JP7049902B2 - Blasting optimization method in mountain tunnels - Google Patents

Blasting optimization method in mountain tunnels Download PDF

Info

Publication number
JP7049902B2
JP7049902B2 JP2018086425A JP2018086425A JP7049902B2 JP 7049902 B2 JP7049902 B2 JP 7049902B2 JP 2018086425 A JP2018086425 A JP 2018086425A JP 2018086425 A JP2018086425 A JP 2018086425A JP 7049902 B2 JP7049902 B2 JP 7049902B2
Authority
JP
Japan
Prior art keywords
blasting
data
dimensional
dimensional shape
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018086425A
Other languages
Japanese (ja)
Other versions
JP2019190189A (en
Inventor
雅昭 中林
徹 田中
崇 杉山
章平 本木
英紀 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2018086425A priority Critical patent/JP7049902B2/en
Publication of JP2019190189A publication Critical patent/JP2019190189A/en
Application granted granted Critical
Publication of JP7049902B2 publication Critical patent/JP7049902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、発破条件の適切性判断を熟練工の技能や経験、判断に頼るのではなく、三次元形状計測によって得られた飛散ズリのデータ等に基づいて行うようにした山岳トンネルにおける発破最適化方法に関する。 The present invention optimizes blasting in mountain tunnels so that the appropriateness of blasting conditions is judged not by relying on the skill, experience, and judgment of skilled workers, but based on the data of scattered shavings obtained by three-dimensional shape measurement. Regarding the method.

従来より、発破掘削方式による山岳トンネルの施工では、掘削方法の違いにより全断面掘削工法、上部半断面先進工法、ロングベンチカット工法、ショートベンチカット工法、ミニベンチカット工法等のベンチカット工法などが存在するが、いずれにしてもトンネルの施工手順は、穿孔、装薬、発破、ズリ出し、一次吹付け、支保工建込み、二次吹付け、ロックボルト打設の工程を順にかつ段階的に踏むことにより掘削が行われている。なお、支保工建込み、吹付けおよびロックボルト打設は、地山状況、トンネル施工方法および掘削方法等の違いによって省略されたり、順序が入れ替わることがある。 Conventionally, in the construction of mountain tunnels by blasting excavation method, there are bench cut methods such as full section excavation method, upper half section advanced method, long bench cut method, short bench cut method, mini bench cut method, etc. depending on the excavation method. However, in any case, the tunnel construction procedure involves the steps of drilling, charging, blasting, slipping, primary spraying, construction of support work, secondary spraying, and rock bolt placement in order and step by step. As a result, excavation is being carried out. It should be noted that the construction of support works, spraying and rock bolt placement may be omitted or the order may be changed depending on the ground conditions, tunnel construction method, excavation method, etc.

前記発破は、穿孔内にダイナマイト等の爆薬を装填し、これを爆発させて地山を切り崩す方式であるが、これは事前に行った地質調査に基づいて、計画段階で詳細な穿孔数、位置、間隔、穿孔長、装薬量などの発破条件が決定されるが、実施工においては、地質の不均一性、不連続性などによって発破条件が適切では無くなり、図9に示されるように、弱装薬・過装薬となる場合が多々ある。 The blasting is a method of loading explosives such as dynamite into the drilling and exploding it to cut down the ground, but this is a detailed number and position of drilling at the planning stage based on the geological survey conducted in advance. Blasting conditions such as spacing, drilling length, and charge amount are determined, but in the implementation work, the blasting conditions become inappropriate due to geological non-uniformity, discontinuity, etc., and as shown in FIG. In many cases, it is a weak or overloaded drug.

通常、発破やズリ出し作業は、立入り禁止の危険作業のため、職員は発破後の状況を詳しく見れていないことが多く、その結果、発破の良否の適正判断は発破熟練工の個人的判断が優先されることが多かった。発破熟練工の技能や経験、判断に頼ることが必要な場合が少なくないが、近年乃至将来の熟練工不足の問題等に対処するために、客観的なデータや計測値に基づいて発破条件の適正化を図ることが重要視されるようになってきた。 Normally, blasting and slipping work are dangerous work that is off limits, so staff often do not look at the situation after blasting in detail, and as a result, the personal judgment of the blasting expert is prioritized in determining the appropriateness of blasting. It was often done. It is often necessary to rely on the skills, experience, and judgment of blasting skilled workers, but in order to deal with the problem of shortage of skilled workers in recent years and in the future, optimization of blasting conditions based on objective data and measured values. It has become important to try to achieve this.

例えば、下記特許文献1では、岩盤に削岩機で所定の孔を削孔した際に前記削岩機に備えられた削孔データ収集部で前記孔の削孔データを収集し、削孔された各孔の削孔データを前記削岩機に搭載された演算部に入力して各孔の削孔エネルギー値を算出し、これらの削孔エネルギー値と前記演算部の記憶部に格納された岩盤強度あるいは岩盤分類データとを参照対比し、各孔に使用する火薬の事前設定装薬量の適否を確認し、また収集された前記削孔エネルギー値に応じた装薬量に修正して岩盤発破に要する火薬の使用量を前記岩盤強度あるいは岩盤分類データに対応した適正量に設定するようにした削岩機の削孔エネルギー評価値による岩盤発破作業の適正化方法が提案されている。 For example, in Patent Document 1 below, when a predetermined hole is drilled in a rock mass by a rock drill, the drilling data collecting unit provided in the rock drill collects the drilling data of the hole and drills the hole. The drilling data of each hole was input to the calculation unit mounted on the rock drill to calculate the drilling energy value of each hole, and these drilling energy values and the storage unit of the calculation unit were stored. Compare with the rock strength or rock classification data to confirm the appropriateness of the preset charge amount of the explosive used for each hole, and correct the charge amount according to the collected drilling energy value to the bedrock. A method for optimizing the rock rupture work based on the drilling energy evaluation value of the rock drill has been proposed so that the amount of explosive used for rupture is set to an appropriate amount corresponding to the rock strength or the rock classification data.

また、下記特許文献2では、発破パターンとして格子状パターンを使用し、芯抜きとして平行芯抜きを標準とし、削孔の孔底部において、削孔径一杯になるように爆薬を密装薬にし、スムースブラスティングを標準とし、芯抜きにMS電気雷管を使用する発破方式による発破を補助する制御発破のエキスパートシステムにおいて、検索用データに基づき基本データベースを検索して各発破を設計するための設計データを得るトンネル基本データ入力部と、前記設計データに基づき一般孔、外周孔に分けて抵抗線長と孔間隔とを求める抵抗線長・孔間隔設計部と、この抵抗線長・孔間隔設計部によって求められる抵抗線長及び孔間隔に関する情報と前記基本データベースのデータとに基づき、所定の手順で発破パターンを求める発破パターン設計部と、前記発破パターンと前記抵抗線長及び孔間隔に関する情報と前記基本データベースのデータとに基づき、ボトムチャージとコラムチャージとを明確に分けて装薬量を求める装薬量計算部と、前記発破パターンと前記抵抗線長及び孔間隔に関する情報と前記装薬量と前記基本データベースのデータとに基づき、ファジィ推論によって振動と騒音対策とを施すべき最適な発破条件を得る対策工部と、発破で使用した装薬量に関する情報と現場計測に関する情報と今回の発破での不具合や対処法に関する情報とをファイル化して保存する施工・計測データ入力部とが具備される制御発破のエキスパートシステムが提案されている。 Further, in Patent Document 2 below, a grid pattern is used as the rupture pattern, parallel core punching is standard as the core punching, and the explosive is used as a dense filling agent at the bottom of the drilling hole so that the drilling diameter is full, and smooth. Design data for designing each rupture by searching the basic database based on the search data in the control rupture expert system that assists rupture by the rupture method using blasting as standard and using MS electric thunder tube for core removal. By the tunnel basic data input unit to be obtained, the resistance line length / hole spacing design section that obtains the resistance line length and hole spacing by dividing into general holes and outer peripheral holes based on the design data, and the resistance line length / hole spacing design section. A rupture pattern design unit that obtains a rupture pattern by a predetermined procedure based on information on the required resistance wire length and hole spacing and data in the basic database, information on the rupture pattern, the resistance wire length and the hole spacing, and the basics. Based on the data in the database, the charge amount calculation unit that clearly separates the bottom charge and the column charge to obtain the charge amount, the information on the rupture pattern, the resistance line length and the hole spacing, the charge amount, and the above. Based on the data of the basic database, the countermeasure engineering department that obtains the optimum rupture conditions for vibration and noise countermeasures by fuzzy inference, the information on the amount of charge used in the rupture, the information on the on-site measurement, and the information on this rupture. An expert system for control breaking has been proposed, which is equipped with a construction / measurement data input unit that saves information on problems and countermeasures as a file.

特開平7-208060号公報Japanese Unexamined Patent Publication No. 7-208060 特許第2840002号公報Japanese Patent No. 284002

上記特許文献1に係る方法は、削孔される岩盤の強度に応じてその削孔に要するエネルギーが比例して大きくなることを利用して、削孔データに基づいて岩盤強度特性を評価し、その岩盤強度特性に応じた適正な火薬量とすることで、弱装薬や過装薬を無くし掘削精度が向上するようになるというものである。しかしながら、削孔中に部分的に脆弱部の存在が検知できたとしても、その脆弱部が発破にどのように影響するかまでの予測が難しいとともに、節理などが存在している場合の影響評価が困難であるなどの問題があった。 The method according to Patent Document 1 evaluates the bedrock strength characteristics based on the drilling data by utilizing the fact that the energy required for drilling increases proportionally according to the strength of the bedrock to be drilled. By setting an appropriate amount of explosives according to the rock strength characteristics, it is possible to eliminate weak charges and overcharges and improve excavation accuracy. However, even if the presence of a fragile part can be partially detected during drilling, it is difficult to predict how the vulnerable part will affect blasting, and the impact will be evaluated when joints are present. There were problems such as difficulty.

上記特許文献2に係る方法では、施工・計測データ入力部において、発破で使用した装薬量に関する情報と現場計測に関する情報と今回の発破での不具合や対処法に関する情報とをファイル化して保存することにより、発破仕様を次回以降にフィードバックできるようにしているが、前記「今回の発破での不具合」が具体的に示されておらず、何に基づいてどのようなフィードバックを行うのかが判然としない。 In the method according to Patent Document 2, in the construction / measurement data input unit, information on the amount of charge used in blasting, information on on-site measurement, and information on problems and countermeasures in this blasting are saved as a file. By doing so, it is possible to feed back the blasting specifications from the next time onward, but the above-mentioned "defect in this blasting" is not specifically shown, and it is clear what kind of feedback will be given based on what. do not.

そこで本発明の主たる課題は、発破条件の適切性判断を熟練工の技能や経験、判断に頼るのではなく、ズリの飛散・堆積状態や切羽の掘削形状などの三次元形状計測結果に基づいて客観的に行うようにした山岳トンネルにおける発破最適化方法を提供することにある。 Therefore, the main subject of the present invention is not to rely on the skill, experience, and judgment of skilled workers to judge the appropriateness of blasting conditions, but to objectively judge the appropriateness of blasting conditions based on the results of three-dimensional shape measurement such as the scattering / accumulation state of slips and the excavation shape of the face. The purpose is to provide a method for optimizing blasting in mountain tunnels.

上記課題を解決するために請求項1に係る本発明として、発破条件の適切性判断を発破前後の三次元形状計測によって行うようにした山岳トンネルにおける発破最適化方法であって、
発破前に、切羽及びズリの飛散予定範囲について三次元形状計測を行う第1ステップと、
発破後に、飛散したズリの堆積状態について三次元形状計測を行うとともに、ズリ出し後に切羽の掘削形状について三次元形状計測を行う第2ステップと、
ズリの飛散・堆積状態や切羽の掘削形状に基づいて設定した発破状況の指標値と、発破熟練工の判断に基づく発破の良否との関係を定量化したデータで蓄積する第3ステップと、
蓄積したデータを基に、統計処理的手法及び/又は人工知能による手法により分析し、一定量のデータが得られた段階からは、前記発破状況の指標値に基づいて発破の良否判定を行うとともに、必要に応じて発破条件の修正を行う第4ステップとからなることを特徴とする山岳トンネルにおける発破最適化方法が提供される。
In order to solve the above-mentioned problems, the present invention according to claim 1 is a method for optimizing blasting in a mountain tunnel in which appropriateness of blasting conditions is determined by three-dimensional shape measurement before and after blasting.
Before blasting, the first step of measuring the three-dimensional shape of the planned scattering range of the face and the slag,
After the blasting, the second step of measuring the three-dimensional shape of the accumulated state of the scattered debris and measuring the excavated shape of the face after the debris is removed.
The third step to accumulate data that quantifies the relationship between the index value of the blasting situation set based on the scattering / accumulation state of the shavings and the excavation shape of the face and the quality of the blasting based on the judgment of the blasting expert.
Based on the accumulated data, it is analyzed by a statistical processing method and / or a method by artificial intelligence, and from the stage when a certain amount of data is obtained, the quality of blasting is judged based on the index value of the blasting situation. Provided is a method for optimizing blasting in a mountain tunnel, which comprises a fourth step of modifying the blasting conditions as necessary.

上記請求項1記載の発明では、発破前に切羽及びズリの飛散予定範囲について三次元形状計測を行い(第1ステップ)、発破後に飛散したズリの堆積状態について三次元形状計測を行うとともに、ズリ出し後に切羽の掘削形状について三次元形状計測を行う(第2ステップ)。 In the invention according to claim 1, the three-dimensional shape measurement is performed on the planned scattering range of the face and the debris before blasting (first step), and the three-dimensional shape measurement is performed on the accumulated state of the debris scattered after the blasting. After blasting, three-dimensional shape measurement is performed on the excavated shape of the face (second step).

次に、第1ステップで得た三次元形状データと第2ステップで得た三次元形状データとの画像減算処理を行うことによって、飛散したズリの堆積状態と切羽の掘削形状の三次元形状を得るようにする。そして、これらに基づいて発破状況の指標値を任意に設定するとともに、発破熟練工の判断に基づく発破の良否との関係を定量化したデータで蓄積する(第3ステップ)。 Next, by performing image subtraction processing between the three-dimensional shape data obtained in the first step and the three-dimensional shape data obtained in the second step, the three-dimensional shape of the accumulated state of the scattered debris and the excavated shape of the face can be obtained. Try to get. Then, based on these, the index value of the blasting situation is arbitrarily set, and the relationship between the quality of the blasting and the quality of the blasting based on the judgment of the blasting skilled worker is quantified and accumulated (third step).

次いで、前述の蓄積したデータを基に、統計処理的手法及び/又は人工知能による学習により分析し、一定量のデータが得られた段階からは、前記発破状況の指標値に基づいて発破の良否判定を行うとともに、必要に応じて発破条件の修正を行うようにする(第4ステップ)。 Next, based on the above-mentioned accumulated data, analysis is performed by statistical processing method and / or learning by artificial intelligence, and from the stage when a certain amount of data is obtained, the quality of blasting is based on the index value of the blasting situation. The judgment is made and the blasting conditions are corrected as necessary (4th step).

以上の工程により、従来は熟練工の技能や経験、判断に頼っていた発破条件の適切性判断をズリの飛散・堆積状態や切羽の掘削形状などの三次元形状計測結果に基づいて客観的に行い得るようになる。 Through the above process, the appropriateness of blasting conditions, which used to rely on the skills, experience, and judgment of skilled workers, is objectively judged based on the results of three-dimensional shape measurement such as the scattering / accumulation state of shavings and the excavation shape of the face. You will get it.

請求項2に係る本発明として、前記三次元形状計測は、デジタルカメラ、ビデオカメラ、三次元スキャナ又はステレオカメラによって行う請求項1記載の山岳トンネルにおける発破最適化方法が提供される。 According to the second aspect of the present invention, there is provided the method for optimizing bursting in a mountain tunnel according to claim 1, wherein the three-dimensional shape measurement is performed by a digital camera, a video camera, a three-dimensional scanner or a stereo camera.

上記請求項2記載の発明では、三次元形状計測の具体的方法として、デジタルカメラ、デジタルビデオカメラ、三次元スキャナ又はステレオカメラによって行うようにしたものである。前記デジタルカメラやビデオカメラなどの二次元撮影機器であっても、複数の地点で撮影した画像データ(二次元画像)をソフト的加工処理を行うことによって三次元化することができる。同時に座標データを持たせることによってズリの飛散・堆積状態や切羽の掘削形状を数量的に把握することが可能となる。前記三次元スキャナは取得した三次元点群データに画像処理を加えることにより、ズリの飛散・堆積状態や切羽の掘削形状を把握することが可能となる。前記ステレオカメラは光軸が平行乃至その交角が既知である複数台のCCDカメラ等の撮像装置を配置し、三角測量の原理により対象点の座標を特定することによりズリの飛散・堆積状態や切羽の掘削形状を把握することが可能となる。近年は、高速、高精度の三次元スキャナやステレオカメラなどの三次元計測機器であっても、光学機器メーカーから比較的安価な値段で市販されており、容易に入手が可能である。 In the invention according to claim 2, as a specific method for measuring the three-dimensional shape, a digital camera, a digital video camera, a three-dimensional scanner, or a stereo camera is used. Even with a two-dimensional photographing device such as a digital camera or a video camera, image data (two-dimensional images) taken at a plurality of points can be made three-dimensional by performing soft processing. At the same time, by having the coordinate data, it is possible to quantitatively grasp the scattering / accumulation state of the slip and the excavation shape of the face. By applying image processing to the acquired 3D point cloud data, the 3D scanner can grasp the state of scattering / accumulation of slips and the excavation shape of the face. In the stereo camera, multiple image pickup devices such as CCD cameras whose optical axes are parallel or whose intersections are known are arranged, and the coordinates of the target points are specified by the principle of triangulation, so that the scattering / accumulation state and the face of the slips are specified. It is possible to grasp the excavation shape of. In recent years, even 3D measuring devices such as high-speed, high-precision 3D scanners and stereo cameras are commercially available from optical equipment manufacturers at relatively low prices and can be easily obtained.

請求項3に係る本発明として、前記三次元形状計測は、デジタルカメラ、ビデオカメラ、三次元スキャナ又はステレオカメラを搭載した小型無人航空機によって行う請求項1記載の山岳トンネルにおける発破最適化方法が提供される。 As the present invention according to claim 3, the method for optimizing bursting in a mountain tunnel according to claim 1 is provided, wherein the three-dimensional shape measurement is performed by a small unmanned aircraft equipped with a digital camera, a video camera, a three-dimensional scanner or a stereo camera. Will be done.

上記請求項3記載の発明では、三次元形状計測は、デジタルカメラ、ビデオカメラ、三次元スキャナ又はステレオカメラを搭載した小型無人航空機によって行うものである。発破やズリ出し作業は危険作業となるため、小型無人航空機を使って三次元形状計測を行うことによりより安全かつ迅速に計測を行い得るようになる。 In the invention according to claim 3, the three-dimensional shape measurement is performed by a small unmanned aircraft equipped with a digital camera, a video camera, a three-dimensional scanner, or a stereo camera. Since blasting and slipping work are dangerous work, it becomes possible to perform measurement more safely and quickly by performing three-dimensional shape measurement using a small unmanned aerial vehicle.

以上詳説のとおり本発明によれば、発破条件の適切性判断を熟練工の技能や経験、判断に頼るのではなく、ズリの飛散・堆積状態や切羽の掘削形状などの三次元形状計測結果に基づいて客観的に行い得るようになる。 As described in detail above, according to the present invention, the appropriateness of blasting conditions is not determined by the skill, experience, and judgment of skilled workers, but is based on the results of three-dimensional shape measurement such as the scattering / deposition state of slips and the excavation shape of the face. You will be able to do it objectively.

山岳トンネルの施工要領を示すトンネル縦断面図である。It is a tunnel vertical sectional view which shows the construction procedure of a mountain tunnel. 本発明に係る発破最適化方法のフロー図である。It is a flow chart of the blasting optimization method which concerns on this invention. 第1ステップにおける三次元形状計測要領を示すトンネル縦断面図である。It is a tunnel vertical sectional view which shows the 3D shape measurement procedure in 1st step. 第2ステップにおける三次元形状計測要領を示すトンネル縦断面図である。It is a tunnel vertical sectional view which shows the 3D shape measurement procedure in 2nd step. 発破状況の指標値の例を示した、(A)はトンネル横断面図、(B)はトンネル縦断面図である。An example of the index value of the blasting situation is shown, (A) is a cross-sectional view of the tunnel, and (B) is a vertical cross-sectional view of the tunnel. 人工知能による手法のニューラルネットワークの概念図である。It is a conceptual diagram of a neural network of a method by artificial intelligence. ニューラルネットワークの中間層ユニットでの計算処理概念を示す図である。It is a figure which shows the calculation processing concept in the intermediate layer unit of a neural network. 三次元計測機器4を搭載した小型無人航空機(ドローン)の斜視図である。It is a perspective view of a small unmanned aerial vehicle (drone) equipped with a three-dimensional measuring device 4. 発破状況を示す、(A)は弱装薬、(B)は適正、(C)は過装薬の例を示す図である。It is a figure which shows the blasting situation, (A) is a weak charge, (B) is appropriate, and (C) is an example of an overcharge.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示されるように、発破工法による山岳トンネルの掘削は、切羽Sの近傍に、ドリルジャンボ1、吹付け機2、ホイールローダ3などのトンネル施工用重機が配置され、例えば補助ベンチ付全断面工法や上部半断面工法などにより、上半及び下半のそれぞれにおいてロックボルト削孔・装薬を行った後、上半及び下半を爆薬により一気に切り崩し、その後ズリ出し→こそく/当り取り→一次吹付けコンクリート→鋼製支保工→二次吹付けコンクリート→ロックボルト打設の手順にて、掘削が所定区間長毎(1サイクル毎)に進められる。掘削速度は、概ね一日当り4~5サイクルある。 As shown in FIG. 1, when excavating a mountain tunnel by the blasting method, heavy equipment for tunnel construction such as a drill jumbo 1, a spraying machine 2, and a wheel loader 3 is arranged in the vicinity of the face S, for example, all with an auxiliary bench. After drilling and charging rock bolts in the upper and lower halves by the cross-section method and the upper half-section method, the upper and lower halves are blasted at once with explosives, and then slipped out → scraped / hit. → Primary sprayed concrete → Steel support → Secondary sprayed concrete → Rock bolt placement procedure, excavation is carried out every predetermined section length (every cycle). The excavation speed is approximately 4-5 cycles per day.

前記一連の掘削工程の中で、ロックボルト穿孔・装薬作業では、発破条件(穿孔数、穿孔位置・間隔、穿孔角度、装薬量、斉発薬量、雷管段数、爆薬種別など)を地山の不連続性により地質の硬軟、層理、節理などを考慮しながら逐次修正を行うことが効率的な掘削を実現する上で重要となる。 In the rock bolt drilling / charging work in the above series of excavation steps, the blasting conditions (number of drilling, drilling position / interval, drilling angle, loading amount, simultaneous charge amount, number of detonator stages, explosive type, etc.) are set as the ground. Due to the discontinuity of the mountain, it is important to make sequential corrections while considering the hardness, stratification, and node of the geology in order to realize efficient excavation.

本発明では、発破条件の適切性判断を熟練工の技能や経験、判断に頼るのではなく、ズリの飛散・堆積状態や切羽の掘削形状などの三次元形状計測結果に基づいて行うようにするものである。なお、この判定は1サイクル毎に行っても良いが、掘削の進行速度とのバランスを考慮して複数サイクルに1回程度の頻度(例えば、1回/1日~複数日)で行うようにしてもよい。 In the present invention, the appropriateness of blasting conditions is judged not by relying on the skill, experience, and judgment of skilled workers, but based on the results of three-dimensional shape measurement such as the state of scattering and accumulation of shavings and the excavation shape of the face. Is. Although this determination may be made for each cycle, it should be made at a frequency of about once in a plurality of cycles (for example, once / one day to a plurality of days) in consideration of the balance with the progress speed of excavation. You may.

本発明に係る発破最適化方法について具体的に詳述する。本発明に係る発破最適化方法は、後述の第1ステップ~第4ステップの手順によって行われるものである。以下、ステップ順に詳述する。 The blasting optimization method according to the present invention will be specifically described in detail. The blasting optimization method according to the present invention is performed by the procedure of the first step to the fourth step described later. Hereinafter, the details will be described in step order.

<第1ステップ>
先ず、発破を行う前に、切羽及びズリの飛散予定範囲について三次元形状計測を行う。
<First step>
First, before blasting, a three-dimensional shape measurement is performed on the planned scattering range of the face and the slip.

具体的には、図3(A)に示されるように、切羽の手前に三次元スキャナやステレオカメラなどの三次元計測機器4を設置して切羽Sの三次元形状計測を行うとともに、図3(B)に示されるように、坑内の天端寄り位置などに前記三次元計測機器4を設置してズリの飛散予定範囲(発破によってズリが飛散すると予定される範囲)を含む範囲について三次元形状計測を行うことが可能である。 Specifically, as shown in FIG. 3A, a 3D measuring device 4 such as a 3D scanner or a stereo camera is installed in front of the face to measure the 3D shape of the face S, and FIG. 3 As shown in (B), the three-dimensional measuring device 4 is installed at a position near the top of the mine, and the range including the planned scattering range of the slip (the range where the slip is expected to be scattered by rupture) is three-dimensional. It is possible to measure the shape.

前記三次元形状計測は、前記三次元スキャナやステレオカメラなどの三次元計測機器4以外に、デジタルカメラ、ビデオカメラなどの二次元撮影機器を用いて行うことも可能である。ここで、切羽形状の三次元形状計測を行うのは発破後の切羽の三次元形状計測との対比(画像の減算処理)によって切羽の掘削形状を数量的に把握するためであり、ズリの飛散予定範囲を三次元形状計測するのは、発破後に同じ範囲を三次元形状計測したデータとの対比(画像の減算処理)によって発破によるズリの飛散・堆積状態を数量的に把握するためである。 The three-dimensional shape measurement can be performed by using a two-dimensional photographing device such as a digital camera or a video camera in addition to the three-dimensional measuring device 4 such as the three-dimensional scanner or the stereo camera. Here, the three-dimensional shape measurement of the face shape is performed in order to quantitatively grasp the excavation shape of the face by comparison with the three-dimensional shape measurement of the face after blasting (image subtraction processing), and the scatter of slips. The reason why the planned range is measured in 3D shape is to quantitatively grasp the scattering / accumulation state of the slip due to blasting by comparing with the data obtained by measuring the same range in 3D shape after blasting (image subtraction processing).

近年は、デジタルカメラやビデオカメラなどの二次元撮影機器であっても、複数の地点で撮影した画像データ(二次元画像)に対してソフト的加工処理を行うことによって容易に三次元化することができるようになっている。同時に座標データを持たせることによってズリの飛散・堆積状態や切羽の掘削形状を数量的に把握することが可能となる。座標データの付与は、座標が既知とされる2点の基準点を撮影画像内に入れた状態で撮影したり、撮影機器の設置点の座標を既知とすることによって付与することが可能である。 In recent years, even two-dimensional photography equipment such as digital cameras and video cameras can be easily made three-dimensional by performing soft processing on image data (two-dimensional images) taken at multiple points. Can be done. At the same time, by having the coordinate data, it is possible to quantitatively grasp the scattering / accumulation state of the slip and the excavation shape of the face. Coordinate data can be assigned by shooting with two reference points whose coordinates are known in the captured image, or by making the coordinates of the installation point of the photographing device known. ..

前記三次元スキャナー(レーザレーダ装置)は、対象物が内側に含まれるように水平レンジ角及び垂直レンジ角を設定するとともに、これによって特定された矩形範囲内に任意数の実測点を均等に配置し、三次元スキャナーから各実測点までの距離を計測することによって距離データ及び角度データから対象物の三次元データ(三次元点群データ)を取得するものであり、取得した三次元点群データから形状を特定する各種の処理を行い、三次元モデルが生成される。 The three-dimensional scanner (laser radar device) sets the horizontal range angle and the vertical range angle so that the object is included inside, and evenly arranges an arbitrary number of actual measurement points within the rectangular range specified by the horizontal range angle and the vertical range angle. Then, by measuring the distance from the 3D scanner to each measured point, the 3D data (3D point cloud data) of the object is acquired from the distance data and the angle data, and the acquired 3D point cloud data. A three-dimensional model is generated by performing various processes to specify the shape from.

前記ステレオカメラは、光軸が平行乃至その交角が既知である複数台のCCDカメラ等の撮像装置を配置し、三角測量の原理により対象点の座標を特定するものである。これらは、三次元空間における形状特定或いは座標特定のための計測機器として使用されている。 In the stereo camera, image pickup devices such as a plurality of CCD cameras whose optical axes are parallel or whose crossing angles are known are arranged, and the coordinates of the target point are specified by the principle of triangulation. These are used as measuring instruments for shape specification or coordinate specification in a three-dimensional space.

前記二次元撮影機器や三次元計測機器4は、天井面から吊持された設置台に対してセットしても良いし、坑内の床面に対して三脚によって設置するようにしてもよいし、手に持って撮影するようにしてもよい。前記二次元撮影機器や三次元計測機器4によって計測されたデータはパソコン5に入力されるようになっている。 The two-dimensional photographing device or the three-dimensional measuring device 4 may be set on an installation table suspended from the ceiling surface, or may be installed on the floor surface in the mine by a tripod. You may hold it in your hand and shoot. The data measured by the two-dimensional photographing device and the three-dimensional measuring device 4 are input to the personal computer 5.

<第2ステップ>
前記三次元形状計測を終えたならば発破を行う。そして、発破完了後に、飛散したズリの堆積状態について三次元形状計測を行う。
<Second step>
When the three-dimensional shape measurement is completed, blasting is performed. Then, after the completion of blasting, a three-dimensional shape measurement is performed on the accumulated state of the scattered debris.

具体的には、図4(A)に示されるように、坑内の天端寄り位置に三次元計測機器4を設置して飛散したズリの堆積状態について三次元形状計測を行い、その後に、ホイールローダ3やダンプトラックによってズリ搬出を行った後、図4(B)に示されるように、切羽の手前に三次元計測機器4を設置して切羽Sの三次元形状計測を行う。 Specifically, as shown in FIG. 4 (A), a three-dimensional measuring device 4 is installed near the top of the mine to measure the accumulated state of scattered dust, and then the wheel. After carrying out the slip by the loader 3 or the dump truck, as shown in FIG. 4B, the three-dimensional measuring device 4 is installed in front of the face to measure the three-dimensional shape of the face S.

<第3ステップ>
第3ステップでは、ズリの飛散・堆積状態や切羽の掘削形状に基づいて設定した発破状況の指標値と、発破熟練工の判断に基づく発破の良否との関係を定量化したデータで蓄積する。
<Third step>
In the third step, the relationship between the index value of the blasting condition set based on the scattering / accumulation state of the shavings and the excavation shape of the face and the quality of the blasting based on the judgment of the blasting expert is accumulated.

具体的には、先ず前記第1ステップと第2ステップとで計測した三次元形状計測データからズリの飛散・堆積状態や切羽の掘削形状を得たならば、これらのデータに基づいて発破状況の指標値を設定する。すなわち、発破前に行ったズリの飛散予定範囲の三次元形状計測データと、発破後に行った飛散したズリの堆積状態についての三次元形状計測データとについて画像減算処理を行うことによって、飛散したズリの堆積状態のみについて三次元形状データを得るようにする。また、切羽についても同様に、発破前に行った切羽の三次元形状計測データと、発破後に行った切羽の三次元形状計測データとについて画像減算処理を行うことによって、切羽の掘削形状についての三次元形状データを得るようにする。 Specifically, if the scattering / deposition state of the slip and the excavation shape of the face are obtained from the three-dimensional shape measurement data measured in the first step and the second step, the blasting status is determined based on these data. Set the index value. That is, by performing image subtraction processing on the three-dimensional shape measurement data of the planned scattering range of the shavings performed before blasting and the three-dimensional shape measurement data of the accumulated state of the scattered shavings performed after blasting, the scattered shavings. 3D shape data is obtained only for the deposition state of. Similarly, for the face, by performing image subtraction processing on the three-dimensional shape measurement data of the face performed before blasting and the three-dimensional shape measurement data of the face performed after blasting, the tertiary shape of the face excavation is performed. Get the original shape data.

そして、ズリの飛散・堆積状態や切羽の掘削形状を得たならば、これらに基づいて発破状況の指標値を任意に設定する。 Then, once the scattered / accumulated state of the shavings and the excavated shape of the face are obtained, the index value of the blasting situation is arbitrarily set based on these.

前記発破状況の指標値としては、種々の要素が考えられるが、図5及び下表1にその一例を示す。発破前後の三次元形状計測データから得られた計測値やこれらの計測値を四則演算した演算値などを指標値とする。 Various factors can be considered as the index value of the blasting situation, and an example thereof is shown in FIG. 5 and Table 1 below. The index values are the measured values obtained from the three-dimensional shape measurement data before and after blasting and the calculated values obtained by performing four arithmetic operations on these measured values.

Figure 0007049902000001
Figure 0007049902000001

一方で、今回の発破掘削に関して発破熟練工の判断に基づく発破の良否との関係を定量化したデータで蓄積する。発破熟練工の判断に基づく発破の良否は、発破後に発破熟練工に対して聞き取りやアンケートなどを行い、例えば下表2に示すように良否判定を行う。 On the other hand, we will accumulate data that quantifies the relationship between the quality of blasting and the quality of blasting based on the judgment of skilled blasting workers regarding this blasting excavation. The quality of blasting based on the judgment of the blasting skilled worker is determined by interviewing the blasting skilled worker and conducting a questionnaire after the blasting, for example, as shown in Table 2 below.

Figure 0007049902000002
Figure 0007049902000002

<第4ステップ>
第4ステップでは、前述の蓄積したデータを基に、統計処理的手法及び/又は人工知能による学習により分析し、一定量のデータが得られた段階からは、前記発破状況の指標値に基づいて発破の良否判定を行うとともに、必要に応じて発破条件の修正を行うようにする(次発破の修正要領については表1右欄参照)。
<4th step>
In the fourth step, based on the above-mentioned accumulated data, analysis is performed by learning by a statistical processing method and / or artificial intelligence, and from the stage when a certain amount of data is obtained, based on the index value of the blasting situation. The quality of the blasting is judged, and the blasting conditions are corrected as necessary (see the right column of Table 1 for the procedure for correcting the next blasting).

前述のようにして、発破状況の指標値と、今回の発破掘削に関して発破熟練工の判断に基づく発破の良否との関係を定量化したデータの蓄積数は判定精度を高めるためには50個以上、好ましくは100個以上とするのが良い。 As mentioned above, the number of accumulated data that quantifies the relationship between the index value of blasting status and the quality of blasting based on the judgment of blasting skilled workers regarding this blasting excavation is 50 or more in order to improve the judgment accuracy. The number is preferably 100 or more.

両者の関係については、統計処理的手法や人工知能による手法により分析することができる。 The relationship between the two can be analyzed by statistical processing methods or artificial intelligence methods.

前者の統計処理的手法は、前記指標値が説明変数となり、発破熟練工の判断に基づく発破の良否判定が目的変数となり、両者のデータを座標上にプロットし、単回帰分析や重回帰分析を行い、相関式を導き出すとともに、その相関係数を求める。その相関性が高いと思われる指標値については採用することとし、相関性が低いと認められる指標値については不採用とする。さらに相関性の高い指標値を見付けるために、逐次指標値の見直しや試行を行うことも必要となる。 In the former statistical processing method, the index value serves as an explanatory variable, and the pass / fail judgment of blasting based on the judgment of a blasting expert becomes the objective variable. Both data are plotted on the coordinates, and simple regression analysis or multiple regression analysis is performed. , Derivation of the correlation equation and the correlation coefficient. Index values that are considered to have a high correlation will be adopted, and index values that are considered to have a low correlation will not be adopted. In order to find index values with higher correlation, it is also necessary to review and try sequential index values.

後者の人工知能による手法の場合は、人間の脳を模したニューラルネットワークによる方法によって行われる。このニューラルネットワークは、人間の脳の神経回路(ニューロン)の働きとその結合をモデル化したもので、多数のユニットが結合し合ったネットワークによって形成されているものである。その特徴としては、従来のコンピューターが逐次直列型の情報処理を行い論理的な推論をしているのに対しニューラルネットワークでは並列分散型の情報処理より直感的な推論を行っている点と、教師データを与えることにより正しい答えが出るように学習していくこと、すなわち学習による自己組織化を行っている点等を挙げることができる。 In the latter case, the artificial intelligence method is performed by a neural network method that imitates the human brain. This neural network models the functions of neural circuits (neurons) in the human brain and their connections, and is formed by a network in which a large number of units are connected. The feature is that while conventional computers perform sequential series information processing and logical inference, neural networks perform more intuitive inference than parallel distributed information processing, and teachers. It can be mentioned that learning is performed so that the correct answer can be obtained by giving data, that is, self-organization by learning is performed.

具体的には、図6に示されるように、ニューラルネットワークにおいて、入力層における入力因子としてL:ズリ飛石距離(m)、H:ズリ飛石高さ(m)、h:ズリ飛石高低差(m)、T:周方向余掘り厚(m)、D:トンネル軸方向余掘長(m)、V:ズリ量(ふけ体積)(m3)、α=H/L(ズリ扁平率)、β=T*D*100(余掘係数)の8項目とし、出力層として発破良否判定の優良普劣悪の5段階評価(1:優、2:良、3:普、4:劣、5:悪)とする。 Specifically, as shown in FIG. 6, in the neural network, as input factors in the input layer, L: stepping stone distance (m), H: stepping stone height (m), h: stepping stone height difference (m). ), T: Circumferential extra-digging thickness (m), D: Tunnel axial extra-drilling length (m), V: Slip amount (blurring volume) (m3), α = H / L (slip flatness), β = There are 8 items of T * D * 100 (excessive excavation coefficient), and the output layer is evaluated on a 5-point scale of excellent and inferior judgment (1: excellent, 2: good, 3: ordinary, 4: inferior, 5: bad). And.

各ニューロン素子(図6の○印を指す。以下、ユニットともいう。)を繋ぐシナプス(ニューロン素子同士を繋ぐ線であり神経伝達網に相当する。)は、シナプス毎に独自の重み係数(結合の重み)を有し、図7に示されるように、中間層の各ニューロン素子では入力層での入力値yに結合の重みωjiを掛けたものの総和から自己が保有する閾値θを減算し、これをある応答関数f、たとえば出力を0または1とする階段関数または0~1の間で出力値を連続的に変化させたシグモイド関数によって自己の出力値Zjiが計算される。中間層は本例のように入力層を8個とした場合には、たとえば9~16個のニューロン数とされる。一般的に中間層のニューロン数は一義的に決定することはできないが、ニューロン数が少ない場合には後述の学習が終了しなかったり、多過ぎる場合には学習回数を多く必要とし出力が不安定になるなどの問題が生ずることになる。 Synapses connecting each neuron element (pointing to a circle in FIG. 6, hereinafter also referred to as a unit) (a line connecting neuron elements and corresponding to a neurotransmission network) have a unique weight coefficient (coupling) for each synapse. As shown in FIG. 7, in each neuron element in the intermediate layer, the threshold θ i possessed by itself is calculated from the sum of the input value y i in the input layer multiplied by the coupling weight ω ji . Its own output value Z ji is calculated by subtracting it and using a response function f, for example, a staircase function having an output of 0 or 1, or a sigmoid function in which the output value is continuously changed between 0 and 1. When the number of input layers is 8 as in this example, the number of neurons in the middle layer is, for example, 9 to 16. Generally, the number of neurons in the middle layer cannot be uniquely determined, but if the number of neurons is small, the learning described later will not be completed, or if it is too large, the number of learnings will be large and the output will be unstable. Problems such as becoming will occur.

学習方法は、バックプロパゲーション法(誤差逆伝播法)によって行う。このバックプロパゲーション法は、入力層に入力信号を与え、この信号が中間層を経て出力層から出力信号として出てくると、この出力信号と教師信号とを比較し、この差が小さくなるように出力層の各素子の学習信号を求め、この学習信号に基づいて出力層に入るシナプス荷重を修正するものであり、これをいろいろな入力信号と対応する出力信号のセットに対して繰り返し行うと出力信号が教師信号に近くなって行き学習したことになるというものである。学習は、過剰学習を防止して汎用性を持たせるために、未学習データの平均二乗誤差が増加傾向に転じる前に学習を終わらせるようにする。 The learning method is performed by the backpropagation method (error back propagation method). In this backpropagation method, an input signal is given to the input layer, and when this signal comes out as an output signal from the output layer via the intermediate layer, this output signal is compared with the teacher signal so that this difference becomes small. The learning signal of each element of the output layer is obtained, and the synaptic load entering the output layer is corrected based on this learning signal. When this is repeated for various input signals and the corresponding set of output signals. It means that the output signal becomes closer to the teacher signal and is learned. In order to prevent overlearning and to have versatility, the learning is to finish the learning before the mean square error of the unlearned data starts to increase.

学習初期においては、前記発破熟練工の判断に基づく発破の良否判定を教師データとして与えることにより正しい答えが出るように学習させていき、一定量のデータが入力された段階からは、前記発破状況の指標値を入力項目として発破の良否判定を行うようにする。そして、出力が1~3の優~普である場合は、現状の発破条件を継続し、出力が4の劣である場合は現状の発破条件を一部改善し、出力が5の悪である場合は現状の発破条件を大幅に改善するというように必要に応じて発破条件の修正を行うようにする。 In the initial stage of learning, learning is performed so that a correct answer can be obtained by giving a blasting quality judgment based on the judgment of the blasting expert as teacher data, and from the stage when a certain amount of data is input, the blasting situation is changed. The quality of blasting is judged by using the index value as an input item. Then, when the output is excellent to normal of 1 to 3, the current blasting conditions are continued, and when the output is inferior to 4, the current blasting conditions are partially improved, and the output is 5 bad. In that case, the blasting conditions should be modified as necessary, such as significantly improving the current blasting conditions.

なお、この人工知能による場合も、出力に精度が得られないような場合には、逐次指標値の見直しや試行を行ったり、中間層を増やしたり(深層学習)、無関係な結合を捨て去る(畳み込み)を行うなどによって精度の向上を図ることが重要となる。 Even with this artificial intelligence, if the output cannot be accurate, the index values will be reviewed and tried sequentially, the number of intermediate layers will be increased (deep learning), and irrelevant connections will be discarded (convolution). It is important to improve the accuracy by performing).

〔他の形態例〕
(1)上記形態例では、デジタルカメラ、デジタルビデオカメラなどの二次元撮影機器や三次元スキャナやステレオカメラなどの三次元計測機器4によって三次元形状計測を行うようにしたが、図8に示されるように、小型無人航空機(ドローン)に、デジタルカメラ、デジタルビデオカメラなどの二次元撮影機器や三次元スキャナ又はステレオカメラなどの三次元計測機器4を搭載して三次元形状計測を行うようにしてもよい。
[Examples of other forms]
(1) In the above embodiment, the three-dimensional shape measurement is performed by a two-dimensional photographing device such as a digital camera or a digital video camera, or a three-dimensional measuring device 4 such as a three-dimensional scanner or a stereo camera. A small unmanned aircraft (drone) is equipped with a two-dimensional photographing device such as a digital camera or a digital video camera, and a three-dimensional measuring device 4 such as a three-dimensional scanner or a stereo camera to perform three-dimensional shape measurement. You may.

トンネル坑内での飛行は非GPS環境下となるが、近年はドローン技術の進歩により、非GPS環境下で安定的な飛行が可能となっている。この技術は、IMUセンサ(加速度センサ、ジャイロセンサを含む慣性計測装置)と超広角ステレオカメラとの融合によりGPSに頼らないで安定した飛行を可能とするものであり、現在、橋梁橋桁の点検調査、工場内の点検、下水管などの地下管路の点検などに利用されている。 Flight inside a tunnel is in a non-GPS environment, but in recent years, advances in drone technology have made it possible to fly stably in a non-GPS environment. This technology enables stable flight without relying on GPS by fusing an IMU sensor (inertial measurement unit including an acceleration sensor and a gyro sensor) with an ultra-wide-angle stereo camera. , Used for inspections in factories, inspections of underground pipelines such as sewage pipes, etc.

本発明の発破最適化手法にも応用が可能である。ただし、この場合は飛行をしながらの映像取得となるため、第1ステップと第2ステップとの映像を適合させるために、トンネル坑内であってカメラ視野内に2つの基準点を設置しておき、これらの基準点を第1ステップの映像と、第2ステップの映像とで整合させることにより画像合わせを行うようにするのがよい。 It can also be applied to the blasting optimization method of the present invention. However, in this case, since the image is acquired while flying, two reference points are set in the tunnel mine and in the camera field of view in order to match the images of the first step and the second step. It is preferable to match these reference points with the video of the first step and the video of the second step to perform image matching.

小型無人航空機(ドローン)としては、図8に示されるように、マルチロータ型ヘリコプターを好適に用いることができる。これは機体中央の本体部7aからほぼ水平方向に3本以上、図示例では4本の放射状に延びるアーム7b、7b…の先端にそれぞれ、モータ7c及びロータ7dが備えられた構造のものである。 As a small unmanned aerial vehicle (drone), as shown in FIG. 8, a multi-rotor helicopter can be preferably used. This is a structure in which a motor 7c and a rotor 7d are provided at the tips of three or more radially extending arms 7b, 7b ... In the illustrated example, which are substantially horizontal from the main body 7a in the center of the machine body. ..

1…ドリルジャンボ、2…吹付け機、3…ホイールローダ、4…三次元計測機器、5…パソコン、6…ズリ、7…小型無人航空機(ドローン) 1 ... drill jumbo, 2 ... sprayer, 3 ... wheel loader, 4 ... 3D measuring device, 5 ... personal computer, 6 ... slip, 7 ... small unmanned aerial vehicle (drone)

Claims (3)

発破条件の適切性判断を発破前後の三次元形状計測によって行うようにした山岳トンネルにおける発破最適化方法であって、
発破前に、切羽及びズリの飛散予定範囲について三次元形状計測を行う第1ステップと、
発破後に、飛散したズリの堆積状態について三次元形状計測を行うとともに、ズリ出し後に切羽の掘削形状について三次元形状計測を行う第2ステップと、
ズリの飛散・堆積状態や切羽の掘削形状に基づいて設定した発破状況の指標値と、発破熟練工の判断に基づく発破の良否との関係を定量化したデータで蓄積する第3ステップと、
蓄積したデータを基に、統計処理的手法及び/又は人工知能による手法により分析し、一定量のデータが得られた段階からは、前記発破状況の指標値に基づいて発破の良否判定を行うとともに、必要に応じて発破条件の修正を行う第4ステップとからなることを特徴とする山岳トンネルにおける発破最適化方法。
It is a blasting optimization method in a mountain tunnel where the appropriateness of blasting conditions is judged by three-dimensional shape measurement before and after blasting.
Before blasting, the first step of measuring the three-dimensional shape of the planned scattering range of the face and the slag,
After the blasting, the second step of measuring the three-dimensional shape of the accumulated state of the scattered debris and measuring the excavated shape of the face after the debris is removed.
The third step to accumulate data that quantifies the relationship between the index value of the blasting situation set based on the scattering / accumulation state of the shavings and the excavation shape of the face and the quality of the blasting based on the judgment of the blasting expert.
Based on the accumulated data, it is analyzed by a statistical processing method and / or a method by artificial intelligence, and from the stage when a certain amount of data is obtained, the quality of blasting is judged based on the index value of the blasting situation. A method for optimizing blasting in a mountain tunnel, which comprises the fourth step of modifying the blasting conditions as necessary.
前記三次元形状計測は、デジタルカメラ、ビデオカメラ、三次元スキャナ又はステレオカメラによって行う請求項1記載の山岳トンネルにおける発破最適化方法。 The method for optimizing bursting in a mountain tunnel according to claim 1, wherein the three-dimensional shape measurement is performed by a digital camera, a video camera, a three-dimensional scanner, or a stereo camera. 前記三次元形状計測は、デジタルカメラ、ビデオカメラ、三次元スキャナ又はステレオカメラを搭載した小型無人航空機によって行う請求項1記載の山岳トンネルにおける発破最適化方法。 The method for optimizing rupture in a mountain tunnel according to claim 1, wherein the three-dimensional shape measurement is performed by a small unmanned aircraft equipped with a digital camera, a video camera, a three-dimensional scanner, or a stereo camera.
JP2018086425A 2018-04-27 2018-04-27 Blasting optimization method in mountain tunnels Active JP7049902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018086425A JP7049902B2 (en) 2018-04-27 2018-04-27 Blasting optimization method in mountain tunnels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018086425A JP7049902B2 (en) 2018-04-27 2018-04-27 Blasting optimization method in mountain tunnels

Publications (2)

Publication Number Publication Date
JP2019190189A JP2019190189A (en) 2019-10-31
JP7049902B2 true JP7049902B2 (en) 2022-04-07

Family

ID=68388854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018086425A Active JP7049902B2 (en) 2018-04-27 2018-04-27 Blasting optimization method in mountain tunnels

Country Status (1)

Country Link
JP (1) JP7049902B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328144B2 (en) * 2019-12-27 2023-08-16 五洋建設株式会社 Face property estimation device and estimation method
CN112649086A (en) * 2020-11-10 2021-04-13 安徽理工大学 Improved jointed rock mass blasting model test vibration monitoring system and method
CN113062747A (en) * 2021-03-19 2021-07-02 重庆交通大学 Multifunctional construction trolley and water pressure blasting method for soft-hard alternating complex layered rock tunnel
CN113357987B (en) * 2021-04-15 2023-05-09 陕西峒启晋恺昕智能科技有限公司 Automatic blasting design method
KR102494403B1 (en) * 2021-09-13 2023-01-31 이원섭 Apparatus and system for blasting operation management
CN116658163B (en) * 2023-07-03 2023-10-20 中国矿业大学(北京) Method for regulating and controlling caving gangue blocking degree of hard roof of goaf without coal pillar self-forming roadway

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345793A (en) 1999-06-07 2000-12-12 Okumura Corp Rock-bed judging system
JP2006249883A (en) 2005-03-14 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Excavator, excavation system and excavation method
US20160084071A1 (en) 2013-05-08 2016-03-24 Sandvik Mining And Construction Oy Arrangement for assigning and drilling bore holes
JP2017087917A (en) 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
JP2017190642A (en) 2016-04-15 2017-10-19 鹿島建設株式会社 Tunnel excavation method and blasting hole designing system
JP2018017570A (en) 2016-07-27 2018-02-01 日本システムウエア株式会社 Rock mass strength determination device, rock mass strength determination method, and rock mass strength determination program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2840002B2 (en) * 1993-02-26 1998-12-24 佐藤工業株式会社 Expert system for control blasting
JP3168181B2 (en) * 1997-09-03 2001-05-21 鹿島建設株式会社 Optimal blast design system
JP3720972B2 (en) * 1998-01-22 2005-11-30 株式会社小松製作所 Terrain shape measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345793A (en) 1999-06-07 2000-12-12 Okumura Corp Rock-bed judging system
JP2006249883A (en) 2005-03-14 2006-09-21 Mitsui Eng & Shipbuild Co Ltd Excavator, excavation system and excavation method
US20160084071A1 (en) 2013-05-08 2016-03-24 Sandvik Mining And Construction Oy Arrangement for assigning and drilling bore holes
JP2017087917A (en) 2015-11-09 2017-05-25 株式会社日立製作所 Flight vehicle for pipeline facility inspection and pipeline facility inspection system using the same
JP2017190642A (en) 2016-04-15 2017-10-19 鹿島建設株式会社 Tunnel excavation method and blasting hole designing system
JP2018017570A (en) 2016-07-27 2018-02-01 日本システムウエア株式会社 Rock mass strength determination device, rock mass strength determination method, and rock mass strength determination program

Also Published As

Publication number Publication date
JP2019190189A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP7049902B2 (en) Blasting optimization method in mountain tunnels
KR100860797B1 (en) Method for three dimensionally implementing mine tunnel
Chun et al. Utilization of unmanned aerial vehicle, artificial intelligence, and remote measurement technology for bridge inspections
JP7431840B2 (en) Automatic blasting design planning system and related methods
CN110065077B (en) Environment detection method and system for archaeology
McKinnon et al. Automatic identification of large fragments in a pile of broken rock using a time-of-flight camera
CN116012336B (en) Tunnel intelligent geological sketch and surrounding rock grade identification device and method
Ho et al. A near-to-far non-parametric learning approach for estimating traversability in deformable terrain
CN115600368A (en) Deep hole blasting optimization method, device and equipment and readable storage medium
Djimantoro et al. The advantage by using low-altitude UAV for sustainable urban development control
Sudarshan et al. A heterogeneous robotics team for large-scale seismic sensing
KR102636445B1 (en) Blasting design system reflecting the situation of the blasting site and operation mathod of the same
Fu et al. [Retracted] UAV Mission Path Planning Based on Reinforcement Learning in Dynamic Environment
CN112364406A (en) Intelligent design and three-dimensional visualization method for tunnel excavation blasting parameters
Medinac et al. Pre-and post-blast rock block size analysis using uav-lidar based data and discrete fracture network
Green Underground mining robot: A CSIR project
Chmelina et al. Drone based deformation monitoring at the Zentrum am Berg tunnel project, Austria. Results and findings 2017–2019
Spathis Innovations in blast measurement: Reinventing the past
Milanović et al. Application of softwares for drilling and blasting
Enomoto et al. Multiple path finding system for replacement tasks
Nan et al. Research on the use drones for monitoring and resources valorification in the extractive industry
Nevatia et al. Improved traversal for planetary rovers through forward acquisition of terrain trafficability
Bolandhemmat et al. A solution to the state estimation problem of systems with unknown inputs
CN114677485B (en) Damaged mountain modeling, stability and design integrated analysis method based on remote sensing and GIS
CN117973044B (en) Tunnel intelligent blasting design method and laser positioning equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7049902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150