JP2017216031A - 不揮発性メモリ装置 - Google Patents

不揮発性メモリ装置 Download PDF

Info

Publication number
JP2017216031A
JP2017216031A JP2017091129A JP2017091129A JP2017216031A JP 2017216031 A JP2017216031 A JP 2017216031A JP 2017091129 A JP2017091129 A JP 2017091129A JP 2017091129 A JP2017091129 A JP 2017091129A JP 2017216031 A JP2017216031 A JP 2017216031A
Authority
JP
Japan
Prior art keywords
data
circuit
resistance
memory
memory cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017091129A
Other languages
English (en)
Other versions
JP6817888B2 (ja
Inventor
裕平 吉本
Yuhei Yoshimoto
裕平 吉本
佳一 加藤
Keiichi Kato
佳一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2017216031A publication Critical patent/JP2017216031A/ja
Application granted granted Critical
Publication of JP6817888B2 publication Critical patent/JP6817888B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5685Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using storage elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/24Memory cell safety or protection circuits, e.g. arrangements for preventing inadvertent reading or writing; Status cells; Test cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0042Read using differential sensing, e.g. bit line [BL] and bit line bar [BLB]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/005Read using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0052Read process characterized by the shape, e.g. form, length, amplitude of the read pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0083Write to perform initialising, forming process, electro forming or conditioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】高信頼を向上した不揮発性メモリ装置を提供する。【解決手段】不揮発性メモリ装置10は、可変状態および初期状態の何れかを取り、初期状態の少なくとも一つのメモリセル21を含む第2メモリグループ8を含む、抵抗変化型の複数のメモリセル21と、複数のメモリセル21から抵抗値情報を読み出す抵抗検出回路、および抵抗検出回路が読み出した抵抗値情報に応じたディジタルデータを生成するデータ生成回路を備えた読み出し回路11と、を備える。抵抗検出回路は、可変状態のメモリセルを読み出すための第1読み出し電圧よりも大きく、初期状態から可変状態に変化するための電気的ストレスであるフォーミングパルスの電圧よりも小さい第2読み出し電圧を第2メモリグループ8の少なくとも一つのメモリセル21に印加することにより、当該少なくとも一つのメモリセル21から抵抗値情報を読み出す。【選択図】図16

Description

本開示は、不揮発性メモリ装置に関し、特に、抵抗変化型の不揮発性メモリセルを複数有する不揮発性メモリ装置に関する。
様々なモノ同士がインターネット通信で接続されるIoT(Internet of Things)技術が普及し始めている。交通系IC(Integrated Circuit)カードやスマートフォン端末といった消費者に身近な製品のみならず、センサや車載ECU(Engine Control Unit)など、様々なデバイス間の通信が頻繁に行われている。このような状況の中、通信における相互認証や通信データの暗号化にあたって常により高いレベルのセキュリティ技術が求められている。
ソフトウェア技術に関しては、高度な暗号アルゴリズムを中心としたプログラム処理の暗号化技術が蓄積されており、十分なセキュリティが達成されている。しかし、技術進歩により、回路内部の情報を外部から直接読み取られる懸念が急速に高まっている。
特許文献1は、このような懸念への対応策を提案している。一般的に、セキュリティを強化したICでは、内部に搭載する暗号回路を用いて機密情報を暗号化することによって情報の漏洩を防止している。この場合、内部に保持している暗号鍵(「秘密鍵」ともいう。)の情報を外部に漏洩させないことが必須となる。
近年、これらの課題を解決するために、ICのセキュリティ性を高める様々な技術が提案されている(特許文献2、3、非特許文献1、2)。
国際公開第2012/014291号 特表2013−545340号公報 国際公開第2014/119327号
本開示の一態様は、信頼性を向上した不揮発性メモリ装置を提供する。
本開示の一態様にかかる不揮発性メモリ装置は、可変状態および初期状態の何れかを取り、前記初期状態の少なくとも一つのメモリセルを含む第2メモリグループを含む、抵抗変化型の複数のメモリセルと、前記複数のメモリセルから抵抗値情報を読み出す抵抗検出回路、および前記抵抗検出回路が読み出した前記抵抗値情報に応じたディジタルデータを生成するデータ生成回路を備えた読み出し回路と、を備える。前記抵抗検出回路は、可変状態のメモリセルを読み出すための第1読み出し電圧と、前記第1読み出し電圧よりも大きく、前記初期状態から前記可変状態に変化するための電気的ストレスであるフォーミングパルスの電圧よりも小さい第2読み出し電圧とを選択的に印加する電圧印加回路を備える。前記電圧印加回路が前記第2メモリグループの前記少なくとも一つのメモリセルに前記第2読み出し電圧を印加することにより、前記抵抗検出回路は当該少なくとも一つのメモリセルから前記抵抗値情報を読み出す。
本開示の一態様に係る不揮発性メモリ装置は、信頼性を高めることができる。
抵抗変化型メモリセル(ReRAMメモリセル)の構成を示す図 初期状態のメモリセルの電圧−電流特性を示すグラフ 絶縁破壊によるフォーミングが実施されたメモリセルの構造を示す模式図 初期状態の1キロビットのメモリセルにおける1回目の読み出し時の電流値と2回目の読み出し時の電流値との関係を示す図 可変状態の1キロビットのメモリセルにおける1回目の読み出し時の電流値と2回目の読み出し時の電流値との関係を示す図 初期状態の4キロビットのメモリセルにおける高温放置前と放置後のセル電流分布を比較したグラフ 4キロビットのメモリセルに対して読み出し電圧0.4Vと1.8Vで読み出した場合の抵抗ばらつき分布特性を示す図 読み出し電圧を0.4Vと1.8Vにしてメモリセルを読み出した場合のセル電流の分布を示す図 実施の形態にかかる抵抗変化型不揮発性メモリ装置の概略構成の一例を示すブロック図 実施の形態にかかる抵抗変化型不揮発性メモリ装置が備えるメモリセルの概略構成の一例を示す断面図 初期状態の抵抗値範囲を持つ複数のメモリセルから取得された抵抗値情報の分布を示す図 実施の形態にかかる抵抗変化型不揮発性メモリ装置が備えるメモリセルの抵抗値範囲の一例を示すグラフ 実施の形態にかかる抵抗変化型不揮発性メモリを利用した、PUFデータの登録および再生時の処理を示すフローチャート 実施の形態にかかる抵抗変化型不揮発性メモリを利用した、FHDデータの登録時の処理を示すフローチャート 実施の形態にかかる抵抗変化型不揮発性メモリを利用した、FHDデータの再生時の処理を示すフローチャート 本開示の不揮発性メモリ装置の具体的な構成例を示すブロック図 本開示の不揮発性メモリ装置が備える読み出し回路の構成例を示す回路図 選択されたメモリセルを読み出し回路が放電方式にて読み出す場合のタイミングチャート 本開示の不揮発性メモリ装置が備える中央値検出回路の構成例を示す回路図 変形例にかかる中央値検出回路の構成例を示す回路図 中央値検出回路が実際に抵抗中央値を算出した結果を示す図 可変状態(ここでは、第2抵抗状態)の抵抗分布と、初期状態の抵抗分布とについて、高温加速劣化実験においてディジタルIDデータを再生したときのエラーレートを示したグラフ 本開示にかかる応用例の通信システムの構成例を示すブロック図
(本開示の基礎となる知見)
近年、PUF(物理的複製困難関数;Physically Unclonable Function)やFHD(フォーミング隠蔽データ:Forming Hidden Data)技術が提案されている。PUF技術は、製造ばらつきを活用してICごとに異なるユニークな個体識別情報を生成する技術である。以降、本明細書ではPUF技術により生成された個体識別情報を「PUFデータ」と呼ぶ。PUFデータはICの物理特性のばらつきに関連づけられた各デバイス固有の乱数データであると言える。ICごとにその物理特性を人為的に制御することが不可能であるため、物理的な複製が不可能なデータを生成することができる。
具体的な先行例として、特許文献2や非特許文献1のようなSRAM PUFが例示され得る。これらの例では、SRAMにおける各メモリセルにおいて、主にトランジスタの閾値電圧Vtばらつき(すなわち、動作電圧のばらつき)により電源投入時の初期値のディジタルデータが1状態になりやすいか、0状態になりやすいかが異なる現象を用いている。1状態になりやすいか、0状態になりやすいかは、各メモリセルごとに固有であり、SRAMの初期値データは互いに異なっている。つまり、SRAMに電源投入したときの初期値データがPUFデータとして用いられる。
その他にも、非特許文献2のような、ReRAM PUFが例示され得る。この例は、ReRAMの各メモリセルの抵抗ばらつきを利用し、2つの同一状態のメモリセルを選択し、互いのメモリセルの抵抗値の大小関係からディジタルIDデータを生成する方式である。同一抵抗状態における抵抗ばらつきは、IC毎にランダムに異なるため、この抵抗ばらつきがディジタルIDデータとして用いられている。
このように、PUF技術により、各IC固有の乱数となるPUFデータが複製できないデータとして生成される。このPUFデータは、前述した秘密鍵を暗号化するデバイス鍵として用いられる。デバイス鍵(つまり、PUFデータ)によって暗号化された秘密鍵は、暗号化された状態で不揮発性メモリに保存される。すなわち、不揮発性メモリに記録された暗号化秘密鍵はデバイス鍵でしか元の秘密鍵データに復号できない。よって、ハッキングにより不揮発性メモリ内のデータが全てハードコピーされたとしても、各IC固有のデバイス鍵(つまり、PUFデータ)が複製できないため暗号化秘密鍵が元に戻せず利用することができない。
一方、FHD技術は、特許文献3に示すようなReRAMの物理特性を利用したデータ記録技術である。以降、本明細書ではFHD技術により記録された情報を「FHDデータ」と呼ぶ。ReRAMのメモリセルは、非常に抵抗値の高い絶縁状態である初期状態に対し、フォーミングと呼ばれる通常の書き換え電圧よりも大きな電圧ストレスを印加することで絶縁破壊を引き起こさせる工程を経て、通常の記録データとなる書き換えが可能な可変状態へと遷移させる。一方FHDデータは、可変状態での書き換えを記録データとして扱うのではなく、フォーミングストレス印加前の初期状態と可変状態とを混在させて記録データとして扱う技術である。FHDデータは、通常の記録データとは判定閾値が異なるため、通常の記録データの判定閾値では読み出すことができず、特殊なコマンドから設定されたFHDデータ用の判定閾値のみで読み出すことが可能である。よって、ユーザ側から不正にアクセスしてFHDデータを盗むことができない。したがって、FHDデータを隠蔽データとして扱うことが可能となる。
前述のようにPUFやFHD技術はICのセキュリティ性を高める重要な技術である。しかしながら、従来のセキュリティ性に加え、様々な環境下でも安定したデータを読み出すことができる信頼性や省面積化が要求される。
本開示の一態様は、セキュリティ性を維持しつつ、より高信頼かつ省面積化が実現できる不揮発性メモリ装置を提供する。
ここで、実施の形態について説明する前に、ReRAMの原理に紐付けながら、実験で見出された知見について説明する。なお、以下の説明は、本開示を理解する上でのデータの一例であり、本開示を限定するものではない。
本願発明者らは、いわゆる、1T1R型メモリセルで構成されたメモリセルアレイを用いて実験を行い、実験データを取得した。1T1R型メモリセルは、酸素不足型のTa酸化物(TaOx)を用いた抵抗変化型メモリセル(以下、単に「メモリセル」ともいう)であって、各メモリセルが1つのトランジスタと1つの抵抗変化素子とで構成される。
図1は、抵抗変化型メモリセル(ReRAMメモリセル)21の構成を示す図である。メモリセル21は、直列に接続された1つのトランジスタ24と1つの抵抗変化素子23とで構成される。抵抗変化素子23は、例えば、素子の大きさが約400nm×400nm、下部電極の材料がTaN、下部電極の厚さが約50nm、上部電極の材料がIr、上部電極の厚さが約100nmである。抵抗変化素子23の抵抗変化層の材料と厚さについては、TaOが約650nm、Taが約5nmである。図2は、初期状態のReRAMメモリセル1bitに対して、印加する電圧を0Vから3Vに0.1V間隔で上昇させた場合に流れる電流を示す電圧−電流特性のグラフ(正方形印のプロット)である。ReRAMメモリセルの製造直後の初期状態は非常に高抵抗な絶縁状態である。この初期状態で印加電圧を上昇すると、電流値を示す対数軸に対し、セル電流は線形的に増加する。セル電流が、2.8V〜3.0V付近の高電圧に達すると、初期状態は素子の一部分が絶縁破壊されるフォーミングと呼ばれる現象が発生する。
図3に示すように、絶縁破壊によるフォーミングが実施されたメモリセル21は、Taの一部分にフィラメントと呼ばれる導電性パスが形成される。このフィラメントのメカニズムについて説明する。メモリセル21に対し、高電圧を印加することで、Ta内の一部の酸素イオンが抜け出し、酸素欠損が発生する。この発生した酸素欠損はTa内にランダムに配置され確率的に連なりを形成することで導電性パスとして現れる。これのより、メモリセル21は初期状態よりも低い抵抗値に設定される。一度フォーミングによって絶縁破壊したメモリセル21は、初期状態レベルの抵抗値に戻すことができない。一方で、フォーミングにより発生したTaに存在する酸素欠損は、正負の異なる電圧パルスを印加することで、酸素欠損の量を調整することが可能である。よって、正負の異なる電圧パルスを印加することで、高抵抗状態と低抵抗状態の二つの抵抗状態を切り替えることができる。この可変状態を利用してスイッチングが実現できる。それら2つの状態は電源を切っても保持できるため、メモリセル21を不揮発性メモリとして利用することが可能である。
続いて初期状態と可変状態の特性の違いについて説明する。図4は、初期状態の1キロビットメモリセルについて、横軸を1回目の読み出し時の電流値、縦軸を2回目の読み出し時のメモリセルの電流値とし、これらの電流値の関係を正方形印のプロットで示す図である。図5は、可変状態の1キロビットメモリセルについて、横軸を1回目の読み出し時の電流値、縦軸を2回目の読み出し時の電流値とし、これらの電流値の関係を菱形印のプロットで示す図である。これらの図を比較すると、可変状態は初期状態に比べ、一回目と二回目でメモリセルの電流値の変動量が大きいことが確認できる。この理由は、以下のメカニズムによると考えられる。すなわち、可変状態において形成されたフィラメント内に存在する酸素欠損が時間と共に移動することで、酸素欠損の連なりから成る導電性パスも僅かに変化していると考えられる。これが電流値の揺らぎとして観測される。一方、初期状態は、フィラメントが形成されていない状態であり、Ta内にも酸素欠損がほぼ存在していない状態である。よって、電流値は、揺らぎが小さく非常に安定的である。
更に、初期状態の抵抗値の安定性は、図6でも示すことができる。図6は、初期状態の4キロビットのメモリセルにおいて、175℃で4時間の高温放置による加速劣化試験を実施したときの、高温放置前と放置後のセル電流分布を比較したグラフである。図6では、横軸をメモリセルの電流値、縦軸を累積確率のσ分布とし、高温放置前のセル電流分布を灰色菱形印でプロットし、放置後のセル電流分布を黒色正方形印でプロットしている。この図からも明らかなように、初期状態は、抵抗値の劣化もほとんど見られず非常に安定的な抵抗状態であることが確認できる。
以上の実験データから得られた、本願発明者らが得た初期状態のメモリセルに対する知見は以下の2つである。
・初期状態のメモリセルのセル電流は、フォーミング電圧までは電圧に対し対数線形性を持つ。
・初期状態の抵抗変化素子は、可変状態の抵抗変化素子に比べ、揺らぎや経年劣化が小さく、安定的で信頼が高い。
上述した知見を活用すれば、例えば以下のような応用技術への展開、および課題解決が実現可能と考えられる。
(1)PUF技術への展開
非特許文献2では、可変状態の抵抗値のばらつきを利用しているため、経年劣化が大きく安定的なPUFデータの再現性に課題があった。
そこで、本願発明者らは、初期状態の特徴を応用する。図7は、4キロビットのメモリセルに対し、通常の読み出し電圧0.4Vで読み出した場合と読み出し電圧を1.8Vに昇圧して読み出しした場合の抵抗ばらつき分布特性を示している。図7では、横軸を電流、縦軸を累積確率のσ分布とし、通常読み出し電圧0.4Vの場合を黒色正方形印でプロットし、読み出し電圧1.8Vの場合を灰色菱形印でプロットしている。通常の読み出し電圧では、電流値が非常に微小で、初期状態の抵抗ばらつき分布を回路によって検知することが困難であった。読み出し電圧の昇圧により、初期状態の抵抗ばらつき分布を回路で検知可能なセル電流レベルにまで増幅することで、初期状態を利用したPUF技術への応用が可能となった。これにより、安定的なPUFデータを生成することができ、再現性の向上が実現できる。
(2)FHD技術に対する課題解決
特許文献3では、初期状態と可変状態の第1抵抗状態とを区別するFHDデータの判定閾値を設定し、FHDデータを初期状態と第1抵抗状態とで記録する。このFHDデータの判定閾値は、ReRAMの抵抗変化素子の可変状態における第1抵抗状態と第2抵抗状態とを区別する通常記録データの判定閾値とは異なる。これにより、セキュリティ性が向上する。しかし、本願発明者らは、FHD技術の検討を進めていく上で以下の点に気付いた。すなわち、高温環境時(例えば125℃)では、周辺回路の各トランジスタのリーク電流が増大する。よって、非常に僅かな電流差を判別するFHDデータの判定閾値では、判定閾値の電流値(約1uA)をリーク電流(1〜1.5uA)が上回る。このため、通常記録データで用いられている回路を利用したFHDデータの読み出しが困難となる。
そこで、本発明者らは、前述した初期状態の特徴を着眼した。図8に示すように、通常読み出し電圧よりも大きな電圧でFHDデータを読み出すことで、初期状態と第1抵抗状態の電流の絶対値を増大させることができる。図8は、メモリセルの各状態(初期状態、HR状態、LR状態)において、読み出し電圧を0.4Vと1.8Vにしてメモリセルを読み出した場合のセル電流の分布を示す図である。通常読み出し電圧よりも大きな電圧でFHDデータを読み出すことにより、高温環境下においても、トランジスタのリーク電流値よりも判定閾値を高く設定できる。よって、従来の回路でのFHDデータの読み出しが実現可能となる。
また、上述した(1)PUFと(2)FHDの実装では、PUFデータとFHDデータの生成を行う多くの回路要素を、通常の不揮発性メモリ装置として搭載される回路と共通化することが可能となる。そのため、ディジタルIDデータの生成のために増加する回路規模を大きく抑制することができ高度に小型化(つまり、省面積化)し得る。
本願発明者らによる知見に基づいて、本開示の一態様の概要は以下のとおりである。
本開示の一形態にかかる不揮発性メモリ装置は、可変状態および初期状態の何れかを取り、前記初期状態の少なくとも一つのメモリセルを含む第2メモリグループを含む、抵抗変化型の複数のメモリセルと、前記複数のメモリセルから抵抗値情報を読み出す抵抗検出回路、および前記抵抗検出回路が読み出した前記抵抗値情報に応じたディジタルデータを生成するデータ生成回路を備えた読み出し回路と、を備える。前記抵抗検出回路は、可変状態のメモリセルを読み出すための第1読み出し電圧と、前記第1読み出し電圧よりも大きく、前記初期状態から前記可変状態に変化するための電気的ストレスであるフォーミングパルスの電圧よりも小さい第2読み出し電圧とを選択的に印加する電圧印加回路を備える。前記電圧印加回路が前記第2メモリグループの前記少なくとも一つのメモリセルに前記第2読み出し電圧を印加することにより、前記抵抗検出回路は当該少なくとも一つのメモリセルから前記抵抗値情報を読み出す。前記複数のメモリセルは、さらに、前記可変状態の複数のメモリセルを含む第1メモリグループを含んでもよい。前記読み出し回路は、さらに、前記第2メモリグループの前記少なくとも一つのメモリセルが読み出される場合、前記抵抗検出回路が当該少なくとも一つのメモリセルに印加する電圧を前記第2読み出し電圧に設定し、前記第1メモリグループの前記複数のメモリセルが読み出される場合、前記抵抗検出回路が当該複数のメモリセルに印加する電圧を前記第1読み出し電圧に設定する電圧設定回路を備えてもよい。前記可変状態の前記複数のメモリセルは、それぞれ、極性の異なる電圧パルスが印加されることによって抵抗値が複数の可変抵抗値範囲の間を可逆的に遷移してもよい。前記初期状態の前記少なくとも一つのメモリセルは、それぞれ、前記フォーミングパルスが印加されない限り前記可変状態とならず、かつ抵抗値が前記可変抵抗値範囲と重複しない初期抵抗値範囲にあってもよい。
これにより、初期状態のメモリセルが少なくとも一つ含まれる第2メモリグループに対しては、可変状態のメモリセルが複数含まれる第1メモリグループ内のメモリセルの読み出し時に印加する第1読み出し電圧よりも大きく、かつ、フォーミングパルスの電圧よりも小さい第2読み出し電圧を印加するので、初期状態のメモリセルの抵抗値のばらつきが読み出される。初期状態の抵抗値のばらつきは、任意に書き込むことができず、電流値の揺らぎも小さく非常に安定的なPUFデータの情報源である。さらに、PUFデータの情報源としての回路を、通常の不揮発性メモリ装置として搭載される回路と共通化することが可能となる。これにより、セキュリティ性を維持しつつ、より高信頼かつ省面積化が実現できる不揮発性メモリ装置が実現される。なお、第2メモリグループには、さらに、一つ又は複数の可変状態のメモリセルが含まれていても良い。第2メモリグループの一つ又は複数の可変状態のメモリセルの読み出し時にも第2読み出し電圧を印加してもよい。
ここで、前記第2メモリグループの前記少なくとも一つのメモリセルは、前記初期状態の複数のメモリセルを含んでもよい。前記データ生成回路は、前記第2メモリグループに含まれる前記複数のメモリセルの前記抵抗値情報を互いに比較することで第1セキュリティデータを生成してもよい。前記不揮発性メモリ装置は、さらに、前記第2メモリグループの前記複数のメモリセルから得られる前記抵抗値情報から判定値を生成する判定値生成回路を含んでもよい。前記データ生成回路は、前記判定値生成回路が生成した前記判定値を利用して、前記第2メモリグループの前記複数のメモリセルから前記抵抗検出回路が読み出した前記抵抗値情報に応じた前記第1セキュリティデータを生成してもよい。前記判定値は、2値化基準値であってもよい。
これにより、第2メモリグループに含まれるメモリセルの抵抗値情報を比較することで、PUFデータである第1セキュリティデータが生成されるので、第1セキュリティデータを生成するのに必要な閾値が不揮発性メモリ装置に依存して決定され、高いセキュリティ性が維持される。
また、前記初期状態の前記少なくとも一つのメモリセルは、前記第2メモリグループに含まれるメモリセル全体の半数以上であってもよい。
これにより、第2メモリグループの半数以上を占める初期状態のメモリセルを、PUFデータである第1セキュリティデータの情報源として使用できる。
また、前記可変状態は、第1抵抗状態と当該第1抵抗状態よりも抵抗値の高い第2抵抗状態とを含み、前記初期状態の抵抗値は、前記第2抵抗状態の抵抗値よりも高くてもよい。
これにより、可変状態よりも高い抵抗値である初期状態がPUFデータである第1セキュリティデータの情報源として使用される。
また、前記第1メモリグループには、前記第1抵抗状態と前記第2抵抗状態とを利用したデータが記録され、前記第2メモリグループには、前記可変状態と前記初期状態とを利用した、第2セキュリティデータが記録されてもよい。
これにより、第2メモリグループには、可変状態と初期状態とを利用したFHDデータである第2セキュリティデータが記録される。これにより、可変状態と初期状態とが混在した状態でFHDデータによる記録および再生が行われる。再生においては、可変状態に対する閾値とは異なる閾値を用いる必要があるので、高いセキュリティ性を維持した状態でデータが隠蔽される。
また、前記第2メモリグループには、前記第1セキュリティデータと前記第2セキュリティデータとが記録されていてもよい。
これにより、第2メモリグループには、PUFデータである第1セキュリティデータとFHDデータである第2セキュリティデータとが記録されるので、ランダム性の高い情報源(すなわち、PUFデータの情報源)であり、かつ、高いセキュリティ性を維持した状態でデータの隠蔽(すなわち、FHDデータの記録)が可能な不揮発性メモリ装置が実現される。
また、前記第2メモリグループには、前記第1セキュリティデータを利用して暗号化された第3セキュリティデータが記録されていてもよい。
これにより、第2メモリグループには、第1セキュリティデータを利用して暗号化された第3セキュリティデータが記録されるので、例えば、PUFデータを鍵として暗号化された秘密鍵をFHDデータとして第2メモリグループに記録することができる。これにより、PUFデータとFHDデータの両方を利用した極めて高いセキュリティ性をもつデータ記録が実現される。
以下、添付図面を参照しながら、本開示の詳細を説明する。以下で説明する実施の形態は、いずれも一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、あくまで一例であり、本開示を限定するものではない。以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同一または同様の構成については、同じ符号を付す。同じ符号が付いたものは、説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比等については正確な表示ではない場合がある。また、製造方法においては、必要に応じて、各工程の順序等を変更でき、かつ、他の公知の工程を追加できる。
(実施の形態)
(本開示で用いる抵抗変化型不揮発性メモリ装置の概要)
図9は、実施の形態にかかる抵抗変化型不揮発性メモリ装置100の概略構成の一例を示すブロック図である。また、図10は、実施の形態にかかる抵抗変化型不揮発性メモリ装置100が備えるメモリセル91の概略構成の一例を示す断面図である。なお、抵抗変化型不揮発性メモリ装置は、不揮発性メモリ装置の一例である。本実施形態では、抵抗変化型不揮発性メモリ装置を、不揮発性メモリ装置、抵抗変化型不揮発性メモリ、または不揮発性メモリともいう。
図9に示す例では、本実施の形態の抵抗変化型不揮発性メモリ装置100は、少なくともメモリセルアレイ90を備えている。不揮発性メモリ装置100は、さらに、制御装置94を備えていてもよい。なお、制御装置94は必ずしも不揮発性メモリ装置100の一部である必要はなく、不揮発性メモリ装置100外に接続された制御装置を用いて、以下に説明する動作が行われてもよい。
メモリセルアレイ90は、複数のメモリセル91がアレイ状に配置された構成を有する。メモリセルアレイ90内は、第2メモリグループの一例であるメモリα領域92と、第1メモリグループの一例であるメモリβ領域93とに分類されている。
制御装置94は、アクセスするメモリセル91がメモリα領域92に属するか、メモリβ領域93に属するかに応じて、メモリセル91に印加する読み出し電圧の設定を切り替える。メモリα領域92の読み出し電圧はメモリβ領域93の読み出し電圧よりも高い電圧が設定される。
不揮発性メモリ装置100のメモリα領域92を個体識別情報として利用し、PUFデータを生成する場合には、各抵抗値が、同一の初期状態の抵抗値範囲に属している複数の不揮発性メモリセルを利用する。制御装置94は同一の初期状態の抵抗値範囲を持つ複数のメモリセルから抵抗値情報を取得し、中央値を算出する。図11は、初期状態の抵抗値範囲を持つ複数のメモリセルから取得された抵抗値情報の分布を示す図である。抵抗値情報の分布は菱形印のプロットで示している。算出された中央値は、図11に示すように、2値化の判定閾値(判定値の一例)として設定される。この2値化の判定閾値を用いて、同一初期状態にある複数のメモリセルに0または1のディジタルデータのいずれの値を割り当てるかを判定することで、PUFデータが生成される。ここでの「初期状態」とは、抵抗値が可変抵抗値範囲と重複しない初期抵抗値範囲にある状態をいう。初期状態にあるメモリセルは、フォーミングが行われない限り可変状態とならない。「フォーミング」とは、所定の電気的ストレスをメモリセルに印加して、メモリセルの抵抗値が複数の可変抵抗値範囲の間を可逆的に遷移する状態へと、メモリセルを変化させることをいう。
フォーミングのために印加される電気的ストレス(すなわち、フォーミングストレス)は、例えば、所定の電圧と時間幅を有する電気的パルスであってもよい。また、フォーミングストレスは、複数の電気的パルスを組み合わせたものであってもよい。また、フォーミングストレスは、累積的なストレスであってもよい。その場合、ストレスの累積量が所定量を超えたときに、メモリセル91(図10参照)は初期状態から可変状態に遷移する。
複数のメモリセル91は、製造後、フォーミングをしなければ抵抗値が複数の可変抵抗値範囲の間を可逆的に遷移する状態とならないような性質を有しているとする。つまり、半導体プロセス等により製造した後、フォーミングストレスが印加される前の抵抗変化素子は、初期状態にあるとして説明する。この初期状態のメモリセル91の抵抗ばらつきは正規分布に従いランダムな性質を有する。一度フォーミングストレスによって可変状態に遷移したビットは、二度と初期状態の抵抗値レベルに書き戻すことはできない。以上を踏まえると、この初期状態の抵抗値範囲内では、任意のアドレスに2値データ意図的に書き分けることができない。すなわち、当該複数の不揮発性メモリセルにはユーザデータを書込むことはできない。つまり、初期状態の抵抗ばらつきが不揮発性メモリ装置100のPUFデータの情報源となる。
不揮発性メモリ装置100のメモリα領域92を秘密隠蔽情報として利用する。FHDデータを生成する場合には、初期状態の抵抗値範囲と、可変状態の高抵抗側(HR状態)の抵抗値範囲を利用してデータが記録される。
上述した「抵抗値範囲」の詳細について、図12を参照しながら詳細に説明する。
メモリセル91は、上述した初期状態に対し、フォーミングストレスが印加すると、可変状態へと遷移する。そして、メモリセル91は、異なる複数の電気的信号が印加されることによって、第1抵抗値範囲と第2抵抗値範囲の間を可逆的に遷移する可変状態を取りうる性質を有する。つまり、メモリセル91は、極性の異なる電圧パルスが印加されることによって抵抗値が複数の可変抵抗値範囲の間を可逆的に遷移する可変状態と、可変状態に変化させるための電気的ストレスであるフォーミングパルスが印加されない限り可変状態とならず、かつ抵抗値が可変抵抗値範囲と重複しない初期抵抗値範囲にある初期状態とを取りうる性質を有する。
図12は、実施の形態にかかる抵抗変化型不揮発性メモリ装置が備えるメモリセルの抵抗値範囲の一例を示すグラフである。図12に例示するように、FHDデータでは第1抵抗値範囲(可変状態におけるHR状態の抵抗値範囲)と初期抵抗値範囲(初期状態の抵抗値範囲)の抵抗差を利用してデータが記録される。
「抵抗値情報」とは、抵抗値と相関関係を有する情報であり、抵抗値そのものであってもよいし、抵抗値に応じて増減する値であってもよい。抵抗値に応じて増減する値は、後述するような、メモリセルに並列に接続されたコンデンサに蓄積された電荷が、選択されたメモリセルを介して放電される放電時間であってもよい。抵抗値に応じて増減する値は、逆に、ディスチャージされたコンデンサに所定の定電流を流し所定のレベルまでチャージされる充電時間でもよい。該放電時間または充電時間は、所定のクロック周期でカウントされたカウント値等であってもよい。なお、コンデンサは素子であることには限定されず、例えば配線などの寄生容量でもよい。
抵抗値情報は、所定の分解能のセンスアンプによって測定された値であってもよい。あるいは、抵抗値情報は、センスアンプによって測定された値が、閾値によって区分けされた複数の抵抗値範囲のいずれに該当するかを判定することによって得られた値であってもよい。その場合、複数の抵抗値範囲のそれぞれは、さらに細かく区分けされたものであってもよい。また、複数の抵抗値範囲の一部のみが、さらに細かく区分けされたものであってもよい。
図13は、実施の形態にかかる抵抗変化型不揮発性メモリを利用した、第1セキュリティデータの一例であるPUFデータの登録および再生時の処理を示すフローチャートである。
ステップS1で、不揮発性メモリは、メモリα領域92にアクセスする場合、メモリβ領域93で扱う0.4Vよりも高い1.8Vにまで読み出し電圧を昇圧する。ステップS2において、不揮発性メモリは、PUFデータが記録されているメモリセルの抵抗値情報を取得する。ステップS3で、不揮発性メモリは、取得したPUFデータの抵抗値情報を元に、図11に示す2値化の基準となる閾値(ばらつき分布の中央値)を算出する。ステップS4において、不揮発性メモリは、算出された閾値を最新の閾値として設定する。その後、不揮発性メモリは、ステップS5にてPUFデータの抵抗値情報を取得する。その後、不揮発性メモリは、ステップS6にて各抵抗値情報と閾値を比較することで、閾値よりも抵抗値が小さければステップS7で「1」のデータを割り当て、大きければステップS8で「0」のデータを割り当てる。不揮発性メモリは、PUFデータのディジタルIDデータ化の全アドレスの完了をステップS9で確認し、未完了の場合はステップS10にて次のアドレスを選択し、一方、完了であれば、フローを終了する。このように、PUFデータは、初期状態にあるメモリセルの抵抗値のばらつきを利用することで、第1セキュリティデータの一例であるPUFデータの登録および再生が行われる。
図14は、実施の形態にかかる抵抗変化型不揮発性メモリを利用した、第2セキュリティデータの一例であるFHDデータの登録時の処理を示すフローチャートである。図15は、FHDデータの再生時の処理を示すフローチャートである。
ステップS11では、不揮発性メモリの外部で生成されたIDデータのパターンが不揮発性メモリに入力され、あるいは、不揮発性メモリの内部でIDデータのパターンが生成される。ステップS12にて、不揮発性メモリは、入力されたデータの中で1に割り当てられたデータのみにフォーミング処理を実行する。更にステップS13にて、不揮発性メモリは、フォーミング処理を実行したメモリセルに対して、第1抵抗値範囲(HR状態)に抵抗値を収めるための書き込み処理を実行する。これにより、FHDデータの書き込み登録が完了する。
一方、FHDデータ再生時、不揮発性メモリは、ステップS14において、PUFデータの場合と同様、読み出し電圧を1.8Vまで昇圧設定する。その後、不揮発性メモリは、ステップS15にて抵抗値情報を読み出す。更に、ステップS16において、不揮発性メモリは、図12に示された第1閾値と、読み出された抵抗値情報が示す値とを比較し、その大小関係から、抵抗値情報をFHDのディジタルIDデータに変換する。これにより、ステップS17にてFHDデータが出力される。このように、初期状態にあるメモリセルの抵抗値と可変状態(ここでは、HR状態)にあるメモリセルの抵抗値との違いを利用することで、第2セキュリティデータの一例であるFHDデータの登録および再生が行われる。
では、次に本開示の方式を実現するための具体的な構成例について説明する。
図16は、本開示の不揮発性メモリ装置10の具体的な構成例を示すブロック図である。なお、図16はあくまで一例であり、実施の形態の不揮発性メモリ装置10の具体的構成が図16に示される構成に限定されるものではない。
図16に示すように、実施の形態における不揮発性メモリ装置10は、抵抗値の変化を利用してデータを保持可能な抵抗変化型のメモリセルを備えた装置である。不揮発性メモリ装置10は、半導体基板上に、メモリ本体部22を備えている。また、不揮発性メモリ装置10は、さらに、データ入出力回路6と、制御回路15と、アドレス入力回路16とを備えている。
メモリ本体部22は、読み出し回路11と、書き込み回路14と、カラムデコーダ回路17と、ロウデコーダ回路18と、メモリセルアレイ20と、判定値生成回路128と、誤り訂正およびパリティー生成回路400とを備えている。判定値生成回路128は、中央値検出回路25と、閾値選択回路28と、ID閾値レジスタ26と、データ閾値レジスタ27とを備えている。
書き込み回路14は、選択されたメモリセル21へ各動作における所定の電圧を印加してデータを書き込む。
読み出し回路11は、メモリセル21の抵抗値情報を取得する回路である。読み出し回路11は、ビット線に流れる電流の変化を、後述する読み出し方式により検知し、選択メモリセルの抵抗値情報をディジタルカウント値として取得する。
ロウデコーダ回路18は、メモリセルアレイ20に接続されている複数のm+1本のワード線WLの中から1つのワード線WLを選択する。
カラムデコーダ回路17は、n+1本のビット線BLとn+1本のソース線SLの中からS本のビット線BLと、それに対応するS本のソース線SLとを選択し、選択したビット線BLおよびソース線SLを書き込み回路14および読み出し回路11へ接続する。なお、n+1は複数であり、Sは並列読み出し数である。
ロウデコーダ回路18およびカラムデコーダ回路17は、並列的に読み出しおよび/または書き込みが行われる行および/または列の数に応じて動作可能である。
不揮発性メモリ装置10の読み出し回路11は、出力端子AおよびBと、入力端子Dを有する。入力端子Dには判定値生成回路128の閾値選択回路28が接続されている。
判定値生成回路128は、読み出し回路11に対して、読み出し時の判定閾値(判定値の一例)を提供する回路である。この判定閾値は、例えば、2値化基準値である。判定値生成回路128は、第2メモリグループの複数のメモリセルから得られる抵抗値情報から、2値化基準値を生成する機能を有する。
閾値選択回路28は、入力端子A、B、およびCを有し、入力端子Aには中央値検出回路25、入力端子BにはID閾値レジスタ26、入力端子Cにはデータ閾値レジスタ27が接続されている。閾値選択回路28は、これら3つの入力端子の中から何れか一つを選択し、読み出し回路11に対して、読み出し時の判定閾値を出力する。この閾値は、読み出し回路11が、カラムデコーダ回路17から得られた信号を0または1のデータとして2値化するために利用される。
中央値検出回路25は、PUFデータの生成時に必要な中央値となる判定閾値を出力する。ID閾値レジスタ26には、FHDデータを生成するたに必要な判定閾値が格納されている。入力端子Cに接続されたデータ閾値レジスタ27には、ユーザデータを生成するための判定閾値が格納されている。
また読み出し回路11は、出力端子Bを介して、カラムデコーダ回路17から得られた信号を中央値検出回路25に出力する。この信号は、PUFデータの生成時に用いる中央値を算出するために中央値検出回路25によって利用される。
さらに、読み出し回路11は、出力端子Aを介してHまたはLの出力Aを出力することにより、ユーザデータである0または1のデータ、および、ディジタルIDデータである0または1のデータを出力する。
検査工程時にディジタルIDデータに応じた誤り訂正のためのパリティーデータを生成する場合は、上述の出力端子Aから出力されるディジタルIDデータをデータ入出力回路6が受け取り、誤り訂正およびパリティー生成回路400に送る。
誤り訂正およびパリティー生成回路400は、ディジタルIDデータに応じた誤り訂正用のパリティーデータを演算し、演算結果をデータ入出力回路6に戻す。
なお誤り訂正およびパリティー生成回路400は、機能的には、誤り訂正を行う回路要素と、パリティーを生成する回路要素とに分けることが可能である。本実施の形態では、誤り訂正およびパリティー生成回路400は1つの回路として説明されているが、誤り訂正回路およびパリティー生成回路という別個の2つの回路として設けられてもよい。
データ入出力回路6は、パリティーデータを書き込み回路14に出力する。書き込み回路14は、ディジタルIDデータに応じた冗長のメモリセルにパリティーデータを書込む。なお、これらの制御は制御回路15を介して実行される。
中央値検出回路25の動作について、より詳しく説明する。読み出し回路11は、抵抗値情報のディジタルカウント値を、閾値選択回路28の入力端子Aを介して入力端子Dに入力される閾値と比較して、1または−1の中央値誤差信号を出力端子Bから出力する。出力端子Bから出力される中央値誤差信号は並列的に読み出されるチャンネル数(s)だけ同時に出力される。s個の中央値誤差信号は、中央値検出回路25に入力される。
中央値検出回路25は演算回路であり、たとえば半導体集積回路を用いて実現され得る。中央値検出回路25は、中央値誤差信号が小さくなるようにフィードバック制御されて抵抗中央値を算出する。中央値検出回路25は、算出した抵抗中央値を閾値選択回路28の入力端子Aに出力する。
不揮発性メモリ装置10にユーザがデータを書き込む場合は、外部からアドレス信号、データ信号、およびコントロール信号が不揮発性メモリ装置に入力される。これにより、書き込み処理が実行される。詳細には、外部から入力されるアドレス信号を受け取るアドレス入力回路16と、外部から入力されるコントロール信号に基づいてメモリ本体部22の動作を制御する制御回路15が、書き込むアドレスを選択するとともに書き込みパルスを印加する制御を行う。データ入出力回路6は外部から入力されるデータ信号(すなわち、外部データ)を受け取り、その外部データに基づいて書き込みデータを生成して書き込み回路14に送る。書き込み回路14は、その書き込みデータを選択されたアドレスに対応するメモリセルに書き込む。
この書き込みデータは、データ入出力回路6により誤り訂正のためのパリティーデータが付加されたデータである。以下、パリティーデータに関連する処理を説明する。
書き込みデータの生成のために、データ入出力回路6は、取り込んだ外部データを、図16に示す誤り訂正およびパリティー生成回路400に送る。誤り訂正およびパリティー生成回路400は、入力された外部データに応じた誤り訂正を行うためのパリティーデータ(以下、誤り訂正用パリティーとも呼ぶ)を演算してデータ入出力回路6に戻す。データ入出力回路6は、外部データと誤り訂正用パリティーをあわせた書き込みデータを書き込み回路14に送る。書き込み回路14は、選択されたメモリセルに書き込みデータを書き込む。このとき、パリティーデータは外部から指定されたアドレス情報に応じて予め決められた冗長のメモリセルに書込まれる。
また、不揮発性メモリ装置10に書き込まれたユーザデータあるいは、FHDデータを読み出す際には、アドレス信号を受け取るアドレス入力回路16と、外部から入力されるコントロール信号に基づいてメモリ本体部22の動作を制御する制御回路15とが利用される。具体的には、制御回路15は、アドレス入力回路16に入力されたアドレス信号に基づいて読み出すアドレスを選択するとともに選択されたメモリセルを読み出すように読み出し回路11を制御する。また、制御回路15は、外部から入力されたアドレスに応じたパリティーデータを読み出すため予め決められた冗長のメモリセルも順次選択され読み出すように読み出し回路11を制御する。読み出し回路11は、ユーザデータを読み出す場合は入力端子C、FHDデータを読み出す場合は入力端子Bの閾値に従い1/0判定をした結果であるディジタルデータを出力端子Aから出力する。アドレス信号に応じたデータと、そのデータに対応したパリティーデータは、データ入出力回路6を介して誤り訂正およびパリティー生成回路400に送られ、データ誤りがあれば訂正されたのち、データ入出力回路6に戻され、更に不揮発性メモリ装置10の外部に出力される。
このとき、ID閾値レジスタ26に格納された判定閾値は図12の第1閾値に相当し、データ閾値レジスタ27に格納された判定閾値は図12の第2閾値に相当する。これらの判定閾値は、読み出し回路11の入力端子Dに入力される。読み出し回路11に入力される入力端子Dの判定閾値は、閾値選択回路28によって選択される。すなわち、閾値選択回路28は、入力端子Dの判定閾値として、中央値検出回路25から出力されて入力端子Aから入力される中央値、ID閾値レジスタ26から出力されて入力端子Bから入力される第1閾値、またはデータ閾値レジスタ27から出力されて入力端子Cから入力される第2閾値の何れかを選択する。なお、入力端子Aから入力される中央値および入力端子Bから入力される第1閾値を用いてディジタルIDデータを読み出す際には、後述するセンスアンプのメモリセルへの印加電圧は変更される。また、その他判定レベルである参照電圧VREFやロード制御信号LOADの電位を変更しても良い。
以下に、パリティーデータを用いてディジタルIDデータの誤りを訂正する例を説明する。以下では、各構成要素がどのように動作するかの観点で説明している。各構成要素の動作は、制御回路15からの指示によって制御されていることに留意されたい。
まず、制御回路15は、工場出荷前の検査工程時に、読み出し回路11および中央値検出回路25を利用し、予めディジタルIDデータを生成する。誤り訂正およびパリティー生成回路400は、そのディジタルIDデータをもとにパリティーデータを生成する。生成されたパリティーデータは、たとえば予め定められたアドレスの不揮発性メモリセル内に、ユーザデータとして記録される。
次に、不揮発性メモリ装置10のフィールド使用時の動作を説明する。パリティーデータは、予め検査時にユーザデータとして記録されているため、図12の第1閾値で判定される。すなわち、読み出し回路11は、ディジタルIDデータを前述した工程により読み出し、データ入出力回路6に出力する。その後、読み出し回路11は、閾値を所定の値に切り替えて、ディジタルIDデータに応じた冗長のメモリセルに保存されたパリティーデータを読み出し、データ入出力回路6に出力する。データ入出力回路6は、ディジタルIDデータとパリティーデータを誤り訂正およびパリティー生成回路400に送信する。誤り訂正およびパリティー生成回路400は、誤りを訂正した後のデータを、データ入出力回路6に戻す。データ入出力回路6はそのデータを不揮発性メモリ装置10の外部に出力する。
なお、上述では、ユーザデータおよびディジタルIDデータの両方の誤りが、同じ誤り訂正およびパリティー生成回路400によって訂正されるとして説明したが、これは一例である。ディジタルIDデータの誤りを訂正するための誤り訂正およびパリティー生成回路は、例えば不揮発性メモリ装置10の外部に具備されても良い。このような構成にすれば、不揮発性メモリ装置10の外に送られるディジタルIDデータは、データ誤りを含んでおり、不揮発性メモリ装置10の外部の通信路においてハッキングなどの脅威に対してセキュリティが向上できるという利点がある。
図16に示すように、メモリ本体部22は、記憶領域として、ユーザデータ領域7とディジタルIDデータ領域8とを有する。ユーザデータ領域7は、可変状態の複数のメモリセルを含む第1メモリグループの一例である。ユーザデータ領域7にはユーザの任意のデータ(すなわちユーザデータ)が記憶される。つまり、第1メモリグループには、可変状態における第1抵抗状態と当該第1抵抗状態よりも抵抗値の高い第2抵抗状態とを利用してデータが記録される。ユーザデータの書き込みおよび読み出し時にはユーザデータ領域7のアドレスが選択される。
ディジタルIDデータ領域8は、初期状態のメモリセルが少なくとも一つ含まれる第2メモリグループの一例である。ディジタルIDデータ領域8には、ディジタルIDデータが記憶される。以下の説明において、ディジタルIDデータ領域8に記憶されるディジタルIDデータは、使用用途に応じて、第1セキュリティデータの一例であるPUFデータ、あるいは、第2セキュリティデータの一例であるFHDデータと呼ぶ。PUFデータがディジタルIDデータ領域8に記憶される場合、ディジタルIDデータ領域8内の半数以上のメモリセルがフォーミング処理されないままの同一の初期状態である。一方、FHDデータがディジタルIDデータ領域8に記憶されている場合、記録する2値データに対し一方のデータに割り当てられたメモリセルに対し、フォーミング処理が実行される。これにより、一方のデータに割り当てられたメモリセルの抵抗値が図12の第1抵抗値範囲(すなわちHR状態の抵抗値範囲)にセットされる。もう一方のデータに割り当てられたメモリセルに対してはフォーミング処理がなされず、初期状態が維持される。つまり、第2メモリグループには、可変状態と初期状態とを利用してデータ(第2セキュリティデータ)が記録される。
なお、ディジタルIDデータ領域8を更に分割することで、PUFとFHDの両方のデータを同一のメモリセルアレイ20内に記録してもよい。すなわち、ディジタルIDデータ領域8内にPUFデータとFHDデータが混在していてもよい。つまり、第2メモリグループには、第1セキュリティデータと第2セキュリティデータとが混在して記録されてもよい。
さらに、第2メモリグループには、第1セキュリティデータを利用して(例えば、鍵として使用して)暗号化された第3セキュリティデータが記録されていてもよい。例えば、PUFデータを鍵として使用して暗号化した秘密鍵を、第3セキュリティデータであるFHDデータとして第2メモリグループに記録してもよい。
また、ユーザデータ領域7とディジタルIDデータ領域8は図のようにワード線単位に分けられる必要はなく、メモリセルアレイ20上の任意の領域で区分けしても良い。物理的な領域区分の規則性を複雑にするほどハッキングなどの攻撃への耐性を高めることができる。
メモリセルアレイ20は、複数のワード線WL0、WL1、WL2、・・・WLm−k−1、WLm−k、・・・WLmと、複数のビット線BL0、BL1、・・・BLnと、複数のソース線SL0、SL1、SL2、・・・SLnと、を備える。ユーザデータ領域7とディジタルIDデータ領域8は、ワード線に対応した単位で切り分けられている。ユーザデータ領域7は、ワード線WL0、WL1、WL2、・・・WLm−1に対応し、ディジタルIDデータ領域8は、WLm、・・・WLnに対応する。複数のワード線WL0〜WLmは、互いに平行に延びるように形成されている。複数のビット線BL0〜BLnは、複数のワード線WL0〜WLmと交差し、かつ互いに平行に延びるようにして形成されている。複数のソース線SL0〜SLnは、複数のワード線WL0〜WLmと交差し、かつ互いに平行に延びるようにして形成されている。複数のソース線SL0〜SLnは、また、複数のビット線BL0〜BLnと平行である。複数のワード線WL0〜WLmと複数のビット線BL0〜BLnの立体交差点には、それぞれメモリセル21が配置されている。
それぞれのメモリセル21は、抵抗変化素子23とトランジスタ24とを備える。ワード線WL0〜WLmは、これらのトランジスタ24のゲート端子に接続されている。ビット線BL0〜BLnは、これらのメモリセル21が備える抵抗変化素子23の第2電極に接続されている。それぞれのメモリセル21において、抵抗変化素子の第1電極はトランジスタ24の第2主端子に各々接続されている。ソース線SL0〜SLnは、これらのトランジスタ24の第1主端子に接続されている。
抵抗変化素子23はメモリセル21において不揮発性メモリ素子として動作する。不揮発性メモリ装置10は、各メモリセル21が1個のトランジスタ24と1個の抵抗変化素子23とから構成される、いわゆる1T1R型の抵抗変化型不揮発性メモリ装置である。メモリセルの選択素子は前述のトランジスタに限定されない。例えばダイオードなどの2端子素子を用いても良い。
制御回路15は、コントロール信号に基づき、カラムデコーダ回路17に対し、ビット線あるいはソース線のいずれか一方を選択させ、書き込み時は書き込み回路14、読み出し時は読み出し回路11に接続させる。その上で、書き込み回路14あるいは読み出し回路11を動作させる。
抵抗変化素子23については、実施の形態において図1に示した抵抗変化素子23と同様の構成とすることができるので、詳細な説明を省略する。
なお、図16に示す例では、メモリセルアレイ20の選択トランジスタとしてNMOSトランジスタが用いられているが、これに限定されず、PMOSトランジスタを用いても良い。
図17は、本開示の不揮発性メモリ装置10が備える読み出し回路11の構成例を示す回路図である。なお、本図には、センスアンプ回路30に接続されるメモリセル21も併せて図示されている。
読み出し回路11は、放電方式のセンスアンプ回路30と、読み出し電圧設定回路39と、データ生成回路135とを有している。当該センスアンプ回路30は、メモリセルから抵抗値情報を読み出す抵抗検出回路の一例である。センスアンプ回路30は、本実施の形態では、コンパレータ31と、抵抗値カウンタ32と、プリチャージ用PMOSトランジスタ33と、ロード電流用PMOSトランジスタ34と、コンデンサ136とを備える。当該読み出し電圧設定回路39は、センスアンプ回路30による抵抗値情報の読み出し時に、第1読み出し電圧と第2読み出し電圧とを含む複数の読み出し電圧の中から1つの読み出し電圧をメモリセルに出力する回路の一例である。読み出し電圧設定回路39は、本実施の形態では、ユーザデータ領域読み出し用NMOSトランジスタ37と、ディジタルIDデータ領域読み出し用NMOSトランジスタ38とを備えている。データ生成回路135は、センスアンプ回路30が読み出した抵抗値情報からディジタルデータを生成する回路の一例であり、本実施の形態では、比較器35を備えている。
抵抗値カウンタ32は、コンパレータ31の出力に接続されている。抵抗値カウンタ32は、リセット信号RSTがロウレベルとなることで、抵抗値カウンタ32内のカウント値が初期化された後、クロック信号CLKによるカウントを開始する。クロック信号CLKは、制御回路15から出力される信号であって、抵抗変化素子23の抵抗値によって変化する放電時間をカウント値に変換する際の基準となる信号である。クロック信号CLKは、例えば一定の周波数を維持する矩形波である。このクロック信号CLKが立ち上がる毎に、抵抗値カウンタ32のカウント値が1つ加算される。ノードSENの電位が参照電圧VREFを下回ると抵抗値カウンタ32のカウントアップが停止し、そのときのカウント値がCOUNT_OUTに維持される。このとき、入力端子Dからは閾値が入力される。
データ生成回路135を構成する比較器35は、COUNT_OUTと閾値選択回路28の入力端子A、BまたはCを介して入力端子Dに入力された閾値とを比較し、COUNT_OUTが閾値以上であればHを、COUNT_OUTが閾値未満ではればLを、出力Aとして出力端子Aから出力する。これにより、比較器35は、0/1のディジタルデータを出力する。また、比較器35は、COUNT_OUTと閾値選択回路28の入力端子Aを介して入力端子Dに入力された閾値とを比較し、COUNT_OUTが閾値以上であれば1を、COUNT_OUTが閾値未満であれば−1を、出力Bとして出力端子Bから出力する。プリチャージ用PMOSトランジスタ33は、ゲート端子にプリチャージ制御信号PREが入力され、ソース端子に電源電圧VDDが入力され、ドレイン端子にノードSENが接続されている。ロード電流用PMOSトランジスタ34は、ゲート端子にロード制御信号LOADが入力され、ソース端子に電源電圧VDDが入力され、ドレイン端子にノードSENが接続されている。
クランプ用NMOSトランジスタ36は、ゲートにVCLMPノードが接続され、ソース端子もしくはドレイン端子の何れか一方にノードSENが接続され、他端にはカラムデコーダ回路17を介して選択されたメモリセル21が接続されている。なお、図17ではカラムデコーダ回路17の図示は省略している。
ユーザデータ領域読み出し用NMOSトランジスタ37は、ゲートに読み出し電圧選択信号のVR_SELが接続され、ソース端子もしくはドレイン端子の何れか一方にVCLMPノードが接続され、他端にはユーザデータ領域読み出し電源VRN端子が接続されている。
ディジタルIDデータ領域読み出し用NMOSトランジスタ38は、ゲートに読み出し電圧選択信号のVR_SELの論理が反転された信号が入力され、ソース端子もしくはドレイン端子の何れか一方にVCLMPノードが接続され、他端にはディジタルIDデータ領域読み出し電源VRH端子が接続されている。
ここで、ディジタルIDデータ領域8のデータ読み出し時に、読み出し回路11が抵抗値情報であるカウント値(抵抗カウント値の一例)を出力する動作について、図17の読み出し回路の構成図と図18のタイミングチャートを用いて、具体的に説明する。
図18は、選択されたメモリセルを読み出し回路11が放電方式にて読み出す場合のタイミングチャートである。
T1のプリチャージ期間では、VR_SELがロウレベルに設定されるため、VCLMPがVRHに固定される。プリチャージ制御信号PREはロウレベルとなり、プリチャージ用PMOSトランジスタ33はオン状態になる一方で、ロード制御信号LOADはハイレベルとなり、ロード電流用PMOSトランジスタ34はオフ状態となる。選択ワード線WLsの電位はハイレベルでトランジスタ24はオン状態となっている。
クランプ用NMOSトランジスタ36のゲート端子にVCLMPの電圧が印加されることで、選択ビット線BLsの電位はVCLMPからVT(クランプ用NMOSトランジスタ36の閾値)を引いた電位までプリチャージされる。選択ソース線SLsはGNDに固定される。ノードSENは電源電圧VDDまでプリチャージされる。また、コンパレータ31の出力に接続されている抵抗値カウンタ32へのリセット信号RSTはハイレベルとなっているため、抵抗値カウンタ32の出力端子COUNT_OUTは0の固定値が出力される。
T2のセンス期間では、プリチャージ制御信号PREをハイレベルとすることで、プリチャージ用PMOSトランジスタ33がオフ状態となり、ロード制御信号LOADがロウレベルになることで、ロード電流用PMOSトランジスタ34はオン状態になる。
そして選択ビット線BLsから選択されたメモリセル21を介して選択ソース線SLsへと電圧が印加され、放電が開始される。放電開始と同時に抵抗値カウンタ32へのリセット信号RSTがロウレベルとなり、カウントが始まる。そして、1カウント毎に、コンパレータ31によって、ノードSENの電位と参照電圧VREFの電圧が比較され、ノードSENの電位が参照電圧VREFを下回るまで、カウント値が加算され続ける。読み出し時の抵抗変化素子23の抵抗値が高いほど放電時間は長くなり、カウント値は大きくなる。
ノードSENとGNDとの間にはコンデンサ136が接続されている。コンデンサ136の容量を調整することで、放電時間を調整することも可能である。コンデンサ136の容量が大きければ、ノードSENの放電時間も長くなるため、カウント値は大きくなる。コンデンサ136の容量が小さければ、ノードSENの放電時間は短くなり、カウント値は小さくなる。コンデンサ136は、例えば、放電時間が速い低抵抗状態の検出精度を向上させたいとき、効果的である。カウントの間隔はクロック信号CLKで決定されるため、クロック信号CLKの動作周波数が抵抗カウント値の分解能となる。低い抵抗値の場合、放電時間が短すぎると抵抗カウント値の分解能で適切にカウントできない可能性がある。そこで、ノードSENに容量負荷を上乗せし、放電時間を延長させることで、意図的に分解能で検出できるレベルの放電特性に調整することが可能となる。原理上、放電方式の場合は高抵抗になればなるほど放電時間が長くなり、それにともなって放電の傾斜が緩やかに変化する。よって、カウント値に対する抵抗値情報の分解能が向上する。つまり、放電方式の場合は、初期状態などの高抵抗側のメモリセルに対して高精度な抵抗値情報の取得が要求される場合に有効な方式である。
T3のラッチ期間では、放電が開始された後、ノードSENの電位が参照電圧VREFを下回ったときの抵抗値カウンタ32のカウント値がラッチされる。ラッチされたカウント値は、COUNT_OUTに出力され、抵抗変化素子23の抵抗値情報を表すカウント値として扱われる。
T4のリセット期間においては、データ出力が完了すると、選択ワード線WLsの電位がロウレベルとされ、選択されたメモリセル21のトランジスタ24がオフとなり、読み出し動作が終了する。
図19は、本開示の不揮発性メモリ装置10が備える中央値検出回路25の構成例を示している。
図19に示すように、中央値検出回路25は、PUFデータの登録時あるいは再生時に利用される回路で、選択回路200と、アップダウンカウンタ201と、乗算器202とを備える。
選択回路200は、読み出し回路11から入力される中央値誤差信号の何れかの入力チャンネルを、制御回路15から入力される制御信号Aに従い選択する。アップダウンカウンタ201は、選択回路200により選択された中央値誤差信号のカウント値を、中央値誤差信号の論理を示す制御信号Bに従い増減する。制御信号Bは、図17の比較器35の出力端子Bから出力される出力Bであり、「1」または「−1」の値を示す。つまり、アップダウンカウンタ201は中央値誤差信号の累積加算回路をなしている。
乗算器202は、アップダウンカウンタ201の出力に所定の係数αを乗算して出力する。乗算器202の係数αは1より小さい値(例えば1/2,1/4,1/8など)に設定することができる。係数αを変えることで、中央値誤差信号の積算感度を変えることができる。なお、本明細書で言う「感度」とは、変化の程度、または変化率を言う。乗算器202は、感度調整回路と言うことができる。α値が大きいと抵抗中央値の検出の感度が上がり、カウント値の上下動が大きくなって抵抗中央値の検出精度が悪化する。逆にα値が小さいと感度が下がり、抵抗中央値の検出精度が増す。しかし、読み出し回数が増加し、検出にかかる時間が増加する。α値はシステムによって最適に選択される。なお、アップダウンカウンタ201の初期値を、目標となる抵抗中央値にαを掛けた値にセットすることにより、検出時間が短縮化され得る。
上述の処理を簡潔に説明すると、アップダウンカウンタ201は、選択されたメモリセルから取得した抵抗値情報と、演算途中の中央値(本明細書において「暫定中央値」と称することもある。)との差分を誤差として累積する。乗算器202は、カウンタの出力に所定の係数を乗算した値を新たな暫定中央値として更新する。これにより、適切な中央値を得ることができる。
乗算器202から出力された中央値は、抵抗中央値として閾値選択回路28の入力端子Aに出力される。
なお、図19に示されるような、誤差信号の累積加算回路をなすアップダウンカウンタ201と、誤差信号の累積における感度調整する感度調整回路をなす乗算器202は一例にすぎない。また、本開示の構成は、累積加算回路の出力に感度調整回路が接続されるような接続関係にも限定されない。例えば、図20に示される構成を採用することも可能である。
図20は、一変形例にかかる中央値検出回路25aの構成を示す。図20に示す中央値検出回路25aは、選択回路200に代わる全チャンネル加算器401と、乗算器202と、加算器402と、データラッチ回路403とを備えている。乗算器202は、全チャンネル加算器401と接続され、全チャンネル加算器401から出力される信号を受け取る。加算器402は、乗算器202の出力およびデータラッチ回路403の出力および入力と接続されている。加算器402は、乗算器202の出力およびデータラッチ回路403の出力を受け取って加算し、その加算結果をデータラッチ回路403に送る。
データラッチ回路403は、加算器402の出力を受け取り、制御信号Bが指定するタイミングで、受け取っていたデータをラッチする。なお、データラッチ回路403は、1ビットのラッチ回路を複数組み合わせることによって複数ビットの情報を記憶することが可能な回路である。データラッチ回路403のビット数は、その出力として必要とされるビット数に依存する。次に説明するように、本例では、データラッチ回路403の出力は、閾値選択回路28の入力端子Aを経て、読み出し回路11において抵抗中央値として利用される。データラッチ回路403は、少なくとも抵抗中央値を表現するために必要とされるビット数分の1ビットのラッチ回路を実装していればよい。
この中央値検出回路25aの動作をより具体的に説明する。
全チャンネル加算器401は、読み出し回路11から入力されるsチャンネルの抵抗値誤差信号を全て合算し、トータル誤差信号として出力する。乗算器202は、トータル誤差信号を受け取って、その信号に係数αを乗じる。乗算器202は、係数αにより誤差信号の感度を調整する。係数αは、例えば1/2,1/4,1/8などである。加算器402は、データラッチ回路403の出力と、乗算器202が感度を調節して出力した誤差信号とを加算して、データラッチ回路403に出力する。
データラッチ回路403は、制御信号Bによって指定されたタイミングで、加算器402から受け取った信号(すなわちデータ)をラッチする。データラッチ回路403は、直前にラッチしたデータを、加算器402に送るとともに、閾値選択回路28の入力端子Aにも送る。このデータは、閾値選択回路28を経て、読み出し回路11において抵抗中央値として利用される。
上述の動作から理解されるように、全チャンネル加算器401および乗算器202は、抵抗値誤差信号を累積する際の感度を調整する感度調整回路をなす。また、加算器402およびデータラッチ回路403は制御信号Bによって指定されたタイミングに従って、1つ前の抵抗中央値と、感度が調節された抵抗値誤差信号とを加算して累積する累積加算回路をなす。
図19および図20の例から明らかなように、感度調整回路と、抵抗値誤差信号の累積加算回路とを設けることに関し、各回路の具体的な構成、および各回路の接続関係は種々考えられる。上述の開示を踏まえると、当業者であればそのような変形例を設計することができる。本開示の趣旨に鑑みれば、現時点における抵抗中央値と、読み出された抵抗値情報との差分を抵抗値誤差信号として得て、その抵抗値誤差信号を累積する際の感度が調整でき、抵抗値誤差信号の累積結果を新たな抵抗中央値として更新する、1つの回路または組み合わされた複数の回路は、本開示の範疇である。
図21は、中央値検出回路25が実際に抵抗中央値を算出した結果を示す。横軸にPUFデータが記録されているディジタルIDデータ領域8を読み出した回数、縦軸にアップダウンカウンタの値を示している。ディジタルIDデータ領域8の抵抗値情報を予め読み出しておき、計算機により中央値を算出した場合の理論値が17であった。図からわかるように、読み出し回数が30回あたりで、ほぼ理論値である17に収束している様子が分かる。このように本開示の提案方式であれば抵抗値ばらつきの中央値を安定的に検出でき、中央値を用いてPUFデータが良好に生成できる。
図13に示すPUFデータ再生フローにおいては、ステップS2において、図17の読み出し回路11がメモリセルの抵抗値情報を取得し、ステップS3で中央値検出回路25が中央値を算出する。ステップS4において、図16の閾値選択回路28が、算出された中央値が出力される入力端子Aを、読み出し回路11のデータ生成回路135を構成する比較器35に接続する。ステップS5にて、比較器35が、取得したメモリセル情報と中央値とを比較することにより、ディジタルIDデータ(つまり、第1セキュリティデータの一例であるPUFデータ)を出力する。これにより、データ生成回路135は、第2メモリグループに含まれる複数のメモリセルに対し、センスアンプ回路30によって得られた抵抗値情報を互いに比較することで第1セキュリティデータを生成する。より詳しくは、データ生成回路135は、判定値生成回路128が生成した2値化基準値を利用して、第2メモリグループ内のメモリセルの抵抗値情報をもとに第1セキュリティデータを生成する。
一方、図15に示すFHDデータの再生フローにおいては、ステップS15において、読み出し回路11がメモリセルの抵抗値情報を読み出す。ステップS16において、図16の閾値選択回路28が、図12の第1閾値(2値化基準値の一例)に対応する抵抗値が格納されたID閾値レジスタ26が接続された入力端子Bを選択し、読み出し回路11が第1閾値と取得した抵抗値情報とを比較する。これにより、ステップS17で、ディジタルIDデータ(つまり、第2セキュリティデータの一例であるFHDデータ)が出力される。
上述の処理は、主として制御回路15の制御および動作によって実現され得る。制御回路15は、上述の処理が行われるよう各構成要素を制御することにより、各ディジタルIDデータを更新する。より具体的には以下のとおりである。
読み出し回路11は、ディジタルIDデータを生成する際、読み出し電圧設定回路39により、読み出し電圧をユーザデータ読み出し時よりも高い読み出し電圧に設定後、各メモリセルから抵抗値情報を取得する。FHDデータを取得する場合、読み出し回路11は、ID閾値レジスタ26から第1閾値(2値化基準値の一例)の抵抗値情報を取得し、ディジタルIDデータを出力する。一方、読み出し回路11がPUFデータを取得する場合は、中央値検出回路25が、新たに取得された抵抗値情報を利用して新たに2値化基準値を算出する。その後、読み出し回路11は、新たに選択した、所定の数の、異なるメモリセルから抵抗値情報を取得する。制御回路15は、各抵抗値情報と新たに算出された2値化基準値の情報とを取得し、これらの情報の関係に応じて個体識別情報を生成する。読み出し回路11によって得られる抵抗値情報は、周辺の温度、装置電源電圧の変動、更には経年劣化によって逐次相対的に変動する。前述のように、ディジタルIDデータ領域8の抵抗値情報が読み出される度に、中央値を再取得することで、中央値を現在の最適な値に追従させることが可能になる。PUFデータの読み出し時には、理想的な正規分布に沿う抵抗ばらつき分布の中央値が判定閾値として設定されるため、PUFデータのメモリセルの多くが判定閾値付近の抵抗値を有する。そのため、初期状態の安定的な抵抗状態において、中央値を再取得することにより、環境変動などによるメモリセル以外の周辺回路のトランジスタの揺らぎなどの僅かな分布の変化があってもエラーを低減することができる。つまり、PUFのエラー低減化を実現する意味で、本願の実施の形態に記載した中央値を再取得する方式は有効であるといえる。
なお、PUFデータの再生フローでは、ステップS2、S3に示すように、中央値を再生毎に更新する方式のみ記載に留まっているが、本開示の構成はその方式に限定されない。例えば、再生時に発生したエラービットの数が、誤り訂正回路で訂正可能な数内であれば、中央値を更新することなく、前回の中央値をそのまま使い続けてもよい。また、発生したエラービットの数が、誤り訂正回路で訂正可能な数を超えた場合にのみ、中央値を更新する方式でもよい。更には、中央値検出回路を搭載するのではなく、中央値近辺の固定された抵抗値情報を用いても良い。この抵抗値情報は、ユーザデータやFHDデータと同様、閾値レジスタなどへ格納しておいてもよい。PUFデータの再生の際には、閾値レジスタの抵抗値情報を利用して、ディジタルIDデータを生成してもよい。
次に、本実施の形態の不揮発性メモリ装置10の動作により得られる効果について説明する。本願発明者らは、ディジタルIDデータ領域8の4キロビットのメモリセルに対して、175℃の環境下に所定の時間を放置し、高温加速劣化実験を実施した。図22は、図5に示される可変状態の第2抵抗状態の抵抗分布と、図4に示される初期状態の抵抗分布とについて、高温加速劣化実験においてディジタルIDデータを再生したときのエラーレートを示したグラフである。図22では、横軸を175℃の高温放置時間、縦軸を各再生におけるエラーレートとしている。可変状態である第2抵抗値範囲で再生されたPUFデータが、高温放置による加速劣化試験により、12%付近までエラーが増加している。これに対し、安定的な初期状態の抵抗値ばらつき分布を通常よりも高電圧に印加して利用し、回路で検知できる電流帯まで増幅することで再生されたPUFデータは、エラーレートが7%程度と高い再現性を示していることが確認できる。
(ICカードへの応用例)
一つの応用例は、本開示により生成されるPUFデータによる秘密鍵の暗号と、暗号化秘密鍵のFHDデータ記録によるデータの隠蔽、さらに認証方法を開示する。
図23は、本開示にかかる応用例の通信システム500の構成例を示すブロック図である。図23において、通信システム500は、リーダライタおよびデータサーバー501(以降、リーダライタと略す)と、ICカード502とを備えている。リーダライタ501と、ICカード502とは、例えば、それぞれが有するアンテナなどを介して無線による通信を行う。
(リーダライタ側)
リーダライタ501は、RAM503と、入出力インタフェース(I/F)部504と、CPU505と、暗号処理回路506と、不揮発性メモリ装置515とを有している。
リーダライタ501の入出力I/F部504は、外部との無線通信を行ってデータを送受信するためのインタフェースであり、たとえば無線通信回路として実現され得る。入出力I/F部504は、RFアンテナを有している。入出力I/F部504は、所定の電磁波を輻射し、負荷の変化を利用して、ICカード502が近づけられたか否かを検出する。また、入出力I/F部504は、例えば、発振回路(図示せず)から供給される所定の周波数の搬送波を、CPU505から供給されるデータに基づいて変調する。入出力I/F部504は、該生成された変調波を、電磁波としてアンテナ(図示せず)から出力することで、近傍に配置されたICカード502へと各種のデータを送信する。また、アンテナを介してICカード502から送られた変調波を受信して復調し、得られたデータをCPU505に供給する。不揮発性メモリ装置515は、上述の不揮発性メモリ装置10に対応する。不揮発性メモリ装置515は、秘密鍵記憶部508と、データ記憶部509と、ROM部510と、固有ID記憶部511と、全ICカード固有ID記憶部540とを備えている。
ROM部510は、本開示の不揮発性メモリ装置515が備える第2種データ記憶用メモリセル群のうちの所定のアドレス領域に相当する。リーダライタ501のCPU505は、ROM部510記憶されているプログラムをRAM503にロードし、該プログラムを用いて各種の処理を実行する。RAM503にはCPU505が各種の処理を実行するために必要なデータなども一時的に記憶される。RAM503は、SRAM(Static Random Access Memory)やDRAM(Dynamic Random Access Memory)などの揮発性記憶装置が用いられてもよい。あるいは、RAM503は、本開示の不揮発性メモリ装置のFHDデータのメモリセル群の一部で構成されていてもよい。
固有ID記憶部511は本開示のPUFデータを生成に用いるメモリセル群であり、リーダライタ501に固有のIDデータが本開示の方式により生成できる。さらに全ICカード固有ID記憶部540は、PUFデータまたはFHDデータで記憶されるメモリセル群で構成されており、運用される複数のICカード502で異なるディジタルIDデータの全てが記憶されている。なお、全ICカードのディジタルIDデータは、リーダライタ501固有のディジタルIDデータを暗号鍵として暗号化されたデータで記憶されることが望ましい。
CPU505は、暗号処理回路506を制御することにより、予め定められた暗号アルゴリズムに基づいて、データの暗号化と復号化を行う。暗号アルゴリズムとしては、トリプルDES(Data Encryption Standard)、AES(Advanced Encryption Standard)などが例示できる。これらは、いわゆる1つの秘密鍵を用いて暗号と復号を行う共通鍵方式の暗号アルゴリズムである。また、RSA暗号といった秘密鍵と公開鍵の2つの異なる鍵を用い、暗号化時の鍵と、復号化時の鍵を異ならせることで暗号通信を行う公開鍵方式でもよい。この場合は、後述する秘密鍵記憶部508に通信相手の公開鍵と、通信者自身の秘密鍵の両方を格納してもよい。これらの重要な鍵データは、固有ID記憶部511から生成される本開示のPUFデータを暗号鍵として暗号化して、暗号化秘密鍵や暗号化公開鍵として格納することが望ましい。前述したようにPUF技術を用いて生成されたPUFデータはリーダライタ501に固有であり、複製やハッキングが困難である。従って、それを用いて暗号化された暗号化秘密鍵や暗号化公開鍵がコピーされてもディジタルIDデータがコピーできないIC固有のデータであるため安全である。
リーダライタ501においてデータの暗号化または復号化を行う場合、例えば、CPU505は、不揮発性メモリ装置515内の所定のアドレス領域である秘密鍵記憶部508に記憶された暗号化秘密鍵を、本開示のPUFデータを鍵として復号化し、元の秘密鍵を得る。CPU505は、得られた元の秘密鍵を、暗号化または復号化すべきデータとともに、暗号処理回路506に供給する。暗号処理回路506は、供給された秘密鍵を用いてデータの暗号化または復号化を実行する。
データ記憶部509は、CPU505がプログラムを実行する上で必要なデータが記憶されている。データ記憶部509において、所定のデータは、本開示のPUFデータを鍵として暗号化して記憶されていてもよい。なお、所定のデータは、初期状態のメモリセルを利用して記憶されていてもよいし、可変状態のメモリセルを利用して記憶されていてもよい。
秘密鍵記憶部508としては、ユーザデータ記憶用メモリセル群(つまり、可変状態のメモリセル群)を用いてもよいし、FHDデータ記憶用メモリセル群(つまり、可変状態と初期状態とが混在するメモリセル群)を用いてもよい。ユーザデータ記憶用メモリセル群を用いる場合は、他の一般的な不揮発性メモリを用いるのと大きな違いはない。FHDデータ記憶用メモリセル群を用いる場合は、抵抗変化素子の初期状態と可変状態との違いでデータを記憶するため、通常の読み出しコマンドではデータを読み出すことができない。よって、鍵情報の隠蔽が行える。実施の形態で述べたように、可変状態にあるメモリセルから“0”と“1”のディジタルデータを読み出すためには、第2閾値を用いて“0”と“1”の判定が行なわれる。第2閾値でFHDデータ記憶用メモリセル群を読み出すと、ほとんどのメモリセルが“0”にデコードされ、正規のデータを読み出せない。なお、秘密鍵記憶部508において、秘密鍵は、前述の暗号化秘密鍵として記憶されることが望ましい。
また、メモリセルアレイ内の自由なアドレスのメモリセル群にユーザデータ記憶用メモリセル群とFHDデータ記憶用メモリセル群とを配置できる。よって、プローブを用いて物理的に抵抗値を直接読み出すような解析を行おうとしても、そのメモリセルがユーザデータ記憶用メモリセル群およびFHDデータ記憶用メモリセル群のいずれに属するのかを特定が困難である。更にPUFデータで暗号化されたデータか、非暗号のデータかの区別が困難であるため、更に解析を複雑にせしめる。
以上のように、図23に示す通信システム500は、秘密鍵の漏洩に対し強い耐タンパ性(tamper resistant)があるといえる。さらにユーザデータ記憶用メモリセルや、本開示のPUFデータは、高温においてのデータ信頼性にも優れ、データ誤りが許容されない秘密鍵の記憶および暗号化にも最適である。
秘密鍵記憶部508に記憶される秘密鍵は、ICカード502の秘密鍵記憶部526に記憶されている秘密鍵と同じものでもよい。ICカード502に対応するリーダライタ501であって、ICカード502に固有のディジタルIDデータであるカード固有IDの読み出しを許可されたリーダライタ501のみに、予め秘密鍵が記憶されていてもよい。
固有のPUFデータは、本開示の実施の形態で説明したPUF技術に基づき固有ID記憶部525にデータ誤りを内在した状態で記憶されている。
PUFデータは前述したようにICカードごとに固有の乱数になりうる。このため、IC固有の各種暗号化に用いることができる。
(ICカード側)
ICカード502は、入出力インタフェース(I/F)部520と、CPU521と、暗号処理回路522と、RAM523と、不揮発性メモリ装置530とを有している。
ICカード502の入出力I/F部520は、外部との無線通信を行ってデータを送受信するためのインタフェースであり、たとえば無線通信回路として実現され得る。入出力I/F部520は、例えば、コイル状のアンテナとコンデンサにより構成されるLC回路が一般的に用いられる。ICカードのアンテナがリーダライタ501に近づけられると、リーダライタ501から輻射される所定の周波数の電磁波と共振するようになっている。また、入出力I/F部520は、アンテナにおいて交流磁界により励起された電流を整流化および安定化し、ICカード502の各部に直流電源として供給する。
入出力I/F部520は、アンテナを介して受信した変調波を検波して復調し、復調後のデータをデコードしてディジタルデータに復元しCPU521に供給する。また、ICカード502内部には電圧可変のオシレータ(図示せず)が搭載されている。このオシレータは、デコードしたディジタルデータに周波数と位相をロックさせた受信用のクロック信号(図示せず)を生成し、ディジタルデータのデータラッチ用のクロック信号として供給する。位相のロックには、PLLと呼ばれるクロック再生技術が用いられる。ICカード502は、ディジタルデータとクロック信号との位相誤差を検出して積分し、オシレータの制御電圧を生成する。この制御電圧をオシレータに入力することで、ディジタルデータのサンプリング周波数および位相に一致するクロック信号を得ることができる。
さらに、入出力I/F部520は、所定の情報をリーダライタ501に送信する場合、CPU521から入力されエンコードされたデータにしたがってアンテナの負荷に変動を発生させて変調を行い、アンテナを介して所定の情報を含む変調波をリーダライタ501に送信する。
ICカード502は本開示の不揮発性メモリ装置530を備える。不揮発性メモリ装置530は本実施の形態の上述の不揮発性メモリ装置10に対応する。よって以下の説明では、共通する要素については同一の符号および名称を付して適宜参照する。
不揮発性メモリ装置530は、固有ID記憶部525と、秘密鍵記憶部526と、データ記憶部527と、ROM部528とを備える。固有ID記憶部525は、ICカードごとにPUFデータを記憶する。秘密鍵記憶部526は、秘密鍵データを記憶する。データ記憶部527には、CPU521がプログラムを実行する上で必要なデータが記憶されている。ROM部528には、CPU521が実行するプログラムが記憶されている。固有ID記憶部525、秘密鍵記憶部526、データ記憶部527、およびROM部528の全てが1個のメモリセルアレイ(図9のメモリセルアレイ90)に包含されている。CPU521は、ROM部528に記憶されているプログラムをRAM523にロードし、実行するなどして各種の処理を行う。ROM部528に記憶されたプログラムデータは、固有ID記憶部525にあるメモリセル群をもとに生成される本開示のPUFデータを鍵として用いて暗号化されて記憶されても良い。
CPU521は、暗号処理回路522を制御することにより、予め定められた暗号アルゴリズムに基づいて、データの暗号化と復号化を行う。上述したように、典型的な暗号方式には、送信側と受信側で同じ秘密鍵で暗号化と復号化を行う共通鍵方式と、異なる公開鍵と秘密鍵で暗号化と復号化を行う公開鍵方式がある。以下では、共通鍵方式を採用した場合について説明する。
なお、公開鍵方式では、ICカード502側が暗号化した暗号文データをICカード502がリーダライタ501側に送信する場合、ICカード502は、予めリーダライタ501側から入手した公開鍵で暗号化を行う。逆に、リーダライタ501側から送られてきた暗号文データは、ICカード502側で予め記憶してある秘密鍵にて復号する。以上の点以外は、公開鍵方式も共通鍵方式と同様である。公開鍵方式における公開鍵と秘密鍵は、互いに唯一のペアの鍵であるため、互いに暗号化されたデータを復号することで同時に相互認証もできることになる。
ICカード502においても、リーダライタ501での説明と同様に、鍵データは秘密鍵記憶部526へ記憶される。すなわち、鍵データは、本開示のPUF技術に基づき固有ID記憶部525にあるPUFデータにより暗号化された暗号化秘密鍵または暗号化公開鍵として保存される。更に、その暗号化秘密鍵または暗号化公開鍵は、ユーザデータ記憶用メモリセルにより記憶されうる。ICカード502において、データの暗号化または復号化を行う場合、CPU521が、不揮発性メモリ装置530内のユーザデータ記憶用メモリセル群の一部である秘密鍵記憶部526に記憶された暗号化秘密鍵データを、図12の第1閾値で読み出す特殊なリードコマンドにて読み出す。読み出された暗号化秘密鍵データは、本開示のPUFデータにより元の秘密鍵データに復号化される。CPU521は、秘密鍵データを、暗号化または復号化すべきデータとともに、暗号処理回路522に供給する。暗号処理回路522は、供給された秘密鍵を用いて、供給されたデータの暗号化または復号化を実行する。
データ記憶部527には、CPU521がプログラムを実行する上で必要なデータが記憶されている。データ記憶部527において、所定のデータは、平文のまま記憶されていてもよいし、秘密鍵で暗号化されて記憶されていてもよいし、PUFデータを鍵として暗号化されて記憶されてもよい。なお、所定のデータは、初期状態のメモリセルを利用して記憶されていてもよいし、可変状態のメモリセルを利用して記憶されていてもよい。
このような暗号化と復号化の機能を備えた通信システム500において、ICカード502とリーダライタ501との通信の第1ステップについて以下に述べる。
ICカード502において、各ICカード固有のPUFデータは、本開示の実施の形態で説明したPUF技術に基づき固有ID記憶部525にデータ誤りを内在した状態で存在している。
CPU521は、各ICカード固有のPUFデータを固有ID記憶部525から生成する。CPU521は、読み出した暗号化秘密鍵データと鍵としてのPUFデータとを暗号処理回路522に供給する。暗号処理回路522は、供給されたPUFデータを鍵として暗号化秘密鍵を元の秘密鍵に復号化する。つぎに、暗号処理回路522は、元の秘密鍵を用いてPUFデータを暗号化する。暗号化された暗号化ディジタルIDデータは入出力I/F部520、504を介して、リーダライタ501側のCPU505に供給される。
CPU505は、リーダライタ501内の不揮発性メモリ装置515の秘密鍵記憶部508から秘密鍵データを読み出す。CPU505は、秘密鍵データと、受信した暗号化PUFデータを、暗号処理回路506に供給する。暗号処理回路506は、供給された秘密鍵データを用いて暗号化PUFデータを復号化する。復号化されたPUFデータは、固有ID記憶部511が記憶している各IDデータと照合される。各IDデータの中に復号化されたIDデータと一致するものがあれば、通信したICカード502がデータ通信を行う資格のある正規のICカード502であると認証される。その後、データ通信が継続して実行される。
リーダライタ501とICカード502との相互認証において別の変形例を示す。
リーダライタ501の全ICカード固有ID記憶部540は、前述した中央値のオフセット量を変更して得られる複数のPUFデータをICカードごとに保管している。リーダライタ501は、オフセット量と、受け取りたいPUFデータのアドレス情報を暗号化し、チャレンジデータとして、ICカード502に送信する。ICカード502は、受け取ったチャレンジデータを復号化してオフセット量とアドレス情報を得て、得られたオフセット量とアドレス情報に応じたPUFデータを暗号化する。ICカード502は、暗号化したPUFデータをレスポンスデータとしてリーダライタ501に返信する。
リーダライタ501は、受け取ったレスポンスデータを復号化して、ICカード502ごとに固有のPUFデータを得る。リーダライタ501は、得られたPUFデータに基づいて、予め全ICカード固有ID記憶部540に登録されているIDデータを検索する。リーダライタ501は、PUFデータとIDデータを照合し、所定のビット数以上が一致していることを確認してICカード502を認証する。
レスポンスデータであるPUFデータは、前述したような誤りデータを含んだ状態で送られるため、ハッキングに対して耐性が高い。PUFデータは、各ICで異なる乱数であるので、データ間に十分なハミング距離があれば、所定のビット数の誤りデータがあったとしても、何れのICカードのIDデータかを特定することができる。このため、チャレンジデータの送信と、レスポンスデータの受信を繰り返すことで、ICカードが正規のカードであることを特定できる。さらに認証に用いられているデータがICカードごとに固有かつ誤りのあるデータであるためデータの解析が困難であり非常に高いセキュリティが担保された認証が実現できる。
以上のように、通信システム500によれば、固有ディジタルIDデータ生成、秘密鍵記憶、データ記憶、およびプログラムデータ記憶の機能を、ただ一つの不揮発性メモリ装置で実現できる。よって、別途PUF技術に基づくID生成用の回路を搭載する必要がなく、回路規模の増加を極力抑制した(つまり、省面積化をした)ICカードのようなモバイル型アプリケーションが提供できる。
なお、RAM503の機能を不揮発性メモリ装置515が備えるメモリセルアレイで実現してもよい。RAM523の機能を不揮発性メモリ装置530が備えるメモリセルアレイで実現してもよい。
情報の記憶手段としてユーザデータ記憶用メモリセルとFHDデータ記憶用メモリセルとを任意に混在させて各種データを保存できるため、どのエリアのメモリセルが何れの状態で情報が記憶されているかを第三者に対し秘匿することができる。さらに、物理的なプローブを用いてメモリ内のデータを直接読み出すようなハッキングからもPUFデータを防衛でき、極めて耐タンパ性の優れたアプリケーションが提供できる。
なお、上記説明から、当業者にとっては、本開示の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を具体化する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造および/又は機能の詳細を実質的に変更できる。
本開示にかかる不揮発性メモリ装置は、当該不揮発性メモリ装置の内部に含まれる抵抗変化型メモリ素子の抵抗値のばらつきから複製できない固有のディジタルIDデータを、安定かつ高セキュアに生成する。よって、本開示にかかる不揮発性メモリ装置は、ディジタルIDデータを用いたデータ暗号による認証を行い、ホストコンピュータ及びサーバにアクセスするICまたはSoC(System on Chip)などに搭載することができる。
6 データ入出力回路
7 ユーザデータ領域
8 データ領域
10 不揮発性メモリ装置
11 読み出し回路
14 書き込み回路
15 制御回路
16 アドレス入力回路
17 カラムデコーダ回路
18 ロウデコーダ回路
20 メモリセルアレイ
21 メモリセル
22 メモリ本体部
23 抵抗変化素子
24 トランジスタ
25、25a 中央値検出回路
26 ID閾値レジスタ
27 データ閾値レジスタ
28 閾値選択回路
30 センスアンプ回路
31 コンパレータ
32 抵抗値カウンタ
33 プリチャージ用PMOSトランジスタ
34 ロード電流用PMOSトランジスタ
35 比較器
36 クランプ用NMOSトランジスタ
37 ユーザデータ領域読み出し用NMOSトランジスタ
38 ディジタルIDデータ領域読み出し用NMOSトランジスタ
39 読み出し電圧設定回路
90 メモリセルアレイ
91 メモリセル
92 メモリα領域
93 メモリβ領域
94 制御装置
100 抵抗変化型不揮発性メモリ装置
128 判定値生成回路
135 データ生成回路
136 コンデンサ
200 選択回路
201 アップダウンカウンタ
202 乗算器
400 誤り訂正およびパリティー生成回路
401 全チャンネル加算器
402 加算器
403 データラッチ回路
500 通信システム
501 リーダライタおよびデータサーバー(リーダライタ)
502 ICカード
504、520 入出力インタフェース(I/F)部
506、522 暗号処理回路
508、526 秘密鍵記憶部
509、527 データ記憶部
510、528 ROM部
511、525 固有ID記憶部
515、530 不揮発性メモリ装置
540 全ICカード固有ID記憶部

Claims (11)

  1. 可変状態および初期状態の何れかを取り、前記初期状態の少なくとも一つのメモリセルを含む第2メモリグループを含む、抵抗変化型の複数のメモリセルと、
    前記複数のメモリセルから抵抗値情報を読み出す抵抗検出回路、および前記抵抗検出回路が読み出した前記抵抗値情報に応じたディジタルデータを生成するデータ生成回路を備えた読み出し回路と、を備え、
    前記抵抗検出回路は、可変状態のメモリセルを読み出すための第1読み出し電圧と、前記第1読み出し電圧よりも大きく、前記初期状態から前記可変状態に変化するための電気的ストレスであるフォーミングパルスの電圧よりも小さい第2読み出し電圧とを選択的に印加する電圧印加回路を備え、
    前記電圧印加回路が前記第2メモリグループの前記少なくとも一つのメモリセルに前記第2読み出し電圧を印加することにより、前記抵抗検出回路は当該少なくとも一つのメモリセルから前記抵抗値情報を読み出す、不揮発性メモリ装置。
  2. 前記複数のメモリセルは、さらに、前記可変状態の複数のメモリセルを含む第1メモリグループを含み、
    前記読み出し回路は、さらに、前記第2メモリグループの前記少なくとも一つのメモリセルが読み出される場合、前記電圧印加回路が当該少なくとも一つのメモリセルに印加する電圧を前記第2読み出し電圧に設定し、前記第1メモリグループの前記複数のメモリセルが読み出される場合、前記電圧印加回路が当該複数のメモリセルに印加する電圧を前記第1読み出し電圧に設定する電圧設定回路を備え、
    前記可変状態の前記複数のメモリセルは、それぞれ、極性の異なる電圧パルスが印加されることによって抵抗値が複数の可変抵抗値範囲の間を可逆的に遷移し、
    前記初期状態の前記少なくとも一つのメモリセルは、それぞれ、前記フォーミングパルスが印加されない限り前記可変状態とならず、かつ抵抗値が前記可変抵抗値範囲と重複しない初期抵抗値範囲にある、請求項1に記載の不揮発性メモリ装置。
  3. 前記第2メモリグループの前記少なくとも一つのメモリセルは、前記初期状態の複数のメモリセルを含む請求項1または2に記載の不揮発性メモリ装置。
  4. 前記データ生成回路は、前記第2メモリグループに含まれる前記複数のメモリセルの前記抵抗値情報を互いに比較することで第1セキュリティデータを生成する、請求項1から3の何れかに記載の不揮発性メモリ装置。
  5. さらに、前記第2メモリグループの前記複数のメモリセルから得られる前記抵抗値情報から判定値を生成する判定値生成回路を含み、
    前記データ生成回路は、前記判定値生成回路が生成した前記判定値を利用して、前記第2メモリグループの前記少なくとも一つのメモリセルから前記抵抗検出回路が読み出した前記抵抗値情報に応じた第1セキュリティデータを生成する、請求項1〜4の何れかに記載の不揮発性メモリ装置。
  6. 前記判定値は、2値化基準値である、請求項5に記載の不揮発性メモリ装置。
  7. 前記初期状態の前記少なくとも一つのメモリセルは、前記第2メモリグループに含まれるメモリセル全体の半数以上である、請求項1〜6の何れかに記載の不揮発性メモリ装置。
  8. 前記可変状態は、第1抵抗状態と当該第1抵抗状態よりも抵抗値の高い第2抵抗状態とを含み、
    前記初期状態の抵抗値は、前記第2抵抗状態の抵抗値よりも高い、請求項2に記載の不揮発性メモリ装置。
  9. 前記第1メモリグループには、前記第1抵抗状態と前記第2抵抗状態とを利用したデータが記録され、
    前記第2メモリグループには、前記可変状態と前記初期状態とを利用した、第2セキュリティデータが記録される、請求項8に記載の不揮発性メモリ装置。
  10. 前記データ生成回路は、前記第2メモリグループに含まれる前記複数のメモリセルの前記抵抗値情報を互いに比較することで第1セキュリティデータを生成し、
    前記第2メモリグループには、前記第1セキュリティデータと前記第2セキュリティデータとが記録されている、請求項9に記載の不揮発性メモリ装置。
  11. 前記データ生成回路は、前記第2メモリグループに含まれる前記複数のメモリセルの前記抵抗値情報を互いに比較することで第1セキュリティデータを生成し、
    前記第2メモリグループには、前記第1セキュリティデータを利用して暗号化された第3セキュリティデータが記録されている、請求項9に記載の不揮発性メモリ装置。
JP2017091129A 2016-05-27 2017-05-01 不揮発性メモリ装置 Active JP6817888B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016106829 2016-05-27
JP2016106829 2016-05-27

Publications (2)

Publication Number Publication Date
JP2017216031A true JP2017216031A (ja) 2017-12-07
JP6817888B2 JP6817888B2 (ja) 2021-01-20

Family

ID=60418802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091129A Active JP6817888B2 (ja) 2016-05-27 2017-05-01 不揮発性メモリ装置

Country Status (2)

Country Link
US (1) US10096359B2 (ja)
JP (1) JP6817888B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027702A1 (en) * 2017-08-03 2019-02-07 Arizona Board Of Regents On Behalf Of Northern Arizona University PUF WITH SOLUBLE CONDUCTIVE PATHS
US10103895B1 (en) * 2017-10-13 2018-10-16 Macronix International Co., Ltd. Method for physically unclonable function-identification generation and apparatus of the same
US10891410B1 (en) * 2018-07-03 2021-01-12 Synopsys, Inc. User-defined rule engine
US10347336B1 (en) * 2018-07-20 2019-07-09 Winbond Electronics Corp. Method for obtaining optimal operating condition of resistive random access memory
JP2020144959A (ja) 2019-03-06 2020-09-10 キオクシア株式会社 半導体記憶装置
TW202127252A (zh) 2019-12-04 2021-07-16 以色列商普騰泰克斯有限公司 記憶體裝置退化偵測
CN111339579B (zh) * 2020-03-26 2022-07-08 清华大学 电子装置及其操作方法
US12013800B1 (en) 2023-02-08 2024-06-18 Proteantecs Ltd. Die-to-die and chip-to-chip connectivity monitoring

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066438A (ja) 2006-09-06 2008-03-21 Matsushita Electric Ind Co Ltd 抵抗変化型素子、不揮発性記憶素子、抵抗変化型記憶装置、およびこれらに対するデータ書き込み方法
WO2010143414A1 (ja) * 2009-06-08 2010-12-16 パナソニック株式会社 抵抗変化型不揮発性記憶素子の書き込み方法および抵抗変化型不揮発性記憶装置
US20120326113A1 (en) * 2010-06-10 2012-12-27 Shinichi Yoneda Non-volatile memory element and non-volatile memory device equipped with same
JP5544611B2 (ja) 2010-07-28 2014-07-09 学校法人立命館 耐タンパ性メモリ集積回路およびそれを利用した暗号回路
EP2625640B1 (en) 2010-10-04 2018-08-01 Intrinsic ID B.V. Physical unclonable function with improved start-up behaviour
JP5222380B2 (ja) 2011-05-24 2013-06-26 シャープ株式会社 可変抵抗素子のフォーミング処理方法および不揮発性半導体記憶装置
JP5689570B2 (ja) 2013-02-01 2015-03-25 パナソニックIpマネジメント株式会社 不揮発性記憶装置のデータ記録方法および不揮発性記憶装置のデータ書き込み回路
JP5689571B2 (ja) 2013-02-28 2015-03-25 パナソニックIpマネジメント株式会社 暗号処理装置

Also Published As

Publication number Publication date
US20170345490A1 (en) 2017-11-30
US10096359B2 (en) 2018-10-09
JP6817888B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6817888B2 (ja) 不揮発性メモリ装置
JP6474056B2 (ja) 耐タンパ性を有する不揮発性メモリ装置、集積回路カード、不揮発性メモリ装置の認証方法、不揮発性メモリ装置を用いた暗号化方法および復号化方法
JP6587188B2 (ja) 乱数処理装置、集積回路カード、および乱数処理方法
JP6617924B2 (ja) 耐タンパ性を有する不揮発性メモリ装置および集積回路カード、不揮発性メモリ装置の認証方法、個体識別情報生成方法
JP6532024B2 (ja) 耐タンパ性を有する不揮発性メモリ装置、および集積回路カード
JP6508478B2 (ja) 耐タンパ性を有する不揮発性メモリ装置、および集積回路カード
CN107437431B (zh) 非易失性存储装置
US10749695B2 (en) Physical unclonable function for non-volatile memory
EP2933720B1 (en) Random number processing apparatus
JP6793044B2 (ja) 不揮発性メモリ装置
TWI663604B (zh) 操作具非揮發性記憶胞電路的方法及使用所述方法的電路
JP6937288B2 (ja) 不揮発性メモリ装置およびチャレンジ・レスポンス方法
JP6894012B2 (ja) 不揮発性メモリ装置およびその書込み方法
US11404119B1 (en) Non-volatile memory device and challenge response method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201225

R150 Certificate of patent or registration of utility model

Ref document number: 6817888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250