A (en) 2017-02-02
JP2017504177A5 true JP2017504177A5 (en) 2017-08-31
JP6654562B2 JP6654562B2 (en) 2020-02-26

Family

ID=51743572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016519996A Active JP6654562B2 (en) 2013-10-04 2014-10-06 Thermally conductive electrical insulating particles and compositions

Country Status (4)

Country Link
JP (1) JP6654562B2 (en)
KR (1) KR20160068762A (en)
CN (1) CN105764969B (en)
WO (1) WO2015051354A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101933417B1 (en) 2016-12-28 2018-12-28 삼성전기 주식회사 Dielectric Powder and Multilayered Capacitor Using the Same
CN107445520A (en) * 2017-07-27 2017-12-08 泾县信达工贸有限公司 A kind of electric rice cooker heated disk thermostable heat-conductive insulating materials
JP7236211B2 (en) * 2017-12-15 2023-03-09 株式会社フジミインコーポレーテッド Filler, method for producing filler, and method for producing molded product
CN111725145A (en) * 2020-06-16 2020-09-29 杰群电子科技(东莞)有限公司 Semiconductor packaging structure, packaging method and electronic product
CN111725159A (en) * 2020-06-16 2020-09-29 杰群电子科技(东莞)有限公司 High-heat-dissipation semiconductor product, packaging method and electronic product
CN111725160A (en) * 2020-06-16 2020-09-29 杰群电子科技(东莞)有限公司 High-power semiconductor module, packaging method and electronic product
US20220020511A1 (en) * 2020-07-15 2022-01-20 Ge Aviation Systems Llc Method of making an insulated conductive component
KR102411685B1 (en) * 2020-11-30 2022-06-22 한국과학기술연구원 Filler composite material with high insulation and heat resistance, and the method for manufacturing through dry particle-particle complexation
JP2023047361A (en) * 2021-09-27 2023-04-06 東特塗料株式会社 electric insulated wire

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620497B2 (en) * 2000-01-11 2003-09-16 Cool Options, Inc. Polymer composition with boron nitride coated carbon flakes
WO2008133172A1 (en) * 2007-04-17 2008-11-06 Hitachi High-Technologies Corporation Composite fillers for resins
CN101149995A (en) * 2007-10-29 2008-03-26 苏州巨峰绝缘材料有限公司 C-grade high heat conduction flexible composite insulation material
JP2012124449A (en) * 2010-11-19 2012-06-28 Bando Chem Ind Ltd Thermally conductive composite particle, thermally conductive sheet and manufacturing method therefor
US8741998B2 (en) * 2011-02-25 2014-06-03 Sabic Innovative Plastics Ip B.V. Thermally conductive and electrically insulative polymer compositions containing a thermally insulative filler and uses thereof
US8552101B2 (en) * 2011-02-25 2013-10-08 Sabic Innovative Plastics Ip B.V. Thermally conductive and electrically insulative polymer compositions containing a low thermally conductive filler and uses thereof
JP5660324B2 (en) * 2011-06-20 2015-01-28 株式会社豊田中央研究所 Resin composition and method for producing the same
JP2013122003A (en) * 2011-12-09 2013-06-20 Sato Research Co Ltd Heat conductive filler and manufacturing method thereof
CN102615873A (en) * 2012-03-07 2012-08-01 华中科技大学 Method for preparing non-porcelain insulating heat conduction materials at low temperature
JP5263429B1 (en) * 2012-05-21 2013-08-14 東洋インキScホールディングス株式会社 Thermally conductive easily deformable aggregate and method for producing the same
JP2014065769A (en) * 2012-09-25 2014-04-17 Tokai Rubber Ind Ltd Elastomer molding and method for producing the same
CN103013411B (en) * 2012-12-26 2013-11-13 赛伦(厦门)新材料科技有限公司 Insulated and heat-conducting film adhesive and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2017504177A5 (en)
JP2016515298A5 (en)
Liu et al. Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites
Yao et al. Highly thermally conductive composite papers prepared based on the thought of bioinspired engineering
Ohayon-Lavi et al. Compression-enhanced thermal conductivity of carbon loaded polymer composites
JP2013517615A5 (en)
US20180179056A1 (en) Composite material containing graphene
WO2015130368A3 (en) Composite materials with electrically conductive and delamination resistant properties
Lu et al. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer
JP2017501904A5 (en)
JP2014080685A5 (en)
WO2014189549A3 (en) Carbon nanotube composite conductors
JP2015038961A5 (en)
JP2013533812A5 (en)
Goyal Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application
JP2009517321A5 (en)
JP2012072364A5 (en)
Shehzad et al. Flexible dielectric nanocomposites with ultrawide zero-temperature coefficient windows for electrical energy storage and conversion under extreme conditions
AR113313A1 (en) ELECTRIC CABLE WITH ENHANCED THERMOPLASTIC INSULATING LAYER
JP2017218598A5 (en)
JP2016065234A5 (en)
JP2015227498A5 (en)
Ryu et al. Highly conductive polymethly (methacrylate)/multi-wall carbon nanotube composites by modeling a three-dimensional percolated microstructure
Wang et al. Anisotropic conductive, tough and stretchable heater based on nacre-like crumpled graphene composite
JP2013118180A5 (en)