JP6681173B2 - Pipeline facility inspection aircraft and pipeline facility inspection system using the same - Google Patents

Pipeline facility inspection aircraft and pipeline facility inspection system using the same Download PDF

Info

Publication number
JP6681173B2
JP6681173B2 JP2015219046A JP2015219046A JP6681173B2 JP 6681173 B2 JP6681173 B2 JP 6681173B2 JP 2015219046 A JP2015219046 A JP 2015219046A JP 2015219046 A JP2015219046 A JP 2015219046A JP 6681173 B2 JP6681173 B2 JP 6681173B2
Authority
JP
Japan
Prior art keywords
pipeline
distance
facility inspection
flight
distance sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015219046A
Other languages
Japanese (ja)
Other versions
JP2017087917A (en
Inventor
晃治 陰山
晃治 陰山
高橋 文夫
文夫 高橋
田所 秀之
秀之 田所
正美 畑山
正美 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015219046A priority Critical patent/JP6681173B2/en
Publication of JP2017087917A publication Critical patent/JP2017087917A/en
Application granted granted Critical
Publication of JP6681173B2 publication Critical patent/JP6681173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば下水管路などの管路施設内を飛行して画像を取得し、管路施設の内面の状態を把握する管路施設点検飛行体とそれを用いた管路施設点検システムに関する。   TECHNICAL FIELD The present invention relates to a pipeline facility inspection flying body for flying an image in a pipeline facility such as a sewer pipeline to acquire an image and grasping the state of the inner surface of the pipeline facility, and a pipeline facility inspection system using the same. .

現在、代表的な管路施設として下水管路の老朽化の問題がある。老朽化が進行するとひび割れや破損、腐食などの異常が発生する。その結果、管内の液体を管外と分離して流す機能が低下するとともに、土砂が管外から管内に入って地中に空隙ができ、それが原因で道路の陥没事故が発生する可能性がある。   At present, as a typical pipeline facility, there is a problem of deterioration of sewer pipelines. As aging progresses, abnormalities such as cracking, damage, and corrosion will occur. As a result, the function of separating the liquid inside the pipe from the outside of the pipe and lowering it will be reduced, and earth and sand will enter the pipe from the outside of the pipe and create a void in the ground, which may cause a road collapse accident. is there.

そこで、老朽化にともなう下水管路の異常を把握する技術が必要となっている。このようなニーズに対し、例えば特許文献1では、テレビカメラを搭載した小型の自走車を下水管の中を走行させ、管内の状態をモニタする技術が記載されている。   Therefore, it is necessary to have a technology to understand the abnormality of the sewerage pipe due to aging. In order to meet such needs, for example, Patent Document 1 describes a technique of running a small self-propelled vehicle equipped with a television camera in a sewer pipe to monitor the state inside the pipe.

特開平9−226570号公報JP, 9-226570, A

特許文献1では、下水管路の中に入れた自走車のテレビカメラで画像を取得するが、予め下水管路の中に人が入り、地上から自走車を受け取って下水管路の中に設置する作業が必要となる。下水管路の中は硫化水素などの有毒ガスが充満している可能性があるため、人が入る前に、硫化水素や酸素などの濃度を計測する必要がある。人が下水管路内で作業するにあたって不適切な環境であれば、地上から空気を下水管路内に吹き込んで換気する作業が追加される。   In Patent Document 1, an image is acquired by a TV camera of a self-propelled vehicle placed in the sewer pipe, but a person enters the sewer pipe in advance and receives the self-propelled vehicle from the ground to enter the sewer pipe Installation work is required. Since the sewage pipeline may be filled with toxic gases such as hydrogen sulfide, it is necessary to measure the concentrations of hydrogen sulfide and oxygen before people enter. If the environment is inappropriate for humans to work in the sewer pipeline, work to blow air from the ground into the sewer pipeline for ventilation is added.

また、下水管路を撮像する際には、撮像する機器が管路の内面に衝突することなく、画像を安定して撮影することが求められる。   Further, when capturing an image of a sewer pipe, it is required that an image capturing device does not collide with the inner surface of the pipe and a stable image is captured.

本発明はこれらの課題に鑑みて為されたものであり、本発明の目的は、管路施設の点検に際し、管路内での作業者の立会いを不要とし、管路内の撮影画像を安定して取得することが可能な管路施設点検飛行体とそれを用いた管路施設点検システムを提供することにある。   The present invention has been made in view of these problems, and an object of the present invention is to eliminate the need for workers to be present in the pipeline when inspecting the pipeline facility, and to stabilize the captured image in the pipeline. The purpose of the present invention is to provide a pipeline facility inspection vehicle that can be acquired by using the above and a pipeline facility inspection system using the same.

本発明の管路施設点検飛行体は、管路内を撮像する撮像手段と、管路内に光を照射する照射手段と、前記撮像手段と前記照射手段を配置し、管路内を飛行する飛行体本体と、前記飛行体本体に配置され、管路と、管路内の飛行体本体との距離を測定する距離センサと、前記飛行体本体に配置され、前記距離センサの測定値に基づいて管路内の飛行体本体の飛行方向を制御する飛行制御手段と、を備え、前記距離センサは、前記飛行体本体の上面に配置され、管路と管路内の飛行体との、鉛直上向きの距離を測定する上方距離センサと、前記飛行体本体の少なくとも2つの側面に配置され、管路と管路内の飛行体との、前記飛行体の進行方向に対して直角方向の距離を測定する側方距離センサと、を有することを特徴とする。
The pipeline facility inspection vehicle of the present invention is provided with an image capturing unit for capturing an image of the inside of the pipeline, an irradiating unit for irradiating light into the pipeline, the image capturing unit and the irradiating unit, and flying in the pipeline. A flying body, a distance sensor arranged on the flying body, for measuring a distance between the conduit and the flying body in the conduit, and a distance sensor arranged on the flying body and based on a measurement value of the distance sensor. And a flight control means for controlling the flight direction of the flying body in the pipeline , the distance sensor being disposed on the upper surface of the flying body, and the vertical line between the pipeline and the flying body in the pipeline. An upper distance sensor that measures an upward distance, and a distance between the pipeline and the flight body in the pipeline, which are arranged on at least two side surfaces of the flight body, in a direction perpendicular to the traveling direction of the flight body. a lateral distance sensors for measuring the Rukoto that having a characterized.

本発明によれば、管路施設の点検に際し、管路内での作業者の立会いを不要とし、管路内の撮影画像を安定して取得することが可能な管路施設点検飛行体とそれを用いた管路施設点検システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when inspecting a pipeline facility, it is not necessary for a worker to be present in the pipeline, and a pipeline facility inspection vehicle capable of stably acquiring a captured image in the pipeline and the same are provided. It is possible to provide a pipeline facility inspection system using.

本発明の一実施例に係る管路施設点検飛行体の側面図および上面図である。1 is a side view and a top view of a pipeline facility inspection vehicle according to an embodiment of the present invention. 図1に示す管路施設点検飛行体を用いた管路施設点検システムを示す構成図である。FIG. 2 is a configuration diagram showing a pipeline facility inspection system using the pipeline facility inspection vehicle shown in FIG. 1. 本発明の一実施例に係る管路施設点検飛行体が水平方向に設置された下水管内を飛行している際の径方向断面模式図である。It is a radial cross-sectional schematic diagram at the time of the pipeline facility inspection flying body which concerns on one Example of this invention flying in the sewer installed horizontally. 本発明の一実施例に係る管路施設点検飛行体が水平方向に設置された下水管内を飛行している状態を鉛直上方から見た軸方向断面図である。FIG. 3 is an axial cross-sectional view of a state in which a pipeline facility inspection vehicle according to an embodiment of the present invention is flying in a horizontally installed sewer pipe, as viewed from vertically above. 本発明の一実施例に係る管路施設点検飛行体の側方距離センサが進行方向に対して直角でない方向の距離を計測できるよう設置されている場合の状態を鉛直情報から見た軸方向断面図である。An axial cross section of a state in which a lateral distance sensor of a pipeline facility inspection air vehicle according to an embodiment of the present invention is installed so as to measure a distance in a direction that is not at right angles to a traveling direction from vertical information. It is a figure. 本発明の一実施例に係る管路施設点検飛行体の飛行方向と管路施設の軸方向との角度偏差に対し、お互いに逆方向の距離を測定する2つの距離センサの測定値の和との関係を示す模式図である。With respect to the angular deviation between the flight direction of the pipeline facility inspection air vehicle and the axial direction of the pipeline facility according to one embodiment of the present invention, the sum of the measured values of two distance sensors that measure distances in mutually opposite directions and It is a schematic diagram which shows the relationship of. 本発明の一実施例に係る管路施設点検飛行体が水平方向に設置された下水管内を飛行している状態を鉛直上方から見た軸方向断面図である。FIG. 3 is an axial cross-sectional view of a state in which a pipeline facility inspection vehicle according to an embodiment of the present invention is flying in a horizontally installed sewer pipe, as viewed from vertically above. 本発明の一実施例に係る管路施設点検飛行体がなだらかな曲率を持ち水平方向に設置された下水管内を飛行している状態を鉛直上方から見た軸方向断面図である。FIG. 1 is an axial cross-sectional view of a flying vehicle for inspecting a pipeline facility according to an embodiment of the present invention, which has a gentle curvature and is flying in a horizontally installed sewer pipe, as viewed from vertically above. 下方距離センサで計測値x3およびx4を測定した場合の模式図である。It is a schematic diagram at the time of measuring measured value x3 and x4 with a downward distance sensor. 水平および水平より下方向の向きに備えられた距離センサが3つの場合の模式図である。FIG. 6 is a schematic diagram in the case where there are three distance sensors provided in a horizontal direction and a direction below the horizontal direction.

本発明の管路施設点検飛行体は、管路施設内を飛行し、亀裂やクラックの点検に用いる飛行体である。管路施設は、例えば下水管、ガス管、トンネル、集合管、内容物を抜いて気体で置換した水道管、蒸気配管、オイル配管、伏せ越し管、放流渠、マンホールなどが挙げられ、特に制限されるものではない。   The pipeline facility inspection vehicle of the present invention is an aircraft that flies in a pipeline facility and is used for inspection of cracks and cracks. Pipeline facilities include, for example, sewer pipes, gas pipes, tunnels, collecting pipes, water pipes whose contents have been replaced with gas, steam pipes, oil pipes, siding pipes, discharge pipes, manholes, etc., with particular restrictions. Not something that is done.

以下、具体的な一例として、下水管を対象とした場合の一実施形態を図面を用いて説明する。   Hereinafter, as a specific example, an embodiment in the case of targeting a sewer pipe will be described with reference to the drawings.

図1は、本発明の一実施例に係る管路施設点検飛行体10の側面図および上面図である。管路施設点検飛行体10は、飛行体本体30に、プロペラ18、撮像手段20、照射手段22、上方距離センサ12、側方距離センサ14、飛行制御手段24を配置している。実際に飛行するためにはモーターやバッテリーなども必要であるが、いずれも飛行体本体30に備えているものとする。さらに、下水管の点検には、撮像手段20で撮影した画像を無線で伝送する無線伝送装置35、それらを駆動するバッテリーなども必要であるが、これらも飛行体本体30に備えているものとする。   FIG. 1 is a side view and a top view of a pipeline facility inspection vehicle 10 according to an embodiment of the present invention. In the pipeline facility inspection aircraft 10, a propeller 18, an imaging unit 20, an irradiation unit 22, an upper distance sensor 12, a lateral distance sensor 14, and a flight control unit 24 are arranged in a main body 30 of the aircraft. Although a motor, a battery, etc. are required for actual flight, it is assumed that both are provided in the flying body 30. Furthermore, in order to inspect the sewer pipe, a wireless transmission device 35 that wirelessly transmits the image captured by the image capturing means 20, a battery that drives them, and the like are also required, but these are also included in the aircraft body 30. To do.

管路施設点検飛行体10はプロペラ18を回転させて下水管の内部を飛行する。照射手段22で下水管の内面に光を照射し、撮像手段20で下水管の内面を撮像する。この撮像手段20が備えられた側を前方として管路施設点検飛行体10は進行する。下水管の壁面や天井あるいは底部をより詳しく撮影する場合、撮像手段20は管路施設点検飛行体10の進行方向に対して直角の向きを撮影できるよう設置してもよい。進行する際に管路施設点検飛行体10が下水管の天井や壁面、底面や水面に衝突しないように、プロペラ18の回転数の制御によって、管路施設点検飛行体10の上下方向の移動、前後左右への移動や自転を行う。具体的には、上方距離センサ12および側方距離センサ14の計測値を、飛行体本体30内の飛行制御手段24(例えばマイコン)に与え、飛行制御手段24で計算した出力をそれぞれのプロペラ18の動力源であるモーターへ与えて、移動や自転を制御する。なお、ここで言う自転とは、管路施設点検飛行体10の位置を変えずに、飛行体10の向きのみを変えることを意味する。   The pipeline facility inspection vehicle 10 rotates the propeller 18 to fly inside the sewer pipe. The irradiation means 22 irradiates the inner surface of the sewer pipe with light, and the imaging means 20 images the inner surface of the sewer pipe. The pipeline facility inspection vehicle 10 advances with the side provided with the imaging means 20 as the front. When the wall surface, the ceiling, or the bottom of the sewer pipe is photographed in more detail, the image pickup means 20 may be installed so as to be able to photograph a direction perpendicular to the traveling direction of the pipeline facility inspection vehicle 10. In order to prevent the pipeline facility inspection vehicle 10 from colliding with the ceiling, wall surface, bottom surface and water surface of the sewer pipe when moving, the vertical movement of the pipeline facility inspection vehicle 10 is controlled by controlling the rotation speed of the propeller 18. It moves back and forth, left and right, and rotates. Specifically, the measured values of the upper distance sensor 12 and the lateral distance sensor 14 are given to the flight control means 24 (for example, a microcomputer) in the flying body 30, and the output calculated by the flight control means 24 is supplied to each propeller 18. It controls movement and rotation by giving it to the motor that is the power source of. The rotation referred to here means that only the direction of the flight vehicle 10 is changed without changing the position of the pipeline facility inspection flight vehicle 10.

側方距離センサ14は、下水管と、下水管内の飛行体10との距離を測定するセンサであり、飛行体10の進行方向に対して直角方向の距離を測定できるように、飛行体本体30の両側面にそれぞれ設置される(図1参照)。いずれも進行方向に対し直角の向きの距離を計測する向きに設置されるのが望ましいが、測定する向きが進行方向に対して平行でなければよい。   The lateral distance sensor 14 is a sensor that measures the distance between the sewer pipe and the flying body 10 in the sewer pipe, and the flying body 30 is capable of measuring the distance in a direction perpendicular to the traveling direction of the flying body 10. It is installed on both sides of each (see Fig. 1). Both of them are preferably installed in a direction in which a distance perpendicular to the traveling direction is measured, but the direction to be measured need not be parallel to the traveling direction.

上方距離センサ12は、下水管と、下水管内の飛行体10との距離を測定するセンサであり、鉛直上向きの距離を計測できるように、飛行体本体30の上面に設置される。なお、水平より上向きの方向の距離を計測する複数個の異なる上方距離センサ12を設置してもよい。複数個の上方距離センサ12の測定値に基づき、鉛直上向きからの距離を算出するアルゴリズムを飛行制御手段24に組み込むことで代替が可能である。   The upper distance sensor 12 is a sensor that measures the distance between the sewer pipe and the flying body 10 in the sewer pipe, and is installed on the upper surface of the flying body 30 so as to measure the vertically upward distance. It should be noted that a plurality of different upper distance sensors 12 that measure the distance in the upward direction from the horizontal may be installed. An alternative is possible by incorporating in the flight control means 24 an algorithm for calculating the distance from the vertically upward direction based on the measured values of the plurality of upward distance sensors 12.

また、上方距離センサ12の代わりに、下水管と飛行体10との鉛直下向きの距離を測定する下方距離センサを備えてもよい。下水管の天井から水が滴り落ちる場所がある場合には、管路施設点検飛行体10にも水滴がかかる可能性がある。下水管の天井から、上方距離センサ12に水滴がかかった場合に測定精度が低下したり、測定不能となる場合には、上方距離センサ12の代わりに下方距離センサを備えて天井との距離を推算してもよい。例えば、管路施設点検飛行体10が飛行する下水管が円形管で内径2rが既知の場合、2rから下方距離を減ずることで上方距離を求めることができる。ただし、下水管には通常下水が流れており、下水管の場所によって水位も変わるため、上方距離の推定精度は低い。   Further, instead of the upper distance sensor 12, a lower distance sensor that measures a vertically downward distance between the sewer pipe and the flying body 10 may be provided. If there is a place where water drips from the ceiling of the sewer pipe, water may drop on the pipeline facility inspection vehicle 10 as well. When the upper distance sensor 12 is exposed to water droplets from the ceiling of the sewer pipe and the measurement accuracy decreases or measurement becomes impossible, a lower distance sensor is provided instead of the upper distance sensor 12 to measure the distance from the ceiling. You may estimate. For example, when the sewer pipe on which the pipeline facility inspection vehicle 10 flies is a circular pipe and the inner diameter 2r is known, the upper distance can be obtained by subtracting the lower distance from 2r. However, since the sewage normally flows through the sewer pipe and the water level changes depending on the location of the sewer pipe, the estimation accuracy of the upward distance is low.

上述の距離センサ12,14としては、安価で軽量かつ低消費電力の超音波センサあるいは赤外線センサを用いることが望ましいが、これら以外でも安価で軽量かつ低消費電力を実現でき、かつ1つの数値として距離を出力できるセンサであればいずれでもよい。下水管路施設内の天井や壁面など固体との距離を測れるのが望ましいが、下水管の天井や壁面は結露や流入水の付着で濡れていることも多いため、液体との距離も測定できることが望ましい。   As the distance sensors 12 and 14 described above, it is desirable to use an ultrasonic sensor or an infrared sensor that is inexpensive, lightweight, and has low power consumption, but other than these, it is possible to realize inexpensive, lightweight, and low power consumption, and Any sensor may be used as long as it can output the distance. It is desirable to be able to measure the distance to solids such as the ceiling and wall surfaces in the sewer pipeline facility, but the ceiling and wall surfaces of the sewer pipe are often wet due to condensation and inflow water, so the distance to the liquid can also be measured. Is desirable.

プロペラ18は、図1では4つを有しているが、これに限定されず、6つ、8つあるいは二重反転プロぺラの形状をとる場合には2つでもよい。   The propeller 18 has four propellers in FIG. 1, but is not limited to this, and may have six, eight, or two in the case of a contra-rotating propeller.

管路施設点検飛行体10としては、ドローンあるいはUAV(Unmanned Aerial Vehicles、無人航空機)と呼ばれる装置、小型のヘリコプター、気球や飛行船など空中に浮遊して移動できる飛行体であればいずれでもよい。   The pipeline facility inspection vehicle 10 may be any device that is called a drone or UAV (Unmanned Aerial Vehicles, unmanned aerial vehicle), a small helicopter, or a balloon or an airship that can float and move in the air.

撮像手段20は静止画を撮影するカメラ、動画を撮影するビデオカメラのいずれでもよいが、動画を撮影できる設備で構成することが望ましい。可視光よりも波長の長い近赤外、赤外、遠赤外の領域の波長を撮影できる赤外光カメラも搭載できるとさらに望ましい。赤外光カメラでは温度の違いが分かるため、この撮像結果に基づいて下水管の外から流入している不明水の検出に有用な情報を得ることができる。さらに、撮像手段20としてステレオカメラを用いることができればさらに望ましい。   The image capturing means 20 may be either a camera for capturing a still image or a video camera for capturing a moving image, but it is desirable that the image capturing means 20 be configured with equipment capable of capturing a moving image. It is even more desirable to be able to mount an infrared camera capable of photographing wavelengths in the near infrared, infrared, and far infrared regions, which have longer wavelengths than visible light. Since the infrared camera can detect the difference in temperature, it is possible to obtain information useful for detecting unknown water flowing from the outside of the sewer pipe based on the imaging result. Furthermore, it is more desirable if a stereo camera can be used as the image pickup means 20.

照射手段22については、できるだけ積載するバッテリーの重量を低減するのが望ましいことから、LEDが挙げられるが、特に限定されない。オペレータが画像を目視確認する作業が発生する可能性もあることから、白色光の光源を用いることが望ましい。下水管16の壁面の濡れの状態も画像で計測するために、光の波長が異なる光源を複数用いて交互に照射させてもよい。例えば、白色光の光源と赤色光の光源を用いる方法もある。水に赤色光は吸収され易いため、白色光光源で撮影した画像と赤色光光源で撮影した画像を画像処理し、得られた画像の違いを評価することで、下水管16の内表面の濡れの状態を検出できる。その結果、例えば下水管16の中に流入している不明水を判別できる。   As the irradiation means 22, it is desirable to reduce the weight of the battery to be loaded as much as possible, and therefore, an LED is mentioned, but the irradiation means 22 is not particularly limited. It is desirable to use a white light source because the operator may need to visually check the image. In order to measure the wet state of the wall surface of the sewer pipe 16 by using an image, a plurality of light sources having different light wavelengths may be alternately used for irradiation. For example, there is a method of using a white light source and a red light source. Since red light is easily absorbed by water, the image taken by the white light source and the image taken by the red light source are subjected to image processing, and the difference between the obtained images is evaluated, whereby the inner surface of the sewer pipe 16 gets wet. The state of can be detected. As a result, for example, unknown water flowing into the sewer pipe 16 can be identified.

図2は、図1に示す管路施設点検飛行体10を用いた管路施設点検システムを模式的に示す図である。管路施設点検飛行体10は、下水管16内を飛行している。管路施設点検飛行体10には、撮像手段20で撮影した画像を無線で伝送する無線伝送装置35が配置されている。地上からマンホール31に垂らしたアンテナ32とそれに接続された送受信装置33には、飛行体10で撮影した画像が無線伝送装置から伝送、受信され、地上の表示装置34に表示される。表示装置34で、地上の作業員が、撮影した画像を撮影と同時に確認することができる。   FIG. 2 is a diagram schematically showing a pipeline facility inspection system using the pipeline facility inspection vehicle 10 shown in FIG. The pipeline facility inspection vehicle 10 flies in the sewer pipe 16. A wireless transmission device 35 that wirelessly transmits the image captured by the image capturing unit 20 is arranged in the pipeline facility inspection vehicle 10. The image captured by the flying body 10 is transmitted and received from the wireless transmission device to the antenna 32 hung from the ground on the manhole 31 and the transmission / reception device 33 connected thereto, and displayed on the display device 34 on the ground. On the display device 34, a worker on the ground can confirm the photographed image at the same time as the photographing.

一般に、下水管16は地上に対してほぼ並行に配置されており、マンホール31に対してほぼ直角に接続されている。よって、直進性の高い高周波の電波をマンホール31経由で下水管16へ送っても、マンホール31から下水管16に繋がる屈曲部で電波の減衰が大きく、電波が届きにくい場合がある。これに対し、アンテナ32をマンホール31に配置することで、直進性が高い高周波の電波であっても下水管16の中を電波が伝達し易くなり、より安定して飛行体10と通信することができる。   In general, the sewer pipe 16 is arranged substantially parallel to the ground and is connected to the manhole 31 at a right angle. Therefore, even if a high-frequency radio wave with high straightness is sent to the sewer pipe 16 via the manhole 31, the radio wave may be greatly attenuated at the bent portion connected from the manhole 31 to the sewer pipe 16, and the radio wave may not reach easily. On the other hand, by arranging the antenna 32 in the manhole 31, it becomes easier for the radio wave to be transmitted through the sewer pipe 16 even if it is a high-frequency radio wave having a high straight traveling property, and it is possible to more stably communicate with the aircraft 10. You can

アンテナ32は、導電体を樹脂で被覆して構成され、ケーブル状に巻き取れる性状が作業する上で好ましい。図2では、アンテナ32を入り口側のマンホール31、出口側のマンホール31にそれぞれ配置しているが、入口側のみ、出口側のみでもよい。   The antenna 32 is formed by coating a conductor with a resin, and has a property that it can be wound into a cable shape, which is preferable for working. In FIG. 2, the antenna 32 is arranged in each of the manhole 31 on the entrance side and the manhole 31 on the exit side, but it may be arranged only on the entrance side or only on the exit side.

表示装置34は、特に制限されるものではなく、例えば、液晶、プラズマディスプレイ、ブラウン管等の据付型のPC用モニタや業務用モニタ、スマートフォン、タブレット等のモバイル装置でもよい。   The display device 34 is not particularly limited, and may be, for example, a stationary PC monitor such as a liquid crystal display, a plasma display, or a cathode ray tube, a commercial monitor, or a mobile device such as a smartphone or a tablet.

図3は、管路施設点検飛行体10が水平方向に設置された下水管16の内部を飛行している際の径方向断面模式図である。下水管16には下水26が流れている。上方距離センサ12は下水管16の天井との距離yを計測しており、2つ備えられた側方距離センサ14は下水管16の壁面との距離x1およびx2を計測していることを示している。この図では進行方向は紙面の向こう側であり、管路施設点検飛行体10は後方が示されている。点検作業においては、壁面に衝突することなく、距離y、距離x1、および距離x2をいずれも一定に保ったまま管路施設点検飛行体10が下水管16の中を軸方向へ飛行できることが望ましい。   FIG. 3 is a schematic cross-sectional view in the radial direction when the pipeline facility inspection vehicle 10 is flying inside the sewer pipe 16 installed in the horizontal direction. Sewage 26 flows through the sewer pipe 16. The upper distance sensor 12 measures the distance y from the ceiling of the sewer pipe 16, and the two lateral distance sensors 14 provided measure the distances x1 and x2 from the wall surface of the sewer pipe 16. ing. In this figure, the traveling direction is the other side of the drawing, and the pipeline facility inspection vehicle 10 is shown rearward. In the inspection work, it is desirable that the pipeline facility inspection vehicle 10 can fly in the axial direction in the sewer pipe 16 while keeping the distance y, the distance x1, and the distance x2 constant without colliding with the wall surface. .

なお、この場合には異なる3方向の距離センサを備えることになるが、天井との距離yおよび壁面との距離x1、x2を算出できるのであれば、前述のようにさらに多い個数の距離センサを備えてもよい。ただし、距離センサの数の増加はコスト増、重量増および消費電力増につながるため、多くても10方向の距離センサがあれば十分である。   In this case, different distance sensors in three directions will be provided, but if the distance y to the ceiling and the distances x1 and x2 to the wall surface can be calculated, a larger number of distance sensors will be used as described above. You may prepare. However, an increase in the number of distance sensors leads to an increase in cost, weight, and power consumption, so a distance sensor with at most 10 directions is sufficient.

図4は、管路施設点検飛行体10が水平方向に設置された管路施設内を飛行している状態を鉛直上方から見た軸方向断面図である。このうち(a)は管路施設点検飛行体10が軸方向へ飛行している望ましい状態である。(b)は管路施設点検飛行体10の飛行方向が軸方向に対して右向きに傾いている好ましくない状態、(c)は逆に管路施設点検飛行体10の飛行方向が軸方向に対して左向きに傾いている好ましくない状態を示す。(a)の状態で飛行できれば管路施設点検飛行体10は壁面へ衝突せず、かつ一定した向きの解析しやすい画像を撮影できる。(b)(c)のようになると解析しづらい画像になるとともに、管路施設点検飛行体10が壁面に衝突する危険性がある。したがって、(b)(c)の状態になった場合には、管路施設点検飛行体10を自転させて(a)の状態に制御する必要がある。(b)(c)の場合には、距離x1と距離x2の和が(a)の場合に比べて長い。管路施設点検飛行体10の進行方向と下水管16の軸方向との向きの差を角度偏差θと定義する。   FIG. 4 is an axial cross-sectional view of a state where the pipeline facility inspection vehicle 10 is flying in a pipeline facility installed in a horizontal direction, as viewed from above in the vertical direction. Of these, (a) is a desirable state in which the pipeline facility inspection vehicle 10 is flying in the axial direction. (b) is an unfavorable state where the flight direction of the pipeline facility inspection vehicle 10 is tilted to the right with respect to the axial direction, and (c) is the reverse, the flight direction of the pipeline facility inspection vehicle 10 is relative to the axial direction. Shows an unfavorable state of being tilted to the left. If it can fly in the state of (a), the pipeline facility inspection vehicle 10 does not collide with the wall surface and can capture an image in a fixed direction that is easy to analyze. In the case of (b) and (c), the image is difficult to analyze and there is a risk that the pipeline facility inspection vehicle 10 collides with the wall surface. Therefore, in the case of the states (b) and (c), it is necessary to rotate the pipeline facility inspection vehicle 10 and control it to the state (a). In the cases (b) and (c), the sum of the distance x1 and the distance x2 is longer than that in the case (a). The difference between the traveling direction of the pipeline facility inspection vehicle 10 and the axial direction of the sewer pipe 16 is defined as an angle deviation θ.

図6は、この角度偏差θとx1+x2の値の関係を模式図で示したグラフである。x1+x2が極小値となるときに角度偏差θは0となる。この関係を利用し、x1+x2の値が極小値となるよう管路施設点検飛行体10の自転制御をすることにより、図4(a)の飛行方向を維持したまま飛行することが可能となる。   FIG. 6 is a graph schematically showing the relationship between the angle deviation θ and the values of x1 + x2. When x1 + x2 has a minimum value, the angle deviation θ becomes 0. By utilizing this relationship and controlling the rotation of the pipeline facility inspection vehicle 10 so that the value of x1 + x2 becomes the minimum value, it is possible to fly while maintaining the flight direction of FIG. 4 (a). Become.

図5で示すように2つの側方距離センサ14による測定の向きが進行方向に対して直角でない場合であっても、管路施設点検飛行体10の側方に対してそれぞれ同じ角度で設置されている場合には、その測定距離であるx6およびx7を上述のx1およびx2と代替して用いてよい。   As shown in FIG. 5, even if the measurement directions of the two lateral distance sensors 14 are not at right angles to the traveling direction, they are installed at the same angle with respect to the lateral sides of the pipeline facility inspection vehicle 10. In this case, the measured distances x6 and x7 may be used instead of x1 and x2 described above.

ただし、図3で示すように、下水管16が円形管の場合、x1+x2を小さくするだけの条件で飛行制御し、x1+x2が0に近づくと、天井あるいは底に移動して衝突する可能性が生じる。すなわち、下水管16の天井との距離yの値が一定となる条件下で、管路施設点検飛行体10の自転制御をすることが必要である。これは卵形管でも同様である。一方、下水管が矩形管の場合でも、距離yの値が一定となる条件下で管路施設点検飛行体10の自転制御をすることが望ましい。このように距離yの値が一定となる条件下(距離yが内径2rの半分)で、x1+x2が極小値となるよう自転するアルゴリズムを飛行制御手段24に備える。   However, as shown in FIG. 3, when the sewer pipe 16 is a circular pipe, flight control is performed only under the condition that x1 + x2 is made small, and when x1 + x2 approaches 0, it moves to the ceiling or the bottom and collides. The possibility arises. That is, it is necessary to control the rotation of the pipeline facility inspection vehicle 10 under the condition that the value of the distance y from the ceiling of the sewer pipe 16 is constant. This also applies to oval tubes. On the other hand, even if the sewer pipe is a rectangular pipe, it is desirable to control the rotation of the pipeline facility inspection vehicle 10 under the condition that the value of the distance y is constant. The flight control means 24 is provided with an algorithm for rotating x1 + x2 to a minimum value under the condition that the value of the distance y is constant (the distance y is half the inner diameter 2r).

なお、上記ではx1+x2の値が極小となる例について述べたが、計算式はこれには限定されず、x1とx2を入力として求めた指標の値が目標範囲内を満たすことでもよい。例えば、係数を乗じたk1・x1+k2・x2の値が極小となる条件でもよいし、1/(x1+x2)の値が極大となる条件でもよい。あるいは、単にx1が目標範囲内を、かつx2も目標範囲内を維持する条件でもよい。いずれにしても、x1とx2を入力として求めた指標の値が極小、極大、あるいは所定の目標範囲内の値を満足すればよい。   In the above, the example in which the value of x1 + x2 is the minimum has been described, but the calculation formula is not limited to this, and the value of the index obtained by inputting x1 and x2 may satisfy the target range. For example, the condition may be such that the value of k1 · x1 + k2 · x2 multiplied by the coefficient is the minimum, or the value of 1 / (x1 + x2) is the maximum. Alternatively, the condition may be that x1 is maintained within the target range and x2 is maintained within the target range. In any case, the value of the index obtained by inputting x1 and x2 may be a minimum value, a maximum value, or a value within a predetermined target range.

管路施設点検飛行体10は進行方向への移動と自転を同時に実施してもよく、あるいは一定距離や一定時間の移動ごとに壁面との距離計測値に基づいた自転を実施してもよく、あるいは壁面との距離計測値が所定の範囲内の値であれば自転せずその範囲外の値となったときに自転制御することもよい。   The pipeline facility inspection air vehicle 10 may perform movement in the traveling direction and rotation at the same time, or may perform rotation based on a distance measurement value with respect to the wall surface at every movement of a certain distance or a certain time. Alternatively, if the distance measurement value to the wall surface is a value within a predetermined range, the rotation control may be performed when the measured value is outside the range without rotating.

ただし、上述のように自転して飛行しても、下水管16内の気流などの状態によっては図7で示すように壁面からの距離が一定とはならず変化してしまう可能性がある。このように飛行すると撮影した画像が解析しづらくなるとともに、管路施設点検飛行体10が壁面に接触あるいは衝突する場合が生じる。そこで、水平方向の少なくとも1方向の側方距離センサ14の値があらかじめ設定した値を維持するように左右方向へ移動するアルゴリズムを飛行制御手段24に備える。このアルゴリズムにすることで、壁面への接触や衝突を回避できるとともに、側方距離センサ14を備えた側の壁面との距離を一定に維持した飛行が可能となる。これにより、壁面との接触や衝突を回避することが可能となる。さらに、前方に備えた撮像手段20で撮影した画像の処理を容易化することも可能となる。例えば、管路施設点検飛行体10が飛行する下水管が円形管で内径2rが既知の場合、x1=x2=rかつy=rと設定することで管路施設点検飛行体10は管の中央を飛行することができる。前方に備えた撮像手段20の撮影画像は、遠方が中心、管路施設点検飛行体10の近くの壁面や天井が周辺に写りこむ。この画像を処理して展開図と呼ばれる、壁面側を直視した画像に変換する際には、撮像手段20が管の中央にあると幾何変換が容易となる。   However, even if the vehicle spins and rotates as described above, the distance from the wall surface may not be constant and may change as shown in FIG. 7, depending on the state of the airflow in the sewer pipe 16. When flying in this manner, the captured image becomes difficult to analyze, and the pipeline facility inspection vehicle 10 may come into contact with or collide with the wall surface. Therefore, the flight control means 24 is provided with an algorithm for moving in the left-right direction so that the value of the lateral distance sensor 14 in at least one direction in the horizontal direction maintains a preset value. By using this algorithm, it is possible to avoid contact and collision with the wall surface, and it is possible to fly while maintaining a constant distance to the wall surface on the side provided with the lateral distance sensor 14. This makes it possible to avoid contact and collision with the wall surface. Further, it becomes possible to facilitate the processing of the image photographed by the image pickup means 20 provided in the front. For example, if the sewer pipe on which the pipeline facility inspection vehicle 10 flies is a circular pipe and the inner diameter 2r is known, x1 = x2 = r and y = r are set so that the pipeline facility inspection vehicle 10 is at the center of the pipe. Can fly. The image captured by the image capturing means 20 provided in the front is centered at a distant place, and the wall surface and the ceiling near the pipeline facility inspection aircraft 10 are reflected in the periphery. When this image is processed and converted into an image in which the wall surface side is directly viewed, which is called a development view, geometric conversion becomes easy when the image pickup means 20 is located at the center of the tube.

あるいは、水平方向でお互いに逆方向の距離を測定する2つの距離センサの測定値の比率があらかじめ設定した値を維持するように、水平左右方向へ移動するアルゴリズムを飛行制御手段24に備える。このアルゴリズムを備えることで、壁面への接触や衝突を回避できるとともに、側方距離センサ14が備えられた側の壁面との距離の比率を一定に維持した飛行が可能となる。これにより、壁面との接触や衝突を回避することが可能となる。2つの距離センサの測定値の比率を等しくした場合、管路施設点検飛行体10は管の中央を進行することができ、前述と同様、前方に備えた撮像手段20で撮影した画像の処理が容易となる。   Alternatively, the flight control means 24 is provided with an algorithm for moving in the horizontal direction so that the ratio of the measurement values of the two distance sensors that measure the distances in the opposite directions in the horizontal direction maintains a preset value. By providing this algorithm, it is possible to avoid contact and collision with the wall surface, and it is possible to fly while maintaining a constant distance ratio with the wall surface on the side where the lateral distance sensor 14 is provided. This makes it possible to avoid contact and collision with the wall surface. When the ratio of the measured values of the two distance sensors is made equal, the pipeline facility inspection air vehicle 10 can travel in the center of the pipe, and as described above, the processing of the image captured by the image capturing means 20 provided in the front is performed. It will be easy.

下水管が直管のみで曲がりが無い場合には、図4(a)の状態を保ったまま飛行すれば安定した画像を得られる。しかし、現実的には直管のみではなく曲管も存在する。図8は、管路施設点検飛行体10がなだらかな曲率を持つ管路施設内を飛行している状態を鉛直上方から見た軸方向断面図である。上述したように、距離yの値を一定としたうえで、x1+x2の値が小さくなるよう自転して飛行することにより、なだらかな曲率を有する曲管でも(a)から(b)(c)(d)へと望ましい飛行を実現できる。   When the sewage pipe is a straight pipe without any bends, a stable image can be obtained by flying while maintaining the state of FIG. 4 (a). However, in reality, not only straight pipes but curved pipes also exist. FIG. 8 is an axial cross-sectional view of a state where the pipeline facility inspection vehicle 10 is flying in a pipeline facility having a gentle curvature, as viewed from above in the vertical direction. As described above, by keeping the value of the distance y constant and flying by rotating so that the value of x1 + x2 becomes small, even a curved pipe having a gentle curvature can be used from (a) to (b) (c). ) (d) can achieve the desired flight.

実施例1で述べたように、天井から水が滴り落ちる場所がある下水管では、管路施設点検飛行体10にも水滴がかかる可能性がある。上方距離センサ12に上から水滴がかかった場合に測定精度が低下したり測定不能となる場合には、上方距離センサ12の代わりに下方距離センサを備え、下水管16の内径2rから減算することで天井との距離を推算するのもよい。ただし、下水管16の底部には下水が流れているのが普通であり、天井との距離の推算値には誤差が生じる可能性が高い。   As described in the first embodiment, in the sewer pipe where there is a place where water drips from the ceiling, water droplets may also splash on the pipeline facility inspection vehicle 10. If the measurement accuracy decreases or measurement becomes impossible when water droplets are applied to the upper distance sensor 12 from above, a lower distance sensor should be provided instead of the upper distance sensor 12 and subtract from the inner diameter 2r of the sewer pipe 16. It is also good to estimate the distance to the ceiling. However, sewage normally flows to the bottom of the sewer pipe 16, and there is a high possibility that an error will occur in the estimated value of the distance to the ceiling.

鉛直下方ではなく、水平および水平より下方向を向いていれば水滴がかかっても問題が生じない下方距離センサで計測値x3およびx4が分かった場合の模式図を図9に示す。2つの距離センサの計測値x3とx4に対し、内径2rの円形管の相対位置は2つ存在する。一方、水平および水平より下方向の向きに備えられた距離センサが3つの場合の模式図を図10に示す。3つの距離センサの計測値x3、x4、x5がある場合には、推定される円形管との相対位置は一意的に定まる。その結果を用い、天井との距離を幾何的な関係に基づき、精度良く推算することができる。   FIG. 9 shows a schematic diagram in the case where the measured values x3 and x4 are found by the lower distance sensor, which does not cause a problem even if water drops are applied if they are directed not horizontally downward but horizontally and downward. There are two relative positions of the circular tube having the inner diameter 2r with respect to the measured values x3 and x4 of the two distance sensors. On the other hand, FIG. 10 shows a schematic diagram in the case where there are three distance sensors provided in the horizontal direction and in a direction downward from the horizontal direction. When there are measured values x3, x4, and x5 of the three distance sensors, the estimated relative position to the circular tube is uniquely determined. Using the result, the distance to the ceiling can be accurately estimated based on the geometrical relationship.

下水管16は、場所によっては取り付け管からの流入水量が多く、管の断面に対する相対的な水位が高くなる場合が生じる。管路施設点検飛行体10が上方向の距離があらかじめ設定した範囲内の値を維持するように鉛直方向の位置を制御して飛行して進むと、水位が高い箇所では水没してしまう可能性が生じる。水没してしまうと飛行や画像取得が不可能となり、故障する危険性も高まるため水位が高い箇所へは進まないことが望ましい。そこで、下方向の距離、特に水面との距離を計測する距離センサを設けるのが望ましい。この距離があらかじめ設定した値よりも小さくなった場合には停止あるいは進行方向と逆方向に移動するアルゴリズムを飛行制御手段24には備えることがよい。これにより、管路施設点検飛行体10の水没による故障を未然に防止することが可能となる。   The sewage pipe 16 has a large amount of inflow water from the mounting pipe depending on the location, and the water level relative to the cross section of the pipe may become high. Pipeline facility inspection If the flying vehicle 10 flies by controlling the vertical position so that the upward distance maintains a value within a preset range, it may be submerged at a high water level. Occurs. If it is submerged in water, flight and image acquisition will become impossible, and the risk of failure increases, so it is desirable not to proceed to locations with high water levels. Therefore, it is desirable to provide a distance sensor that measures the distance in the downward direction, particularly the distance to the water surface. When the distance becomes smaller than a preset value, the flight control means 24 may be provided with an algorithm for stopping or moving in the direction opposite to the traveling direction. This makes it possible to prevent the failure of the pipeline facility inspection vehicle 10 due to submersion in water.

10…管路施設点検飛行体
12…上方距離センサ
14…側方距離センサ
16…下水管
18…プロペラ
20…撮像手段
22…照射手段
24…飛行制御手段
26…下水
30…飛行体本体
31…マンホール
32…アンテナ
33…送受信装置
34…表示装置
35…無線伝送装置
10 ... Pipe facility inspection air vehicle 12 ... Upper distance sensor 14 ... Side distance sensor 16 ... Sewer pipe 18 ... Propeller 20 ... Imaging means 22 ... Irradiation means 24 ... Flight control means 26 ... Sewage 30 ... Aircraft body 31 ... Manhole 32 ... Antenna 33 ... Transceiver 34 ... Display 35 ... Wireless transmission device

Claims (7)

管路内を撮像する撮像手段と、
管路内に光を照射する照射手段と、
前記撮像手段と前記照射手段を配置し、管路内を飛行する飛行体本体と、
前記飛行体本体に配置され、管路と、管路内の飛行体本体との距離を測定する距離センサと、
前記飛行体本体に配置され、前記距離センサの測定値に基づいて管路内の飛行体本体の飛行方向を制御する飛行制御手段と、
を備え
前記距離センサは、
前記飛行体本体の上面に配置され、管路と管路内の飛行体との、鉛直上向きの距離を測定する上方距離センサと、
前記飛行体本体の少なくとも2つの側面に配置され、管路と管路内の飛行体との、前記飛行体の進行方向に対して直角方向の距離を測定する側方距離センサと、
を有することを特徴とする管路施設点検飛行体。
Imaging means for imaging the inside of the pipeline,
Irradiation means for irradiating light into the pipeline,
An aircraft body that arranges the image pickup unit and the irradiation unit and flies in a pipeline,
A distance sensor that is arranged on the flight body, and measures a distance between the pipeline and the flight body in the pipeline,
Flight control means arranged on the aircraft body and controlling the flight direction of the aircraft body in the pipeline based on the measurement value of the distance sensor,
Equipped with
The distance sensor is
An upper distance sensor that is arranged on the upper surface of the aircraft body and that measures a vertically upward distance between the pipeline and the flight vehicle in the pipeline,
A lateral distance sensor that is disposed on at least two side surfaces of the aircraft body and that measures a distance between a pipeline and a flight vehicle in the pipeline in a direction perpendicular to a traveling direction of the flight vehicle;
Conduit facility inspection flying body which is characterized in Rukoto to have a.
請求項において、前記飛行制御手段は、
前記上方距離センサで測定した、管路と管路内飛行体との距離を管路の内径半分に保ち、
前記側方距離センサで測定した、管路と管路内飛行体との距離の合計が極小値となるように飛行体の飛行方向を制御することを特徴とする管路施設点検飛行体。
The flight control means according to claim 1 ,
Measured with the upper distance sensor, keeping the distance between the pipeline and the flight object in the pipeline to half the inner diameter of the pipeline,
A pipeline facility inspection vehicle, wherein the flight direction of the aircraft is controlled so that the total distance between the pipeline and the flight vehicle in the pipeline measured by the lateral distance sensor has a minimum value.
請求項またはにおいて、前記距離センサは、
前記飛行体本体の下面に配置され、管路内の水面と飛行体との、鉛直下向きの距離を測定する下方距離センサを、さらに有することを特徴とする管路施設点検飛行体。
The distance sensor according to claim 1 or 2 ,
A pipeline facility inspection aircraft, further comprising a downward distance sensor arranged on a lower surface of the aircraft body to measure a vertically downward distance between a water surface in the pipeline and the aircraft.
請求項1乃至のいずれかにおいて、前記距離センサが、超音波センサあるいは赤外線センサであることを特徴とする管路施設点検飛行体。 The pipeline facility inspection vehicle according to any one of claims 1 to 3 , wherein the distance sensor is an ultrasonic sensor or an infrared sensor. 請求項1乃至のいずれかにおいて、前記撮手段で撮影した管路内の画像を、無線で伝送する無線伝送装置を前記飛行体本体に配置することを特徴とする管路施設点検飛行体。 In any one of claims 1 to 4, the image of the captured conduit in said IMAGING means, conduit facility inspection aircraft, characterized by arranging the wireless transmission apparatus to the flying body to be transmitted wirelessly . 請求項1乃至のいずれかにおいて、前記管路が、下水管路であることを特徴とする管路施設点検飛行体。 The pipeline facility inspection vehicle according to any one of claims 1 to 5 , wherein the pipeline is a sewer pipeline. 請求項1乃至のいずれかに記載の管路施設点検飛行体と、
地上に配置され、前記管路施設点検飛行体で撮影した画像を、地上からマンホールに垂らしたアンテナを介して、無線で受信する送受信装置と、
前記送受信装置に接続され、撮影した画像を表示する表示装置と、
を備えることを特徴とする管路施設点検システム。
A pipeline facility inspection vehicle according to any one of claims 1 to 6 ,
A transmitter / receiver that is placed on the ground and wirelessly receives an image taken by the duct facility inspection air vehicle via an antenna hung from the ground into a manhole,
A display device connected to the transmission / reception device for displaying a captured image;
A system for inspecting pipeline facilities, characterized by comprising:
JP2015219046A 2015-11-09 2015-11-09 Pipeline facility inspection aircraft and pipeline facility inspection system using the same Active JP6681173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015219046A JP6681173B2 (en) 2015-11-09 2015-11-09 Pipeline facility inspection aircraft and pipeline facility inspection system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219046A JP6681173B2 (en) 2015-11-09 2015-11-09 Pipeline facility inspection aircraft and pipeline facility inspection system using the same

Publications (2)

Publication Number Publication Date
JP2017087917A JP2017087917A (en) 2017-05-25
JP6681173B2 true JP6681173B2 (en) 2020-04-15

Family

ID=58767448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219046A Active JP6681173B2 (en) 2015-11-09 2015-11-09 Pipeline facility inspection aircraft and pipeline facility inspection system using the same

Country Status (1)

Country Link
JP (1) JP6681173B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085104A (en) * 2017-11-06 2019-06-06 株式会社エアロネクスト Flight unit and control method of flight unit
WO2019198155A1 (en) * 2018-04-10 2019-10-17 株式会社自律制御システム研究所 Unmanned aerial vehicle, flight control mechanism for unmanned aerial vehicle, and method for using unmanned aerial vehicle and mechanism for unmanned aerial vehicle
JP7049902B2 (en) * 2018-04-27 2022-04-07 戸田建設株式会社 Blasting optimization method in mountain tunnels
KR102138126B1 (en) * 2018-10-30 2020-07-28 대진기술정보 (주) System and method for sewer pipe exploration
JP2020076688A (en) * 2018-11-09 2020-05-21 一般財団法人電力中央研究所 Inspection device and inspection method
CN111591442A (en) * 2019-02-20 2020-08-28 研能科技股份有限公司 Miniature detection device
WO2020195651A1 (en) * 2019-03-25 2020-10-01 株式会社センシンロボティクス Flying vehicle, inspection method and inspection system
KR102211701B1 (en) * 2019-05-10 2021-02-04 주식회사 한국씨앤에스 red tide and green tide generation region information supply system using drone
KR102211700B1 (en) * 2019-05-10 2021-02-04 주식회사 한국씨앤에스 red tide and green tide monitoring system using drone
JP7232719B2 (en) * 2019-06-12 2023-03-03 西松建設株式会社 Waterway tunnel inspection device and waterway tunnel inspection device control method
JP7294943B2 (en) * 2019-08-19 2023-06-20 国際航業株式会社 Inspection and investigation manhole lid, pipeline inspection and investigation system, and pipeline inspection and investigation method
JP7095719B2 (en) * 2019-08-23 2022-07-05 Jfeスチール株式会社 In-pipe inspection system, in-pipe inspection method, pipe manufacturing method, unmanned aerial vehicle control device, unmanned aerial vehicle control method, and equipment inspection method
JP6715542B1 (en) * 2019-10-28 2020-07-01 株式会社センシンロボティクス Aircraft, inspection method and inspection system
WO2021176568A1 (en) * 2020-03-03 2021-09-10 日本電気株式会社 Equipment diagnostic system and equipment diagnostic method
JP6725171B1 (en) * 2020-04-03 2020-07-15 株式会社センシンロボティクス Aircraft, inspection method and inspection system
JP2020169023A (en) * 2020-06-22 2020-10-15 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
JP2022010579A (en) * 2020-06-29 2022-01-17 三桜電気工業株式会社 Pillar internal imaging system
JP2020186000A (en) * 2020-08-06 2020-11-19 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
JP2020186002A (en) * 2020-08-06 2020-11-19 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
JP2020185999A (en) * 2020-08-06 2020-11-19 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
JP2020186001A (en) * 2020-08-06 2020-11-19 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
JP2020185998A (en) * 2020-08-06 2020-11-19 株式会社センシンロボティクス Flying vehicle, inspection method, and inspection system
CN114084359B (en) * 2021-11-30 2024-01-09 北京航星机器制造有限公司 Adjustable hanger, unmanned aerial vehicle and method for hanging articles on unmanned aerial vehicle
KR102524683B1 (en) * 2022-12-28 2023-04-21 수자원기술 주식회사 Time-Worn Measuring System of Drinking Water Nonmetal Pipe
KR102524682B1 (en) * 2022-12-28 2023-04-21 수자원기술 주식회사 Time-Worn Measuring Method of Drinking Water Nonmetal Pipe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427420B2 (en) * 2004-09-10 2010-03-10 クボタシーアイ株式会社 State measuring method and state measuring device for existing pipeline
DE202012100128U1 (en) * 2012-01-13 2012-02-27 Helmut Naber Detection system for obtaining information in tubular elements

Also Published As

Publication number Publication date
JP2017087917A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6681173B2 (en) Pipeline facility inspection aircraft and pipeline facility inspection system using the same
JP6710114B2 (en) Pipeline inspection vehicle and pipeline inspection system using it
TWI578132B (en) The house surveillance system and method of the structure
EP3460392A2 (en) Positioning system for aerial non-destructive inspection
JP6596235B2 (en) Sewage pipeline facility inspection system
JP2019078746A (en) Method for measuring and inspecting structure using cable-suspended platforms
JP4475632B2 (en) Transmission line inspection system using unmanned air vehicle
KR102553453B1 (en) Apparatus and method of unmaned aerial vehicle for power facilities inspection monitoring
JP2021170372A (en) Information processing system
AU2016102409A4 (en) Local Positioning System for an Unmanned Aerial Vehicle
TW201939186A (en) Unmanned mobile unit and patrolling check system
Korotaev et al. Deflection measuring system for floating dry docks
JP2017154577A (en) Inspection system for inside of facility using unmanned aircraft
JP6202559B2 (en) Buried pipe measuring device and buried pipe measuring method
JP6953531B2 (en) Immersion inspection vehicle with navigation and mapping capabilities
KR101604050B1 (en) Road tunnel inspection device
Tan et al. A smart unmanned aerial vehicle (UAV) based imaging system for inspection of deep hazardous tunnels
Tan et al. Design optimization of sparse sensing array for extended aerial robot navigation in deep hazardous tunnels
CA3205194A1 (en) Pipeline inspection device
Benkhoui et al. UAS-based crack detection using stereo cameras: A comparative study
KR20170074519A (en) Apparatus and method for inspecting of lng tank
JP2019101001A (en) Position estimation device, and, position estimation method
JP2020138574A (en) Unmanned aircraft and inspection method
EP4095036A1 (en) An autonomous unmanned aerial vehicle for inspection of a vertical building passageway
JP7226380B2 (en) Piping inspection method and piping inspection system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150