JP2017220965A - 太陽電池検査装置および太陽電池検査方法 - Google Patents

太陽電池検査装置および太陽電池検査方法 Download PDF

Info

Publication number
JP2017220965A
JP2017220965A JP2016111398A JP2016111398A JP2017220965A JP 2017220965 A JP2017220965 A JP 2017220965A JP 2016111398 A JP2016111398 A JP 2016111398A JP 2016111398 A JP2016111398 A JP 2016111398A JP 2017220965 A JP2017220965 A JP 2017220965A
Authority
JP
Japan
Prior art keywords
solar cell
voltage
polarity
current
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016111398A
Other languages
English (en)
Other versions
JP6710583B2 (ja
Inventor
昌男 樋口
Masao Higuchi
昌男 樋口
智良 金井
Tomoyoshi Kanai
智良 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2016111398A priority Critical patent/JP6710583B2/ja
Publication of JP2017220965A publication Critical patent/JP2017220965A/ja
Application granted granted Critical
Publication of JP6710583B2 publication Critical patent/JP6710583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】極性が未知の太陽電池ストリングのバイパスダイオードについてのオープン故障の有無を検査する。【解決手段】n×m個の太陽電池23のダイオードとしての順方向電圧の総和を下回り、かつn個のバイパスダイオード24の順方向電圧の総和を上回る電圧値V1の検査電圧Vtstを出力する電圧出力部2と、太陽電池ストリング12に電流Iが流れているか否かを検出する電流検出部4と、第1極性およびその逆の第2極性で検査電圧Vtstが太陽電池ストリング12に印加されているときの電流検出部4での第1検出結果および第2検出結果に基づき、第1および第2検出結果が電流Iが流れていないとの結果のときは、オープン故障有りと判別し、第1および第2検出結果の一方が電流Iが流れていないとの結果で、かつ第1および第2検出結果の他方が電流Iが流れているとの結果のときには、オープン故障無しと判別する処理部6とを備えている。【選択図】図1

Description

本発明は、太陽電池に使用されているバイパスダイオードの検査を実行する太陽電池検査装置および太陽電池検査方法に関するものである。
この種の太陽電池検査装置の一例として、下記の特許文献1に開示された太陽電池回路の検査装置が知られている。この検査装置は、診断電力供給部、電流検出部、判定部および通知部を備え、太陽電池ストリングの断線の有無(太陽電池ストリングを構成する太陽電池回路としての太陽電池の断線の有無および太陽電池回路としてのバイパスダイオードの断線の有無)を個別に検査可能に構成されている。
この場合、診断電力供給部は、例えば蓄電部から電力の供給を受けて太陽電池回路に直流の診断電圧としての直流電圧を印加するためのものであり、電圧設定部、電流設定部および印加方向切替部を含んで構成されている。このうちの電圧設定部は、電圧を設定して検査を行う定電圧モードにおいて、診断電力供給部から太陽電池回路に印加される直流電圧を所定の電圧値に設定するものであり、電流設定部は、電流を設定して検査を行う定電流モードにおいて、診断電力供給部から太陽電池回路に直流電圧を印加することによってこの太陽電池回路に供給する電流を所定の電流値に設定する。また、印加方向切替部は、各モードにおいて太陽電池を検査するときには、太陽電池の発電時の直流電流の方向とは逆の方向に検査用の電流が流れるように直流電圧の印加の方向を切り換え、一方、各モードにおいてバイパスダイオードを検査するときには、太陽電池の発電時の直流電流の方向と同じ方向に検査用の電流が流れるように直流電圧の印加の方向を切り換える。
また、電流検出部は、診断電力供給部によって太陽電池ストリングに太陽電池の発電時の直流電流の方向とは逆の方向の電流を流すための直流電圧が印加されているときに、太陽電池に断線がない場合は電流を検出し、断線している場合は電流を検出しない。また、電流検出部は、診断電力供給部によって太陽電池ストリングに太陽電池の発電時の直流電流の方向と同じ方向の電流を流すための直流電圧が印加されているときに、バイパスダイオードに断線がない場合は電流を検出し、断線している場合には電流を検出しない。
また、判定部は、診断電力供給部によって太陽電池ストリングに直流電圧が印加されているときにおいて、電流が流れていないことを電流検出部が検出した場合には、この検出結果に基づき、太陽電池やバイパスダイオードが断線していると判定する。
この構成の太陽電池回路の検査装置によれば、太陽電池ストリングの特性、すなわち、無発電時状態において、検査装置によって太陽電池の発電時の直流電流の方向とは逆の方向の電流が流れる向きに直流電圧が印加されたときに、太陽電池ストリングの太陽電池に断線がないときにはこの向きの電流が流れ、一方、断線があるときにはこの向きの電流は流れないという特性と、無発電時状態において、検査装置によって太陽電池の発電時の直流電流の方向と同じ方向の電流が流れる向きに直流電圧が印加されたときに、太陽電池ストリングのバイパスダイオードに断線がないときにはこの向きの電流が流れ、一方、断線があるときにはこの向きの電流は流れないという特性を利用して、太陽電池ストリングを構成する太陽電池およびバイパスダイオードでの断線の有無を検査することが可能となっている。
特開2015−188306号公報(第7−11頁、第1−3図)
ところが、上記した太陽電池の検査装置には、以下のような解決すべき課題が存在している。すなわち、この検査装置では、太陽電池ストリングの極性が既知の状態において、バイパスダイオードでの断線の有無を検査する際に、断線がないときには電流が流れ、断線があるときには電流が流れないという極性(向き)でバイパスダイオードに直流電圧が印加されるようにこの直流電圧の極性(向き)を印加方向切替部で切り替える構成を採用している。しかしながら、太陽電池ストリングの極性が未知のときもあり、この検査装置では、このような太陽電池ストリングのバイパスダイオードに対して正しい極性(向き)で直流電圧を印加することができない。したがって、この検査装置には、極性が未知の太陽電池ストリングにおけるバイパスダイオードについての断線(オープン故障)の有無の検査を行えないという解決すべき課題が存在している。
本発明は、かかる課題を解決するためになされたものであり、極性が未知の太陽電池ストリングにおけるバイパスダイオードについてのオープン故障の有無を検査し得る太陽電池検査装置および太陽電池検査装置を提供することを主目的とする。
上記目的を達成すべく請求項1記載の太陽電池検査装置は、複数の太陽電池および当該複数の太陽電池に並列接続されたバイパスダイオードを有するクラスタが複数直列接続されて構成された太陽電池ストリングにおける前記バイパスダイオードについてのオープン故障の有無を検査する太陽電池検査装置であって、前記複数の太陽電池のダイオードとしての順方向電圧の総和を下回り、かつ複数の前記バイパスダイオードの順方向電圧の総和を上回る電圧値で直流電圧を生成して検査電圧として出力する電圧出力部と、前記太陽電池ストリングの一対の出力端子間に前記検査電圧が印加されているときに当該太陽電池ストリングに電流が流れているか否かを検出する電流検出部と、前記オープン故障の有無を検査する検査処理を実行する処理部とを備え、前記処理部は、前記検査処理において、前記一対の出力端子のうちの一方の出力端子が他方の出力端子に対して高電圧となる第1極性で前記検査電圧が印加されているときの前記電流検出部での第1検出結果、および前記他方の出力端子が前記一方の出力端子に対して高電圧となる第2極性で前記検査電圧が印加されているときの前記電流検出部での第2検出結果を取得すると共に、当該第1検出結果および当該第2検出結果の双方が前記電流が流れていないとの結果のときには、前記複数のバイパスダイオードの少なくとも1つにオープン故障が有ると判別し、当該第1検出結果および当該第2検出結果の一方が前記電流が流れていないとの結果であって、かつ当該第1検出結果および当該第2検出結果の他方が前記電流が流れているとの結果のときには、前記複数のバイパスダイオードにオープン故障が無いと判別する。
請求項2記載の太陽電池検査装置は、請求項1記載の太陽電池検査装置において、前記検査電圧を入力すると共に当該検査電圧を前記一対の出力端子間に前記第1極性および前記第2極性のうちの選択されたいずれかの極性に切り替えて印加する極性切替部を有し、前記処理部は、前記検査処理において、前記極性切替部に対する制御を実行して前記検査電圧を前記いずれかの極性に切り替える。
請求項3記載の太陽電池検査方法は、複数の太陽電池および当該複数の太陽電池に並列接続されたバイパスダイオードを有するクラスタが複数直列接続されて構成された太陽電池ストリングにおける前記バイパスダイオードについてのオープン故障の有無を、前記複数の太陽電池のダイオードとしての順方向電圧の総和を下回り、かつ複数の前記バイパスダイオードの順方向電圧の総和を上回る電圧値の検査電圧を前記太陽電池ストリングの一対の出力端子間に当該一対の出力端子のうちの一方の出力端子が他方の出力端子に対して高電圧となる第1極性および当該他方の出力端子が当該一方の出力端子に対して高電圧となる第2極性に切り替えて印加しつつ、当該第1極性での印加のときに前記太陽電池ストリングに電流が流れているか否かの第1検出結果および当該第2極性での印加のときに前記太陽電池ストリングに電流が流れているか否かの第2検出結果を取得すると共に、当該取得した第1検出結果および第2検出結果に基づいて前記バイパスダイオードについてのオープン故障の有無を検査する太陽電池検査方法であって、前記第1検出結果および前記第2検出結果の双方が前記電流が流れていないとの結果のときには、前記複数のバイパスダイオードの少なくとも1つにオープン故障が有ると判別し、前記第1検出結果および前記第2検出結果の一方が前記電流が流れていないとの結果であって、かつ当該第1検出結果および当該第2検出結果の他方が前記電流が流れているとの結果のときには、前記複数のバイパスダイオードにオープン故障が無いと判別する。
請求項1記載の太陽電池検査装置および請求項3記載の太陽電池検査方法によれば、検査処理において、太陽電池ストリングの一対の出力端子間に第1極性で検査電圧が印加されているときの第1検出結果、および第2極性で検査電圧が印加されているときの第2検出結果に基づいてバイパスダイオードでのオープン故障の有無を検査するため、太陽電池ストリングの極性が未知であっても、この太陽電池ストリングにおけるバイパスダイオードについてのオープン故障の有無を検査することができる。
請求項2記載の太陽電池検査装置によれば、処理部が、検査処理において、極性切替部に対する制御を実行して検査電圧を第1極性および第2極性に切り替えて印加するため、太陽電池ストリング内のバイパスダイオードについての検査の自動化を図ることができる結果、検査に要する時間を大幅に短縮することができる。
太陽電池検査装置1および太陽電池ストリング12の各構成図である。 太陽電池アレイ11および接続箱13の各構成図である。 検査電圧Vtstの極性A,Bでの電流Iの検出結果と、オープン故障の有無との関係を説明するための説明図である。 検査電圧Vtstの極性A,Bでの電流Iの検出結果と、オープン故障の有無との関係を説明するための他の説明図である。 検査電圧Vtstの極性A,Bでの電流Iの検出結果と、オープン故障の有無との関係を説明するための他の説明図である。
以下、太陽電池検査装置および太陽電池検査方法の実施の形態について、添付図面を参照して説明する。
最初に、太陽電池検査装置の構成について、図面を参照して説明する。
まず、図1に示す太陽電池検査装置としての太陽電池検査装置1の構成について説明する。
太陽電池検査装置1は、電圧出力部2、極性切替部3、電流検出部4、スイッチ5、処理部6、操作部7および出力部8を備えて、後述の太陽電池ストリング12を検査対象としてその中に配設されているバイパスダイオード24についてのオープン故障の有無を検査する。
ここで、太陽電池検査装置1の各構成要素についての具体的な説明の前に、太陽電池ストリング12の概要について説明する。太陽電池ストリング12は、例えば、ビルや住宅などの建物に設置されている図2に示すような太陽電池アレイ11の構成単位であり、複数個で1つの太陽電池アレイ11を構成している。また、複数の太陽電池ストリング12は、例えば、接続箱13内において、ブロッキングダイオード14を介して並列接続されている。また、各太陽電池ストリング12は、接続箱13内に配設されたスイッチ15により、他の太陽電池ストリング12から切り離したり、並列接続状態に戻したりすることが可能になっている。
また、太陽電池ストリング12は、図1,2に示すように、複数の太陽電池モジュール21が直列接続されて構成され、さらに各太陽電池モジュール21は、複数のクラスタ22が直列接続されて構成されている。また、各クラスタ22は、直列接続された複数の太陽電池セル(太陽電池)23と、この直列接続された複数の太陽電池セル23における全体としての出力端子間(クラスタ22の出力端子間)に接続されたバイパスダイオード24とを備えて構成されている。バイパスダイオード24は、1つのクラスタ22において、複数の太陽電池セル23における全体としての正側の出力端子にカソード端子が接続され、負側の出力端子にアノード端子が接続されている(複数の太陽電池セル23に対して並列接続されている)。
この構成により、バイパスダイオード24は、1つのクラスタ22を構成する直列接続された複数の太陽電池セル23内において、負側の出力端子から正側の出力端子に向かう電流(直流電流)が流れ難くなる状況(例えば、木陰に入るなどの状況)が生じたときに、他のクラスタ22から流れ込む電流をバイパスさせることで、太陽電池ストリング12からの電流(直流電流)の出力を継続させる。
次いで、太陽電池検査装置1の各構成要素について図1を参照して説明する。電圧出力部2は、例えば、直流電源で構成されて、設定された電圧値V1で直流電圧を生成して検査電圧Vtstとして正極+および負極−間から出力可能に構成されている。また、電圧出力部2は、この検査電圧Vtstの印加に起因して流れる後述の電流Iの電流値が過大になるのを防止するための電流制限抵抗(不図示)を備えている。なお、この電流制限抵抗は、電圧出力部2に配設する構成に限定されず、電流Iが流れる経路中である限り、電圧出力部2および極性切替部3の間や、極性切替部3と後述するプローブPL1,PL2との間など、任意の位置に配設することができる。
極性切替部3は、検査電圧Vtstを入力すると共に、この検査電圧Vtstを太陽電池ストリング12の一対の出力端子間(正極端子(以下、単に正極ともいう)P1および負極端子(以下、単に負極ともいう)P2間)に、第1極性(一方の出力端子としての負極P2が他方の出力端子としての正極P1に対して高電圧となる極性)および第2極性(正極P1が負極P2に対して高電圧となる極性)のうちの選択されたいずれかの極性に切り替えて印加する。本例では一例として、極性切替部3は、連動して切り替わる一対のスイッチ3a,3bを備えて構成されている。また、スイッチ3aは、そのc接点が電圧出力部2の正極+に接続され、そのa接点がプローブPL1に接続され、かつそのb接点がスイッチ3bのa接点に接続されている。スイッチ3bは、そのc接点が電圧出力部2の負極−に接続され、そのa接点が電流検出部4およびスイッチ5を介してプローブPL2に接続され、かつそのb接点がスイッチ3aのa接点に接続されている。この構成により、極性切替部3は、プローブPL1,PL2を介して太陽電池ストリング12の正極P1および負極P2間に、検査電圧Vtstを第1極性および第2極性のうちの選択された極性で印加可能となっている。
電流検出部4は、一例として図1に示すように、スイッチ5と直列に接続された状態で、極性切替部3を構成するスイッチ3bのa接点とプローブPL2との間に配設されている。なお、図示はしないが、電流検出部4は、スイッチ5と直列に接続された状態で、極性切替部3を構成するスイッチ3aのa接点とプローブPL1との間に配設される構成でもよい。また、電流検出部4は、スイッチ5と直列に接続されて配設される上記の構成に代えて、スイッチ5と分離した状態で配設される構成であってもよい。例えば、電流検出部4がスイッチ3bのa接点とプローブPL2との間に配設され、かつスイッチ5がスイッチ3aのa接点とプローブPL1との間に配設される構成や、電流検出部4がスイッチ3aのa接点とプローブPL1との間に配設され、かつスイッチ5がスイッチ3bのa接点とプローブPL2との間に配設される構成であってもよい。
また、電流検出部4は、太陽電池検査装置1がプローブPL1,PL2を介して太陽電池ストリング12の正極P1および負極P2間に接続された状態において、太陽電池ストリング12に電流Iが流れているか否かを検出すると共に、その検出結果を示す検出信号Siを処理部6に出力する。一例として、電流検出部4は、電流Iの電流値(絶対値)が予め規定された電流しきい値を超えたときには、電流Iが流れていると検出し、一方、電流Iの電流値がこの電流しきい値未満のときには、電流Iが流れていないと検出する。この電流しきい値は、例えば、逆バイアス状態においてダイオードに流れる数〜数十μA程度のリーク電流については流れていないと検出し得る電流値に規定されている。
なお、この太陽電池検査装置1では、電流検出部4が、太陽電池ストリング12に電流Iが流れているか否かを検出してその検出結果を示す検出信号Siを処理部6に出力する構成を採用しているが、この構成に代えて、電流検出部4が、太陽電池ストリング12に流れる電流を検出して電圧に変換し、この変換した電圧を検出信号Si(通過する電流の電流値に比例して電圧値が変化する信号)として処理部6に出力し、処理部6がこの検出信号Siに基づいて太陽電池ストリング12に電流Iが流れているか否かを検出する構成を採用することもできる。この構成では、処理部6が電流検出部として機能する。
スイッチ5は、例えば、トランジスタやサイリスタなどの半導体スイッチ(無接点スイッチ)で構成されて、オフ・オンする際におけるアークの発生が回避されている。また、スイッチ5は、処理部6によって制御されることにより、オン状態およびオフ状態のうちの一方の状態に選択的に切り替えられる。また、スイッチ5は、上記のように、電流検出部4と直列に接続された状態で、または電流検出部4と分離された状態で、極性切替部3とプローブPL1との間、または極性切替部3とプローブPL2との間に配設されている。
処理部6は、例えば、メモリおよびCPU(いずれも図示せず)などを備えて、電圧出力部2に対する制御処理(具体的には、電圧値V1を設定する処理)と、極性切替部3に対する制御処理(具体的には、太陽電池ストリング12に出力(印加)される検査電圧Vtstの極性を第1極性および第2極性のうちの一方の極性に切り替える処理)と、スイッチ5に対する制御処理(スイッチ5をオン・オフさせる処理)と、太陽電池検査装置1にプローブPL1,PL2を介して接続されている太陽電池ストリング12内の検査対象としてのバイパスダイオード24を検査する(バイパスダイオード24についてのオープン故障の有無を検査する)検査処理とを実行可能に構成されている。なお、処理部6のメモリには、操作部7から入力された電圧値V1や、電流検出部4から出力される検出信号Siで示される検出結果(電流Iが流れているか否かを示す情報)が記憶される。
操作部7は、例えば、押下されたときに検査開始指示を示す信号を処理部6に出力可能なスタートキー、および電圧値V1を設定して処理部6に出力可能なテンキーなどを備えている。出力部8は、一例として、LCDなどのディスプレイ装置で構成されて、処理部6から出力された検査結果を画面に表示する。なお、出力部8は、ディスプレイ装置に代えて、種々のインターフェース回路で構成してもよく、例えば、メディアインターフェース回路としてリムーバブルメディアに検査結果を記憶させたり、ネットワークインターフェース回路としてネットワーク経由で外部装置に検査結果を伝送させたりする構成を採用することもできる。
次に、太陽電池検査装置1を用いて太陽電池ストリング12のバイパスダイオード24を夜間に検査する際の太陽電池検査装置1の動作を、太陽電池検査方法と併せて図面を参照して説明する。なお、太陽電池ストリング12の各太陽電池セル23は正常であるものとする。また、夜間であるため、各太陽電池ストリング12は発電していない状態であるものとする。
建物に設置されている太陽電池アレイ11を構成している複数の太陽電池ストリング12のバイパスダイオード24について検査する際には、オペレータは、まず、太陽電池ストリング12の仕様を確認するなどして、電圧出力部2に設定する電圧値V1を決定すると共に、この電圧値V1を操作部7を介して処理部6に入力する。処理部6は、電圧値V1を入力したときには、電圧出力部2に対して検査電圧Vtstの電圧値V1をこの操作部7から入力した電圧値V1に設定する処理を実行する。これにより、電圧出力部2は、設定された電圧値V1で直流電圧を生成して検査電圧Vtstとして正極+および負極−間から出力する。
この場合、各太陽電池ストリング12には、n個のクラスタ22が含まれ、また各クラスタ22には、m個の太陽電池セル23が含まれているとすると、各太陽電池セル23は、p−n接合を持つダイオードと等価であることから、各クラスタ22は、図1において破線で表す楕円内に示されるように、同じ極性で直列に接続されたm個のダイオード(太陽電池セル23)に、1つのバイパスダイオード24が逆の極性で並列に接続された構成となっている。このため、太陽電池セル23のダイオードとしての順方向電圧をVf1とし、バイパスダイオード24の順方向電圧をVf2としたときに、操作部7を介して処理部6に入力する電圧値V1については、以下の式(1)を満たす値に規定する。
Vf1×m×n>V1>Vf2×n ・・・ (1)
次いで、オペレータは、太陽電池アレイ11が接続されている接続箱13内の各スイッチ15のうちの検査対象として太陽電池検査装置1に接続する1つの太陽電池ストリング12に対応するスイッチ15をオン状態からオフ状態に切り替えて、他の太陽電池ストリング12から切り離し、この切り離された状態の1つの太陽電池ストリング12の正極P1および負極P2間にプローブPL1,PL2を介して太陽電池検査装置1を接続するという操作を、全ての太陽電池ストリング12のバイパスダイオード24についての検査が完了するまで繰り返す。
この場合、太陽電池ストリング12に対応するスイッチ15には、太陽電池ストリング12の正極P1および負極P2に接続されている一対の配線が正しい極性で接続されている。このため、オペレータは、通常はこの配線状態に基づき、太陽電池ストリング12の正極P1および負極P2を正しく認識でき、この正しい認識の基で、プローブPL1,PL2を正極P1および負極P2に接続することが可能であるが、例えば、接続箱13内が暗いときには、正極P1および負極P2を正しく認識し難い場合もある。このため、このような場合においては、プローブPL1,PL2を太陽電池ストリング12の正極P1および負極P2に接続する際に、プローブPL1が正極P1に接続(つまり、プローブPL2が負極P2に接続)される接続状態となったり、プローブPL1が負極P2に接続(つまり、プローブPL2が正極P1に接続)される接続状態となったりする場合があるが、この太陽電池検査装置1では、いずれの接続状態で太陽電池検査装置1が太陽電池ストリング12に接続されていてもよい(接続状態は問わない)。一例として、図1に示すように、プローブPL1が負極P2に接続され、かつプローブPL2が正極P1に接続される接続状態で太陽電池検査装置1が太陽電池ストリング12に接続されたものとする。
太陽電池検査装置1では、太陽電池ストリング12(検査対象とするバイパスダイオード24を含む太陽電池ストリング12)がプローブPL1,PL2を介して接続されている状態において、オペレータによってスタートキーが操作された操作部7から検査開始指示を示す信号が処理部6に出力されたときには、処理部6は、検査処理を実行する。
この検査処理では、処理部6は、まず、極性切替部3に対する制御処理を実行して、各スイッチ3a,3bのc接点を図1において実線で示すようにa接点に接続させることで、極性切替部3から出力される検査電圧Vtstの極性を、プローブPL1がプローブPL2に対して高電位となる極性(以下では、極性Aともいう)に切り替える。次いで、処理部6は、スイッチ5に対する制御制御を実行して、初期状態においてオフ状態となっているスイッチ5をオン状態に切り替える。これにより、太陽電池検査装置1から太陽電池ストリング12に対して検査電圧Vtstが印加される。
この場合、上記したように、図1に示す接続状態(プローブPL1が負極P2に接続され、かつプローブPL2が正極P1に接続される接続状態)で太陽電池検査装置1が太陽電池ストリング12に接続されているため、極性切替部3から極性Aで出力されている検査電圧Vtstは、太陽電池ストリング12の正極P1および負極P2間に、第1極性(太陽電池ストリング12の負極P2が正極P1に対して高電圧となる極性)で、つまり、太陽電池ストリング12内のバイパスダイオード24が順バイアスとなる極性で印加される。また、検査電圧Vtstは、その電圧値V1が上記の式(1)を満たす値(つまり、n個のバイパスダイオード24の順方向電圧Vf2の総和Vf2×nを超える値)に規定されている。
したがって、太陽電池ストリング12内のすべて(n個)のバイパスダイオード24が正常なとき(オープン故障が無いとき)には、各バイパスダイオード24を経由して電流Iが流れる。一方、太陽電池ストリング12内のn個のバイパスダイオード24のうちの少なくとも1つにオープン故障が有るときには、電流Iは流れない。電流検出部4は、この検査電圧Vtstの印加状態において、太陽電池ストリング12に電流Iが流れているか否かを検出して、その検出結果(第1検出結果)を示す検出信号Siを処理部6に出力する。
続いて、処理部6は、この検出信号Siで示される検出結果に基づき、太陽電池ストリング12内のバイパスダイオード24に電流Iが流れているか否かを判別して、その判別結果を極性切替部3から出力させた検査電圧Vtstの極性Aに対応させてメモリに記憶する。
次いで、処理部6は、極性切替部3に対する制御処理を実行して、各スイッチ3a,3bのc接点を図1において破線で示すようにb接点に接続させることで、極性切替部3から出力される検査電圧Vtstの極性を、プローブPL2がプローブPL1に対して高電位となる極性(以下では、極性Bともいう)に切り替える。これにより、太陽電池検査装置1から太陽電池ストリング12に対して検査電圧Vtstが極性切替部3に対する先の制御処理のときとは逆の極性で印加される。
この場合、極性切替部3から極性Bで出力されている検査電圧Vtstは、太陽電池ストリング12の正極P1および負極P2間に、第2極性(太陽電池ストリング12の正極P1が負極P2に対して高電圧となる極性)で、つまり、太陽電池ストリング12内のバイパスダイオード24が逆バイアスとなる極性で印加される。また、検査電圧Vtstは、その電圧値V1が上記の式(1)を満たす値(つまり、m個の太陽電池セル23のダイオードとしての順方向電圧Vf1の総和Vf1×mを下回る値)に規定されている。
したがって、太陽電池ストリング12では、n個のバイパスダイオード24にも電流は流れないし、またそれぞれがダイオードと等価なm個の太陽電池セル23にも電流が流れない。つまり、太陽電池ストリング12には、電流Iは流れない。電流検出部4は、この検査電圧Vtstの印加状態において、太陽電池ストリング12に電流Iが流れているか否かを検出して、その検出結果(第2検出結果)を示す検出信号Siを処理部6に出力する。
続いて、処理部6は、この検出信号Siで示される検出結果に基づき、太陽電池ストリング12内のバイパスダイオード24に電流Iが流れているか否かを判別して、その判別結果を極性切替部3から出力させた検査電圧Vtstの極性Bに対応させてメモリに記憶する。その後、処理部6は、スイッチ5に対する制御制御を実行して、オン状態となっているスイッチ5を初期状態のオフ状態に切り替える。これにより、太陽電池検査装置1から太陽電池ストリング12に対する検査電圧Vtstの印加が停止される。
この結果、検査対象となっている太陽電池ストリング12内のn個のバイパスダイオード24のうちのいずれかにオープン故障が有る場合には、図3に示すように、検査電圧Vtstの極性が極性A,Bのいずれのときにも、電流が流れていない(×)との検出結果がメモリに記憶される。このため、処理部6は、この検出結果に基づいて、いずれかのバイパスダイオード24にオープン故障が有ると判別する。一方、検査対象となっている太陽電池ストリング12内のn個のバイパスダイオード24にオープン故障が無い場合には、図4に示すように、検査電圧Vtstの極性が極性Aのときには、電流が流れ(○)、検査電圧Vtstの極性が極性Bのときには、電流が流れていない(×)との検出結果がメモリに記憶される。このため、処理部6は、この検出結果に基づいて、すべてのバイパスダイオード24は正常である(オープン故障がない)と判別する。
最後に、処理部6は、この検査結果を出力部8に出力して、画面に表示させる。これにより、検査処理が完了する。
なお、詳細な説明は省略するが、図1に示す接続状態とは逆の接続状態、つまり、プローブPL1が正極P1に接続され、かつプローブPL2が負極P2に接続される接続状態で太陽電池検査装置1が太陽電池ストリング12に接続されたときにも、検査対象となっている太陽電池ストリング12内のn個のバイパスダイオード24のうちのいずれかにオープン故障が有る場合には、図3に示すように、検査電圧Vtstの極性が極性A,Bのいずれのときにも、電流が流れていない(×)との検出結果がメモリに記憶される。このため、処理部6は、この検出結果に基づいて、いずれかのバイパスダイオード24にオープン故障が有ると判別することが可能となっている。一方、検査対象となっている太陽電池ストリング12内のn個のバイパスダイオード24にオープン故障が無い場合には、図5に示すように、検査電圧Vtstの極性が極性Aのときには、電流が流れず(×)、検査電圧Vtstの極性が極性Bのときには、電流が流れる(○)との検出結果がメモリに記憶される。このため、処理部6は、この検出結果に基づいて、すべてのバイパスダイオード24は正常である(オープン故障がない)と判別することが可能となっている。
このように、この太陽電池検査装置1および太陽電池検査方法では、プローブPL1が負極P2に接続され、かつプローブPL2が正極P1に接続される接続状態においても、またプローブPL1が正極P1に接続され、かつプローブPL2が負極P2に接続される接続状態においても、検査処理において、太陽電池ストリング12の正極P1および負極P2のうちの負極P2が正極P1に対して高電圧となる第1極性で検査電圧Vtstが印加されているときの電流検出部4での検出結果(第1検出結果)、および正極P1が負極P2に対して高電圧となる第2極性で検査電圧Vtstが印加されているときの電流検出部4での検出結果(第2検出結果)を取得して、各検出結果の双方が電流Iが流れていないとの結果のとき(図3に示すような検出結果のとき)には、n個のバイパスダイオード24のうちの少なくとも1つにオープン故障が有ると判別し、各検出結果の一方が電流Iが流れていないとの結果であって、かつ各検出結果の他方が電流Iが流れているとの結果のとき(図4や図5に示すような検出結果のとき)には、n個のバイパスダイオード24のすべてにオープン故障が無いと判別する。
したがって、この太陽電池検査装置1および太陽電池検査方法によれば、太陽電池ストリング12の極性が未知であっても、この太陽電池ストリング12におけるバイパスダイオード24についてのオープン故障の有無を検査することができる。
また、この太陽電池検査装置1によれば、検査電圧Vtstを入力すると共に、この検査電圧Vtstを太陽電池ストリング12の正極P1および負極P2間に極性を切り替えて印加する極性切替部3を備えているため、太陽電池検査装置1を太陽電池ストリング12に接続したままの状態で、太陽電池ストリング12に対して第1極性および第2極性の双方の極性で検査電圧Vtstを印加することができる結果、正極P1および負極P2への各プローブPL1,PL2の接続を入れ替えるという手間を省くことができる。
また、この太陽電池検査装置1によれば、処理部6が、検査処理において、極性切替部3に対する制御を実行して検査電圧Vtstを第1極性および第2極性に切り替えつつ、第1極性および第2極性における電流検出部4での検出結果を取得すると共に、第1極性および第2極性でのこの検出結果に基づいて、バイパスダイオード24のオープン故障の有無を検査するため、太陽電池ストリング12内のバイパスダイオード24についての検査の自動化を図ることができる結果、検査に要する時間を大幅に短縮することができる。
なお、上記の太陽電池検査装置1では、処理部6が、検査処理において極性切替部3に対する上記の制御を実行することにより、太陽電池ストリング12内のバイパスダイオード24についての検査(オープン故障の有無を検出するための検査)を自動化する好ましい構成を採用しているが、処理部6が実行する内容を、図3や図4や図5に示す検出結果を出力部8に表示させるまでに止めて、最終的なバイパスダイオード24についての検査結果については、この出力部8に表示されている内容に基づいてオペレータが行う構成とすることもできる。また、オペレータが極性切替部3を構成する各スイッチ3a,3bの切り替えを行う構成とすることもできる。
また、図4,5に示す検出結果(いずれか一方の極性では電流Iが流れるとの検出結果)と、これらの検出結果のときにはいずれもオープン故障は無いとの検査結果になることに基づくと、第1極性および第2極性のうちの最初の極性における電流検出部4での検出結果が電流Iが流れているとの結果のときには、残りの極性での電流検出部4での検出結果を待たずに、すべてのバイパスダイオード24にオープン故障が無いと判別することができる。したがって、検査処理において、検査電圧Vtstを第1極性および第2極性に切り替えつつ、第1極性および第2極性における電流検出部4での検出結果を常に取得する構成に代えて、最初の極性における電流検出部4での検出結果が電流Iが流れていないとの結果のときにのみ、検査電圧Vtstの極性を入れ替えて、次の極性における電流検出部4での検出結果を取得する構成を採用することもできる。
また、上記したように、太陽電池ストリング12は一般的には複数の太陽電池モジュール21が直列接続されて構成されているが、太陽電池ストリング12が1つの太陽電池モジュール21で構成されている太陽電池アレイ11では、検査対象である太陽電池ストリング12が太陽電池モジュール21自体となる。
1 太陽電池検査装置
2 電圧出力部
3 極性切替部
4 電流検出部
6 処理部
12 太陽電池ストリング
21 太陽電池モジュール
22 クラスタ
23 太陽電池(太陽電池セル)
24 バイパスダイオード
V1 電圧値
Vtst 検査電圧

Claims (3)

  1. 複数の太陽電池および当該複数の太陽電池に並列接続されたバイパスダイオードを有するクラスタが複数直列接続されて構成された太陽電池ストリングにおける前記バイパスダイオードについてのオープン故障の有無を検査する太陽電池検査装置であって、
    前記複数の太陽電池のダイオードとしての順方向電圧の総和を下回り、かつ複数の前記バイパスダイオードの順方向電圧の総和を上回る電圧値で直流電圧を生成して検査電圧として出力する電圧出力部と、
    前記太陽電池ストリングの一対の出力端子間に前記検査電圧が印加されているときに当該太陽電池ストリングに電流が流れているか否かを検出する電流検出部と、
    前記オープン故障の有無を検査する検査処理を実行する処理部とを備え、
    前記処理部は、前記検査処理において、前記一対の出力端子のうちの一方の出力端子が他方の出力端子に対して高電圧となる第1極性で前記検査電圧が印加されているときの前記電流検出部での第1検出結果、および前記他方の出力端子が前記一方の出力端子に対して高電圧となる第2極性で前記検査電圧が印加されているときの前記電流検出部での第2検出結果を取得すると共に、当該第1検出結果および当該第2検出結果の双方が前記電流が流れていないとの結果のときには、前記複数のバイパスダイオードの少なくとも1つにオープン故障が有ると判別し、当該第1検出結果および当該第2検出結果の一方が前記電流が流れていないとの結果であって、かつ当該第1検出結果および当該第2検出結果の他方が前記電流が流れているとの結果のときには、前記複数のバイパスダイオードにオープン故障が無いと判別する太陽電池検査装置。
  2. 前記検査電圧を入力すると共に当該検査電圧を前記一対の出力端子間に前記第1極性および前記第2極性のうちの選択されたいずれかの極性に切り替えて印加する極性切替部を有し、
    前記処理部は、前記検査処理において、前記極性切替部に対する制御を実行して前記検査電圧を前記いずれかの極性に切り替える請求項1記載の太陽電池検査装置。
  3. 複数の太陽電池および当該複数の太陽電池に並列接続されたバイパスダイオードを有するクラスタが複数直列接続されて構成された太陽電池ストリングにおける前記バイパスダイオードについてのオープン故障の有無を、前記複数の太陽電池のダイオードとしての順方向電圧の総和を下回り、かつ複数の前記バイパスダイオードの順方向電圧の総和を上回る電圧値の検査電圧を前記太陽電池ストリングの一対の出力端子間に当該一対の出力端子のうちの一方の出力端子が他方の出力端子に対して高電圧となる第1極性および当該他方の出力端子が当該一方の出力端子に対して高電圧となる第2極性に切り替えて印加しつつ、当該第1極性での印加のときに前記太陽電池ストリングに電流が流れているか否かの第1検出結果および当該第2極性での印加のときに前記太陽電池ストリングに電流が流れているか否かの第2検出結果を取得すると共に、当該取得した第1検出結果および第2検出結果に基づいて前記バイパスダイオードについてのオープン故障の有無を検査する太陽電池検査方法であって、
    前記第1検出結果および前記第2検出結果の双方が前記電流が流れていないとの結果のときには、前記複数のバイパスダイオードの少なくとも1つにオープン故障が有ると判別し、前記第1検出結果および前記第2検出結果の一方が前記電流が流れていないとの結果であって、かつ当該第1検出結果および当該第2検出結果の他方が前記電流が流れているとの結果のときには、前記複数のバイパスダイオードにオープン故障が無いと判別する太陽電池検査方法。
JP2016111398A 2016-06-03 2016-06-03 太陽電池検査装置および太陽電池検査方法 Active JP6710583B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111398A JP6710583B2 (ja) 2016-06-03 2016-06-03 太陽電池検査装置および太陽電池検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111398A JP6710583B2 (ja) 2016-06-03 2016-06-03 太陽電池検査装置および太陽電池検査方法

Publications (2)

Publication Number Publication Date
JP2017220965A true JP2017220965A (ja) 2017-12-14
JP6710583B2 JP6710583B2 (ja) 2020-06-17

Family

ID=60658204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111398A Active JP6710583B2 (ja) 2016-06-03 2016-06-03 太陽電池検査装置および太陽電池検査方法

Country Status (1)

Country Link
JP (1) JP6710583B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740545A (zh) * 2018-09-21 2021-04-30 松下电器产业株式会社 太阳能电池组件
JP2021151034A (ja) * 2020-03-18 2021-09-27 株式会社アイテス 住宅用太陽電池診断システム
CN116482437A (zh) * 2023-04-26 2023-07-25 南通大学 一种基于双向检测法的断点检测装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011428A (ja) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp 故障検知装置、故障検知システム、及び故障検知方法
JP2015188306A (ja) * 2014-03-13 2015-10-29 石川県 太陽電池回路の検査装置及び検査方法
JP2015228724A (ja) * 2014-05-30 2015-12-17 三菱電機株式会社 太陽電池モジュール及びその故障検出方法
JP2016019408A (ja) * 2014-07-10 2016-02-01 株式会社成宏電機 検査システム、電源装置、撮影装置、及び、検査方法
US20160061881A1 (en) * 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011428A (ja) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp 故障検知装置、故障検知システム、及び故障検知方法
JP2015188306A (ja) * 2014-03-13 2015-10-29 石川県 太陽電池回路の検査装置及び検査方法
JP2015228724A (ja) * 2014-05-30 2015-12-17 三菱電機株式会社 太陽電池モジュール及びその故障検出方法
JP2016019408A (ja) * 2014-07-10 2016-02-01 株式会社成宏電機 検査システム、電源装置、撮影装置、及び、検査方法
US20160061881A1 (en) * 2014-09-02 2016-03-03 Mei Zhang Smart Junction Box for Photovoltaic Systems

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740545A (zh) * 2018-09-21 2021-04-30 松下电器产业株式会社 太阳能电池组件
JP2021151034A (ja) * 2020-03-18 2021-09-27 株式会社アイテス 住宅用太陽電池診断システム
JP7138355B2 (ja) 2020-03-18 2022-09-16 株式会社アイテス 住宅用太陽電池診断システム
CN116482437A (zh) * 2023-04-26 2023-07-25 南通大学 一种基于双向检测法的断点检测装置及其使用方法
CN116482437B (zh) * 2023-04-26 2023-10-31 南通大学 一种基于双向检测法的断点检测装置及其使用方法

Also Published As

Publication number Publication date
JP6710583B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6113220B2 (ja) 太陽電池検査装置および太陽電池検査方法
US20120081128A1 (en) System and method for detection of open connections between an integrated circuit and a multi-cell battery pack
JP2013036975A (ja) バッテリセルと外部回路とを接続するワイヤの断線の検出
JP6470490B2 (ja) 太陽電池ストリングの発電不良検出方法、発電不良検出装置および太陽光発電装置
JP2021526232A (ja) 開放検出方法及びled表示装置
JP2017220965A (ja) 太陽電池検査装置および太陽電池検査方法
KR102431408B1 (ko) 이차 전지 감시 장치 및 고장 진단 방법
JP6597394B2 (ja) アーク発生位置検出装置およびアーク発生位置検出方法
JP2015188306A (ja) 太陽電池回路の検査装置及び検査方法
JP2016208705A (ja) 太陽電池故障検出装置
WO2016199445A1 (ja) 太陽光発電システムの検査方法および検査装置
JP6665767B2 (ja) 検査支援装置およびその制御方法、検査システム、並びに制御プログラム
CN103780204B (zh) 光伏基板组串的故障检测方法
CN103245869A (zh) 一种集成电路电源管脚短路判定检测方法
TW202015329A (zh) 太陽光電系統
JP2018098922A (ja) 太陽光発電システムの検査装置および検査方法
JP2007155640A (ja) 集積回路の検査方法と検査装置
JP2017163669A (ja) 検査器およびその制御方法、制御プログラム
JP2016123232A (ja) 太陽電池の検査方法およびその装置並びに太陽電池検査装置に用いられる信号源
JP2014011429A (ja) 導通不良検知装置、導通不良検知システム、及び導通不良検知方法
JP6821477B2 (ja) 太陽電池検査装置および太陽電池検査方法
JP6821478B2 (ja) 太陽電池検査装置
JP6829099B2 (ja) 太陽電池検査装置および太陽電池検査方法
WO2020087363A1 (zh) 测试系统
JP2015114198A (ja) コンタクト検査装置、コンタクト検査方法及び電子部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200527

R150 Certificate of patent or registration of utility model

Ref document number: 6710583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250