JP2017228768A - Coil component and manufacturing method thereof - Google Patents

Coil component and manufacturing method thereof Download PDF

Info

Publication number
JP2017228768A
JP2017228768A JP2017095538A JP2017095538A JP2017228768A JP 2017228768 A JP2017228768 A JP 2017228768A JP 2017095538 A JP2017095538 A JP 2017095538A JP 2017095538 A JP2017095538 A JP 2017095538A JP 2017228768 A JP2017228768 A JP 2017228768A
Authority
JP
Japan
Prior art keywords
insulator
magnetic
particles
portions
coil component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017095538A
Other languages
Japanese (ja)
Other versions
JP7257735B2 (en
Inventor
新井 隆幸
Takayuki Arai
隆幸 新井
博太朗 制野
Hirotaro SEINO
博太朗 制野
伸介 竹岡
Shinsuke Takeoka
伸介 竹岡
奈津子 佐藤
Natsuko Sato
奈津子 佐藤
将典 長野
Masanori Nagano
将典 長野
大竹 健二
Kenji Otake
健二 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to US15/618,009 priority Critical patent/US10777342B2/en
Priority to CN201710451608.XA priority patent/CN107527724B/en
Publication of JP2017228768A publication Critical patent/JP2017228768A/en
Application granted granted Critical
Publication of JP7257735B2 publication Critical patent/JP7257735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil component in which thinning of a component can be realized while ensuring magnetic characteristics.SOLUTION: A coil component includes a magnetic substance, a conductor, and multiple insulators. The magnetic substance is composed of alloy magnetic particles. The conductor has multiple circulation parts, and is wound around one axis in the magnetic substance. The multiple insulators are placed, respectively, between the multiple circulation parts, while having a round shape including two joining surfaces being joined, respectively, to two circulation parts facing uniaxially and at least partially, and are composed of electrically insulating particles.SELECTED DRAWING: Figure 3

Description

本発明は、合金磁性粒子で構成された磁性体部を有するコイル部品およびその製造方法に関する。   The present invention relates to a coil component having a magnetic part composed of alloy magnetic particles and a method for manufacturing the same.

携帯機器の多機能化や自動車の電子化などにより、チップタイプと呼ばれる小型のコイル部品あるいはインダクタンス部品が広く用いられている。特に、積層型のインダクタンス部品(積層インダクタ)は薄型化に対応できるため、近年、大電流が流れるパワーデバイス向けの開発が進められている。   A small coil component or an inductance component called a chip type has been widely used due to the multifunctionality of portable devices and the digitization of automobiles. In particular, since a multilayer inductance component (multilayer inductor) can cope with a reduction in thickness, in recent years, development for a power device in which a large current flows has been advanced.

積層インダクタは、磁性体層と内部導体とが交互に形成され、多くの場合、内部導体は複数の層状にて形成されている。例えば特許文献1には、積層インダクタの製造方法の一つとして、フェライト等を含有するセラミックグリーンシートに導体パターンを印刷し、これらのシートを積層し、焼成する方法が開示されている。   In multilayer inductors, magnetic layers and internal conductors are alternately formed, and in many cases, the internal conductors are formed in a plurality of layers. For example, Patent Document 1 discloses a method of manufacturing a multilayer inductor by printing a conductor pattern on a ceramic green sheet containing ferrite or the like, laminating these sheets, and firing them.

特開平7−272935号公報JP 7-272935 A

近年、電子機器の小型化の進展により、搭載される電子部品の更なる薄型化、小型化が求められている。しかしながら特許文献1に記載の構造においては、導体パターン間に介在する磁性シートが当該導体パターン間の電気的な絶縁層としての機能をも兼ねており、所定の絶縁耐圧を確保する上では当該磁性層に所定以上の厚み(パターン間距離)が必要とされるため、部品の薄型化が困難であった。また、上記磁性層中に樹脂成分やガラス成分等の非磁性成分の含有量を高めることで絶縁耐圧を確保することも可能であるが、磁性材料の含有量が相対的に低下するため、磁気特性の低下が避けられない。   In recent years, with the progress of miniaturization of electronic devices, further reduction in thickness and size of electronic components to be mounted has been demanded. However, in the structure described in Patent Document 1, the magnetic sheet interposed between the conductor patterns also functions as an electrical insulating layer between the conductor patterns, and in order to ensure a predetermined withstand voltage, the magnetic sheet is used. Since the layer needs to have a predetermined thickness or more (distance between patterns), it is difficult to reduce the thickness of the component. In addition, it is possible to ensure withstand voltage by increasing the content of non-magnetic components such as resin component and glass component in the magnetic layer, but the content of magnetic material is relatively reduced, The deterioration of characteristics is inevitable.

以上のような事情に鑑み、本発明の目的は、磁気特性を確保しつつ部品の薄型化を実現することができるコイル部品およびその製造方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to provide a coil component and a method for manufacturing the same that can realize a thin component while ensuring magnetic properties.

上記目的を達成するため、本発明の一形態に係るコイル部品は、磁性体部と、導体部と、複数の絶縁体部と、を具備する。
上記磁性体部は、合金磁性粒子で構成される。
上記導体部は、複数の周回部を有し、上記磁性体部の内部において一軸まわりに巻回される。
上記複数の絶縁体部は、上記複数の周回部の間にそれぞれ配置され、上記一軸方向に少なくとも一部が対向する2つの周回部に各々接合される2つの接合面をそれぞれ含む周回形状を有し、電気絶縁性粒子で構成される。
In order to achieve the above object, a coil component according to an aspect of the present invention includes a magnetic body portion, a conductor portion, and a plurality of insulator portions.
The magnetic part is composed of alloy magnetic particles.
The conductor portion has a plurality of winding portions and is wound around one axis inside the magnetic body portion.
The plurality of insulator portions are arranged between the plurality of surrounding portions, respectively, and have a circular shape including two joining surfaces respectively joined to two surrounding portions that are at least partially opposed in the uniaxial direction. And composed of electrically insulating particles.

上記コイル部品においては、上記一軸方向に対向する複数の周回部間に配置される絶縁体部が電気絶縁性粒子で構成された単一の層で構成されているため、上記周回部間の電気的絶縁を確保しつつ、部品全体の薄型化を実現することが可能となる。また、上記コイル部品においては、絶縁体部が上記周回部の少なくとも一部に対向する周回形状を有するため、当該周回形状の内周側及び外周側の領域が磁性体部を構成する合金磁性粒子で構成することが可能となる。これによりコイル部品の所望とする磁気特性を確保することが可能となる。   In the coil component, since the insulator portion arranged between the plurality of surrounding portions facing in the uniaxial direction is composed of a single layer made of electrically insulating particles, It is possible to reduce the thickness of the entire part while securing the mechanical insulation. Further, in the coil component, since the insulator portion has a circular shape facing at least a part of the circular portion, the alloy magnetic particles in which the inner peripheral side and the outer peripheral region of the circular shape constitute the magnetic portion. It becomes possible to comprise. This makes it possible to ensure the desired magnetic characteristics of the coil component.

上記複数の絶縁体部の上記一軸方向に沿った厚み寸法は、上記複数の周回部の上記一軸方向に沿った厚み寸法よりも小さくてもよい。
これにより周回部間の狭ピッチ化が可能となり、部品の更なる薄型化を図ることができる。
The thickness dimension along the uniaxial direction of the plurality of insulator parts may be smaller than the thickness dimension along the uniaxial direction of the plurality of rotating parts.
As a result, the pitch between the rotating portions can be reduced, and the parts can be further reduced in thickness.

上記複数の絶縁体部の上記一軸方向に直交する幅寸法は、上記複数の周回部の上記一軸方向に直交する幅寸法以上の大きさを有してもよい。
これにより周回部間の安定した電気的絶縁を確保することができる。
The width dimension orthogonal to the uniaxial direction of the plurality of insulator portions may have a size greater than or equal to the width dimension orthogonal to the uniaxial direction of the plurality of rotating portions.
Thereby, the stable electrical insulation between the circulation parts can be ensured.

上記電気絶縁性粒子は、1μm以下の平均粒径を有する第1の合金磁性粒子を含んでもよい。
これにより絶縁体部の電気的絶縁特性が向上し、周回部間の絶縁耐圧の向上あるいは周回部間の更なる狭ピッチ化を図ることができる。
The electrically insulating particles may include first alloy magnetic particles having an average particle diameter of 1 μm or less.
As a result, the electrical insulation characteristics of the insulator portion can be improved, and the withstand voltage between the surrounding portions can be improved or the pitch between the surrounding portions can be further reduced.

上記磁性体部は、上記第1の合金磁性粒子よりも平均粒径が大きい第2の合金磁性粒子で構成されてもよい。
これにより磁性体部の磁気特性の向上を図ることができる。
The magnetic part may be composed of second alloy magnetic particles having an average particle size larger than that of the first alloy magnetic particles.
As a result, the magnetic properties of the magnetic part can be improved.

上記電気絶縁性粒子は、平均粒径が1μm以下のシリカ粒子、ジルコニア粒子又はアルミナ粒子を含んでもよい。上記絶縁体粒子は、フェライト粒子であってもよい。
これにより絶縁体部の絶縁特性の向上を図ることができる。
The electrically insulating particles may include silica particles, zirconia particles, or alumina particles having an average particle size of 1 μm or less. The insulator particles may be ferrite particles.
Thereby, the insulation characteristic of an insulator part can be aimed at.

本発明の一形態に係るコイル部品の製造方法は、一軸まわりに巻回された周回形状の第1の絶縁体部と、上記第1の絶縁体部の上に設けられ上記第1の絶縁体部の一端から延出する第1の端部を有する導電性の第1の周回部と、上記第1の絶縁体部及び上記第1の周回部各々の内周部及び外周部に隣接する第1の磁性体パターンとを有する第1の層を形成することを含む。
上記一軸まわりに巻回された周回形状の第2の絶縁体部と、上記第2の絶縁体部の上に設けられ上記第2の絶縁体部の一端から延出し上記第1の端部と接続される第2の端部を有する導電性の第2の周回部と、上記第2の絶縁体部及び上記第2の周回部各々の内周部及び外周部に隣接する第2の磁性体パターンとを有する第2の層が、上記第1の層の上に形成される。
The manufacturing method of the coil component which concerns on one form of this invention is the 1st insulator part of the surrounding shape wound around 1 axis | shaft, The said 1st insulator provided on the said 1st insulator part A conductive first surrounding portion having a first end extending from one end of the portion, and an inner peripheral portion and an outer peripheral portion of each of the first insulator portion and the first surrounding portion, respectively. Forming a first layer having one magnetic material pattern.
A second insulator portion having a circular shape wound around the one axis, and extending from one end of the second insulator portion provided on the second insulator portion, and the first end portion; A conductive second circulating portion having a second end to be connected, and a second magnetic body adjacent to the inner peripheral portion and the outer peripheral portion of each of the second insulator portion and the second peripheral portion. A second layer having a pattern is formed on the first layer.

以上述べたように、本発明によれば、磁気特性を確保しつつ部品の薄型化を実現することができる。   As described above, according to the present invention, it is possible to reduce the thickness of components while ensuring magnetic properties.

本発明の一実施形態に係るコイル部品の全体斜視図である。1 is an overall perspective view of a coil component according to an embodiment of the present invention. 上記コイル部品の分解斜視図である。It is a disassembled perspective view of the said coil components. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 上記コイル部品における一磁性体層の構成を示す概略斜視図である。It is a schematic perspective view which shows the structure of the one magnetic body layer in the said coil components. 上記磁性体層における周回部の要部平面図である。It is a principal part top view of the surrounding part in the said magnetic body layer. Aは、図5におけるA−A線断面図、Bは、図5におけるB−B線断面図である。A is a cross-sectional view taken along line AA in FIG. 5, and B is a cross-sectional view taken along line BB in FIG. 上記磁性体層の製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the said magnetic body layer. 上記コイル部品の構成の一変形例を示す要部断面図である。It is principal part sectional drawing which shows the modification of a structure of the said coil component. 絶縁体部と周回部との厚みの関係を示す模式図である。It is a schematic diagram which shows the relationship of the thickness of an insulator part and a circumference part.

以下、図面を参照しながら、本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係るコイル部品10の全体斜視図、図2はコイル部品10の分解斜視図、図3は図1におけるA−A線断面図である。本実施形態のコイル部品10は、例えばパワーデバイス用の積層インダクタとして構成される。   1 is an overall perspective view of a coil component 10 according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the coil component 10, and FIG. 3 is a sectional view taken along line AA in FIG. The coil component 10 of the present embodiment is configured as a multilayer inductor for power devices, for example.

[コイル部品の全体構成]
コイル部品10は、図1に示すように、部品本体11と、一対の外部電極14,15とを有する。部品本体11は、X軸方向に幅W、Y軸方向に長さL、Z軸方向に高さHを有する概略直方体形状に形成される。一対の外部電極14,15は、部品本体11の長辺方向(Y軸方向)に対向する2つの端面に設けられる。
[Overall configuration of coil parts]
As shown in FIG. 1, the coil component 10 includes a component main body 11 and a pair of external electrodes 14 and 15. The component main body 11 is formed in a substantially rectangular parallelepiped shape having a width W in the X-axis direction, a length L in the Y-axis direction, and a height H in the Z-axis direction. The pair of external electrodes 14 and 15 are provided on two end faces facing the long side direction (Y-axis direction) of the component main body 11.

部品本体11の各部の寸法は特に限定されず、本実施形態では、長さLが1〜2mm、幅Wが0.5〜1mm、高さHが0.3〜0.6mmとされる。   The dimension of each part of the component main body 11 is not specifically limited, In this embodiment, length L is 1-2 mm, width W is 0.5-1 mm, and height H is 0.3-0.6 mm.

部品本体11は、概略直方体形状の磁性体部12と、磁性体部12の内部に配置された螺旋状のコイル部13(導体部)とを有している。部品本体11は、図2及び図3に示すように、複数の磁性体層MLU、ML1〜ML4及びMLDが高さ方向(Z軸方向)に積層されて一体化された構造を有する。   The component main body 11 includes a magnetic body portion 12 having a substantially rectangular parallelepiped shape, and a spiral coil portion 13 (conductor portion) disposed inside the magnetic body portion 12. 2 and 3, the component main body 11 has a structure in which a plurality of magnetic layers MLU, ML1 to ML4, and MLD are stacked and integrated in the height direction (Z-axis direction).

(磁性体部)
磁性体層MLU及びMLDは、磁性体部12の上下のカバー層をそれぞれ構成する。磁性体層ML1〜ML3は、コイル部13を構成する周回部C1〜C3と、周回部C1〜C3の内周側及び外周側に隣接する磁性パターン部M1〜M3と、絶縁体部IS1〜IS3とをそれぞれ有する。磁性体層ML4は、コイル部13を構成する周回部C4と、周回部C4の内周側及び外周側に隣接する磁性パターン部M4とを有する。
(Magnetic part)
The magnetic layers MLU and MLD respectively constitute upper and lower cover layers of the magnetic body portion 12. The magnetic layers ML1 to ML3 include the surrounding portions C1 to C3 constituting the coil portion 13, the magnetic pattern portions M1 to M3 adjacent to the inner peripheral side and the outer peripheral side of the rotating portions C1 to C3, and the insulator portions IS1 to IS3. Respectively. The magnetic body layer ML4 includes a circulation portion C4 that constitutes the coil portion 13, and a magnetic pattern portion M4 that is adjacent to the inner periphery side and the outer periphery side of the periphery portion C4.

磁性体層MLU、MLD及び磁性パターン部M1〜M4は、磁性体部12を構成する。磁性体部12は、合金磁性粒子で構成される。   The magnetic layers MLU and MLD and the magnetic pattern portions M1 to M4 constitute the magnetic portion 12. The magnetic part 12 is composed of alloy magnetic particles.

合金磁性粒子には、Fe(鉄)と、第1の成分と、第2の成分との合金粒子が用いられる。第1の成分は、Cr(クロム)及びAl(アルミニウム)の少なくとも1種からなり、第2の成分は、Si(シリコン)及びZr(ジルコニウム)の少なくとも1種からなる。本実施形態は、第1の成分がCr、第2の成分がSiであり、したがって合金磁性粒子は、FeCrSi合金粒子で構成される。この合金磁性粒子の組成は、典型的には、Crが1〜5wt%、Siが3〜10wt%であり、不純物を除き、残りをFeとし全体で100wt%とする。   As the alloy magnetic particles, alloy particles of Fe (iron), a first component, and a second component are used. The first component is composed of at least one of Cr (chromium) and Al (aluminum), and the second component is composed of at least one of Si (silicon) and Zr (zirconium). In the present embodiment, the first component is Cr and the second component is Si. Therefore, the alloy magnetic particles are composed of FeCrSi alloy particles. The composition of the alloy magnetic particles is typically 1 to 5 wt% for Cr and 3 to 10 wt% for Si. Except for impurities, the rest is Fe and the total is 100 wt%.

磁性体部12は、各合金磁性粒子を相互に結合する第1の酸化膜を有する。第1の酸化膜は、上記第1の成分を含み、本実施形態では、Crである。磁性体部12は、各合金磁性粒子と上記第1の酸化膜との間に介在する第2の酸化膜をさらに有する。第2の酸化膜は、第2の成分を含み、本実施形態では、SiOである。 The magnetic part 12 has a first oxide film that bonds the alloy magnetic particles to each other. The first oxide film includes the first component, and is Cr 2 O 3 in the present embodiment. The magnetic part 12 further has a second oxide film interposed between each alloy magnetic particle and the first oxide film. The second oxide film includes the second component and is SiO 2 in this embodiment.

(コイル部)
周回部C1〜C4は、コイル部13を構成する。周回部C1〜C4は、図2に示すように、Z軸まわりに巻回されるコイルの一部を構成する周回パターン形状を有する。周回部C1〜C4は、ビアV12,V23及びV34をそれぞれ介してZ軸方向にそれぞれ電気的に接続されることで、コイル部13を形成する。図示の例では、コイル部13のターン数は3.5であるが、これに限られず、仕様や部品サイズ等に応じてターン数は適宜設定可能である。
(Coil part)
Circulating portions C <b> 1 to C <b> 4 constitute a coil portion 13. As shown in FIG. 2, the orbiting portions C <b> 1 to C <b> 4 have a circling pattern shape that constitutes a part of a coil wound around the Z axis. The circular portions C1 to C4 are electrically connected in the Z-axis direction via the vias V12, V23, and V34, respectively, thereby forming the coil portion 13. In the illustrated example, the number of turns of the coil unit 13 is 3.5. However, the number of turns is not limited to this, and the number of turns can be appropriately set according to specifications, component sizes, and the like.

図2を参照して、周回部C1は、そのターン長が(6/8)ターンであり、外部電極14に接続される引出端部13e1と、ビアV12の一部を構成する接続端部Ce1とを有する。周回部C2は、そのターン長が(7/8)ターンであり、接続端部Ce1と接続される接続端部Cb2と、ビアV23を構成する接続端部Ce2とを有する。周回部C3は、そのターン長が(7/8)ターンであり、接続端部Ce2と接続される接続端部Cb3と、ビアV34を構成する接続端部Ce3とを有する。周回部C4は、そのターン長が(6/8)ターンであり、接続端部Ce3と接続される接続端部Cb4と、外部電極15と接続される引出端部13e2とを有する。   Referring to FIG. 2, the turn part C1 has a turn length of (6/8) turn, and a lead end part 13e1 connected to the external electrode 14 and a connection end part Ce1 constituting a part of the via V12. And have. The turning portion C2 has a turn length of (7/8) turns, and includes a connection end Cb2 connected to the connection end Ce1 and a connection end Ce2 constituting the via V23. The turn portion C3 has a turn length of (7/8) turns, and includes a connection end portion Cb3 connected to the connection end portion Ce2 and a connection end portion Ce3 constituting the via V34. The turning portion C4 has a turn length of (6/8) turns, and includes a connection end Cb4 connected to the connection end Ce3 and a lead-out end 13e2 connected to the external electrode 15.

コイル部13は、導電性材料で構成される。コイル部13は、例えば、導電ペーストの焼成体で構成され、本実施形態では、導電ペーストに銀(Ag)ペーストが用いられる。周回部C1〜C4は、典型的には、それぞれ周回方向に沿って同一の幅、厚みで構成される。   The coil unit 13 is made of a conductive material. The coil part 13 is comprised by the baking body of an electrically conductive paste, for example, and silver (Ag) paste is used for an electrically conductive paste in this embodiment. The circulating portions C1 to C4 are typically configured with the same width and thickness along the rotating direction.

(磁性パターン部)
磁性パターン部M1〜M4は、周回部C1〜C4の内周側に位置する第1の領域121と、周回部C1〜C4の外周側に位置する第2の領域122とを有し、全体として磁性体層MLU,MLDと同一の形状、大きさの矩形状に形成される(図3参照)。磁性パターン部M1〜M4の厚みは、磁性体層ML1〜ML4の厚みを決定する。したがって磁性パターン部M1は、絶縁体層IS1の厚みと周回部C1の厚みとの総和以上の厚みを有する。
(Magnetic pattern part)
The magnetic pattern portions M1 to M4 include a first region 121 located on the inner peripheral side of the circulating portions C1 to C4 and a second region 122 positioned on the outer peripheral side of the circulating portions C1 to C4, as a whole. The magnetic layers MLU and MLD are formed in a rectangular shape having the same shape and size (see FIG. 3). The thickness of the magnetic pattern portions M1 to M4 determines the thickness of the magnetic layers ML1 to ML4. Therefore, the magnetic pattern portion M1 has a thickness equal to or greater than the sum of the thickness of the insulator layer IS1 and the thickness of the circulating portion C1.

磁性パターン部M1〜M4は、上述のようにFeCrSi系の合金磁性粒子で構成される。磁性パターン部M1〜M4を構成する合金磁性粒子の平均粒径は、磁性体層MLU,MLDを構成する合金磁性粒子の平均粒径と同一であってもよいし、異なっていてもよい。磁性パターン部M1を構成する合金磁性粒子の平均粒径は、例えば、1μm以上5μm以下である。   The magnetic pattern portions M1 to M4 are composed of FeCrSi-based alloy magnetic particles as described above. The average particle size of the alloy magnetic particles constituting the magnetic pattern portions M1 to M4 may be the same as or different from the average particle size of the alloy magnetic particles constituting the magnetic layers MLU and MLD. The average particle size of the alloy magnetic particles constituting the magnetic pattern portion M1 is, for example, 1 μm or more and 5 μm or less.

(絶縁体部)
絶縁体部IS1〜IS3は、周回部C1〜C4の間にそれぞれ配置され、Z軸方向に少なくとも一部が対向する2つの周回部に各々接合される2つの接合面をそれぞれ含む周回形状を有する。すなわち本実施形態において絶縁体部IS1〜IS3はそれぞれ、各周回部C1〜C4の対向領域を含む周回パターン形状を有し、かつ、Z軸方向に相互に対向する2つの周回部の各対向面に接合される2つの接合面Sa,Sbを有する単一層で構成される(図3参照)。
(Insulator part)
The insulator parts IS1 to IS3 are arranged between the circumference parts C1 to C4, respectively, and have a round shape including two joint surfaces respectively joined to two round parts that are at least partially opposed in the Z-axis direction. . That is, in this embodiment, each of the insulator portions IS1 to IS3 has a circular pattern shape including the opposing regions of the respective circular portions C1 to C4, and the respective opposing surfaces of the two circular portions facing each other in the Z-axis direction. It is comprised by the single layer which has two joining surface Sa and Sb joined to (refer FIG. 3).

絶縁体部IS1〜IS3は、磁性体層ML1〜ML3の一部を構成する。一例として、磁性体層ML1に設けられた絶縁体部IS1の構成を、図4〜図6に示す。
ここで図4は、磁性体層ML1の斜視図である。図5は、磁性体層ML1における周回部C1の接続端部Ce1の要部平面図、図6Aは、図4におけるA−A線断面図、図6Bは、図4におけるB−B線断面図である。
The insulator portions IS1 to IS3 constitute a part of the magnetic layers ML1 to ML3. As an example, the structure of the insulator part IS1 provided in the magnetic layer ML1 is shown in FIGS.
FIG. 4 is a perspective view of the magnetic layer ML1. 5 is a plan view of a principal part of the connection end portion Ce1 of the rotating portion C1 in the magnetic layer ML1, FIG. 6A is a cross-sectional view taken along line AA in FIG. 4, and FIG. 6B is a cross-sectional view taken along line BB in FIG. It is.

絶縁体部IS1〜IS3はそれぞれ、周回部C1〜C4よりもその周回方向に関する幅寸法と同等以上の幅寸法を有し、本実施形態においては周回部C1〜C4の幅寸法Wcよりも大きな幅寸法Wsを有する(図3、図5参照)。これにより、周回部C1〜C4に隣接する磁性体部12を構成する合金磁性粒子間に滲み込んだ導電材料(周回部を構成する導体ペースト)による周回部間のショートを防止して、これらの間の所望とする絶縁耐圧を確保することができる。   Each of the insulators IS1 to IS3 has a width dimension that is equal to or greater than the width dimension in the circumferential direction than the circumferential parts C1 to C4, and in this embodiment, the width is larger than the width dimension Wc of the circumferential parts C1 to C4. It has the dimension Ws (refer FIG. 3, FIG. 5). This prevents a short circuit between the surrounding portions due to the conductive material (conductor paste constituting the surrounding portion) that has permeated between the alloy magnetic particles constituting the magnetic body portion 12 adjacent to the surrounding portions C1 to C4. A desired withstand voltage can be secured.

周回部C1の幅寸法Wcと絶縁体部IS1の幅寸法Wsとの比は特に限定されず、例えば、(Ws−Wc)の値で10μm以上80μm以下とされる。   The ratio of the width dimension Wc of the circular portion C1 and the width dimension Ws of the insulator portion IS1 is not particularly limited, and is, for example, 10 μm or more and 80 μm or less in terms of (Ws−Wc).

絶縁体部IS1〜IS3は、図8に示すように、周回部C1〜C4の幅寸法と同一の幅寸法で構成されてもよい。この場合、図3の構成と比較して、絶縁体部IS1〜IS3を挟む周回部間の耐電圧特性の低下によりコイル部品全体の磁気特性(インダクタンス特性)の低下が懸念されるが、当該コイル部品の直流重畳特性を高めることができる。すなわち、コイル部品の仕様等に応じて、絶縁体部IS1〜IS3の幅寸法を調整することができる。   As shown in FIG. 8, the insulator portions IS1 to IS3 may be configured with the same width dimension as that of the circumferential portions C1 to C4. In this case, compared with the configuration of FIG. 3, there is a concern that the magnetic characteristics (inductance characteristics) of the entire coil component may be decreased due to a decrease in the withstand voltage characteristics between the surrounding portions sandwiching the insulator portions IS1 to IS3. The direct current superimposition characteristics of parts can be enhanced. That is, the width dimensions of the insulator portions IS1 to IS3 can be adjusted according to the specifications of the coil components.

絶縁体部IS1〜IS3の厚み(Z軸方向に沿った厚み寸法、以下同じ)は特に限定されず、周回部間の所定の絶縁耐圧を確保することができる適宜の厚みに設定される。絶縁体部IS1〜IS3の厚みは、周回部C1〜C4の厚みと同等以上であってもよいし、周回部C1〜C4の厚みよりも小さくてもよい。   The thickness of the insulator portions IS1 to IS3 (thickness dimension along the Z-axis direction, hereinafter the same) is not particularly limited, and is set to an appropriate thickness that can ensure a predetermined withstand voltage between the surrounding portions. The thickness of the insulator portions IS1 to IS3 may be equal to or greater than the thickness of the circulating portions C1 to C4, or may be smaller than the thickness of the circulating portions C1 to C4.

本実施形態では、絶縁体部IS1〜IS3は、周回部C1〜C4よりも小さな厚みで形成される。絶縁体部IS1〜IS3が周回部C1〜C4よりも小さな厚みで形成されることで、部品本体11の薄型化を図ることができる。あるいは、周回部C1〜C4の厚みを大きくすることができるため、周回部C1〜C4の低抵抗化を図ることができる。   In the present embodiment, the insulator portions IS1 to IS3 are formed with a smaller thickness than the circulating portions C1 to C4. Since the insulator parts IS1 to IS3 are formed with a thickness smaller than the circulation parts C1 to C4, the component main body 11 can be made thinner. Or since the thickness of the surrounding parts C1-C4 can be enlarged, resistance reduction of the surrounding parts C1-C4 can be achieved.

図6Aにおいて絶縁体部IS1の上面は、周回部C1の下面に接合される第1の接合面Saを構成し、絶縁体部IS1の下面は、磁性体層ML2の上面(磁性パターン部M2の上面)に接合される第2の接合面Sbを構成する。第1の接合面Saは、周回部C1の一端部Ce1を除くすべての領域に接合され、周回部C1の一端部Ce1と周回部C2の一端部Cb2との電気的接続が確保される。   In FIG. 6A, the upper surface of the insulator portion IS1 constitutes a first bonding surface Sa bonded to the lower surface of the rotating portion C1, and the lower surface of the insulator portion IS1 is the upper surface of the magnetic layer ML2 (of the magnetic pattern portion M2). A second bonding surface Sb bonded to the upper surface) is formed. The first joint surface Sa is joined to all regions except the one end portion Ce1 of the circumferential portion C1, and electrical connection between the one end portion Ce1 of the circumferential portion C1 and the one end portion Cb2 of the circumferential portion C2 is ensured.

絶縁体部IS1〜IS3は、電気絶縁性粒子で構成される。磁性体部IS1〜IS3を構成する電気絶縁性粒子は特に限定されず、合金磁性粒子でもよいし、シリカ粒子、ジルコニア粒子、アルミナ粒子、フェライト粒子等の酸化物セラミック粒子であってもよい。上記電気絶縁性粒子には、加熱処理により粒子相互が結合されて絶縁体層を構成することが可能な種々の合金磁性粒子と、当初より絶縁体であり、加熱処理により粒子相互が結合され、粒子相互が粒界を融合させ、粒子相互が焼結状態になって絶縁体の層を構成する、フェライト粒子等の酸化物セラミックス粒子と、当初より絶縁体であり加熱処理によっても粉体のままであるシリカ粒子、ジルコニア粒子、アルミナ粒子等の酸化物セラミックス粒子と、が含まれる。   Insulator parts IS1 to IS3 are made of electrically insulating particles. The electrically insulating particles constituting the magnetic parts IS1 to IS3 are not particularly limited, and may be alloy magnetic particles or oxide ceramic particles such as silica particles, zirconia particles, alumina particles, and ferrite particles. The electrically insulating particles are various alloy magnetic particles that can be combined with each other by heat treatment to form an insulator layer, and an insulator from the beginning, and the particles are bonded by heat treatment, Oxide ceramics particles such as ferrite particles, which fuse particles together to form a layer of insulators by fusing the grain boundaries together, and are insulative from the beginning and remain in powder form even after heat treatment And oxide ceramic particles such as silica particles, zirconia particles, and alumina particles.

上述のように電気絶縁性粒子には、加熱処理により各粒子間が結合したものも含まれる。つまり、絶縁体部IS1〜IS3は、絶縁体粒子そのもので構成される形態に限られず、絶縁体粒子間が結合したもので構成される形態も含まれる。特に本実施形態では、加熱処理により収縮あるいは体積変化がほとんど生じない粒子が用いられる。このような粒子で構成された絶縁体部IS1〜IS3をSEM(Scanning Electron Microscopy)観察した場合、個々の粒子、粒子同士が結合した状態、粒子同士が焼結した状態などが、粒子間に形成された空隙と同時に観察される。空隙は、バインダその他の材料で充填されてもよい。   As described above, the electrically insulating particles include those in which the particles are bonded by heat treatment. That is, the insulator parts IS1 to IS3 are not limited to the form constituted by the insulator particles themselves, but also include the form constituted by a combination of the insulator particles. In particular, in this embodiment, particles that hardly undergo shrinkage or volume change due to heat treatment are used. When the insulator parts IS1 to IS3 composed of such particles are observed by SEM (Scanning Electron Microscopy), individual particles, a state in which the particles are bonded, a state in which the particles are sintered, etc. are formed between the particles. Observed at the same time as the generated voids. The voids may be filled with a binder or other material.

絶縁体部IS1〜IS3は、加熱処理時に体積変化しないことが望ましい。絶縁体部IS1〜IS3は、加熱処理によっても絶縁が高く、体積変化しない層となることで、確実に周回部C1〜C4間の絶縁を確保したまま、薄い層として形成できる。例えば、絶縁体部IS1〜IS3が加熱処理により収縮の形状変化の両方を生じる材料、例えば、低融点ガラスなどで構成される場合、周回部C1〜C4間の絶縁を確保するためには、絶縁体部IS1〜IS3を薄い層として形成することができなくなり、磁気特性を確保しつつ部品の薄型化を実現することができなくなる。   It is desirable that the insulator portions IS1 to IS3 do not change in volume during the heat treatment. The insulator parts IS1 to IS3 can be formed as a thin layer while ensuring insulation between the surrounding parts C1 to C4 by ensuring that the insulating parts IS1 to IS3 have high insulation even by heat treatment and do not change in volume. For example, when the insulator parts IS1 to IS3 are made of a material that causes both of the shape changes of shrinkage due to heat treatment, for example, low-melting glass, in order to ensure insulation between the surrounding parts C1 to C4, insulation The body parts IS1 to IS3 cannot be formed as a thin layer, and it is impossible to reduce the thickness of the component while ensuring the magnetic characteristics.

絶縁体部IS1〜IS3を構成する合金磁性粒子(第1の合金磁性粒子)としては、磁性パターン部M1〜M4(磁性体部12)を構成する合金磁性粒子(第2の合金磁性粒子)と同一組成の合金磁性粒子、すなわちFeCrSi系の合金磁性粒子を用いることができる。   As the alloy magnetic particles (first alloy magnetic particles) constituting the insulator parts IS1 to IS3, the alloy magnetic particles (second alloy magnetic particles) constituting the magnetic pattern parts M1 to M4 (magnetic body part 12) and Alloy magnetic particles having the same composition, that is, FeCrSi-based alloy magnetic particles can be used.

絶縁体部IS1〜IS3を構成する合金磁性粒子の平均粒径は、磁性パターン部M1〜M4を構成する合金磁性粒子の平均粒径と同一であってもよいし、異なっていてもよい。典型的には、絶縁体部IS1を構成する合金磁性粒子として、磁性パターン部M1を構成する合金磁性粒子の平均粒径と同等以下(例えば3μm以下)の平均粒径を有する合金磁性粒子が用いられ、1μm以下の平均粒径を有する合金磁性粒子を用いることも可能である。   The average particle size of the alloy magnetic particles constituting the insulator portions IS1 to IS3 may be the same as or different from the average particle size of the alloy magnetic particles constituting the magnetic pattern portions M1 to M4. Typically, alloy magnetic particles having an average particle size equal to or smaller than (for example, 3 μm or less) the average particle size of the alloy magnetic particles constituting the magnetic pattern portion M1 are used as the alloy magnetic particles constituting the insulator portion IS1. It is also possible to use alloy magnetic particles having an average particle diameter of 1 μm or less.

合金磁性粒子で構成される絶縁体部IS1〜IS3の厚みは、例えば3μm以上とされる。この場合において、平均粒径が1μm以下の合金磁性粒子で絶縁体部IS1〜IS3を構成したとき、厚み方向に3つ以上の合金磁性粒子が並ぶことになる。平均粒径が小さいほど比表面積は大きくなるため、粒子表面と酸化膜との接触面積も増加し、したがって所望とする絶縁特性が安定に確保される。   The thickness of the insulator portions IS1 to IS3 made of alloy magnetic particles is, for example, 3 μm or more. In this case, when the insulator portions IS1 to IS3 are composed of alloy magnetic particles having an average particle diameter of 1 μm or less, three or more alloy magnetic particles are arranged in the thickness direction. Since the specific surface area increases as the average particle size decreases, the contact area between the particle surface and the oxide film also increases, so that the desired insulating properties can be secured stably.

絶縁体部IS1〜IS3を構成する電気絶縁性粒子としてシリカ粒子、ジルコニア粒子、アルミナ粒子、フェライト粒子等の酸化物セラミック粒子を用いた場合、絶縁体部IS1〜IS3の絶縁特性をさらに向上させることができる。これにより、周回部C1〜C4の導体間にかかる電位差による絶縁破壊を防止することができ、絶縁体部IS1〜IS3の厚みをさらに小さくすることもできる。また、この種のセラミック粒子には1μm以下の平均粒径を有する粒子を容易に入手することができるため、例えば2μm以下の厚みの絶縁体部IS1〜IS3を安定に作製することが可能である。   In the case where oxide ceramic particles such as silica particles, zirconia particles, alumina particles, and ferrite particles are used as the electrically insulating particles constituting the insulator portions IS1 to IS3, the insulating properties of the insulator portions IS1 to IS3 are further improved. Can do. Thereby, the dielectric breakdown due to the potential difference between the conductors of the circulating portions C1 to C4 can be prevented, and the thickness of the insulator portions IS1 to IS3 can be further reduced. In addition, since this type of ceramic particles can easily obtain particles having an average particle diameter of 1 μm or less, it is possible to stably produce insulator portions IS1 to IS3 having a thickness of 2 μm or less, for example. .

一方、合金磁性粒子及びフェライト粒子は磁性材料で構成されているため、これらを電気絶縁性粒子として用いることにより、絶縁体部IS1〜IS3の厚みや幅寸法が比較的大きい場合でも、コイル部品の磁気特性の低下が抑制される。したがって図3に示すように、絶縁体部IS1〜IS3の幅寸法Wsが周回部C1〜C4の幅寸法よりも大きい場合でも、周回部C1〜C4間の絶縁を確実に確保しつつ、コイル部品の磁気特性の低下を抑えることができる。   On the other hand, since the alloy magnetic particles and the ferrite particles are made of a magnetic material, even if the insulator parts IS1 to IS3 have a relatively large thickness or width dimension, they are used as the electrically insulating particles. A decrease in magnetic properties is suppressed. Therefore, as shown in FIG. 3, even when the width dimension Ws of the insulators IS1 to IS3 is larger than the width dimension of the circuit parts C1 to C4, the coil component is ensured while ensuring the insulation between the circuit parts C1 to C4. It is possible to suppress the deterioration of the magnetic characteristics.

[コイル部品の製造方法]
部品本体11は、上述のように、磁性体層MLU、ML1〜ML4及びMLDをその厚み方向に積層することで作製される。上下のカバー層を構成する磁性体層MLU及び磁性体層MLDは、それぞれ所定枚数の磁性シートの積層体で構成される。一方、コイル部13を構成する磁性体層ML1〜ML4は、例えば印刷法等により個々に作製される。
[Manufacturing method of coil parts]
As described above, the component main body 11 is manufactured by laminating the magnetic layers MLU, ML1 to ML4, and MLD in the thickness direction. The magnetic layer MLU and the magnetic layer MLD constituting the upper and lower cover layers are each composed of a laminate of a predetermined number of magnetic sheets. On the other hand, the magnetic layers ML1 to ML4 constituting the coil unit 13 are individually manufactured by a printing method or the like, for example.

図7A〜Cは、磁性体層ML1の製造方法を説明する斜視図である。   7A to 7C are perspective views illustrating a method for manufacturing the magnetic layer ML1.

磁性体層ML1の作製に際しては、図7Aに示すようにPET(ポリエチレンテレフタレート)等の樹脂シートで構成された支持シートSを用いる。そして、この支持シートSの一方の面に、あらかじめ準備した絶縁体ペースト、導体ペースト及び磁性体ペーストを用いて絶縁体部IS1、周回部C1及び磁性パターン部M1を例えばスクリーン印刷法により順次形成することで、磁性体層ML1が作製される。   When producing the magnetic layer ML1, a support sheet S made of a resin sheet such as PET (polyethylene terephthalate) is used as shown in FIG. 7A. Then, on one surface of the support sheet S, the insulator portion IS1, the circulating portion C1, and the magnetic pattern portion M1 are sequentially formed by using, for example, a screen printing method using an insulator paste, a conductor paste, and a magnetic paste prepared in advance. Thus, the magnetic layer ML1 is manufactured.

絶縁体部IS1は、支持シートS上の周回部C1の形成領域に、周回部C1に対応する周回形状で形成される。このとき絶縁体部IS1は、周回部C1よりも幅広形状を有するとともに、周回部C1のビア(V12)を構成する一端部Ce1を除くすべての領域に設けられる(図7A)。   Insulator part IS1 is formed in the formation area of circumference part C1 on support sheet S by the circumference shape corresponding to circumference part C1. At this time, the insulator part IS1 has a wider shape than the surrounding part C1, and is provided in all regions except the one end part Ce1 constituting the via (V12) of the surrounding part C1 (FIG. 7A).

周回部C1は、絶縁体部IS1の上に所定の周回形状で形成される。このとき周回部C1は、絶縁体部IS1の中央部にその幅寸法(Ws)よりも小さい幅寸法(Wc)で形成される(図5参照)。また、周回部C1の一端部Ce1は、絶縁体部IS1の端部を跨ぐように所定長さだけ延出して支持シートS上に形成される(図6B参照)。   The circular portion C1 is formed in a predetermined circular shape on the insulator portion IS1. At this time, the circulating portion C1 is formed in the central portion of the insulator portion IS1 with a width dimension (Wc) smaller than the width dimension (Ws) (see FIG. 5). Further, the one end portion Ce1 of the circulating portion C1 is formed on the support sheet S by extending a predetermined length so as to straddle the end portion of the insulator portion IS1 (see FIG. 6B).

図9A〜Cは、絶縁体部IS1と周回部C1との厚みの関係を示す模式図である。ここで、図9Aは、絶縁体部IS1が周回部C1と同等の厚みで形成された例を示し、図9B,Cは、絶縁体部IS1が周回部C1よりも薄く形成された例を示している。また、図9A〜Cは、絶縁体部IS1が周回部C1よりも大きな幅寸法で形成された例を示している。絶縁体部IS1と周回部C1の幅の差は特に限定されないが、図示するように、絶縁体部IS1がその厚みに相当する量だけ周回部C1の側面からはみ出るように構成されてもよい。この場合、絶縁体部IS1と周回部C1の幅の差は、絶縁体部IS1の厚みが小さいほど小さく設定される。   9A to 9C are schematic diagrams illustrating the relationship between the thickness of the insulator part IS1 and the circulating part C1. Here, FIG. 9A shows an example in which the insulator part IS1 is formed with the same thickness as the circulating part C1, and FIGS. 9B and 9C show an example in which the insulator part IS1 is formed thinner than the circulating part C1. ing. 9A to 9C show an example in which the insulator part IS1 is formed with a larger width dimension than the circulating part C1. The difference in width between the insulator part IS1 and the circumference part C1 is not particularly limited, but as shown in the figure, the insulator part IS1 may be configured to protrude from the side surface of the circumference part C1 by an amount corresponding to the thickness. In this case, the difference in the width between the insulator part IS1 and the circulating part C1 is set smaller as the thickness of the insulator part IS1 is smaller.

絶縁体部IS1の厚みを小さくする場合には、絶縁体部IS1を構成する粒子の平均粒径は小さいものほど好ましい。平均粒径が大きいと厚みが必要となり、その分、周回部C1の側面からのはみ出し量も大きくなるからである。また、平均粒径が小さいほど厚みの均一性が得られるため、絶縁体部IS1を安定に形成することができる。   When the thickness of the insulator part IS1 is reduced, it is preferable that the average particle diameter of the particles constituting the insulator part IS1 is smaller. This is because if the average particle size is large, a thickness is required, and the amount of protrusion from the side surface of the circulating portion C1 is increased accordingly. In addition, since the uniformity of the thickness is obtained as the average particle size is smaller, the insulator part IS1 can be stably formed.

磁性パターン部M1は、絶縁体部IS1及び周回部C1各々の内周部及び外周部に隣接するように支持シートS上に形成される。このとき磁性パターン部M1は、周回部C1によって被覆されていない絶縁体部IS1の両側部と、周回部C1の端部Ce1の先端所定領域を被覆する。   The magnetic pattern portion M1 is formed on the support sheet S so as to be adjacent to the inner peripheral portion and the outer peripheral portion of each of the insulator portion IS1 and the rotating portion C1. At this time, the magnetic pattern portion M1 covers both side portions of the insulator portion IS1 that are not covered by the rotating portion C1 and a predetermined tip region of the end portion Ce1 of the rotating portion C1.

なお説明を容易にするため、図7A〜Cには単一の磁性層ML1のみが示されているが、実際には支持シートSは磁性層ML1を面内で多数個取りすることができる大きさ(サイズ)に形成されており、上記各工程を経ることで同一の支持シートS上に複数の磁性層ML1が形成される。   For ease of explanation, only a single magnetic layer ML1 is shown in FIGS. 7A to 7C, but in reality, the support sheet S is large enough to take a large number of magnetic layers ML1 in a plane. The plurality of magnetic layers ML1 are formed on the same support sheet S through the above steps.

磁性体層ML2〜ML4もまた上述と同様な方法で作製される。なお磁性体層ML4については、絶縁体層の形成が不要であるため、周回部C4及び磁性パターン部M4のみが作製される(図2参照)。   The magnetic layers ML2 to ML4 are also produced by the same method as described above. In addition, about magnetic body layer ML4, since formation of an insulator layer is unnecessary, only the rotation part C4 and the magnetic pattern part M4 are produced (refer FIG. 2).

各磁性体層MLU、MLD,ML1〜ML4は図2に示すように積層された後、熱圧着により一体化される。このとき支持シートSは、各磁性体層ML1〜ML4を重ねるときに順次剥離、除去される。これにより、積層方向に隣接する各周回部C1〜C4の端部Ce1〜Ce4がそれぞれ接続され、ビアV12、V23,V34が形成される(図2参照)。   The magnetic layers MLU, MLD, ML1 to ML4 are laminated as shown in FIG. 2 and then integrated by thermocompression bonding. At this time, the support sheet S is sequentially peeled and removed when the magnetic layers ML1 to ML4 are stacked. As a result, the end portions Ce1 to Ce4 of the surrounding portions C1 to C4 adjacent in the stacking direction are connected to form vias V12, V23, and V34 (see FIG. 2).

磁性体層の積層体は、ダイシング機やレーザ加工機等の切断機(図示略)を用いて、部品本体サイズに切断される。得られた部品チップは、焼成炉等の加熱処理機(図示略)を用いて、大気等の酸化性雰囲気中で加熱処理される。この加熱処理は、脱脂プロセスと酸化物膜形成プロセスとを含み、脱脂プロセスは約300℃、約1時間の条件で実施され、酸化物膜形成プロセスは約700℃、約2時間の条件で実施される。   The laminate of the magnetic layers is cut into a component body size using a cutting machine (not shown) such as a dicing machine or a laser processing machine. The obtained component chip is heat-treated in an oxidizing atmosphere such as air using a heat treatment machine (not shown) such as a firing furnace. This heat treatment includes a degreasing process and an oxide film forming process. The degreasing process is performed at about 300 ° C. for about 1 hour, and the oxide film forming process is performed at about 700 ° C. for about 2 hours. Is done.

脱脂プロセスに続く酸化物膜形成プロセスでは、加熱処理前の磁性体内のFeCrSi合金粒子が密集して磁性体部12(図1、図2参照)が作製されると同時に、FeCrSi合金粒子それぞれの表面に当該粒子の酸化物膜が形成される。また、加熱処理前のコイル部内のAg粒子群が焼結してコイル部13(図1、図2参照)が作製されるとともに、各磁性体層ML1〜ML4の磁性パターン部M1〜M4が一体化して共通の磁性パターン部M(図3参照)が作製される。これにより部品本体11が作製される。   In the oxide film forming process subsequent to the degreasing process, the FeCrSi alloy particles in the magnetic body before the heat treatment are densely formed to produce the magnetic body portion 12 (see FIGS. 1 and 2), and at the same time, the surface of each of the FeCrSi alloy particles. Then, an oxide film of the particles is formed. Moreover, the Ag particle group in the coil part before the heat treatment is sintered to produce the coil part 13 (see FIGS. 1 and 2), and the magnetic pattern parts M1 to M4 of the magnetic layers ML1 to ML4 are integrated. Thus, a common magnetic pattern portion M (see FIG. 3) is produced. Thereby, the component main body 11 is produced.

続いて、ディップ塗布機やローラ塗布機等の塗布機(図示略)を用いて、予め用意した導体ペーストを部品本体11の長さ方向両端部に塗布し、これを焼成炉等の加熱処理機(図示略)を用いて、約650℃、約20分の条件で焼付け処理を行い、当該焼付け処理によって溶剤及びバインダの消失とAg粒子群の焼結を行って、外部電極14,15(図1、図2参照)を作製する。最後に、めっきを行う。めっきは、一般的な電気めっきにより行われ、NiとSnの金属膜が、先にAg粒子群を焼結して形成された外部電極14,15に付けられる。これによりコイル部品10が作製される。   Subsequently, using a coating machine (not shown) such as a dip coating machine or a roller coating machine, a conductor paste prepared in advance is applied to both ends in the length direction of the component body 11, and this is applied to a heat treatment machine such as a firing furnace. (Not shown), a baking process is performed at a temperature of about 650 ° C. for about 20 minutes, the solvent and binder are eliminated and the Ag particles are sintered by the baking process. 1 (see FIG. 2). Finally, plating is performed. The plating is performed by general electroplating, and a metal film of Ni and Sn is attached to the external electrodes 14 and 15 formed by previously sintering the Ag particle group. Thereby, the coil component 10 is produced.

なお、磁性体層ML1〜ML4は、ビルドアップ工法により順次積層されてもよい。この場合、最初に磁性体層ML4が支持シート上に作製され、その上に、磁性体層ML3、磁性体層ML2及び磁性体層ML1が順次作製される。磁性体層ML4の支持シートSとして、下カバー層を構成する磁性体層MLDが用いられてもよい。   The magnetic layers ML1 to ML4 may be sequentially stacked by a buildup method. In this case, the magnetic layer ML4 is first formed on the support sheet, and the magnetic layer ML3, the magnetic layer ML2, and the magnetic layer ML1 are sequentially formed thereon. As the support sheet S of the magnetic layer ML4, the magnetic layer MLD constituting the lower cover layer may be used.

以上のように構成される本実施形態のコイル部品10においては、Z軸方向に対向する複数の周回部C1〜C4間に配置される絶縁体部IS1〜IS3が電気絶縁性粒子で構成された単一の層で構成されているため、周回部C1〜C4間の電気的絶縁を確保しつつ、部品全体の薄型化を実現することが可能となる。   In the coil component 10 of the present embodiment configured as described above, the insulator portions IS1 to IS3 disposed between the plurality of circulating portions C1 to C4 facing each other in the Z-axis direction are made of electrically insulating particles. Since it is composed of a single layer, it is possible to reduce the thickness of the entire component while ensuring electrical insulation between the circulating portions C1 to C4.

また、本実施形態のコイル部品10においては、絶縁体部IS1〜IS3が周回部C1〜C4の少なくとも一部に対向する周回形状を有するため、当該周回形状の内周側及び外周側の領域が磁性体部12(磁性パターン部M1〜M4)を構成する合金磁性粒子で構成することが可能となる。これによりコイル部品10の所望とする磁気特性を確保することができる。   Further, in the coil component 10 of the present embodiment, since the insulator portions IS1 to IS3 have a circular shape facing at least a part of the circular portions C1 to C4, the inner peripheral side and the outer peripheral region of the circular shape are provided. It becomes possible to comprise the alloy magnetic particles constituting the magnetic body part 12 (magnetic pattern parts M1 to M4). Thereby, the desired magnetic characteristics of the coil component 10 can be ensured.

本実施形態によれば、絶縁体部IS1〜IS3の厚み寸法が周回部C1〜C4の厚み寸法よりも小さいため、周回部C1〜C4間の狭ピッチ化が可能となり、部品の更なる薄型化を図ることができる。   According to the present embodiment, since the thickness dimensions of the insulator parts IS1 to IS3 are smaller than the thickness dimensions of the circulating parts C1 to C4, it becomes possible to reduce the pitch between the circulating parts C1 to C4 and further reduce the thickness of the parts. Can be achieved.

また、絶縁体部IS1〜IS3を構成する電気絶縁性粒子として平均粒径が1μm以下の合金磁性粒子を用いることにより、絶縁体部IS1〜IS3の電気的絶縁特性が向上し、周回部C1〜C4間の絶縁耐圧の向上あるいは周回部C1〜C4間の更なる狭ピッチ化、ひいては部品の薄型化を図ることができる。   Further, by using alloy magnetic particles having an average particle size of 1 μm or less as the electrically insulating particles constituting the insulator portions IS1 to IS3, the electrical insulation characteristics of the insulator portions IS1 to IS3 are improved, and the circulation portions C1 to C1 The insulation withstand voltage between C4 can be improved, or the pitch between the surrounding portions C1 to C4 can be further reduced, and as a result, the parts can be made thinner.

さらに磁性体部12は、絶縁体部IS1〜IS3を構成する合金磁性粒子よりも平均粒径が大きい合金磁性粒子で構成されているため、磁性体部12の磁気特性の向上を図ることができる。あるいは、磁性体部12の磁気特性の向上により、上下のカバー層を構成する磁性体層MLU,MLDの厚みを薄くして、部品のさらなる薄型化を図ることができる。   Furthermore, since the magnetic body part 12 is comprised by the alloy magnetic particle whose average particle diameter is larger than the alloy magnetic particle which comprises the insulator parts IS1-IS3, the improvement of the magnetic characteristic of the magnetic body part 12 can be aimed at. . Alternatively, by improving the magnetic characteristics of the magnetic body portion 12, the thickness of the magnetic body layers MLU and MLD constituting the upper and lower cover layers can be reduced to further reduce the thickness of the component.

続いて、本発明の実施例について説明する。   Next, examples of the present invention will be described.

(実施例1)
以下の条件で、図3(又は図8)に示すコイル部品を作製した。
・磁性体部
大きさ:長さ1000μm、幅500μm、高さ499μm
合金磁性粒子:FeSiCr(3.5Si4.5Cr)、平均粒径3μm
・導体部(周回部)
ターン数:13.5(16層)
厚み:9.0μm
幅(Wc):140μm
・絶縁体部
構成粒子:合金磁性粒子(FeSiCr(3.5Si4.5Cr))、平均粒径3μm
厚み13μm
幅(Ws):218μm
幅差(Ws−Wc):78μm
Example 1
The coil component shown in FIG. 3 (or FIG. 8) was produced under the following conditions.
Magnetic part size: length 1000 μm, width 500 μm, height 499 μm
Alloy magnetic particles: FeSiCr (3.5Si4.5Cr), average particle size 3 μm
・ Conductor part (circumference part)
Number of turns: 13.5 (16 layers)
Thickness: 9.0μm
Width (Wc): 140 μm
-Insulator part Constituent particle: Alloy magnetic particle (FeSiCr (3.5Si4.5Cr)), average particle size 3 μm
Thickness 13μm
Width (Ws): 218 μm
Width difference (Ws-Wc): 78 μm

平均粒径は、体積基準の粒子径として見た場合の平均粒径(メディアン径)であって、例えば、レーザ回折式粒度分布測定法で測定した粒度分布の積算%が50%の値(D50)を意味する。   The average particle diameter is an average particle diameter (median diameter) when viewed as a volume-based particle diameter. For example, the cumulative percentage of the particle size distribution measured by the laser diffraction particle size distribution measurement method is 50% (D50 ).

続いて、インパルス試験機を用いて、作製したコイル部品の耐電圧を測定した。測定条件としては、パルス幅を1.5μsecとし、20個の試料すべてがクリアできる電圧を評価した。その結果、50Vであった。   Subsequently, the withstand voltage of the produced coil parts was measured using an impulse tester. As measurement conditions, the pulse width was set to 1.5 μsec, and a voltage that could clear all 20 samples was evaluated. As a result, it was 50V.

(実施例2)
磁性体部の高さを472μm、合金磁性粒子の平均粒径を2μmとし、導体部の厚みを12μmとし、絶縁体部の構成粒子の平均粒径を2μm、厚みを8μm、幅(Ws)を185μm(幅差45μm)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
(Example 2)
The height of the magnetic part is 472 μm, the average particle diameter of the alloy magnetic particles is 2 μm, the thickness of the conductor part is 12 μm, the average particle diameter of the constituent particles of the insulator part is 2 μm, the thickness is 8 μm, and the width (Ws) is A coil component was fabricated under the same conditions as in Example 1 except that the thickness was 185 μm (width difference: 45 μm). When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例3)
磁性体部の高さを474μm、合金磁性粒子の平均粒径を1.5μmとし、導体部の厚みを14μmとし、絶縁体部の構成粒子の平均粒径を1.5μm、厚みを6μm、幅を170μm(幅差30μm)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
(Example 3)
The height of the magnetic part is 474 μm, the average particle diameter of the alloy magnetic particles is 1.5 μm, the thickness of the conductor part is 14 μm, the average particle diameter of the constituent particles of the insulator part is 1.5 μm, the thickness is 6 μm, and the width A coil component was manufactured under the same conditions as in Example 1 except that the thickness was set to 170 μm (width difference: 30 μm). When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例4)
磁性体部の高さを429μm、合金磁性粒子の平均粒径を1μmとし、導体部の厚みを14μmとし、絶縁体部の構成粒子の平均粒径を1μm、厚みを3μm、幅を155μm(幅差15μm)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
Example 4
The height of the magnetic part is 429 μm, the average particle diameter of the alloy magnetic particles is 1 μm, the thickness of the conductor part is 14 μm, the average particle diameter of the constituent particles of the insulator part is 1 μm, the thickness is 3 μm, and the width is 155 μm (width) A coil component was manufactured under the same conditions as in Example 1 except that the difference was 15 μm. When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例5)
磁性体部の高さを405μm、合金磁性粒子の平均粒径を5μmとし、導体部の厚みを14μmとし、絶縁体部の構成粒子の平均粒径を1μm、厚みを3μm、幅を155μm(幅差15μm)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
(Example 5)
The height of the magnetic part is 405 μm, the average particle diameter of the alloy magnetic particles is 5 μm, the thickness of the conductor part is 14 μm, the average particle diameter of the constituent particles of the insulator part is 1 μm, the thickness is 3 μm, and the width is 155 μm (width) A coil component was manufactured under the same conditions as in Example 1 except that the difference was 15 μm. When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例6)
磁性体部の高さを382.5μm、合金磁性粒子の平均粒径を5μmとし、導体部の厚みを14μmとし、絶縁体部の構成粒子をシリカ粒子(平均粒径0.5μm)、厚みを1.5μm、幅を150μm(幅差10μm)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
(Example 6)
The height of the magnetic part is 382.5 μm, the average particle diameter of the alloy magnetic particles is 5 μm, the thickness of the conductor part is 14 μm, the constituent particles of the insulator part are silica particles (average particle diameter 0.5 μm), and the thickness is A coil component was manufactured under the same conditions as in Example 1 except that the width was 1.5 μm and the width was 150 μm (width difference 10 μm). When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例7)
磁性体部の高さを382.5μm、合金磁性粒子の平均粒径を5μmとし、導体部の厚みを14μmとし、絶縁体部の構成粒子をシリカ粒子(平均粒径0.05μm)、厚みを1.5μm、幅を170μm(比率21%)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、50Vであった。
(Example 7)
The height of the magnetic part is 382.5 μm, the average particle diameter of the alloy magnetic particles is 5 μm, the thickness of the conductor part is 14 μm, the constituent particles of the insulator part are silica particles (average particle diameter 0.05 μm), and the thickness is A coil component was manufactured under the same conditions as in Example 1 except that the width was set to 1.5 μm and the width was set to 170 μm (ratio 21%). When the withstand voltage of the produced coil component was measured under the same conditions as in Example 1, it was 50V.

(実施例8)
磁性体部の高さを494μm、合金磁性粒子の平均粒径を5μmとし、導体部の厚みを4μmとし、絶縁体部の構成粒子の平均粒径を5μm、厚みを18μm、幅を140μm(幅差0)とした以外は、実施例1と同一の条件でコイル部品を作製した。作製したコイル部品の耐電圧を実施例1と同一の条件で測定したところ、25Vであった。
(Example 8)
The height of the magnetic part is 494 μm, the average particle diameter of the alloy magnetic particles is 5 μm, the thickness of the conductor part is 4 μm, the average particle diameter of the constituent particles of the insulator part is 5 μm, the thickness is 18 μm, and the width is 140 μm (width) A coil component was manufactured under the same conditions as in Example 1 except that the difference was 0). When the withstand voltage of the manufactured coil component was measured under the same conditions as in Example 1, it was 25V.

実施例1〜8の作製条件及び耐電圧を表1にまとめて示す。   The production conditions and withstand voltages of Examples 1 to 8 are summarized in Table 1.

Figure 2017228768
Figure 2017228768

表1に示すように、実施例1〜8について概ね25V以上の耐電圧が得られることが確認された。特に、絶縁体部の構成粒子の平均粒径が3μm以下である実施例1〜7については、当該平均粒径が5μmである実施例8と比較して、絶縁体部の厚みが小さいにもかかわらず耐電圧が高いことが確認された。これは、絶縁体部の構成粒子の平均粒径が小さいほど平滑性が高くなり、厚みの均一性が得られるためであると推認される。   As shown in Table 1, it was confirmed that a withstand voltage of about 25 V or more was obtained for Examples 1 to 8. In particular, in Examples 1 to 7 in which the average particle diameter of the constituent particles of the insulator part is 3 μm or less, the thickness of the insulator part is small compared to Example 8 in which the average particle diameter is 5 μm. Regardless, it was confirmed that the withstand voltage was high. This is presumably because the smaller the average particle size of the constituent particles of the insulator part, the higher the smoothness and the more uniform the thickness.

さらに、実施例1〜7は実施例8と比較して導体部の厚みが大きいため、実施例8よりも低抵抗なコイル部品を作製することができる。実施例8の導体部の直流抵抗に対する実施例1〜7のそれの比を測定したところ、表1に示すような結果が得られた。   Furthermore, since the thickness of the conductor part of Examples 1-7 is larger than that of Example 8, a coil component having a lower resistance than that of Example 8 can be produced. When the ratio of those of Examples 1 to 7 with respect to the DC resistance of the conductor portion of Example 8 was measured, the results shown in Table 1 were obtained.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added.

例えば以上の実施形態では、外部電極14,15は、部品本体11の長辺方向に対向する2つの端面に設けられたが、これに限られず、部品本体11の短辺方向に対向する2つの側面に設けられてもよい。   For example, in the above embodiment, the external electrodes 14 and 15 are provided on the two end faces facing the long side direction of the component main body 11, but the present invention is not limited to this, and two external electrodes facing the short side direction of the component main body 11 are provided. It may be provided on the side surface.

10…コイル部品
11…部品本体
12…磁性体部
13…コイル部
14,15…外部電極
C1〜C4…周回部
IS1〜IS3…絶縁体部
M1〜M4…磁性パターン部
ML1〜ML4,MLU,MLD…磁性体層
DESCRIPTION OF SYMBOLS 10 ... Coil component 11 ... Component main body 12 ... Magnetic body part 13 ... Coil part 14, 15 ... External electrode C1-C4 ... Circulation part IS1-IS3 ... Insulator part M1-M4 ... Magnetic pattern part ML1-ML4, MLU, MLD ... Magnetic layer

Claims (8)

合金磁性粒子で構成された磁性体部と、
複数の周回部を有し、前記磁性体部の内部において一軸まわりに巻回された導体部と、
前記複数の周回部の間にそれぞれ配置され、前記一軸方向に少なくとも一部が対向する2つの周回部に各々接合される2つの接合面をそれぞれ含む周回形状を有し、電気絶縁性粒子で構成された複数の絶縁体部と
を具備するコイル部品。
A magnetic body composed of alloy magnetic particles;
A conductor portion having a plurality of surrounding portions and wound around one axis inside the magnetic body portion;
Each of the plurality of circular portions is arranged between the plurality of circular portions, and each of the circular shapes includes two joint surfaces that are respectively joined to the two circular portions that are at least partially opposed to each other in the uniaxial direction. A coil component comprising a plurality of insulator portions.
請求項1に記載のコイル部品であって、
前記複数の絶縁体部の前記一軸方向に沿った厚み寸法は、前記複数の周回部の前記一軸方向に沿った厚み寸法よりも小さい
コイル部品。
The coil component according to claim 1,
The thickness dimension along the uniaxial direction of the plurality of insulator portions is smaller than the thickness dimension along the uniaxial direction of the plurality of rotating portions.
請求項1又は2に記載のコイル部品であって、
前記複数の絶縁体部の前記一軸方向に直交する幅寸法は、前記複数の周回部の前記一軸方向に直交する幅寸法以上の大きさを有する
コイル部品。
The coil component according to claim 1 or 2,
The coil part having a width dimension orthogonal to the uniaxial direction of the plurality of insulator parts is equal to or greater than a width dimension orthogonal to the uniaxial direction of the plurality of winding parts.
請求項1〜3のいずれか1つに記載のコイル部品であって、
前記電気絶縁性粒子は、1μm以下の平均粒径を有する第1の合金磁性粒子を含む
コイル部品。
The coil component according to any one of claims 1 to 3,
The electrical insulating particles include first alloy magnetic particles having an average particle diameter of 1 μm or less.
請求項4に記載のコイル部品であって、
前記磁性体部は、前記第1の合金磁性粒子よりも平均粒径が大きい第2の合金磁性粒子で構成される
コイル部品。
The coil component according to claim 4,
The said magnetic body part is comprised by the 2nd alloy magnetic particle whose average particle diameter is larger than the said 1st alloy magnetic particle.
請求項1〜3のいずれか1つに記載のコイル部品であって、
前記電気絶縁性粒子は、平均粒径が1μm以下のシリカ粒子、ジルコニア粒子又はアルミナ粒子を含む
コイル部品。
The coil component according to any one of claims 1 to 3,
The coil component includes silica particles, zirconia particles, or alumina particles having an average particle diameter of 1 μm or less.
請求項1〜3のいずれか1つに記載のコイル部品であって、
前記電気絶縁性粒子は、フェライト粒子を含む
コイル部品。
The coil component according to any one of claims 1 to 3,
The electrically insulating particles include a ferrite particle.
一軸まわりに巻回された周回形状の第1の絶縁体部と、前記第1の絶縁体部の上に設けられ前記第1の絶縁体部の一端から延出する第1の端部を有する導電性の第1の周回部と、前記第1の絶縁体部及び前記第1の周回部各々の内周部及び外周部に隣接する第1の磁性体パターンとを有する第1の層を形成し、
前記一軸まわりに巻回された周回形状の第2の絶縁体部と、前記第2の絶縁体部の上に設けられ前記第2の絶縁体部の一端から延出し前記第1の端部と接続される第2の端部を有する導電性の第2の周回部と、前記第2の絶縁体部及び前記第2の周回部各々の内周部及び外周部に隣接する第2の磁性体パターンとを有する第2の層を、前記第1の層の上に形成する
コイル部品の製造方法。
A first insulator portion having a circular shape wound around one axis, and a first end portion provided on the first insulator portion and extending from one end of the first insulator portion. Forming a first layer having a conductive first surrounding part and a first magnetic pattern adjacent to the inner and outer circumferences of each of the first insulator part and the first surrounding part; And
A second insulator portion having a circular shape wound around the one axis; and the first end portion provided on the second insulator portion and extending from one end of the second insulator portion; A conductive second circumferential portion having a second end to be connected, and a second magnetic body adjacent to the inner circumferential portion and the outer circumferential portion of each of the second insulator portion and the second circumferential portion. A method of manufacturing a coil component, wherein a second layer having a pattern is formed on the first layer.
JP2017095538A 2016-06-15 2017-05-12 Coil component and its manufacturing method Active JP7257735B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/618,009 US10777342B2 (en) 2016-06-15 2017-06-08 Coil component and method for manufacturing the same
CN201710451608.XA CN107527724B (en) 2016-06-15 2017-06-15 Coil component and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016118681 2016-06-15
JP2016118681 2016-06-15

Publications (2)

Publication Number Publication Date
JP2017228768A true JP2017228768A (en) 2017-12-28
JP7257735B2 JP7257735B2 (en) 2023-04-14

Family

ID=60892268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095538A Active JP7257735B2 (en) 2016-06-15 2017-05-12 Coil component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7257735B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107782A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
JP2020107780A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
JP2020155702A (en) * 2019-03-22 2020-09-24 Tdk株式会社 Laminated coil component
CN114334356A (en) * 2020-09-28 2022-04-12 Tdk株式会社 Laminated coil component
JP7444146B2 (en) 2021-08-05 2024-03-06 株式会社村田製作所 coil parts

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173611A (en) * 1987-12-26 1989-07-10 Toko Inc Manufacture of laminated inductor
JPH0677022A (en) * 1992-03-31 1994-03-18 Tdk Corp Nonmagnetic ferrite for composite laminated component, and composite laminated component
JP2002141225A (en) * 2000-11-06 2002-05-17 Toko Inc Method of manufacturing laminated electronic component
JP2005136037A (en) * 2003-10-29 2005-05-26 Sumida Corporation Laminated transformer
WO2008004633A1 (en) * 2006-07-05 2008-01-10 Hitachi Metals, Ltd. Laminated component
JP2008078229A (en) * 2006-09-19 2008-04-03 Tdk Corp Laminated inductor
JP2010118587A (en) * 2008-11-14 2010-05-27 Toko Inc Electronic component and method of manufacturing the same
JP2012164958A (en) * 2011-01-20 2012-08-30 Taiyo Yuden Co Ltd Coil component
JP2013055315A (en) * 2011-08-05 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
JP2014116396A (en) * 2012-12-07 2014-06-26 Murata Mfg Co Ltd Electronic component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173611A (en) * 1987-12-26 1989-07-10 Toko Inc Manufacture of laminated inductor
JPH0677022A (en) * 1992-03-31 1994-03-18 Tdk Corp Nonmagnetic ferrite for composite laminated component, and composite laminated component
JP2002141225A (en) * 2000-11-06 2002-05-17 Toko Inc Method of manufacturing laminated electronic component
JP2005136037A (en) * 2003-10-29 2005-05-26 Sumida Corporation Laminated transformer
WO2008004633A1 (en) * 2006-07-05 2008-01-10 Hitachi Metals, Ltd. Laminated component
JP2008078229A (en) * 2006-09-19 2008-04-03 Tdk Corp Laminated inductor
JP2010118587A (en) * 2008-11-14 2010-05-27 Toko Inc Electronic component and method of manufacturing the same
JP2012164958A (en) * 2011-01-20 2012-08-30 Taiyo Yuden Co Ltd Coil component
JP2013055315A (en) * 2011-08-05 2013-03-21 Taiyo Yuden Co Ltd Multilayer inductor
JP2014116396A (en) * 2012-12-07 2014-06-26 Murata Mfg Co Ltd Electronic component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107782A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
JP2020107780A (en) * 2018-12-28 2020-07-09 太陽誘電株式会社 Laminated coil component
JP7272790B2 (en) 2018-12-28 2023-05-12 太陽誘電株式会社 Laminated coil parts
JP7373902B2 (en) 2018-12-28 2023-11-06 太陽誘電株式会社 laminated coil parts
JP2020155702A (en) * 2019-03-22 2020-09-24 Tdk株式会社 Laminated coil component
CN111724981A (en) * 2019-03-22 2020-09-29 Tdk株式会社 Laminated coil component
JP7251243B2 (en) 2019-03-22 2023-04-04 Tdk株式会社 Laminated coil parts
US11631530B2 (en) 2019-03-22 2023-04-18 Tdk Corporation Multilayer coil component
CN114334356A (en) * 2020-09-28 2022-04-12 Tdk株式会社 Laminated coil component
CN114334356B (en) * 2020-09-28 2024-01-19 Tdk株式会社 Laminated coil component
JP7444146B2 (en) 2021-08-05 2024-03-06 株式会社村田製作所 coil parts

Also Published As

Publication number Publication date
JP7257735B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
KR101954579B1 (en) Laminated inductor
JP7257735B2 (en) Coil component and its manufacturing method
CN107527724B (en) Coil component and method for manufacturing same
JP6738635B2 (en) Coil parts
JP5642036B2 (en) Chip coil components
JP4211591B2 (en) Method for manufacturing multilayer electronic component and multilayer electronic component
KR101282025B1 (en) Laminated inductor, method for manufacturing the laminated inductor, and laminated choke coil
JP6622549B2 (en) Coil parts
JP2018011043A (en) Magnetic material and electronic component
KR20130064352A (en) Laminated inductor and manufacturing method thereof
JP2018006411A (en) Laminated coil component
JP7235088B2 (en) Multilayer electronic component
JP2020061411A (en) Multilayer coil array
US20220102062A1 (en) Electronic component and method of manufacturing the same
JP2022065205A (en) Coil component
JP2020194807A (en) Laminated coil component
JP7015650B2 (en) Coil parts
CN111986878A (en) Laminated coil component
JP2004088969A (en) Ceramic coil for brushless motor
JP7035234B2 (en) Coil parts
JP2023102541A (en) Coil component and method of manufacturing coil component
JP2023039711A (en) Inductor component
JP2023103954A (en) Coil component
JP2020061415A (en) Laminated coil array for dc-dc converter and dc-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220111

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220121

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220707

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220913

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230314

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7257735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150