JP2017226259A - Flying object for inspecting pipeline facility and system for inspecting pipeline facility using the same - Google Patents

Flying object for inspecting pipeline facility and system for inspecting pipeline facility using the same Download PDF

Info

Publication number
JP2017226259A
JP2017226259A JP2016122237A JP2016122237A JP2017226259A JP 2017226259 A JP2017226259 A JP 2017226259A JP 2016122237 A JP2016122237 A JP 2016122237A JP 2016122237 A JP2016122237 A JP 2016122237A JP 2017226259 A JP2017226259 A JP 2017226259A
Authority
JP
Japan
Prior art keywords
pipeline
distance sensor
pipe
distance
facility inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016122237A
Other languages
Japanese (ja)
Other versions
JP6710114B2 (en
Inventor
晃治 陰山
Koji Kageyama
晃治 陰山
高橋 文夫
Fumio Takahashi
文夫 高橋
田所 秀之
Hideyuki Tadokoro
秀之 田所
齋藤 仁
Hitoshi Saito
仁 齋藤
正美 畑山
Masami Hatayama
正美 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016122237A priority Critical patent/JP6710114B2/en
Publication of JP2017226259A publication Critical patent/JP2017226259A/en
Application granted granted Critical
Publication of JP6710114B2 publication Critical patent/JP6710114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flying object for inspecting a pipeline facility and a system for inspecting the pipeline facility using the same capable of acquiring information on pipe diameters and water depths for inspecting the pipeline facility.SOLUTION: A flying object for inspecting pipeline facility comprises: imaging means for imaging an inside of a pipeline; illumination means for emitting light in the pipeline; a flying object body provided with the imaging means and the illumination means, and flying inside the pipeline; an upper distance sensor disposed on an upper surface of the flying object body; side distance sensors disposed on side surfaces of the flying object body; flight control means, disposed in the flying object body, for controlling a flight direction of the flying object body in the pipeline on the basis of values measured by the upper distance sensor and the side distance sensors; and calculation means for calculating a pipe diameter or a pipe width according to a shape of a cross section of the pipeline on the basis of the value measured by the upper distance sensor and the side distance sensors.SELECTED DRAWING: Figure 3

Description

本発明は、例えば下水管路などの管路施設内を飛行して画像を取得し、管路施設の内面
の状態を把握する管路施設点検飛行体と、それを用いた管路施設点検システムに関する。
The present invention, for example, is a pipeline facility inspection vehicle that flies in a pipeline facility such as a sewage pipeline, acquires an image, and grasps the state of the inner surface of the pipeline facility, and a pipeline facility inspection system using the same About.

現在、代表的な管路施設として下水管路の老朽化の問題がある。老朽化が進行するとひ
び割れや破損、腐食などの異常が発生する。その結果、管内の液体を管外と分離して流す
機能が低下するとともに、土砂が管外から管内に入って地中に空隙ができ、それが原因で
道路の陥没事故が発生する可能性がある。
Currently, there is a problem of aging sewer pipes as a typical pipe line facility. As aging progresses, abnormalities such as cracks, breakage, and corrosion occur. As a result, the function of separating and flowing the liquid in the pipe from the outside of the pipe decreases, and earth and sand enter the pipe from the outside of the pipe, creating a void in the ground, which may cause a road collapse accident. is there.

そこで、老朽化にともなう下水管路の異常を把握する技術が必要となっている。このよ
うなニーズに対し、例えば特許文献1では、テレビカメラを搭載した小型の自走車を下水
管の中を走行させ、管内の状態をモニタする技術が記載されている。
Therefore, a technology for grasping abnormalities in sewage pipes due to aging is required. In response to such needs, for example, Patent Document 1 describes a technique of running a small self-propelled vehicle equipped with a TV camera in a sewer pipe and monitoring the state in the pipe.

特開平9−226570号公報Japanese Patent Laid-Open No. 9-226570

特許文献1では、下水管路の中に入れた自走車のテレビカメラで画像を取得するが、予
め下水管路の中に人が入り、地上から自走車を受け取って下水管路の中に設置する作業が
必要となる。下水管路には通常下水が流れているが、下水の水位が高く流速が速いため、人が入ることができない箇所もある。そのような箇所であっても、上部に空間があれば飛行体を用いて管路内面上部の画像を取得する方法がある。飛行体で得た画像に基づき異常を把握した場合、その対策案を立案するにあたって管の径や水深の情報が必要となる。しかしながら、このように人が入れない箇所ではこれらの情報が十分に得られない場合があった。
In Patent Document 1, an image is acquired with a TV camera of a self-propelled vehicle placed in a sewage pipeline. A person enters the sewage pipeline in advance, receives the self-propelled vehicle from the ground, and enters the sewage pipeline. Installation work is required. Although sewage usually flows through the sewage pipes, there are some places where people cannot enter because the water level of the sewage is high and the flow velocity is high. Even in such a place, if there is a space in the upper part, there is a method of acquiring an image of the upper part of the inner surface of the pipeline using a flying object. When an abnormality is grasped on the basis of an image obtained by a flying object, information on the diameter of the pipe and the depth of water is required in drafting a countermeasure plan. However, there are cases where such information cannot be obtained sufficiently in places where people cannot enter.

本発明はこの課題に鑑みて為されたものであり、本発明の目的は、管路施設の点検に際し、管の径および水深の情報を取得することが可能な管路施設点検飛行体と、それを用いた管路施設点検システムを提供することにある。   The present invention has been made in view of this problem, and the object of the present invention is a pipeline facility inspection vehicle capable of acquiring information on the diameter and water depth of a tube when inspecting the pipeline facility, It is to provide a pipeline facility inspection system using the same.

本発明の管路施設点検飛行体は、管路内を撮像する撮像手段と、管路内に光を照射する照射手段と、前記撮像手段と前記照射手段を配置し、管路内を飛行する飛行体本体と、前記飛行体本体の上面に配置され、管路と管路内の飛行体との、鉛直上向きの距離を測定する上方距離センサと、前記飛行体本体の少なくとも2つの側面に配置され、管路と管路内の飛行体との、前記飛行体の進行方向に対して直角方向の距離を測定する側方距離センサと、前記飛行体本体に配置され、前記上方距離センサと側方距離センサの測定値に基づいて管路内の飛行体本体の飛行方向を制御する飛行制御手段と、前記上方距離センサと側方距離センサの計測値に基づき、管路断面の形状に応じて、管径もしくは管幅を計算する計算手段と、を備えることを特徴とする。
また、本発明の管路施設点検システムは、地上に配置され、前記管路施設点検飛行体で撮影した画像を、地上からマンホールに垂らしたアンテナを介して、無線で受信する送受信装置と、前記送受信装置に接続され、前記計算手段で計算した管径、管幅及び水深の少なくとも1つを表示する表示装置と、を備えることを特徴とする。
The pipeline facility inspection aircraft according to the present invention includes an imaging means for imaging the inside of the pipeline, an irradiating means for irradiating light in the pipeline, the imaging means and the irradiating means, and flies in the pipeline. Arranged on at least two side surfaces of the flying body, an upper distance sensor that is disposed on the upper surface of the flying body, and measures a vertically upward distance between the pipe and the flying body in the pipe. A lateral distance sensor for measuring a distance between a duct and a flying object in the duct in a direction perpendicular to a traveling direction of the flying object, and a side distance sensor disposed on the flying object body, According to the flight control means for controlling the flight direction of the aircraft body in the pipeline based on the measurement value of the distance sensor, and on the shape of the cross section of the pipeline based on the measurement values of the upper distance sensor and the lateral distance sensor. And a calculation means for calculating a pipe diameter or a pipe width. To.
Further, the pipeline facility inspection system of the present invention is a transmission / reception device that is arranged on the ground and wirelessly receives an image photographed by the pipeline facility inspection aircraft, and via an antenna suspended from the ground on a manhole, And a display device connected to the transmission / reception device and displaying at least one of the tube diameter, the tube width and the water depth calculated by the calculation means.

本発明によれば、管路施設の点検に際し、管路内での作業者の立会いを不要とし、管の径および水深の情報を安定して取得することができる。   According to the present invention, when the pipe facility is inspected, the presence of an operator in the pipe line is unnecessary, and information on the diameter and water depth of the pipe can be stably acquired.

本発明の一実施例に係る管路施設点検飛行体の側面図および上面図である。It is the side view and top view of the pipeline facility inspection vehicle which concerns on one Example of this invention. 図1に示す管路施設点検飛行体を用いた管路施設点検システムを示す構成図である。It is a block diagram which shows the pipeline facility inspection system using the pipeline facility inspection vehicle shown in FIG. 本発明の一実施例に係る管路施設点検飛行体が円形の断面をもつ下水管内を飛行している際の径方向断面模式図である。It is a radial direction cross-sectional schematic diagram at the time of the pipeline facility inspection flying body which concerns on one Example of this invention flying in the inside of a sewer pipe with a circular cross section. 本発明の一実施例に係る管路施設点検飛行体の進行方向が管路施設の軸方向と平行でない場合の状態を鉛直上方から見た軸方向断面図である。It is the axial direction sectional view which looked at the state in case the advancing direction of the pipeline facility inspection vehicle which concerns on one Example of this invention is not parallel to the axial direction of a pipeline facility from the perpendicular | vertical upper direction. 本発明の一実施例に係る管路施設点検飛行体の飛行方向と管路施設の軸方向との角度偏差に対し、お互いに逆方向の距離を測定する2つの距離センサの測定値の和との関係を示す模式図である。The sum of the measurement values of two distance sensors that measure the distance in the opposite direction to the angular deviation between the flight direction of the pipeline facility inspection aircraft and the axial direction of the pipeline facility according to an embodiment of the present invention; It is a schematic diagram which shows the relationship. 本発明の一実施例に係る円形管を対象とした場合の画面表示の例である。It is an example of the screen display at the time of targeting the circular tube which concerns on one Example of this invention. 本発明の一実施例に係る管路施設点検飛行体が矩形の断面をもつ下水管内を飛行している際の径方向断面模式図である。It is a radial direction cross-sectional schematic diagram at the time of the pipeline facility inspection flying body which concerns on one Example of this invention flying in the inside of a sewer pipe with a rectangular cross section. 本発明の一実施例に係る矩形管を対象とした場合の画面表示の例である。It is an example of the screen display at the time of targeting the rectangular tube which concerns on one Example of this invention. 本発明の一実施例に係る管路施設点検飛行体が前方距離センサと後方距離センサを備えた場合の側面図および上面図である。It is the side view and top view at the time of the pipe line facility inspection vehicle which concerns on one Example of this invention provided with the front distance sensor and the back distance sensor. 本発明の一実施例に係る管路施設点検飛行体の周辺状況を側面から見た表示を追加した場合の画面表示の例である。It is an example of the screen display at the time of adding the display which looked at the surroundings situation of the pipeline facility inspection aircraft concerning one example of the present invention from the side.

本発明の管路施設点検飛行体は、管路施設内を飛行し、亀裂やクラックの点検に用いる飛行体である。管路施設は、例えば下水管、ガス管、トンネル、集合管、内容物を抜いて気体で置換した水道管、蒸気配管、オイル配管、伏せ越し管、放流渠、マンホールなどが挙げられ、特に制限されるものではない。   The pipeline facility inspection vehicle of the present invention is a vehicle that flies through the pipeline facility and is used for checking cracks and cracks. Examples of pipeline facilities include sewage pipes, gas pipes, tunnels, collecting pipes, water pipes that have been extracted and replaced with gas, steam pipes, oil pipes, overhang pipes, discharge pipes, manholes, etc. Is not to be done.

以下、具体的な一例として、下水管を対象とした場合の一実施形態を図面により説明する。   Hereinafter, as a specific example, an embodiment in the case of a sewage pipe will be described with reference to the drawings.

図1は、本発明の一実施例に係る管路施設点検飛行体10の側面図および上面図である。管路施設点検飛行体10は、飛行体本体30に、プロペラ18、撮像手段20、照射手段22、上方距離センサ12、側方距離センサ14、下方距離センサ15、飛行制御手段24を配置している。実際に飛行するためにはモーターやバッテリーなども必要であるが、いずれも飛行体本体30に備えているものとする。さらに、下水管の点検には、撮像手段20で撮影した画像を無線で伝送する無線伝送装置35、それらを駆動するバッテリーなども必要であるが、これらも飛行体本体30に備えているものとする。   FIG. 1 is a side view and a top view of a pipeline facility inspection aircraft 10 according to an embodiment of the present invention. The pipeline facility inspection aircraft 10 includes a propeller 18, an imaging unit 20, an irradiation unit 22, an upper distance sensor 12, a side distance sensor 14, a lower distance sensor 15, and a flight control unit 24 arranged on the aircraft body 30. Yes. In order to actually fly, a motor, a battery, and the like are required, but all of them are provided in the flying body 30. Further, the inspection of the sewage pipe requires a wireless transmission device 35 that wirelessly transmits an image captured by the imaging means 20, a battery that drives them, and the like. To do.

管路施設点検飛行体10はプロペラ18を回転させて下水管の内部を飛行する。照射手段22で下水管の内面に光を照射し、撮像手段20で下水管の内面を撮像する。この撮像手段20が備えられた側を前方として管路施設点検飛行体10は進行する。下水管の壁面や天井あるいは底部をより詳しく撮影する場合、撮像手段20は管路施設点検飛行体10の進行方向に対して直角の向きを撮影できるよう設置してもよく、あるいは複数個設けても良い。進行する際に管路施設点検飛行体10が下水管の天井や壁面、底面や水面に衝突しないように、プロペラ18の回転数の制御によって、管路施設点検飛行体10の上下方向の移動、前後左右への移動や自転を行う。具体的には、上方距離センサ12および側方距離センサ14の計測値を、飛行体本体30内の飛行制御手段24(例えばマイコン)に与え、飛行制御手段24で計算した出力をそれぞれのプロペラ18の動力源であるモーターへ与えて、移動や自転を制御する。なお、ここで言う自転とは、管路施設点検飛行体10の位置を変えずに、飛行体10の向きのみを変えることを意味する。   The pipeline facility inspection vehicle 10 rotates the propeller 18 to fly inside the sewer pipe. The irradiation means 22 irradiates light on the inner surface of the sewer pipe, and the imaging means 20 images the inner surface of the sewer pipe. The pipeline facility inspection aircraft 10 proceeds with the side on which the imaging means 20 is provided as the front. When photographing the wall surface, ceiling, or bottom of the sewer pipe in more detail, the imaging means 20 may be installed so that it can photograph a direction perpendicular to the traveling direction of the pipeline facility inspection aircraft 10, or a plurality of imaging means 20 may be provided. Also good. In order to prevent the pipeline facility inspection aircraft 10 from colliding with the ceiling, wall surface, bottom surface, or water surface of the sewer pipe as it travels, the pipeline facility inspection aircraft 10 is moved in the vertical direction by controlling the rotation speed of the propeller 18. Move forward and backward, left and right and rotate. Specifically, the measured values of the upper distance sensor 12 and the lateral distance sensor 14 are given to the flight control means 24 (for example, a microcomputer) in the aircraft body 30, and the output calculated by the flight control means 24 is sent to each propeller 18. This is applied to the motor that is the power source of the motor to control movement and rotation. In addition, the rotation mentioned here means changing only the direction of the flying object 10 without changing the position of the pipeline facility inspection flying object 10.

側方距離センサ14は、下水管と、下水管内の飛行体10との距離を測定するセンサであり、飛行体10の進行方向に対して直角方向の距離を測定できるように、飛行体本体30の両側面にそれぞれ設置される(図1参照)。いずれも進行方向に対し直角の向きの距離を計測する向きに設置されるのが望ましいが、測定する向きが進行方向に対して平行でなければよい。   The lateral distance sensor 14 is a sensor that measures the distance between the sewer pipe and the flying object 10 in the sewer pipe, and the flying object body 30 can measure the distance in the direction perpendicular to the traveling direction of the flying object 10. Are installed on both sides (see FIG. 1). In any case, it is desirable that the distance is measured in a direction perpendicular to the traveling direction, but the measuring direction may not be parallel to the traveling direction.

上方距離センサ12は、下水管と、下水管内の飛行体10との距離を測定するセンサであり、鉛直上向きの距離を計測できるように、飛行体本体30の上面に設置される。なお、水平より上向きの方向の距離を計測する複数個の異なる上方距離センサ12を設置してもよい。複数個の上方距離センサ12の測定値に基づき、鉛直上向きからの距離を算出するアルゴリズムを飛行制御手段24に組み込むことで代替が可能である。   The upper distance sensor 12 is a sensor that measures the distance between the sewer pipe and the flying object 10 in the sewer pipe, and is installed on the upper surface of the flying body 30 so as to measure the vertically upward distance. A plurality of different upper distance sensors 12 that measure the distance in the upward direction from the horizontal may be installed. An alternative is possible by incorporating in the flight control means 24 an algorithm for calculating the distance from the vertical upward direction based on the measured values of the plurality of upward distance sensors 12.

下方距離センサ15は、下水管底部あるいは水面と、下水管内の飛行体10との距離を測定するセンサであり、鉛直下向きの距離を計測できるように、飛行体本体30の下面に設置される。   The downward distance sensor 15 is a sensor that measures the distance between the bottom of the sewer pipe or the water surface and the flying object 10 in the sewer pipe, and is installed on the lower surface of the flying body 30 so that the vertically downward distance can be measured.

上述の距離センサ12,14、15としては、安価で軽量かつ低消費電力の超音波センサあるいは赤外線センサを用いることが望ましいが、これら以外でも安価で軽量かつ低消費電力を実現でき、かつ1つの数値として距離を出力できるセンサであればいずれでもよい。下水管路施設内の天井や壁面など固体との距離に加え、液体との距離も測定できることが望ましい。   As the above-described distance sensors 12, 14, and 15, it is desirable to use an ultrasonic sensor or an infrared sensor that is inexpensive, lightweight, and has low power consumption. However, other than these, it is possible to realize inexpensive, lightweight, and low power consumption. Any sensor that can output a distance as a numerical value may be used. It is desirable to be able to measure the distance to the liquid in addition to the distance to the solid such as the ceiling or wall surface in the sewer pipe facility.

プロペラ18は、図1では4つを有しているが、これに限定されず、6つ、8つあるいは二重反転プロぺラの形状をとる場合には2つでもよい。   Although the number of propellers 18 is four in FIG. 1, the number of propellers 18 is not limited to this, and may be six, eight, or two when taking the shape of a counter-rotating propeller.

管路施設点検飛行体10としては、ドローンあるいはUAV(Unmanned Aerial Vehicles、無人航空機)と呼ばれる装置、小型のヘリコプター、気球や飛行船など空中に浮遊して移動できる飛行体であればいずれでもよい。   The pipeline facility inspection vehicle 10 may be any aircraft that can float and move in the air, such as a drone or a device called UAV (Unmanned Aerial Vehicles), a small helicopter, a balloon or an airship.

撮像手段20は静止画を撮影するカメラ、動画を撮影するビデオカメラのいずれでもよいが、動画を撮影できる設備で構成することが望ましい。   The imaging means 20 may be either a camera that shoots a still image or a video camera that shoots a moving image, but is preferably configured with equipment capable of shooting a moving image.

照射手段22については、できるだけ積載するバッテリーの重量を低減するのが望ましいことから、LEDが挙げられるが、特に限定されない。オペレータが画像を目視確認する作業が発生する可能性もあることから、白色光の光源を用いることが望ましい。   The irradiation means 22 is not particularly limited, although it is desirable to reduce the weight of the battery to be loaded as much as possible. Since an operator may visually check the image, it is desirable to use a white light source.

図2は、図1に示す管路施設点検飛行体10を用いた管路施設点検システムを模式的に示す図である。管路施設点検飛行体10は、下水管16内を飛行している。管路施設点検飛行体10には、撮像手段20で撮影した画像を無線で伝送する無線伝送装置35が配置されている。地上からマンホール31に垂らしたアンテナ32とそれに接続された送受信装置33には、飛行体10で撮影した画像が無線伝送装置から伝送、受信され、地上の表示装置34に表示される。表示装置34で、地上の作業員が、撮影した画像を撮影と同時に確認することができる。   FIG. 2 is a diagram schematically showing a pipeline facility inspection system using the pipeline facility inspection vehicle 10 shown in FIG. The pipeline facility inspection vehicle 10 is flying in the sewer pipe 16. A wireless transmission device 35 that wirelessly transmits an image captured by the imaging unit 20 is disposed in the pipeline facility inspection vehicle 10. An image taken by the flying object 10 is transmitted and received from the wireless transmission device to the antenna 32 hung from the ground on the manhole 31 and the transmitting / receiving device 33 connected thereto, and displayed on the display device 34 on the ground. On the display device 34, a worker on the ground can check the photographed image at the same time as photographing.

一般に、下水管16は地面形状に対してほぼ並行に配置されており、マンホール31に対してほぼ直角に接続されている。よって、直進性の高い高周波の電波をマンホール31経由で下水管16へ送っても、マンホール31から下水管16に繋がる屈曲部で電波の減衰が大きく、電波が届きにくい場合がある。これに対し、アンテナ32をマンホール31に配置することで、直進性が高い高周波の電波であっても下水管16の中を電波が伝達し易くなり、より安定して飛行体10と通信することができる。   In general, the sewer pipe 16 is disposed substantially in parallel with the ground shape and is connected to the manhole 31 at a substantially right angle. Therefore, even when a high-frequency radio wave having high straightness is sent to the sewer pipe 16 via the manhole 31, the radio wave is greatly attenuated at the bent portion connected from the manhole 31 to the sewer pipe 16, and the radio wave may be difficult to reach. On the other hand, by arranging the antenna 32 in the manhole 31, even if it is a high-frequency radio wave having high straightness, the radio wave can be easily transmitted through the sewer pipe 16 and can communicate with the flying object 10 more stably. Can do.

アンテナ32は、導電体を樹脂で被覆して構成され、ケーブル状に巻き取れる性状が作業する上で好ましい。図2では、アンテナ32を入り口側のマンホール31、出口側のマンホール31にそれぞれ配置しているが、入口側のみ、出口側のみでもよい。   The antenna 32 is configured by covering a conductor with a resin, and is preferable in terms of working properties that can be wound in a cable shape. In FIG. 2, the antennas 32 are arranged in the manhole 31 on the entrance side and the manhole 31 on the exit side, respectively, but only the entrance side or the exit side may be used.

上述の内容は無線により撮影した画像を伝送する場合について述べたが、本発明では無線であることに限定はされず、有線で画像を伝送することでもよい。   In the above description, the case of transmitting an image captured wirelessly is described. However, the present invention is not limited to wireless transmission, and the image may be transmitted by wire.

表示装置34は、特に制限されるものではなく、例えば、液晶、プラズマディスプレイ、ブラウン管等の据付型のPC用モニタや業務用モニタ、スマートフォン、タブレット等のモバイル装置でもよい。   The display device 34 is not particularly limited, and may be a mobile device such as a stationary PC monitor such as a liquid crystal display, a plasma display, or a cathode ray tube, a business monitor, a smartphone, or a tablet.

図3は、管路施設点検飛行体10が水平方向に設置された下水管16の内部を飛行している際の径方向断面模式図である。下水管16には下水26が流れている。上方距離センサ12は下水管16の天井との距離y1を計測しており、2つ備えられた側方距離センサ14は下水管16の壁面との距離x1およびx2を計測していることを示している。下方距離センサ15は下水管16の底面あるいは水面との距離y2を計測していることを示す。この図で進行方向は紙面の向こう側であり、管路施設点検飛行体10は後方が示されている。点検作業においては、壁面に衝突することなく、距離y1、距離x1、および距離x2をいずれも一定に保ったまま管路施設点検飛行体10が下水管16の中を軸方向へ飛行できることが望ましい。 FIG. 3 is a schematic cross-sectional view in the radial direction when the pipeline facility inspection vehicle 10 is flying inside the sewer pipe 16 installed in the horizontal direction. Sewage 26 flows through the sewage pipe 16. The upper distance sensor 12 measures the distance y 1 from the ceiling of the sewer pipe 16, and the two side distance sensors 14 provided measure the distances x 1 and x 2 from the wall surface of the sewer pipe 16. It is shown that. The downward distance sensor 15 indicates that the distance y 2 between the bottom surface of the sewer pipe 16 and the water surface is being measured. In this figure, the traveling direction is the other side of the page, and the pipeline facility inspection vehicle 10 is shown rearward. In the inspection work, the pipeline facility inspection aircraft 10 flies in the sewer pipe 16 in the axial direction while keeping the distance y 1 , the distance x 1 , and the distance x 2 constant without colliding with the wall surface. It is desirable to be able to do it.

なお、この場合には上方向と側面方向で合わせて異なる3方向の距離センサを備えることになるが、天井との距離y1および壁面との距離x1、x2を算出できるのであれば、前述のようにさらに多い個数の距離センサを備えてもよい。ただし、距離センサの数の増加はコスト増、重量増および消費電力増につながるため、多くても10方向の距離センサがあれば十分である。 In this case, it will be equipped with a distance sensor in three directions different in the upper direction and the side direction, but if the distance y 1 to the ceiling and the distances x 1 and x 2 to the wall surface can be calculated, As described above, a larger number of distance sensors may be provided. However, an increase in the number of distance sensors leads to an increase in cost, weight, and power consumption, so it is sufficient to have distance sensors in 10 directions at most.

図4は、管路施設点検飛行体10が水平方向に設置された管路施設内を飛行している状態を鉛直上方から見た軸方向断面図である。このうち(a)は管路施設点検飛行体10が軸方向へ飛行している望ましい状態である。(b)は管路施設点検飛行体10の飛行方向が軸方向に対して右向きに傾いている好ましくない状態、(c)は逆に管路施設点検飛行体10の飛行方向が軸方向に対して左向きに傾いている好ましくない状態を示す。(a)の状態で飛行できれば管路施設点検飛行体10は壁面へ衝突せず、かつ一定した向きの解析しやすい画像を撮影できる。(b)(c)のようになると解析しづらい画像になるとともに、管路施設点検飛行体10が壁面に衝突する危険性がある。したがって、(b)(c)の状態になった場合には、管路施設点検飛行体10を自転させて(a)の状態に制御する必要がある。(b)(c)の場合には、距離x1と距離x2の和が(a)の場合に比べて長い。管路施設点検飛行体10の進行方向と下水管16の軸方向との向きの差を角度偏差θと定義する。 FIG. 4 is an axial cross-sectional view of a state where the pipeline facility inspection vehicle 10 is flying in the pipeline facility installed in the horizontal direction as viewed from above. Among these, (a) is a desirable state in which the pipeline facility inspection vehicle 10 is flying in the axial direction. (b) is an unfavorable state in which the flight direction of the pipeline facility inspection vehicle 10 is tilted to the right with respect to the axial direction, and (c) is the flight direction of the pipeline facility inspection vehicle 10 with respect to the axial direction. Shows an unfavorable state of tilting to the left. If it is possible to fly in the state of (a), the pipeline facility inspection vehicle 10 does not collide with the wall surface and can take an image that is easy to analyze in a fixed direction. (b) As shown in (c), the image becomes difficult to analyze and there is a risk that the pipeline facility inspection aircraft 10 will collide with the wall surface. Therefore, when the states (b) and (c) are reached, it is necessary to rotate the pipeline facility inspection vehicle 10 to the state (a). In the cases (b) and (c), the sum of the distance x 1 and the distance x 2 is longer than that in the case (a). A difference in direction between the traveling direction of the pipeline facility inspection aircraft 10 and the axial direction of the sewer pipe 16 is defined as an angle deviation θ.

図5は、この角度偏差θとx1+ x2の値の関係を模式図で示したグラフである。x1+ x2が極小値となるときに角度偏差θは0となる。この関係を利用し、x1+ x2の値が極小値となるよう管路施設点検飛行体10の自転制御をすることにより、図4(a)の飛行方向を維持したまま飛行することが可能となる。 FIG. 5 is a graph schematically showing the relationship between the angle deviation θ and the value of x 1 + x 2 . The angle deviation θ is 0 when x 1 + x 2 is a minimum value. By utilizing this relationship and controlling the rotation of the pipeline facility inspection vehicle 10 so that the value of x 1 + x 2 becomes the minimum value, it is possible to fly while maintaining the flight direction of FIG. It becomes possible.

ただし、図3で示すように、下水管16が円形管の場合、x1+ x2を小さくするだけの条
件で飛行制御し、x1+ x2が0に近づくと、天井あるいは底に移動して衝突する可能性が生じる。すなわち、下水管16の天井との距離y1の値が一定となる条件下で、管路施設点検飛行体10の自転制御をすることが必要である。一方、下水管が矩形管の場合でも、距離y1の値が一定となる条件下で管路施設点検飛行体10の自転制御をすることが望ましい。このように距離y1の値が一定となる条件下で、x1+ x2が極小値となるよう自転するアルゴリズムを飛行制御手段24に備える。
However, as shown in FIG. 3, when the sewer pipe 16 is a circular pipe, flight control is performed under the condition that x 1 + x 2 is made small, and when x 1 + x 2 approaches 0, it moves to the ceiling or bottom. The possibility of collision. That is, it is necessary to perform the rotation control of the pipeline facility inspection vehicle 10 under the condition that the value of the distance y 1 from the ceiling of the sewer pipe 16 is constant. On the other hand, even when the sewer pipe is a rectangular pipe, it is desirable to perform the rotation control of the pipeline facility inspection vehicle 10 under the condition that the value of the distance y 1 is constant. In this way, the flight control means 24 is provided with an algorithm that rotates so that x 1 + x 2 becomes a minimum value under the condition that the value of the distance y 1 is constant.

なお、上記ではx1+ x2の値が極小となる例について述べたが、計算式はこれには限定さ
れず、x1とx2を入力として求めた指標の値が目標範囲内を満たすことでもよい。例えば、
係数を乗じたk1・x1+k2・x2の値が極小となる条件でもよいし、1/( x1+ x2)の値が極大となる条件でもよい。あるいは、単にx1が目標範囲内を、かつx2も目標範囲内を維持する条件でもよい。いずれにしても、x1とx2を入力として求めた指標の値が極小、極大、あるいは所定の目標範囲内の値を満足すればよい。
In the above, the example in which the value of x 1 + x 2 is minimal has been described. However, the calculation formula is not limited to this, and the index value obtained using x 1 and x 2 as inputs satisfies the target range. It may be. For example,
It may be a condition that the value of k 1 · x 1 + k 2 · x 2 multiplied by the coefficient is a minimum, or a condition that the value of 1 / (x 1 + x 2 ) is a maximum. Alternatively, the condition may be such that x 1 is within the target range and x 2 is maintained within the target range. In any case, it is only necessary that the index value obtained using x 1 and x 2 as an input satisfies the minimum, maximum, or a value within a predetermined target range.

上述のようにx1+ x2が極小値となるよう自転した後でのx1、x2および距離y1の値が得られると、管路施設点検飛行体10が飛行している下水管16が円形管の場合、解析的に次式で管径2rを一意に求めることができる。
2r = (x1 2+x2 2+ y1 2+((x1 2+x2 2)/y1 2)0.5 ・・・(1)
ここで、y1 ≠0とする。y1 = 0となるのは、管路施設点検飛行体10が下水管16の天井に接触している状態である。すなわち、管路施設点検飛行体10が下水管16の天井に接触していなければ、式(1)によって管径2rを求めることができる。
When the values of x 1 , x 2 and the distance y 1 after rotating so that x 1 + x 2 becomes the minimum value as described above are obtained, the sewer pipe in which the pipeline facility inspection vehicle 10 is flying is obtained. If 16 is a circular tube, the tube diameter 2r can be uniquely determined analytically by the following equation.
2r = (x 1 2 + x 2 2 + y 1 2 + ((x 1 2 + x 2 2 ) / y 1 2 ) 0.5 ... (1)
Here, y 1 ≠ 0. y 1 = 0 is a state in which the pipeline facility inspection vehicle 10 is in contact with the ceiling of the sewer pipe 16. That is, if the pipeline facility inspection vehicle 10 is not in contact with the ceiling of the sewage pipe 16, the pipe diameter 2r can be obtained by the equation (1).

x1 = x2となるように管路施設点検飛行体10の水平方向の飛行位置を制御すると、下水管16の断面である円の左右二等分の線上に管路施設点検飛行体10が位置することになる。下方に水面が無い場合には、天井との距離y1の値と底面との距離y2の値の和は2rと等しくなる。しかし、通常は下水管16の底部に下水が流れているため、底面との距離y2の値は小さくなる。その差分が水深dに相当する。すなわち、
d = 2r −y1 −y2 ・・・(2)
によって水深を得ることができる。
When the horizontal flight position of the pipeline facility inspection vehicle 10 is controlled so that x 1 = x 2 , the pipeline facility inspection vehicle 10 is placed on the bisecting line of the circle that is the cross section of the sewer pipe 16. Will be located. When there is no water surface below, the sum of the distance y 1 to the ceiling and the distance y 2 to the bottom is equal to 2r. However, since the normally have sewage flows to the bottom of the sewer pipe 16, the smaller the value of the distance y 2 of the bottom surface. The difference corresponds to the water depth d. That is,
d = 2r −y 1 −y 2 ... (2)
The water depth can be obtained.

一方、管路施設点検飛行体10の水平方向の飛行位置がx1 ≠ x2の場合、天井から管底までの距離は2rと異なることもあり、式(2)によって水深dの値を得ることはできない。このような場合には、以下のようにして水深を計算することができる。
管路施設点検飛行体10と下水管16断面の円の中心との相対位置は、解析的に次式で求めることができる。
X = (x2 − x1)/2 ・・・(3)
Y = (y1 2 − x1・x2)/(2・y1) ・・・(4)
ここでも上記同様に、管路施設点検飛行体10が下水管16の天井に接触していないものとする。このYを用いることで、管路施設点検飛行体10がx1 = x2の位置へ水平移動したと仮定した場合の管底までの距離y2’を次式で求めることができる。
y2' = r − Y ・・・(5)
ここでrは式(2)で求めた値を用いる。下方に水面があるとその分だけ真下の距離y2の値は小さくなるので、その差分が下水管16の水深の値dとなる。すなわち、次式でdの値を求めることができる。
d = y2’ - y2 ・・・(6)
On the other hand, when the horizontal flight position of the pipe facility inspection vehicle 10 is x 1 ≠ x 2 , the distance from the ceiling to the pipe bottom may be different from 2r, and the value of the water depth d is obtained by the equation (2). It is not possible. In such a case, the water depth can be calculated as follows.
The relative position between the pipeline facility inspection vehicle 10 and the center of the circle of the sewer pipe 16 cross section can be analytically obtained by the following equation.
X = (x 2 − x 1 ) / 2 (3)
Y = (y 1 2 − x 1・ x 2 ) / (2 ・ y 1 ) (4)
Here again, it is assumed that the pipeline facility inspection vehicle 10 is not in contact with the ceiling of the sewer pipe 16. By using this Y, the distance y 2 ′ to the tube bottom when it is assumed that the pipeline facility inspection vehicle 10 has moved horizontally to the position of x 1 = x 2 can be obtained by the following equation.
y 2 '= r − Y (5)
Here, r is a value obtained by the equation (2). If there is a water surface below, the value of the distance y 2 immediately below becomes smaller by that amount, so that the difference becomes the water depth value d of the sewer pipe 16. That is, the value of d can be obtained by the following equation.
d = y 2 '-y 2 ... (6)

以上のように求めた値は、上述した表示装置34に数値および図として表示されるのがよい。管径2r、水深dのほかに管路施設点検飛行体10の下水管16の断面である円との相対位置であるx1、x2、y1、y2を表示してもよい。 The values obtained as described above are preferably displayed as numerical values and figures on the display device 34 described above. In addition to the pipe diameter 2r and the water depth d, x 1 , x 2 , y 1 , and y 2 that are relative positions to the circle that is a cross section of the sewer pipe 16 of the pipeline facility inspection vehicle 10 may be displayed.

図6に画面表示の例を示す。この例では、管路施設点検飛行体10に2台の撮像手段20が搭載されているとして、画面上半分にはそれぞれの撮像手段20で得られた画像が表示されている。左下には管路施設点検飛行体10の周辺状況の小画面が表示されているが、これは別画面であってもよい。この小画面は管路施設点検飛行体10を背面から見た図となっており、管路施設点検飛行体10をあらわす中央の球と、上方距離センサ12、下方距離センサ15、側方距離センサ14で測定された距離での固体・液体表面との相対的な位置関係が図示される。水面の位置も図示されたほうがよい。また、具体的な距離の数値は左側および下側に表示されるのがよい。   FIG. 6 shows an example of screen display. In this example, assuming that the two imaging means 20 are mounted on the pipeline facility inspection aircraft 10, images obtained by the respective imaging means 20 are displayed on the upper half of the screen. In the lower left, a small screen of the surrounding situation of the pipeline facility inspection aircraft 10 is displayed, but this may be a separate screen. This small screen is a view of the pipeline facility inspection vehicle 10 as viewed from the back, and includes a central sphere representing the pipeline facility inspection vehicle 10, an upper distance sensor 12, a lower distance sensor 15, and a lateral distance sensor. The relative positional relationship with the solid / liquid surface at the distance measured at 14 is illustrated. The location of the water surface should also be shown. In addition, specific distance values are preferably displayed on the left side and the lower side.

このような画面構成をとることにより、点検者は撮像手段20で得られた画像を見ながら、管路施設点検飛行体10が現時点で下水管16の断面に対してどのあたりを飛行しているか、感覚的かつ定量的に把握することができる。その結果、管路施設点検飛行体10が壁面や水面に衝突したりしないよう、飛行位置をより適切に設定することが可能となる。   By taking such a screen configuration, the inspector is viewing the image obtained by the imaging means 20 and where the pipeline facility inspection aircraft 10 is flying with respect to the cross section of the sewer pipe 16 at the present time. Can be grasped sensorially and quantitatively. As a result, the flight position can be set more appropriately so that the pipeline facility inspection vehicle 10 does not collide with the wall surface or the water surface.

また、計算の結果として得られた管形状も数値として表示したほうがよい。図6では、上述した小画面の右側に数値として管径と水深を表示するようにしているが、これも別画面にしてもよい。   Moreover, it is better to display the tube shape obtained as a result of the calculation as a numerical value. In FIG. 6, the pipe diameter and the water depth are displayed as numerical values on the right side of the small screen described above, but this may also be displayed on a separate screen.

実施例1では下水管16の断面が円である円形管を対象とした場合について述べたが、実際に下水管16としては断面が四角形である矩形管が用いられる場合もある。図7は、矩形管の中を上述の管路施設点検飛行体10が飛行している際の径方向断面模式図である。   In the first embodiment, the case where the circular pipe whose cross section of the sewage pipe 16 is a circle is described, but a rectangular pipe having a square cross section may be actually used as the sewage pipe 16. FIG. 7 is a schematic radial cross-sectional view when the above-described pipe facility inspection vehicle 10 is flying in a rectangular tube.

上述した円形管の場合と同様に、x1+ x2が極小値となるよう自転した後でのx1、x2および距離y1の値が得られると、管路施設点検飛行体10が飛行している下水管16の仕様が分かる。管路施設点検飛行体10での距離センサの値から管幅を求めることができる。管幅をwとすると、この値は次式で求めることができる。
w = x1 + x2 ・・・(7)
矩形管の断面が正方形と分かっている場合には、水深dを次式で求めることができる。
d = w − (y1 + y2) ・・・(8)
As in the case of the circular tube described above, when the values of x 1 , x 2 and the distance y 1 after rotation so that x 1 + x 2 becomes the minimum value are obtained, the pipeline facility inspection vehicle 10 You can see the specifications of the sewage pipe 16 in flight. The tube width can be obtained from the value of the distance sensor in the pipeline facility inspection vehicle 10. If the tube width is w, this value can be calculated by the following equation.
w = x 1 + x 2 ... (7)
When the cross section of the rectangular tube is known to be square, the water depth d can be obtained by the following equation.
d = w − (y 1 + y 2 ) (8)

以上のように求めた値は、上述した表示装置34に数値および図として表示されるのがよい。管幅w、水深dのほかに管路施設点検飛行体10の下水管16の断面である四角形との相対位置であるx1、x2、y1、y2を表示してもよい。 The values obtained as described above are preferably displayed as numerical values and figures on the display device 34 described above. In addition to the pipe width w and the water depth d, x 1 , x 2 , y 1 , and y 2 that are relative positions to the quadrangle that is a cross section of the sewer pipe 16 of the pipeline facility inspection vehicle 10 may be displayed.

図8に画面表示のうち、下半分の例を示す。画面上半分には、図6と同様に、それぞれの撮像手段20で得られた画像が表示されるのがよい。左下には管路施設点検飛行体10の周辺状況の小画面が表示されているが、これは別画面であってもよい。この小画面は管路施設点検飛行体10を背面から見た図となっており、管路施設点検飛行体10をあらわす中央の球と、上方距離センサ12、下方距離センサ15、側方距離センサ14で測定された距離での固体・液体表面との相対的な位置関係が図示される。具体的な距離の数値は左側および下側に表示されるのがよい。   FIG. 8 shows an example of the lower half of the screen display. In the upper half of the screen, images obtained by the respective imaging means 20 are preferably displayed as in FIG. In the lower left, a small screen of the surrounding situation of the pipeline facility inspection aircraft 10 is displayed, but this may be a separate screen. This small screen is a view of the pipeline facility inspection vehicle 10 as viewed from the back, and includes a central sphere representing the pipeline facility inspection vehicle 10, an upper distance sensor 12, a lower distance sensor 15, and a lateral distance sensor. The relative positional relationship with the solid / liquid surface at the distance measured at 14 is illustrated. Specific distance values should be displayed on the left and bottom.

このような画面構成をとることにより、点検者は撮像手段20で得られた画像を見ながら、管路施設点検飛行体10が現時点で下水管16の断面に対してどのあたりを飛行しているか、感覚的かつ定量的に把握することができる。その結果、管路施設点検飛行体10が壁面や水面に衝突したりしないよう、飛行位置をより適切に設定することが可能となる。   By taking such a screen configuration, the inspector is viewing the image obtained by the imaging means 20 and where the pipeline facility inspection aircraft 10 is flying with respect to the cross section of the sewer pipe 16 at the present time. Can be grasped sensorially and quantitatively. As a result, the flight position can be set more appropriately so that the pipeline facility inspection vehicle 10 does not collide with the wall surface or the water surface.

また、計算の結果として得られた管形状も数値として表示したほうがよい。図8では、上述した小画面の右側に数値として矩形管の管幅と水面から天井までの距離を表示するようにしているが、これも別画面にしてもよい。   Moreover, it is better to display the tube shape obtained as a result of the calculation as a numerical value. In FIG. 8, the tube width of the rectangular tube and the distance from the water surface to the ceiling are displayed as numerical values on the right side of the small screen described above, but this may also be displayed on a separate screen.

なお、管路施設点検飛行体10で点検する下水管16が円形管か矩形管かあらかじめ分からない場合には、上方距離センサ12、側方距離センサ14で得られた計測値を用いて形状を自動的に判断してもよい。そのため、少なくとも水平方向あるいは垂直方向に異なる2つの地点での距離計測値を用いる。管の軸方向と異なる方向へ水平に移動したときに上方距離センサ12の計測値が一定であれば矩形管、変化するようであれば円形管と判断する計算部を備えるのがよい。あるいは、垂直方向に移動したときに側方距離センサ14で得られた計測値が一定であれば矩形管、変化するようであれば円形管と判断する計算部を備えるのがよい。   In addition, when it is not known beforehand whether the sewer pipe 16 to be inspected by the pipeline facility inspection vehicle 10 is a circular pipe or a rectangular pipe, the shape is determined using the measurement values obtained by the upper distance sensor 12 and the side distance sensor 14. It may be determined automatically. For this reason, distance measurement values at least at two different points in the horizontal direction or the vertical direction are used. It is preferable to provide a calculation unit that determines that the tube is a rectangular tube if the measured value of the upper distance sensor 12 is constant when moving horizontally in a direction different from the axial direction of the tube, and a circular tube if it changes. Alternatively, it is preferable to provide a calculation unit that determines that the measured value obtained by the lateral distance sensor 14 when moving in the vertical direction is a rectangular tube if the measured value is constant, and a circular tube if it changes.

図9は、管路施設点検飛行体10の水平前方の障害物との距離を測定する前方距離センサ37と、水平後方の障害物との距離を測定する後方距離センサ39を備えた管路施設点検飛行体10の側面図および上面図である。   FIG. 9 shows a pipeline facility provided with a front distance sensor 37 for measuring the distance to the obstacle in front of the pipeline facility inspection vehicle 10 and a rear distance sensor 39 for measuring the distance to the obstacle in the horizontal rear. FIG. 2 is a side view and a top view of the inspection aircraft 10.

前方距離センサ37と後方距離センサ39を備えることで、管路施設点検飛行体10は全部で6方向、前後左右上下の障害物との距離を計測することができるようになる。したがって、進行方向に障害物があった場合にはそれを検知することができ、その障害物と管路施設点検飛行体10との衝突を防止する運転あるいは制御が可能となる。また、管路施設点検飛行体10をマンホールから出入りさせる場合にも、前後左右の距離を計測できればマンホールの管や手すりとの衝突を防止する運転あるいは制御が可能となる。前方距離センサ37および後方距離センサ39で得られた計測値も表示装置34に数値および図として表示されるのがよい。   By providing the front distance sensor 37 and the rear distance sensor 39, the pipeline facility inspection vehicle 10 can measure the distance to obstacles in all six directions, front, rear, left, right, and up. Therefore, when there is an obstacle in the traveling direction, it can be detected, and operation or control for preventing a collision between the obstacle and the pipeline facility inspection vehicle 10 is possible. Even when the pipeline facility inspection vehicle 10 is moved in and out of the manhole, if the distance between the front, rear, left and right can be measured, the operation or control for preventing the collision with the manhole pipe and the handrail becomes possible. The measurement values obtained by the front distance sensor 37 and the rear distance sensor 39 are also preferably displayed on the display device 34 as numerical values and figures.

画面表示のうち、下半分の例を図10に示す。画面上半分には、図6と同様に、それぞれの撮像手段20で得られた画像が表示されるのがよい。左下には管路施設点検飛行体10の周辺状況の小画面が表示されているが、これは別画面であってもよい。この小画面は管路施設点検飛行体10を背面から見た図となっており、管路施設点検飛行体10をあらわす中央の球と、上方距離センサ12、下方距離センサ15、側方距離センサ14で測定された距離での固体・液体表面との相対的な位置関係が図示される。具体的な距離の数値は左側および下側に表示されるのがよい。これに加えて、その右側には管路施設点検飛行体10を側面から見た図を表示する。この図では管路施設点検飛行体10をあらわす中央の球と、上方距離センサ12、下方距離センサ15、前方距離センサ27、後方距離センサ39で得られた距離での固体・液体表面との相対的な位置関係が図示される。具体的な距離の数値は左側および下側に表示されるのがよい。   An example of the lower half of the screen display is shown in FIG. In the upper half of the screen, images obtained by the respective imaging means 20 are preferably displayed as in FIG. In the lower left, a small screen of the surrounding situation of the pipeline facility inspection aircraft 10 is displayed, but this may be a separate screen. This small screen is a view of the pipeline facility inspection vehicle 10 as viewed from the back, and includes a central sphere representing the pipeline facility inspection vehicle 10, an upper distance sensor 12, a lower distance sensor 15, and a lateral distance sensor. The relative positional relationship with the solid / liquid surface at the distance measured at 14 is illustrated. Specific distance values should be displayed on the left and bottom. In addition, on the right side, a diagram of the pipeline facility inspection vehicle 10 as viewed from the side is displayed. In this figure, the center sphere representing the pipeline facility inspection vehicle 10 is relative to the solid / liquid surface at the distances obtained by the upper distance sensor 12, the lower distance sensor 15, the front distance sensor 27, and the rear distance sensor 39. A typical positional relationship is shown. Specific distance values should be displayed on the left and bottom.

このような画面構成をとることにより、点検者は撮像手段20で得られた画像を見ながら、管路施設点検飛行体10が現時点で下水管16の断面に対してどのあたりを飛行しているか、感覚的かつ定量的に把握することができる。その結果、管路施設点検飛行体10が壁面や水面に衝突したりしないよう、飛行位置をより適切に設定することが可能となる。   By taking such a screen configuration, the inspector is viewing the image obtained by the imaging means 20 and where the pipeline facility inspection aircraft 10 is flying with respect to the cross section of the sewer pipe 16 at the present time. Can be grasped sensorially and quantitatively. As a result, the flight position can be set more appropriately so that the pipeline facility inspection vehicle 10 does not collide with the wall surface or the water surface.

10…管路施設点検飛行体
12…上方距離センサ
14…側方距離センサ
15…下方距離センサ
16…下水管
18…プロペラ
20…撮像手段
22…照射手段
24…飛行制御手段
26…下水
30…飛行体本体
31…マンホール
32…アンテナ
33…送受信装置
34…表示装置
35…無線伝送装置
37…前方距離センサ
39…後方距離センサ
DESCRIPTION OF SYMBOLS 10 ... Pipe line inspection vehicle 12 ... Upper distance sensor 14 ... Side distance sensor 15 ... Lower distance sensor 16 ... Sewage pipe 18 ... Propeller 20 ... Imaging means 22 ... Irradiation means 24 ... Flight control means 26 ... Sewage 30 ... Flight Body body 31 ... Manhole 32 ... Antenna 33 ... Transmission / reception device 34 ... Display device 35 ... Wireless transmission device 37 ... Front distance sensor 39 ... Back distance sensor

Claims (9)

管路内を撮像する撮像手段と、
管路内に光を照射する照射手段と、
前記撮像手段と前記照射手段を配置し、管路内を飛行する飛行体本体と、
前記飛行体本体の上面に配置され、管路と管路内の飛行体との、鉛直上向きの距離を測定する上方距離センサと、
前記飛行体本体の少なくとも2つの側面に配置され、管路と管路内の飛行体との、前記飛行体の進行方向に対して直角方向の距離を測定する側方距離センサと、
前記飛行体本体に配置され、前記上方距離センサと側方距離センサの測定値に基づいて管路内の飛行体本体の飛行方向を制御する飛行制御手段と、
前記上方距離センサと側方距離センサの計測値に基づき、管路断面の形状に応じて、管径もしくは管幅を計算する計算手段と、
を備えることを特徴とする管路施設点検飛行体。
An imaging means for imaging the inside of the pipeline;
Irradiating means for irradiating light in the pipeline;
A vehicle body that arranges the imaging unit and the irradiation unit and flies in a pipeline;
An upper distance sensor that is disposed on the upper surface of the flying body and that measures a vertically upward distance between the pipe and the flying object in the pipe;
A lateral distance sensor that is disposed on at least two side surfaces of the aircraft body and that measures a distance between a pipeline and the aircraft in the pipeline in a direction perpendicular to the traveling direction of the aircraft;
A flight control means disposed on the flying body for controlling the flying direction of the flying body in the pipeline based on the measured values of the upper distance sensor and the lateral distance sensor;
Based on the measured values of the upper distance sensor and the lateral distance sensor, the calculation means for calculating the pipe diameter or the pipe width according to the shape of the pipe cross section,
A pipeline facility inspection vehicle characterized by comprising:
請求項1において、前記計算手段は、前記管路断面の形状が円形の場合にその管径を計算し、管路断面が矩形の場合にその管幅を計算することを特徴とする管路施設点検飛行体。   2. The pipe facility according to claim 1, wherein the calculation means calculates the pipe diameter when the shape of the pipe cross section is circular, and calculates the pipe width when the pipe cross section is rectangular. Inspection aircraft. 請求項1または2において、前記飛行体本体の下面に配置され、管路内の水面と飛行体との、鉛直下向きの距離を測定する下方距離センサをさらに有し、前記下方距離センサの計測値に基づいて水深を計算する計算手段と、を備えることを特徴とする管路施設点検飛行体。   3. The lower distance sensor according to claim 1, further comprising a downward distance sensor that is disposed on a lower surface of the flying body and that measures a vertically downward distance between a water surface in the pipeline and the flying body. And a calculating means for calculating a water depth on the basis of the pipe facility inspection vehicle. 請求項1乃至3のいずれかにおいて、前記飛行体本体の前面に配置され、飛行体の水平前方の障害物との距離を測定する前方距離センサと、前記飛行体の背面に配置され、飛行体の水平後方の障害物との距離を測定する後方距離センサをさらに有し、前記前方距離センサ、後方距離センサの計測値に基づいて障害物との距離を計算する計算手段と、を備えることを特徴とする管路施設点検飛行体。   4. The vehicle according to claim 1, wherein a front distance sensor that is disposed on a front surface of the flying body and that measures a distance from an obstacle in front of the flying body is disposed on a rear surface of the flying body. A rear distance sensor for measuring the distance from the horizontal rear obstacle, and a calculation means for calculating the distance to the obstacle based on the measurement value of the front distance sensor and the rear distance sensor. Characteristic pipeline facility inspection vehicle. 請求項1乃至4のいずれかに記載の管路施設点検飛行体と、
地上に配置され、前記管路施設点検飛行体で撮影した画像を、地上からマンホールに垂らしたアンテナを介して、無線で受信する送受信装置と、
前記送受信装置に接続され、前記計算手段で計算した管径、管幅、水深及び障害物との距離のうち少なくとも1つを表示する表示装置と、を備えることを特徴とする管路施設点検システム。
A pipeline facility inspection vehicle according to any one of claims 1 to 4,
A transmission / reception device that is arranged on the ground and wirelessly receives an image taken by the pipeline facility inspection vehicle, and is hung from a ground to a manhole;
A pipe facility inspection system, comprising: a display device connected to the transmission / reception device and displaying at least one of a pipe diameter, a pipe width, a water depth and a distance from an obstacle calculated by the calculation means; .
請求項5において、前記表示装置が、前記下方距離センサ、上方距離センサ及び側方距離センサの計測値に基づき、管内の上下左右の固体部分あるいは液体部分と前記管路施設点検飛行体との相対的な位置関係を図として表示することを特徴とする管路施設点検システム。   6. The display device according to claim 5, wherein the display device is based on the measured values of the lower distance sensor, the upper distance sensor, and the lateral distance sensor, and the relative distance between the upper and lower solid portions or the liquid portion in the pipe and the pipeline facility inspection aircraft. A pipeline facility inspection system characterized by displaying a graphical positional relationship as a diagram. 請求項5において、前記表示装置が、前記前方距離センサおよび後方距離センサの計測値に基づき、前後の固体部分と前記管路施設点検飛行体との相対的な位置関係を図として表示することを特徴とする管路施設点検システム。   6. The display device according to claim 5, wherein the display device displays the relative positional relationship between the front and rear solid portions and the pipeline facility inspection vehicle as a diagram based on the measurement values of the front distance sensor and the rear distance sensor. Characteristic pipeline facility inspection system. 請求項1乃至7のいずれかにおいて、前記距離センサが、超音波センサまたは赤外線センサであることを特徴とする管路施設点検システム。   8. The pipeline facility inspection system according to claim 1, wherein the distance sensor is an ultrasonic sensor or an infrared sensor. 請求項1乃至8のいずれかにおいて、前記管路が、下水管路であることを特徴とする管路施設点検システム。   9. The pipeline facility inspection system according to claim 1, wherein the pipeline is a sewage pipeline.
JP2016122237A 2016-06-21 2016-06-21 Pipeline inspection vehicle and pipeline inspection system using it Active JP6710114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016122237A JP6710114B2 (en) 2016-06-21 2016-06-21 Pipeline inspection vehicle and pipeline inspection system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016122237A JP6710114B2 (en) 2016-06-21 2016-06-21 Pipeline inspection vehicle and pipeline inspection system using it

Publications (2)

Publication Number Publication Date
JP2017226259A true JP2017226259A (en) 2017-12-28
JP6710114B2 JP6710114B2 (en) 2020-06-17

Family

ID=60890778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016122237A Active JP6710114B2 (en) 2016-06-21 2016-06-21 Pipeline inspection vehicle and pipeline inspection system using it

Country Status (1)

Country Link
JP (1) JP6710114B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160196A (en) * 2017-03-23 2018-10-11 キヤノンマーケティングジャパン株式会社 Unmanned aerial vehicle control system, control method of unmanned aerial vehicle control system, and program
CN109000586A (en) * 2018-08-25 2018-12-14 深圳威琳懋生物科技有限公司 A kind of Robot for conduit profile mapping
CN109542114A (en) * 2018-10-23 2019-03-29 珠海模范智能科技有限公司 A kind of unmanned plane polling transmission line method and system
JP2019167044A (en) * 2018-03-26 2019-10-03 株式会社日立製作所 Unmanned flight body introduction device, in-conduit line work system and work method using unmanned flight body
WO2019198768A1 (en) * 2018-04-10 2019-10-17 株式会社自律制御システム研究所 Unmanned aerial vehicle
JP2020013465A (en) * 2018-07-20 2020-01-23 テクノス三原株式会社 Wall trace type flight control system for multicopter
JPWO2019139172A1 (en) * 2018-01-15 2020-02-27 本郷飛行機株式会社 Information processing system
JP6715542B1 (en) * 2019-10-28 2020-07-01 株式会社センシンロボティクス Aircraft, inspection method and inspection system
US20200232794A1 (en) * 2017-03-12 2020-07-23 Nileworks Drone for Measuring Water Depth of Field
WO2020218433A1 (en) * 2019-04-26 2020-10-29 住友重機械建機クレーン株式会社 Crane inspection system and crane
KR102221237B1 (en) * 2020-06-12 2021-03-03 에스큐엔지니어링(주) System for monitoring degraded steel facility using subminiature drone
JPWO2021070308A1 (en) * 2019-10-09 2021-04-15
JP2021169372A (en) * 2018-03-13 2021-10-28 株式会社三井E&Sマシナリー Crane operation support system and crane operation support method
JP2021179976A (en) * 2019-07-25 2021-11-18 株式会社プロドローン Remote operation system and operation device thereof
WO2022117411A1 (en) 2020-12-03 2022-06-09 Inventio Ag Method for controlling a drone along a shaft
KR102645206B1 (en) * 2023-03-24 2024-03-08 치루 유니버시티 오브 테크놀로지 (산동 아카데미 오브 사이언시스) Pipe inspection robot and detection method for inner wall of conduit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104691A1 (en) * 2012-01-13 2013-07-18 Useful Robots Gmbh Detection system for obtaining information in tubular elements
JP2014227166A (en) * 2013-05-27 2014-12-08 株式会社 帝国設計事務所 Flying body type visual inspection device
JP2016015628A (en) * 2014-07-02 2016-01-28 三菱重工業株式会社 Indoor monitoring system and mode of structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104691A1 (en) * 2012-01-13 2013-07-18 Useful Robots Gmbh Detection system for obtaining information in tubular elements
JP2014227166A (en) * 2013-05-27 2014-12-08 株式会社 帝国設計事務所 Flying body type visual inspection device
JP2016015628A (en) * 2014-07-02 2016-01-28 三菱重工業株式会社 Indoor monitoring system and mode of structure

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200232794A1 (en) * 2017-03-12 2020-07-23 Nileworks Drone for Measuring Water Depth of Field
JP2018160196A (en) * 2017-03-23 2018-10-11 キヤノンマーケティングジャパン株式会社 Unmanned aerial vehicle control system, control method of unmanned aerial vehicle control system, and program
JPWO2019139172A1 (en) * 2018-01-15 2020-02-27 本郷飛行機株式会社 Information processing system
JP7128329B2 (en) 2018-03-13 2022-08-30 株式会社三井E&Sマシナリー CRANE OPERATION ASSISTANCE SYSTEM AND CRANE OPERATION ASSISTANCE METHOD
JP2021169372A (en) * 2018-03-13 2021-10-28 株式会社三井E&Sマシナリー Crane operation support system and crane operation support method
JP7013300B2 (en) 2018-03-26 2022-01-31 株式会社日立製作所 Unmanned air vehicle introduction device, in-pipeline work system and work method using unmanned air vehicle.
JP2019167044A (en) * 2018-03-26 2019-10-03 株式会社日立製作所 Unmanned flight body introduction device, in-conduit line work system and work method using unmanned flight body
JPWO2019198767A1 (en) * 2018-04-10 2021-03-25 株式会社自律制御システム研究所 Shooting survey system and shooting survey method
WO2019198768A1 (en) * 2018-04-10 2019-10-17 株式会社自律制御システム研究所 Unmanned aerial vehicle
US11970266B2 (en) 2018-04-10 2024-04-30 ACSL, Ltd. Unmanned aerial vehicle, flight control mechanism for unmanned aerial vehicle, and method for using unmanned aerial vehicle and mechanism for unmanned aerial vehicle
US11332244B2 (en) 2018-04-10 2022-05-17 Acsl Ltd. Imaging investigation system and imaging investigation method
WO2019198767A1 (en) * 2018-04-10 2019-10-17 株式会社自律制御システム研究所 Imaging investigation system and imaging investigation method
JP2020013465A (en) * 2018-07-20 2020-01-23 テクノス三原株式会社 Wall trace type flight control system for multicopter
CN109000586A (en) * 2018-08-25 2018-12-14 深圳威琳懋生物科技有限公司 A kind of Robot for conduit profile mapping
CN109542114A (en) * 2018-10-23 2019-03-29 珠海模范智能科技有限公司 A kind of unmanned plane polling transmission line method and system
WO2020218433A1 (en) * 2019-04-26 2020-10-29 住友重機械建機クレーン株式会社 Crane inspection system and crane
JP2021179976A (en) * 2019-07-25 2021-11-18 株式会社プロドローン Remote operation system and operation device thereof
WO2021070308A1 (en) * 2019-10-09 2021-04-15 日本電信電話株式会社 Unmanned aircraft, and method for controlling unmanned aircraft
JP7324388B2 (en) 2019-10-09 2023-08-10 日本電信電話株式会社 Unmanned aerial vehicle and method of controlling unmanned aerial vehicle
JPWO2021070308A1 (en) * 2019-10-09 2021-04-15
WO2021084589A1 (en) * 2019-10-28 2021-05-06 株式会社センシンロボティクス Aerial vehicle, inspection method, and inspection system
JP6715542B1 (en) * 2019-10-28 2020-07-01 株式会社センシンロボティクス Aircraft, inspection method and inspection system
KR102221237B1 (en) * 2020-06-12 2021-03-03 에스큐엔지니어링(주) System for monitoring degraded steel facility using subminiature drone
WO2022117411A1 (en) 2020-12-03 2022-06-09 Inventio Ag Method for controlling a drone along a shaft
KR102645206B1 (en) * 2023-03-24 2024-03-08 치루 유니버시티 오브 테크놀로지 (산동 아카데미 오브 사이언시스) Pipe inspection robot and detection method for inner wall of conduit

Also Published As

Publication number Publication date
JP6710114B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP2017226259A (en) Flying object for inspecting pipeline facility and system for inspecting pipeline facility using the same
JP6681173B2 (en) Pipeline facility inspection aircraft and pipeline facility inspection system using the same
JP6904608B2 (en) Devices and methods for generating flight restriction zones along boundaries or for assessing the aerial response of unmanned aerial vehicles (UAVs) to flight restriction zones.
JP6596235B2 (en) Sewage pipeline facility inspection system
ES2927014T3 (en) Systems and methods for the calibration of sensors in vehicles
JP6278539B2 (en) Flight mode selection based on situation
KR101925094B1 (en) Driving license test system for unmanned air vehicle
JP2005265699A (en) System and method for inspecting power transmission line using unmanned flying body
JP2019036269A (en) Flight control method of pilotless small flying object, and inspection method of condition of internal space and condition of wall surface thereof
JP6664209B2 (en) Investigation method using flight-type survey aircraft
JP2019501457A (en) Method, apparatus and non-transitory computer readable medium for supporting flight restrictions
US11840355B2 (en) Aircraft hovering work support system and aircraft including same
WO2016141748A1 (en) Polygon shaped flight-restriction zones
KR102112340B1 (en) Near field drone detection and identifying device
JP2018039075A (en) Building inspection robot
KR20180032966A (en) Unmaned Aerial Vehicle for inspecting power facilities, power facilities inspection system and method for controlling unmanned aerial vehicle
JP2021138204A (en) Device and method for surveying inside building
JP6385512B2 (en) Flight control for flight restricted areas
US11104434B2 (en) Roaming airborne explorer system
JP2020180960A (en) Inspection system and unmanned flight vehicle
JP2023551948A (en) Method for controlling the drone along the shaft
US20240085928A1 (en) Unmanned aerial vehicle and control method therefor
JP2021054605A (en) Monitoring system
WO2021049508A1 (en) Dimension display system, and dimension display method
JP2021044793A (en) Dimension display system and dimension display method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150