JP2017223341A - 電磁クラッチの制御装置 - Google Patents

電磁クラッチの制御装置 Download PDF

Info

Publication number
JP2017223341A
JP2017223341A JP2016121072A JP2016121072A JP2017223341A JP 2017223341 A JP2017223341 A JP 2017223341A JP 2016121072 A JP2016121072 A JP 2016121072A JP 2016121072 A JP2016121072 A JP 2016121072A JP 2017223341 A JP2017223341 A JP 2017223341A
Authority
JP
Japan
Prior art keywords
electromagnetic clutch
speed difference
rotational speed
control
idle stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016121072A
Other languages
English (en)
Inventor
友晴 渡邉
Tomoharu Watanabe
友晴 渡邉
吉田 浩二
Koji Yoshida
浩二 吉田
建志 鹿内
Kenji Shikauchi
建志 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2016121072A priority Critical patent/JP2017223341A/ja
Publication of JP2017223341A publication Critical patent/JP2017223341A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

【課題】電磁クラッチにおいて、鉄粉等のコンタミを効率よく排出し、コンタミがクラッチフェーシング間に挟み込まれることによるクラッチの性能、耐久性の低下を抑制する。
【解決手段】エンジン2のアイドルストップ作動時において所定の条件が成立したとき、電磁クラッチ14を解放状態にするとともに、電磁クラッチ14に連結された電動モータ22を作動させて電磁クラッチ14の2つの回転要素16,18間の回転速度差を所定値以上とする回転速度差発生制御手段26を備えた。
【選択図】図1

Description

本発明は、電磁石の励消により動力伝達の断続を行う電磁クラッチに関するものである。
言うまでもなく電磁クラッチでは磁力を用いるため、各部の磨耗等により生じた鉄粉等の夾雑物(Contamination、以下コンタミと称する。)が装置内に溜まり易く、電磁クラッチの係合時にクラッチフェーシング間にコンタミが挟み込まれると、クラッチの係合力が充分に得られず、さらにクラッチフェーシング等の接触部が損傷し、クラッチの性能や寿命等の所謂耐久性を低下させる虞がある。
特許文献1には、湿式多板電磁クラッチの外輪(3)に油の排出孔(25)を設け、外輪(3)がフリー回転しているときに、遠心力によって生じる油の流れを利用してコンタミを排出することが開示されている(括弧付きの符号は文献内で使用されているものである)。
特開2007−051670号公報
特許文献1に開示された技術では、外輪(3)がフリー回転しているときしか油が排出されず、また遠心力で生じる流動を利用しているだけなので、コンタミを充分に排出できず、耐久性低下が予防できない虞がある。
本発明は、上記のような課題を解決するために創案されたもので、電磁クラッチにおいて、コンタミを効率よく排出してクラッチフェーシング間への挟み込みを防止し、電磁クラッチの耐久性を向上させることを目的とする。
(1)上記の目的を達成するため、本発明の電磁クラッチの制御装置は、2つの回転要素の一方が車両を駆動する駆動源であるエンジンに連結され、他方が電動モータに連結されると共に、少なくともクラッチフェーシング間に潤滑油が流通するように構成された電磁クラッチにおいて、前記エンジンのアイドルストップ作動時において所定の条件が成立したとき、前記電磁クラッチを解放状態にするとともに、前記電動モータを作動させて前記2つの回転要素間の回転速度差を所定値以上とする回転速度差発生制御を実施する回転速度差発生制御手段を備えたことを特徴としている。
(2)前記回転速度差発生制御手段は、前記アイドルストップの作動開始時に、前記回転速度差発生制御を実施することが好ましい。
(3)前記回転速度差発生制御手段は、前記アイドルストップの作動終了時に、前記回転速度差発生制御を実施することも好ましい。
(4)前記所定の条件に、前記潤滑油の温度が所定範囲であることが含まれていることが好ましい。
(5)前記所定の条件に、前記エンジンのスタータスイッチによる始動後における前記電磁クラッチの初回の前記アイドルストップであることが含まれていることが好ましい。
(6)前記所定の条件に、前記回転速度差発生制御の実施から所定期間が経過したことが含まれていることが好ましい。
(7)前記所定の条件に、前記2つの回転要素間に前記所定値以上の回転速度差が生じた時点から所定期間が経過したことが含まれていることが好ましい。
(8)前記所定値は、前記潤滑油の粘度に関するパラメータに基づき同粘度が高くなる程大きくなるように設定されていることが好ましい。
(9)前記パラメータが前記潤滑油の温度であり、前記所定値は前記温度が低くなる程大きくなるように設定されていることであることが好ましい。
(10)また、前記所定値以上の回転速度差を保持する保持時間が、前記潤滑油の粘度に関するパラメータに基づき同粘度が高くなる程長くなるように設定されていることが好ましい。
(11)前記パラメータが前記潤滑油の温度であり、前記保持時間は前記温度が低くなる程長くなるように設定されていることであることが好ましい。
(12)さらに、前記電磁クラッチは、電磁石と永久磁石とを備え、前記電磁石が消磁されているときに前記永久磁石の磁力によって前記クラッチフェーシングが接合されて係合状態となる消磁作動型電磁クラッチであることが好ましい。
(13)また、前記電磁クラッチと前記電動モータとの間に、前記電動モータと常時連結されるオイルポンプを配設したことが好ましい。
(14)さらにまた、前記電磁クラッチが、前記駆動源に連結された車両用変速機のオイルパンに貯留された潤滑油中に配設されていることが好ましい。
本発明によれば、エンジンのアイドルストップ作動時において所定の条件が成立したときには、電動モータを作動させて電磁クラッチの2つの回転要素間(即ち、2つのクラッチフェーシング間)に積極的に回転速度差を生じさせることにより、潤滑油の流通を促進することができるので、コンタミの排出が効果的に実行され、アイドルストップ解除時であるクラッチ係合時にコンタミがクラッチフェーシング間に挟み込まれて生じる不具合を防止でき、車両の発進性の低下を抑制できる。上記のような回転速度差を生じさせると、2つの回転要素の近辺に存在する潤滑油の粘性による慣性に、回転速度の異なる回転要素間で差が生じるため、潤滑油がクラッチフェーシング間に流入し易くなり、その結果流通量が増加してコンタミの排出が効率的に行える。
また、回転速度差発生制御を実施する所定の条件として、潤滑油の温度が所定の範囲内であることとしたので、潤滑油の粘度が適当なものとなり、コンタミを運搬可能な粘度と流動性とを確保して、コンタミの排出がより促進される。
さらに、回転速度差発生制御を実施する所定の条件として、車両のエンジンのスタータスイッチによる始動後における初回のアイドルストップであること、回転速度差発生制御実施時点からのまたは同制御を実施したのと略同等の回転速度差が発生した時点から所定期間が経過したことを設定することにより、回転速度差発生制御の実施時期が適切となり、効率よくコンタミの排出が実行される。
また、回転速度差の値とその保持時間を、潤滑油の粘度に関するパラメータ、即ち、温度に応じて設定するように構成したので、電動モータ作動で消費する電力を極力低減した上で、コンタミの排出をより効率的に行うことができる。
本発明の一実施形態に係る車両の駆動機構を模式的に示す構成図である。 本発明の一実施形態に適用される電磁クラッチの断面図である。 本発明の一実施形態に係る制御手段の第1例(第1回転速度差発生制御を実施するもの)を説明するフローチャートである。 本発明の一実施形態に係る制御手段の第2例(第2回転速度差発生制御を実施するもの)を説明するフローチャートである。 上記制御手段による制御において設定される目標回転速度差と油温との関係を示すグラフである。 上記制御手段による制御において設定される目標回転速度差を保持する時間と油温との関係を示すグラフである。 上記制御手段による制御を実行する際のモータ及びエンジンの状態、並びに各種フラグの変化を示すタイムチャートである。 上記制御手段による制御を実行した際の、電磁クラッチの入力要素及び出力要素の回転速度の変化を示すタイムチャートであり、(a)は第1回転速度差発生制御に関し、(b)は第2回転速度差発生制御に関する。
以下、図面を参照して、本発明の実施の形態について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することや適宜組み合わせることが可能である。
図1は本実施形態にかかる車両の駆動機構の主な構成要素の関係を模式的に示す構成図である。図1に示すように、車両を走行させるためのエンジン(駆動源)2には、トルクコンバータ4と、このトルクコンバータ4に連結され、速度比を変更する遊星歯車またはベルト−プーリ式バリエータ等からなる変速機構5とを備えた従来周知のステップAT、CVT等の自動変速機6が連結されており、さらにこの自動変速機6の出力部が差動機構8を介して左右の駆動輪10に連結されている。
また、エンジン2にはチェーン12を介して、電磁クラッチ14の入力要素16(一方の回転要素)が連結されている。さらに、この電磁クラッチ14の出力要素18(他方の回転要素)は、自動変速機6を作動させるライン圧を供給するためのオイルポンプ20に連結され、オイルポンプ20には電動モータ22が連結されている。従って、オイルポンプ20は、電磁クラッチ14が係合されているときはエンジン2によって駆動され、電磁クラッチ14が解放されているときは電動モータ22によって駆動される構成となる。
なお、電磁クラッチ14、オイルポンプ20、電動モータ22は、自動変速機6の図示しないオイルパンに貯留された潤滑油中に浸漬するように配設されている。
エンジン2は、アクセル開度等に基づいて、電子式のエンジンコントローラ23によって作動制御される。エンジンコントローラ23は、車両が停車中で、ブレーキペダルが踏み込まれていて、アクセル開度が0である等の公知のアイドルストップ許可条件が成立したらエンジン2を停止(アイドルストップ)させ、アイドルストップ中に上記許可条件が不成立になったらエンジン2を再始動するアイドルストップ復帰制御を実施するアイドルストップ制御手段25を備えている。
自動変速機6は、エンジン2の負荷や車両の走行速度に基づいて、電子式の自動変速機コントローラ24によって作動制御され、電磁クラッチ14及び電動モータ22は、自動変速機コントローラ24に組み込まれた回転速度差発生制御手段26によって作動制御される。
図2は本実施形態に適用される電磁クラッチ14の構造を示す断面図である。図2に示すように、この電磁クラッチ14は、チェーン12に噛合する入力要素16としてのチェーンスプロケット28と、オイルポンプ20に連結される出力要素18となる出力軸30と、チェーンスプロケット28のボス部32に軸方向へ可動となるようにスプライン結合された磁性材から成る円板状のアーマチュア34と、出力軸30に固定されたロータ36と、このロータ36に埋設された永久磁石38と、ケーシング40に固定された電磁石42とを備えている。
スプロケット28は出力軸30の一端(図中、左端)に軸受44によって相対回転自在に支持されており、出力軸30(図中、右端)は軸受46を介してケーシング40に支持されると共に図1に示したオイルポンプ20に連結されている。
ロータ36は、出力軸30に固定された円筒状のボス部36aと、このボス部36aのアーマチュア34側の端部から径方向外方へ向かって延設された円板部36bと、この円板部36bの外縁から軸方向に沿って延設されたリング部36cとから成り、円板部36bの径方向中間部に円環状の永久磁石38が埋設されている。
また、アーマチュア34と円板部36cとが互いに対向するように配置され、両者の対向する面34f,36fが、それぞれクラッチフェーシングを構成している。
さらに、電磁クラッチ14は、上述の通り潤滑油中に浸漬されているので、潤滑油が軸受44の内外輪間から流入し、クラッチフェーシング34f,36f間を流通するように構成されている。
電磁石42は円環状を成し、ボス部36aの外周面とリング部36cの内周面とに対して僅かな間隙を存して配置されるようにケーシング40に固定されている。
電磁クラッチ14は、電磁石42が消磁された状態で、アーマチュア34が永久磁石38の磁力によって円板部36bに接合(両クラッチフェーシング34f,36fが接合)されて係合状態となる消磁作動型電磁クラッチである。
また、電磁石42は永久磁石38の磁力を打ち消すような磁束を発生するように構成されており、そのため、電磁石42が励磁されると、クラッチフェーシング34f,36fの接合が離されて、電磁クラッチ14が解放状態となる。
電磁クラッチ14及び電動モータ22は、自動変速機6へ供給されるライン圧がオイルポンプ20によって効率良く発生できるように作動制御され、基本的には、フリクションロスが大きくなるエンジン2の高回転領域(例えば、2000rpm以上)では電磁クラッチ14を解放してオイルポンプ20を電動モータ22で駆動し、エンジン2の低回転領域(例えば、2000rpm未満)では電磁クラッチ14を係合してオイルポンプ20をエンジン2で駆動するように制御される。
さらに、コントローラ24の記憶部には、図3又は図4に示すフローチャートを実行するプログラムが組み込まれている。電磁クラッチ14及び電動モータ22は、制御手段26によって、図3又は図4のフローチャートに示すようにして、電磁クラッチ14の入出力要素16,18間(両クラッチフェーシング34f,36f間)に所定値以上回転速度差を生じさせるよう作動制御(以下、回転速度差発生制御と称する。)される。なお、図3又は図4に示すフローチャートは、本発明に係る制御部分を実行するステップのみを表しており、前段に記載した電磁クラッチ14の基本的な断続制御については省略している。また、電動モータ22の制御については、制御手段26は図示しないモータ制御装置を通じて回転速度差発生制御を実施する。
この回転速度差発生制御は、電磁クラッチ14のクラッチフェーシング34f,36f間の回転速度差が目標回転速度差となるように大きくして、クラッチフェーシング34f,36f間での潤滑油の流通を促進し、クラッチフェーシング34f,36f間に進入したコンタミを効率よく排出してクラッチフェーシング34f,36f間への挟み込みを防止し、電磁クラッチ14の耐久性を向上させる制御である。
電磁クラッチ14を解放状態とした場合、クラッチフェーシング34fの回転速度はエンジン2の回転速度(エンジン回転数Ne)であり、クラッチフェーシング36fの回転速度は電動モータ22の回転速度(モータ回転数Nm)であり、この回転速度差発生制御は、エンジン2の回転速度に対して電動モータ22の回転速度を制御することによって行うことができる。
ただし、この回転速度差発生制御は、本来のオイルポンプ20の制御とは異なる制御であり、回転速度差発生制御が必要なときに制御を実施するようにして、不必要な制御の実施は可能な限り避けたい。そこで、回転速度差発生制御が必要であるか否かを判定し、制御が必要であると判定されたことを制御条件(制御要求条件)とする。
クラッチフェーシング34f,36f間にコンタミが侵入していることを確実に判定することができれば、この判定がなされたことを回転速度差発生制御の制御要求条件とすることができる。しかし、コンタミの侵入を確実に判定することは容易でない。そこで、クラッチフェーシング34f,36f間にコンタミが侵入しているだろう可能性が高まったことを制御要求条件とすることが考えられる。
また、電動モータ22には、上限回転速度があり、エンジン2の回転速度の状態によっては目標回転速度差を発生できない場合がある。そこで、エンジン2の回転速度が回転速度差発生制御を実施可能な状態であることを回転速度差発生制御の制御条件(実施可能条件)とする。
また、回転速度差発生制御は、潤滑油の流通を促進するものであるが、潤滑油の温度状態によっては回転速度差発生制御に適さない場合や、他の制御を優先すべき場合がある。そこで、潤滑油の温度が所定状態であることも回転速度差発生制御の制御条件(実施可能条件)とする。
本制御装置では、上記の観点から、各制御条件をそれぞれ具体的に設定して、これらの制御条件が成立したら、例えば図3又は図4に示す回転速度差発生制御を実施するようにしている。
なお、図3又は図4に示したフローチャートによるプログラムは、エンジン2の作動中に一定の制御周期で繰り返し実行される。
本制御装置では、エンジン2のアイドルストップ作動時において、所定の制御条件が成立したとき、回転速度差発生制御を実施する。これは、アイドルストップによってエンジン1が停止している状況を利用して、電磁クラッチ14のクラッチフェーシング34f,36f間に目標回転速度差を与えるようにするものである。
つまり、電磁クラッチ14のクラッチフェーシング34f,36f間の回転速度差は、エンジン1の回転速度と電動モータ22の回転速度とで規定され、エンジン1が停止している状況或いはエンジン1が停止しようとする状況では、電動モータ22の回転速度を限界最大回転速度付近まで高くしなくても、電磁クラッチ14のクラッチフェーシング34f,36f間の回転速度差を十分に大きくでき、目標回転速度差を確実に達成することができる。そこで、エンジン2のアイドルストップ作動時を利用している。
回転速度差発生制御を開始するアイドルストップ作動時の具体的なタイミングとしては、例えば、アイドルストップの作動開始時、或いは、アイドルストップの作動終了時とすることができる。アイドルストップの作動開始時やアイドルストップの作動終了時に回転速度差発生制御を開始するのは、アイドルストップ開始指令やアイドルストップ復帰指令を回転速度差発生制御の開始トリガーに用いるためである。本発明としては、アイドルストップの作動開始時やアイドルストップの作動終了時に限るものではなく、アイドルストップ作動時であれば回転速度差発生制御を実施しうるものである。
アイドルストップの作動開始時に回転速度差発生制御を開始する場合、アイドルストップ条件が成立したら、所定の制御条件が成立していることを条件に、アイドルストップ開始指令と共に回転速度差発生制御を開始する。
アイドルストップの作動終了時に回転速度差発生制御を開始する場合、アイドルストップ復帰条件が成立したら(アイドルストップ条件が不成立となったら)、所定の制御条件が成立していることを条件に、アイドルストップ復帰指令と共に回転速度差発生制御を開始する。
まず、図3を参照して、アイドルストップの作動開始時に回転速度差発生制御を開始する場合を説明する。
図3に示すように、本制御では、まずステップA10において、フラグF1が0であるか否かが判断される。前回の制御周期で、フラグF1はアイドルストップ条件が成立しアイドルストップが許可されている時に1とされ、アイドルストップ条件が不成立となっている(アイドルストップ復帰条件が成立の場合も含む)時に0とされる。
前回の制御周期で、フラグF1が0とされていれば、ステップA20に進んで、アイドルストップが許可されているか(アイドルストップ条件が成立して、アイドルストップ制御手段25からアイドルストップ開始指令が発せられているか)否かが判断される。アイドルストップが許可されていれば、ステップA30でフラグF1が1にセットされ、ステップA40に進んで電磁クラッチ14が解放される(あるいは解放を保持される)。そして、ステップA50に進み、電磁クラッチ14の入出力要素16,18間(クラッチフェーシング間)に回転速度差発生制御を実施する条件が成立しているか否かを判断する。
回転速度差発生制御を実施する条件(制御条件)は、以下の(1),(2)の条件が両方ともYES(AND条件)である場合に「成立(YES)」と判断する。
(1)潤滑油温が所定範囲である(実施可能条件)。この範囲は、例えば、外気常温程度の温度を下限温度に、各装置の耐熱限界温度を上限温度に設定する。これは、潤滑油にある程度の粘度(コンタミを運搬できる程度の粘度)と流動性とが両立可能な範囲として設定される。なお、油温が外気常温程度の温度よりも低いと油温を上昇させ流動性を確保する制御が必要であり、油温が耐熱限界温度よりも高いと油温上昇を抑えて各装置を保護する制御が必要となる。
(2)以下の3つの条件の何れか1つが成立(OR条件)している(制御要求条件)。この条件は、本制御を適正な間隔で実行するためである。換言すれば、本制御が頻繁に実行されることを防止するためである。
(a)エンジン2のスタータスイッチの操作による始動後初回のアイドルストップ実施である。
(b)前回の回転速度差発生制御実行後のアイドルストップを実施しない状態の継続時間の積算値が所定時間以上である。即ち、前回の回転速度差発生制御の実施から所定期間が経過した。本制御はアイドルストップの作動電磁タイミングで実施する制御であり、このアイドルストップの作動タイミングまでの時間が長いとクラッチフェーシング34f,36f間にコンタミが侵入している可能性が高まったと考えられる。そこで、この条件を設定している。
(c)回転速度差発生制御と同等の回転速度差が生じた作動状態後のクラッチ係合時間の積算値が所定時間以上である。
条件(c)を設定する理由は、段落0025で説明した通り、通常制御においてはエンジン2の高回転領域で電磁クラッチ14を解放してオイルポンプ20を電動モータ22で駆動するため、オイルポンプ20がほぼ一定の回転速度で駆動されるのに対し、エンジン2は車両の走行に応じて回転速度が変化して、クラッチフェーシング間に回転速度差発生制御のときと同等またはそれ以上の回転速度差が生じる場合があり、この回転速度差が生じれば本制御を実行したと略同様の効果が得られるためである。
ステップA50で制御条件が成立している(YES)と判断された場合は、ステップA60で、フラグF2を1にセットする。フラグF2は回転速度差発生制御が実施されている時に1とされ、回転速度差発生制御が実施されていない時に0とされる。そして、ステップA70で、そのときの潤滑油温に応じて目標とする回転速度差を設定すると共にこの目標回転速度差を達成するための電動モータ22の目標回転速度Nmtを算出する。
図5に示すグラフに基づく油温−回転速度差のマップをコントローラ24に記憶させており、目標回転速度差は同マップに基づいて設定される。図5のグラフから解るように、目標回転速度差は、油温が低くなる程、即ち、潤滑油の粘度が高くなる程大きくなるように、例えば1500rpm〜2500rpmの範囲で設定されている。これは、潤滑油は粘度が高くなるとその流動性が低下するので、回転速度差を大きくして流動性を確保するためである。
次に、ステップA80において、そのときの潤滑油温に応じて回転速度差発生制御を保持する時間を設定する。図6に示すグラフに基づく油温−回転速度差保持時間のマップをコントローラ24に記憶させており、保持時間はこのマップに基づいて設定される。図5のグラフから解るように、保持時間は、油温が低くなる程、即ち、潤滑油の粘度が高くなる程長くなるように設定されている。これは、上記と同様、潤滑油は粘度が高くなるとその流動性が低下するので、保持時間を長くして制御期間における流動量をより大きくするためである。電磁クラッチ14からの潤滑油の排出量が増加すれば、それに伴ってコンタミの排出も促進される。
次に、ステップA90において、ステップA70で設定された目標回転速度差を達成するための電動モータ22の目標回転速度Nmtに基づき、目標とする回転速度差を、ステップA80で設定された保持時間だけ持続する回転速度差発生制御を実行する。
そして、ステップA100において、ステップA90の回転速度差発生制御が終了したか否かを判断し、ステップA90の制御が終了していなければこの制御周期の処理を終了し、ステップA90の制御が終了したら、ステップA110に進む。
ステップA110では、フラグF2を0にセットする。そして、ステップA120に進み、オイルポンプ20の回転速度が自動変速機6で必要とされるライン圧を発生するための回転速度となるように電動モータ22を制御するようモータ制御装置へ指令するクラッチ解放制御を実施する。
なお、回転速度差発生制御終了後のアイドルストップ中では、電動モータ22を作動停止しておくことも可能であり、この場合、ステップA120における制御は、電動モータ22を停止する指令となり、アイドルストップ復帰時における必要ライン圧は、以下で説明するステップA160で発生させることになる。
一方、ステップA10での判断がNO(F1≠0)の場合は、ステップA130に進んで、アイドルストップ復帰か(アイドルストップ条件が不成立となったか)否かが判断される。アイドルストップ復帰であれば、ステップA150でフラグF1が0にセットされ、ステップA160に進んで、電磁クラッチ14及び電動モータ22を通常制御とする。即ち、エンジン2の回転速度等に応じて電磁クラッチ14の解放,係合を制御し、電磁クラッチ14の解放時には所要のライン圧を発生するように電動モータ22の回転速度を制御する。
また、ステップA130での判断がNO(アイドルストップ復帰でない)ならば、ステップA140に進んで、フラグF2が1であるか否かが判断される。フラグF2が1であれば、回転速度差発生制御の実施中であり、ステップA90に進んで、以後は上記と同様の処理を行う。
この実施形態では、回転速度差発生制御の開始時の制御周期において、ステップA70で電動モータ22の目標回転速度Nmtを算出したら、それ以降は、電動モータ22の目標回転速度Nmtを継続して与えて、回転速度差発生制御を実施しているが、これは、アイドルストップの作動を開始したら、それ以降は、エンジン2の回転速度は停止(速度0)に向かって減少するので、制御開始時の電動モータ22の目標回転速度Nmtを続行すれば必ず目標回転速度差を達成できるためである。
これに対して、ステップA140での判断でフラグF2が1とされる回転速度差発生制御の実施中には、ステップA70に進んで、以後は上記と同様の処理を行うように構成してもよい。この場合は、回転速度差発生制御中は、ステップA70において、その都度、その時のエンジン2の回転速度に応じて目標回転速度差を達成するための電動モータ22の目標回転速度Nmtを算出することになる。
また、ステップA140での判断がNO(F2≠1)ならば、回転速度差発生制御の実施中ではないので、以後はステップA120に進んで、上記と同様の処理を行う。
さらに、ステップA20での判断がNO(アイドルストップ許可でない)の場合、ステップA160に進んで、上記と同様の処理を行う。
また、ステップA50での判断がNO(制御条件が成立しない)の場合、ステップA110に進んで、以後は上記と同様の処理を行う。
次に、図4を参照して、アイドルストップの作動終了判定時に回転速度差発生制御を開始する場合を説明する。
図4に示すように、本制御では、まずステップB10において、フラグF1が1であるか否かが判断される。前回の制御周期で、フラグF1は、前述のように、アイドルストップ条件が成立しアイドルストップが許可されている時に1とされ、アイドルストップ条件が不成立となっている(アイドルストップ復帰条件が成立の場合も含む)時に0とされる。
前回の制御周期で、フラグF1が1とされていれば、アイドルストップが許可されアイドルストップ制御が指令されている。この場合、ステップB20に進んで、アイドルストップ復帰とする状態であるか(アイドルストップ条件が不成立となっているか)否かが判断される。アイドルストップ復帰であれば、ステップB30でフラグF1が0にセットされ、ステップB40に進み、電磁クラッチ14の入出力要素16,18間(クラッチフェーシング34f,36f間)に回転速度差発生制御を実施する条件が成立しているか否かを判断する。このステップB40の制御条件は、図3のステップA50の制御条件と同様であるので説明を省略する。
ステップB40で制御条件が成立している(YES)と判断された場合は、ステップB50で、フラグF2を1にセットする。前述のように、フラグF2は回転速度差発生制御が実施されている時に1とされ、回転速度差発生制御が実施されていない時に0とされる。そして、ステップB60で、前述のステップA70と同様に、そのときの潤滑油温に応じて目標とする回転速度差を設定すると共にこの目標回転速度差を達成するための電動モータ22の目標回転速度Nmtを算出する(図5参照)。
次に、ステップB70において、前述のステップA80と同様に、そのときの潤滑油温に応じて回転速度差発生制御を保持する時間を設定する(図6参照)。
次に、ステップB80において、ステップB60で設定された目標回転速度差を達成するための電動モータ22の目標回転速度Nmtに基づき、目標とする回転速度差を、ステップB70で設定された保持時間だけ持続する回転速度差発生制御を実行する。なお、アイドルストップ中に電動モータ22も停止させる場合には、このステップB80に電磁クラッチ14を解放する制御を付加する必要がある。
そして、ステップB90において、ステップB80の回転速度差発生制御が終了したか否かを判断し、ステップB80の制御が終了していなければこの制御周期の処理を終了し、ステップB80の制御が終了したら、ステップB100に進む。
ステップB100では、フラグF2を0にセットする。そして、ステップB110に進んで、電磁クラッチ14及び電動モータ22を通常制御とする。即ち、エンジン2の回転速度等に応じて電磁クラッチ14の解放,係合を制御し、電磁クラッチ14の解放時に所要のライン圧を発生するように電動モータ22の回転速度を制御する。
なお、ステップB10での判断がNO(F1≠0)の場合は、ステップB120に進んで、アイドルストップ許可か(アイドルストップ条件が成立しているか)否かが判断される。アイドルストップ許可であれば、ステップB140でフラグF1が1にセットされアイドルストップが実施される。
そして、ステップB150に進んで電磁クラッチ14が解放され(あるいは解放を保持され)、ステップB160に進み、オイルポンプ20の回転速度が自動変速機6で必要とされるライン圧を発生するための回転速度となるように電動モータ22を制御するようモータ制御装置へ指令するクラッチ解放制御を実施する。
なお、ステップB160において、段落0047の説明と同様に、電動モータ22を停止制御する場合は、ステップB150を省略すると共にステップB160の後にステップB20と同様のアイドルストップ復帰状態であるか否かの判定を追加し、アイドルストップ復帰が不成立の場合は制御終了(END)し、アイドルストップ復帰が成立の場合はステップB30に進む処理とするよう変更すればよい。
また、ステップB120での判断がNO(アイドルストップ許可でない)ならば、ステップB130に進んで、フラグF2が1であるか否かが判断される。フラグF2が1であれば、回転速度差発生制御の実施中であり、ステップB60に進んで、以後は上記と同様の処理を行う。
なお、この実施形態では、アイドルストップの作動終了判定時における回転速度差発生制御の実施中には、制御周期毎に、ステップB60において、その都度、その時のエンジン2の回転速度に応じて目標回転速度差を達成するための電動モータ22の目標回転速度Nmtを算出する。これは、アイドルストップの作動終了によって、エンジン2が再始動されてエンジン2の回転速度が0から増加する場合を想定したものである。つまり、エンジン2の回転速度の変化に応じて目標回転速度差を達成するための電動モータ22の目標回転速度Nmtを算出することにより、電動モータ22の目標回転速度Nmtを過剰に設定することなく目標回転速度差を達成することができ、省電力となる。
これに対して、ステップB130での判断で、フラグF2が1とされた回転速度差発生制御の実施中に、ステップB80に進んで、以後は上記と同様の処理を行うように構成してもよい。この場合は、エンジン2の再始動後のエンジン回転速度を想定して電動モータ22の目標回転速度Nmtを予め高めに設定する。これにより、回転速度差発生制御の開始時に設定した目標回転速度Nmtを用いて電動モータ22を制御しながら、目標回転速度差を達成することができる。
一方、ステップB130での判断がNO(F2≠1)ならば、回転速度差発生制御の実施中ではないので、以後はステップB110に進んで、上記と同様の処理を行う。
さらに、ステップB20での判断がNO(アイドルストップ復帰でない)の場合、ステップA150に進んで、上記と同様の処理を行う。
また、ステップB40での判断がNO(制御条件が成立しない)の場合、ステップB100に進んで、以後は上記と同様の処理を行う。
さらに、ステップB20での判断がNO(アイドルストップ復帰でない)の場合、ステップB150に進んで、上記と同様の処理を行う。
アイドルストップの作動時には、前記プログラムを実行することにより、例えば図7のタイムチャートに示すように、回転速度差発生制御が実施される。なお、図7には、アイドルストップの作動開始判定時における回転速度差発生制御(第1回転速度差発生制御)及びアイドルストップの作動終了判定時における回転速度差発生制御(第2回転速度差発生制御)を便宜上同時に記載しているが、これらは何れか一方が実施される。
図7に示すように、車両の運行中に、時点t11でアイドルストップ条件が成立すると、アイドルストップ許可フラグ(IS許可フラグ)がセット(オン)され、アイドルストップ制御が開始される。このとき、電磁クラッチ14がオン(係合)であればオフ(解放)に切り替え、電磁クラッチ14がオフであればこれを続行する。これと同時に、回転速度差発生制御の制御条件が成立していれば、電動モータ22の回転を制御して第1回転速度差発生制御を開始する。時点t11でアイドルストップ制御が開始されると、エンジン2には停止指令が出されて、停止移行期間経過後にエンジン2は停止する。
そして、第1回転速度差発生制御によって、電磁クラッチ14の入出力要素16,18の各回転速度は、例えば図8(a)に示すように変化する。
図中、太破線は入力要素16、即ちエンジン2の回転速度、太実線は出力要素18、即ち電動モータ22の回転速度であり(これは、オイルポンプ20の回転速度でもある)、一点鎖線は本制御を実施しない場合の電動モータ22の回転速度である。
また、ΔN1は本制御を実施しない場合のアイドルストップ制御開始時における電磁クラッチ14の入出力要素16,18間の回転速度差、つまり、本制御なしに電磁クラッチ14を解放状態に切り替え、電動モータ22をライン圧要求に応じて制御した場合に生じる回転速度差である。
ΔN2はステップA70で設定した目標回転速度差であり、絶対値で|ΔN1|<|ΔN2|の関係である。さらに、t11は制御開始時刻、t12は目標回転速度差の状態が開始される時刻、t13は制御終了時刻、ΔtはステップA80で設定した目標回転速度差を保持する時間である。
本制御はアイドルストップ制御と並行して実施するので、その間、エンジン2の回転速度は速度0(停止)へと変化するので、電磁クラッチ14の入出力要素16,18間の回転速度差は次第に増加するが、少なくとも入出力要素16,18間に所定値(ΔN2)以上の回転速度差が発生する状態がΔtの間保持される。
また、図7に示すように、アイドルストップ制御中に、時点t21でアイドルストップ復帰条件が成立すると、アイドルストップ許可フラグ(IS許可フラグ)がリセット(オフ)されると共にアイドルストップフックフラグ(ISフックフラグ)がセット(オン)され、アイドルストップ復帰(エンジン再始動)が開始される。このときには、電磁クラッチ14はオフ(解放)であり、エンジン2は停止状態である。この時点t21で、回転速度差発生制御の制御条件が成立していれば、電動モータ22の回転を制御して第2回転速度差発生制御を開始する。
そして、第2回転速度差発生制御によって、電磁クラッチ14の入出力要素16,18の各回転速度は、例えば図8(b)に示すように変化する。
図中、太破線は入力要素16、即ちエンジン2の回転速度、太実線は出力要素18、即ち電動モータ22の回転速度であり(これは、オイルポンプ20の回転速度でもある)、一点鎖線は本制御を実施しない場合の電動モータ22の回転速度である。
また、ΔN1′は本制御を実施しない場合のアイドルストップ制御終了時における電磁クラッチ14の入出力要素16,18間の回転速度差、つまり、本制御なしに電動モータ22をライン圧要求に応じて制御した場合に生じる回転速度差である。
ΔN2′はステップB60で設定した目標回転速度差であり、絶対値で|ΔN1′|<|ΔN2′|の関係である。さらに、t21は制御開始時刻、t22は目標回転速度差の状態が開始される時刻、t23は制御終了時刻、Δt′はステップB70で設定した目標回転速度差を保持する時間である。
本制御はアイドルストップ復帰制御と並行して実施するので、その間、エンジン2の回転速度は速度0(停止)から立ち上がっていくが、制御周期毎に、ステップB60で設定した目標回転速度差が得られるように電動モータ22の回転速度を計算して制御を実施するので、電磁クラッチ14の入出力要素16,18間の回転速度差は所定値(ΔN2′)以上の回転速度差が発生する状態がΔt′の間保持される。
なお、段落0047,段落0062で説明した電動モータ22を停止する期間は時刻t13から時刻t21までであり、この間は、省電力のためには電磁クラッチ14もオン(係合、即ち消磁)とした方がよい。
本発明の一実施形態に係る電磁クラッチの制御装置は上記のように構成されており、アイドルストップ制御を実施する場合に、入出力要素16,18間、即ちクラッチフェーシング34f,36f間に所定値以上の回転速度差を発生させるので、クラッチフェーシング34f,36f間における潤滑油の流動(クラッチ外への排出)が促進され、それに伴ってコンタミの排出が促進されるので、コンタミのクラッチフェーシング間への噛み込みによって生じるクラッチ性能、耐久性の低下を効率的に防止できる。
また、アイドルストップ解除時であるクラッチ係合時においてコンタミがクラッチフェーシング間に挟み込まれて生じる不具合を防止でき、車両の発進性の低下を抑制できる。
また、回転速度差発生制御を実行する条件として、潤滑油の温度が所定範囲であることとしたので、潤滑油にある程度の粘度(コンタミを運搬できる程度の粘度)と流動性とが確保できる温度範囲を設定することにより、コンタミの排出がより促進される。
さらに、回転速度差発生制御を実行する条件として、「(a)エンジン2始動後初回のアイドルストップ制御である。(b)前回の回転速度差発生制御実行後のアイドルストップを実施しない状態の継続時間の積算値が所定時間以上である。(c)回転速度差発生制御と同等の回転速度差が生じた作動状態後のクラッチ解放時間の積算値が所定時間以上である。」の何れかが成立することとしたので、本制御が適正な間隔で実行され、コンタミを効率よく排出できる。
また、上記回転速度差とその持続時間が潤滑油の温度に応じて、油温が低くなる程回転速度差が大きく、時間が長くなるように設定したので、電動モータ22の作動で消費する電力を極力低減した上で、潤滑油の流動性を適切に確保し、コンタミの排出をより効率的に行うことができる。
さらに、電磁クラッチ14を、電磁石42が消磁されているときに永久磁石38の磁力によってクラッチフェーシング34f,36fが接合されて電磁クラッチ14を係合状態とする消磁作動型電磁クラッチとしたので、クラッチ作動のための電力消費が節減できる。
また、上記実施形態では、エンジン2とオイルポンプ20との間に本発明に係る電磁クラッチ14を介装し、さらに電動モータ22でオイルポンプ20を駆動できるよう構成したので、フリクションロスの大きい運転領域で電動モータ22によってオイルポンプ20を駆動することで、エンジン燃費の低減が図れる。
さらにまた、電磁クラッチ14を潤滑油中に浸漬するように配設したので、電磁クラッチ14への潤滑油供給装置が不要となる。
以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、上記実施形態を本発明の趣旨を逸脱しない範囲で種々変形して適用することが可能である。特に、上記説明で示した回転速度や回転速度差の数値は単なる一例であり、エンジン、電磁クラッチ及び電動モータの規格や性能に応じて適宜設定されることは言うまでもない。
また、上記実施態様では、本発明を消磁作動型電磁クラッチに適用した例を示したが、本発明は、電磁石が励磁されるとクラッチが係合状態となる励磁作動型電磁クラッチに適用することも可能である。
さらに、上記実施態様では、本発明をオイルポンプの駆動機構に適用した例を開示したが、本発明は、エンジンと電動モータを駆動源とするハイブリッド車両においてこのエンジンと電動モータとの連結を断続する電磁クラッチに適用することも可能である。
2 エンジン
6 自動変速機
14 電磁クラッチ
16,18 電磁クラッチ14の回転要素
20 オイルポンプ
22 電動モータ
25 アイドルストップ制御手段
26 制御手段(回転速度差発生制御手段)
34f,36f クラッチフェーシング

Claims (14)

  1. 2つの回転要素の一方が車両を駆動する駆動源であるエンジンに連結され、他方が電動モータに連結されると共に、少なくともクラッチフェーシング間に潤滑油が流通するように構成された電磁クラッチにおいて、
    前記エンジンのアイドルストップ作動時において所定の条件が成立したとき、前記電磁クラッチを解放状態にするとともに、前記電動モータを作動させて前記2つの回転要素間の回転速度差を所定値以上とする回転速度差発生制御を実施する回転速度差発生制御手段を備えた
    ことを特徴とする電磁クラッチの制御装置。
  2. 前記回転速度差発生制御手段は、前記アイドルストップの作動開始時に、前記回転速度差発生制御を実施する
    ことを特徴とする請求項1記載の電磁クラッチの制御装置。
  3. 前記回転速度差発生制御手段は、前記アイドルストップの作動終了時に、前記回転速度差発生制御を実施する
    ことを特徴とする請求項1又は2記載の電磁クラッチの制御装置。
  4. 前記所定の条件に、前記潤滑油の温度が所定範囲であることが含まれている
    ことを特徴とする請求項1乃至3の何れか1項に記載の電磁クラッチの制御装置。
  5. 前記所定の条件に、前記エンジンのスタータスイッチによる始動後における初回の前記アイドルストップであることが含まれている
    ことを特徴とする請求項1乃至4の何れか1項に記載の電磁クラッチの制御装置。
  6. 前記所定の条件に、前記回転速度差発生制御の実施から所定期間が経過したことが含まれている
    ことを特徴とする請求項1乃至5の何れか1項に記載の電磁クラッチの制御装置。
  7. 前記所定の条件に、前記2つの回転要素間に前記所定値以上の回転速度差が生じた時点から所定期間が経過したことが含まれている
    ことを特徴とする請求項1乃至6の何れか1項に7記載の電磁クラッチの制御装置。
  8. 前記所定値は、前記潤滑油の粘度に関するパラメータに基づき同粘度が高くなる程大きくなるように設定されている
    ことを特徴とする請求項1乃至7の何れか1項に記載の電磁クラッチの制御装置。
  9. 前記パラメータは前記潤滑油の温度であり、前記所定値は前記温度が低くなる程大きくなるように設定されている
    ことを特徴とする請求項8記載の電磁クラッチの制御装置。
  10. 前記所定値以上の回転速度差を保持する保持時間は、前記潤滑油の粘度に関するパラメータに基づき同粘度が高くなる程長くなるように設定されている
    ことを特徴とする請求項1乃至9の何れか1項に記載の電磁クラッチの制御装置。
  11. 前記パラメータが前記潤滑油の温度であり、前記保持時間は前記温度が低くなる程長くなるように設定されている
    ことを特徴とする請求項10記載の電磁クラッチの制御装置。
  12. 前記電磁クラッチは、電磁石と永久磁石とを備え、前記電磁石が消磁されているときに前記永久磁石の磁力によって前記クラッチフェーシングが接合されて係合状態となる消磁作動型電磁クラッチである
    ことを特徴とする請求項1乃至11の何れか1項に記載の電磁クラッチの制御装置。
  13. 前記電磁クラッチと前記電動モータとの間に、前記電動モータと常時連結されるオイルポンプが配設されている
    ことを特徴とする請求項1乃至12の何れか1項に記載の電磁クラッチの制御装置。
  14. 前記電磁クラッチは、前記駆動源に連結された車両用変速機のオイルパンに貯留された潤滑油中に配設されている
    ことを特徴とする請求項1乃至13の何れか1項に記載の電磁クラッチの制御装置。
JP2016121072A 2016-06-17 2016-06-17 電磁クラッチの制御装置 Pending JP2017223341A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121072A JP2017223341A (ja) 2016-06-17 2016-06-17 電磁クラッチの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121072A JP2017223341A (ja) 2016-06-17 2016-06-17 電磁クラッチの制御装置

Publications (1)

Publication Number Publication Date
JP2017223341A true JP2017223341A (ja) 2017-12-21

Family

ID=60687787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121072A Pending JP2017223341A (ja) 2016-06-17 2016-06-17 電磁クラッチの制御装置

Country Status (1)

Country Link
JP (1) JP2017223341A (ja)

Similar Documents

Publication Publication Date Title
JP5225252B2 (ja) 車両の駆動源停止制御装置
JP6128154B2 (ja) ハイブリッド車両の制御装置
JP5920354B2 (ja) 車両用駆動装置の制御装置
KR101728612B1 (ko) 하이브리드 차의 구동 제어 시스템
JP2012067612A (ja) エンジンの自動始動制御装置
JP6277022B2 (ja) 電動オイルポンプの制御装置及び制御方法
JP5396319B2 (ja) 自動変速機の油圧供給装置
JP2011075011A (ja) エンジン停止始動制御装置
US10082205B2 (en) Abnormality determining apparatus for vehicle hydraulic circuit
JP2012036777A (ja) エンジン停止始動制御装置
JP2017223341A (ja) 電磁クラッチの制御装置
JP6611134B2 (ja) 電磁クラッチの制御装置
US8706387B2 (en) Control device and control method for engine, and vehicle
JP2002371969A (ja) 自動変速機のオイルポンプ制御装置
JP3716685B2 (ja) エンジン制御装置
JP5880294B2 (ja) エンジン停止始動制御装置
JP2011236992A (ja) 車両駆動システムの制御装置
JP6611133B2 (ja) 電磁クラッチの制御装置
JP6669598B2 (ja) 電磁クラッチの制御装置
JP6669597B2 (ja) 電磁クラッチの制御装置
JP2013170624A (ja) 電動オイルポンプの制御装置
JP5994550B2 (ja) 車両の発進クラッチ制御装置
KR101575281B1 (ko) 차량의 전동오일펌프 제어방법
JP2007023978A (ja) 自動車の制御装置
JP5895274B2 (ja) 電磁クラッチ固着緩和装置