JP2017215354A - フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法 - Google Patents

フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法 Download PDF

Info

Publication number
JP2017215354A
JP2017215354A JP2016107084A JP2016107084A JP2017215354A JP 2017215354 A JP2017215354 A JP 2017215354A JP 2016107084 A JP2016107084 A JP 2016107084A JP 2016107084 A JP2016107084 A JP 2016107084A JP 2017215354 A JP2017215354 A JP 2017215354A
Authority
JP
Japan
Prior art keywords
pattern
defect
light transmission
photomask
transmission limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016107084A
Other languages
English (en)
Other versions
JP6673016B2 (ja
Inventor
雄史 小菅
Takeshi Kosuge
雄史 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016107084A priority Critical patent/JP6673016B2/ja
Publication of JP2017215354A publication Critical patent/JP2017215354A/ja
Application granted granted Critical
Publication of JP6673016B2 publication Critical patent/JP6673016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】電子ビーム等の荷電粒子ビームを用い、それにより生じ得るドリフトを補正して高い精度で欠陥を修正しつつも、マスクパターンに新たな欠陥が生じるのを防止可能なフォトマスクの欠陥修正方法を提供する。【解決手段】第1面及び当該第1面に対向する第2面を有する透明基材と、透明基材の第1面上に設けられ、透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンとを備えるフォトマスクにおける光透過制限膜パターンの欠陥を修正する方法は、欠陥の存在する領域の周辺に位置する光透過制限膜パターン上に少なくとも1つの参照パターンを形成する工程と、参照パターン上にそれを被覆する保護膜を形成する工程と、光透過制限膜パターンの欠陥に荷電粒子ビームを照射することで、欠陥を修正する工程とを含み、欠陥を修正する工程において、参照パターンへの荷電粒子ビームの照射と欠陥への荷電粒子ビームの照射とを複数回交互に行う。【選択図】図4

Description

本発明は、フォトマスク及びフォトマスクを製造する方法、並びにフォトマスクの欠陥を修正する方法に関する。
半導体素子等の半導体デバイスの高集積化及び微細化は、デザインルール14nmから10nm以下にまで進展してきている。半導体デバイスの高集積化及び微細化を実現すべく、半導体デバイスの製造工程の一つであるフォトリソグラフィー工程において、高NA化、露光光の短波長化が進められてきている。しかし、さらなる高集積化及び微細化の要求を満足するため、当該フォトリソグラフィー工程にて用いられるフォトマスクにおけるマスクパターンのさらなる微細化が求められている。
フォトリソグラフィー工程において、フォトマスクのマスクパターンがシリコンウェハ等の半導体デバイス用基材に転写されるため、当該フォトマスクにおいては、無欠陥であることが要求される。しかし、フォトマスクの製造工程において、マスクパターンに黒欠陥と呼ばれる不要な余剰部分や、白欠陥と呼ばれるマスクパターンの欠損が生じることがあり、無欠陥のフォトマスクの製造は技術的及び/又はコスト的に非常に困難である。そのため、フォトマスクに生じ得る黒欠陥や白欠陥は修正されなければならない。フォトマスクにおける欠陥を修正する方法として、従来、電子ビームを用いた欠陥修正方法が知られている。
上記欠陥修正方法としては、例えば、黒欠陥部分に対してフッ化キセノン(XeF2)ガスを供給しながら電子ビームを照射して、当該黒欠陥部分をエッチングして除去する方法が挙げられる。かかる欠陥修正方法において、半導体デバイスの微細化により、フォトマスクにおけるマスクパターンの面積が小さくなると、電子ビームの照射による過剰な電荷によってチャージアップが発生するおそれがある。また、黒欠陥部分に対する局所的かつ連続的な電子ビームの照射や黒欠陥部分のエッチングによる反応熱により、局所的な温度上昇が生じることがある。これらのチャージアップや局所的な温度上昇等に起因して電子ビームのドリフト等が発生してしまうため、修正精度が低下してしまうという問題がある。
このような問題を解決すべく、従来、欠陥修正に先立って、マスクパターンに複数の参照パターン(ホールパターン)を形成しておき、当該参照パターンと欠陥との位置関係に基づいて、チャージアップや局所的な温度上昇等に起因する電子ビームのドリフト量を補正し、高い精度で欠陥の修正を可能とする欠陥修正方法が提案されている(特許文献1参照)。
特開2005−134704号公報
上記特許文献1に記載されている欠陥修正方法においては、欠陥を修正する過程において参照パターンを電子ビームで走査することで、電子ビームのドリフト量を補正することができるため、修正精度を高めることができる。しかし、黒欠陥を修正するためのアシストガス(エッチングガス)の存在する雰囲気下で参照パターンへの電子ビームの照射が繰り返されると、参照パターンの周辺のマスクパターンが損傷してしまうという問題がある。マスクパターンの損傷は、新たな白欠陥の発生につながるおそれがあり、白欠陥が発生しなかったとしても、マスクパターンの膜厚が低減してしまい、遮光性能の低下を招くおそれがある。
近年、デザインルール32nm以下の半導体デバイスの製造工程において、モリブデンシリサイド等の金属シリサイドにより構成される遮光パターンを有するバイナリーマスクが用いられるようになってきている。しかしながら、遮光パターンを構成する金属シリサイドは、電子ビームの照射により特に損傷し易いため、電子ビームを用いた欠陥修正が極めて困難であるという問題がある。
上記課題に鑑みて、本発明は、電子ビーム等の荷電粒子ビームを用い、チャージアップや局所的な温度上昇等により生じ得るドリフトを補正して高い精度で欠陥を修正しつつも、ドリフト補正時にマスクパターンに新たな欠陥が生じるのを防止可能なフォトマスクの欠陥修正方法、当該欠陥修正方法を利用したフォトマスクの製造方法及び当該欠陥修正方法に利用可能なフォトマスクを提供することを目的とする。
上記課題を解決するために、本発明は、第1面及び当該第1面に対向する第2面を有する透明基材と、前記透明基材の前記第1面上に設けられ、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンとを備えるフォトマスクにおいて、前記光透過制限膜パターンの欠陥を修正する方法であって、前記欠陥の存在する領域の周辺に位置する前記光透過制限膜パターン上に、少なくとも1つの参照パターンを形成する工程と、前記参照パターン上に、前記参照パターンを被覆する保護膜を形成する工程と、前記光透過制限膜パターンの欠陥に荷電粒子ビームを照射することで、前記欠陥を修正する工程とを含み、前記欠陥を修正する工程において、前記参照パターンへの前記荷電粒子ビームの照射と前記欠陥への前記荷電粒子ビームの照射とを複数回交互に行うことを特徴とするフォトマスクの欠陥修正方法を提供する(発明1)。
上記発明(発明1)によれば、欠陥修正過程で生じる荷電粒子ビームのドリフトを補正するために参照パターンに当該荷電粒子ビームを照射するが、参照パターンが保護膜により被覆されていることで、荷電粒子ビームの照射による参照パターン周辺の光透過制限膜パターンに損傷が生じるのを防止することができ、荷電粒子ビームのドリフトを補正しつつ、高い精度で欠陥を修正することができる。
本発明において、光透過制限膜パターンとは、フォトマスクを用いたフォトリソグラフィー工程において透明基材の第2面側から第1面側に向かって進行する露光光の透過率を低下させ得るパターンのことを意味し、フォトマスクにおける当該光透過制限膜パターンとしては、例えば、バイナリーマスクにおいて露光光を遮光する役割を果たす遮光パターン、ハーフトーン位相シフトマスクにおいて露光光の位相をシフトさせる役割を果たす半透過パターン等が挙げられる。
上記発明(発明1)において、前記参照パターン上に保護膜形成用材料を含むアシストガスを供給しながら荷電粒子ビームを照射することで、前記保護膜を形成するのが好ましく(発明2)、前記保護膜形成用材料として、金属カルボニル化合物を用いるのが好ましく(発明3)、特に、ヘキサカルボニルクロム、ヘキサカルボニルモリブデン又はドデカカルボニルトリルテニウムを用いるのが好ましい(発明4)。
上記発明(発明1〜4)において、前記保護膜を形成する工程において、前記欠陥に近接する前記光透過制限膜パターン上に保護膜を形成するのが好ましく(発明5)、前記光透過制限膜パターンは、モリブデン及びシリコン、又はタンタルを含んでいてもよいし(発明6)、窒素をさらに含んでいてもよく(発明7)、前記光透過制限膜パターンの膜厚が、30〜75nmであるのが好ましい(発明8)。
上記発明(発明1〜8)において、前記欠陥を修正した後、前記保護膜を除去する工程をさらに含むのが好ましく(発明9)、前記保護膜を除去した後に、前記参照パターンを除去する工程をさらに含むのが好ましい(発明10)。
また、本発明は、第1面及び当該第1面に対向する第2面を有する透明基材と、前記透明基材の前記第1面上に設けられてなる光透過制限膜と、前記光透過制限膜上に設けられてなるハードマスク層とを有するフォトマスクブランクスを準備する工程と、前記ハードマスク層をエッチングすることでハードマスクパターンを形成する工程と、前記ハードマスクパターンをマスクとして前記光透過制限膜をエッチングすることで、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンを形成する工程と、前記光透過制限膜パターンの欠陥検査を行う工程とを含み、前記光透過制限膜パターンが欠陥を有する場合に、上記発明(発明1〜10)に係る方法により当該欠陥を修正することを特徴とするフォトマスクの製造方法を提供する(発明11)。
さらに、本発明は、第1面及び当該第1面に対向する第2面を有する透明基材と、前記透明基材の前記第1面上に設けられ、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンと、前記光透過制限膜パターン上に設けられてなる、少なくとも1つの参照パターンと、前記参照パターンを被覆する保護膜とを備えることを特徴とするフォトマスクを提供する(発明12)。
本発明によれば、電子ビーム等の荷電粒子ビームを用い、チャージアップや局所的な温度上昇等により生じ得るドリフトを補正して高い精度で欠陥を修正しつつも、マスクパターンに新たな欠陥が生じるのを防止可能なフォトマスクの欠陥修正方法、当該欠陥修正方法を利用したフォトマスクの製造方法及び当該欠陥修正方法に利用可能なフォトマスクを提供することができる。
図1は、本発明の一実施形態に係る欠陥修正方法を含むフォトマスクの製造方法の各工程を示すフローチャートである。 図2は、本発明の一実施形態におけるフォトマスクの製造方法の各工程を切断端面図にて示す工程フロー図(その1)である。 図3は、本発明の一実施形態におけるフォトマスクの製造方法の各工程を切断端面図にて示す工程フロー図(その2)である。 図4は、本発明の一実施形態に係る欠陥修正方法の各工程を示す平面図である。
本発明の実施の形態について、図面を参照しながら説明する。図1は、本実施形態に係る欠陥修正方法を含むフォトマスクの製造方法の各工程を示すフローチャートであり、図2は、本実施形態におけるフォトマスクの製造方法の各工程を切断端面図にて示す工程フロー図であり、図3は、本実施形態におけるフォトマスクの製造方法の各工程であって、図2に示す工程の続きの工程を切断端面図にて示す工程フロー図であり、図4は、本実施形態に係る欠陥修正方法の各工程を示す平面図である。
なお、本実施形態においては、欠陥修正対象となるフォトマスク1として、光透過パターン3と遮光パターン2とを有するバイナリーマスク1(図3(E)、図4(F)参照)を例に挙げて説明するが、この態様に限定されるものではなく、遮光パターン2に代えて、又は遮光パターン2とともに半透過パターンを有するハーフトーン位相シフトマスク等であってもよい。
<マスクブランクス準備工程>
第1面11A及びそれに対向する第2面11Bを有する透明基板11と、透明基板11の第1面11A上に順に設けられている遮光膜20及びハードマスク層30とを有するマスクブランクス10を準備する(S01,図2(A)参照)。
透明基板11としては、一般にフォトマスク用基板として用いられるものである限り特に制限はなく、例えば、無アルカリガラス、合成石英ガラス、パイレックス(登録商標)ガラス等の可撓性を有しない透明なリジット材等を用いることができる。なお、本実施形態における透明基板11は、フォトマスク1を介して照射される露光光により感光性レジストが感光し得る程度に透明であればよく、好ましくは露光光の80%以上、より好ましくは90%以上の透過率を有する。特に合成石英ガラスは、ArFエキシマレーザの透過率が高く、透明基板11として好適に用いられ得る。
遮光膜20を構成する材料としては、例えば、モリブデンシリサイド(MoSi)系材料であるモリブデンシリサイド酸化物(MoSiO)、モリブデンシリサイド窒化物(MoSiN)、モリブデンシリサイド酸窒化物(MoSiON)等;タンタル(Ta)系材料であるタンタル酸化物(TaO)、タンタル窒化物(TaN)、タンタル酸窒化物(TaON)等が挙げられる。遮光膜20は、通常、波長193nmのArFエキシマレーザに対して所望とする遮光性能(例えば、光学濃度値(OD値)が2.8以上)を奏するように設計されている。なお、遮光膜20が上記モリブデンシリサイド系材料により構成される場合、遮光膜20の表面反射率を低減させるために酸素や窒素の含有量を相対的に多くすることが要求されるが、酸素や窒素の含有量が相対的に多くなると所望とする遮光性能が奏されなくなるおそれがある。そのため、上記遮光膜20は、窒素含有量が相対的に少ない(例えば、窒素含有量が20〜30at%)遮光層と、窒素含有量が相対的に多い(例えば、窒素含有量が40〜50at%)低反射層とを透明基板11の第1面11A上にこの順に積層してなる2層構造を有するのが好ましい。
遮光膜20の膜厚は、本実施形態における欠陥修正対象であるフォトマスク1を用いたフォトリソグラフィーによって形成されるパターンの寸法(フォトマスク1を用いて製造される半導体デバイスのデザインルール)等により適宜設定され得るが、好ましくは30〜75nm程度、より好ましくは45〜60nm程度である。
なお、遮光膜20は、例えば、遮光膜20がモリブデンシリサイド系材料により構成される場合、モリブデンとシリコンとの混合ターゲットを用い、アルゴンと、窒素及び/又は酸素との混合ガス雰囲気での反応性スパッタリング法により、透明基板11の第1面11A上に形成され得る。
ハードマスク層30は、遮光膜20をエッチングして遮光パターン2(図2(F)参照)を形成する際にエッチングマスクとして機能するハードマスクパターン31を形成するためのものである。
ハードマスク層30を構成する材料としては、遮光膜20をエッチングする際のエッチングガスに対するエッチング耐性を有する材料の中から適宜選択することができる。例えば、遮光膜20がモリブデンシリサイド系材料により構成される場合、フッ素系ガスをエッチングガスとして用いるドライエッチング法により遮光膜20が加工されるため、ハードマスク層30は、フッ素系ガスに対するエッチング耐性を有する材料により構成されるのが望ましい。かかる材料の具体例としては、クロム、酸化クロム、窒化クロム、酸窒化クロム等のクロム系材料等が挙げられる。なお、遮光膜20がタンタル系材料により構成される場合、透明基板11の第1面11A側から順に積層された第1遮光層と第2遮光層とにより遮光膜20が構成され得る。この場合において、例えば、第2遮光層を構成する材料として、塩素系エッチングガスに対するエッチング耐性を有する酸化タンタル(TaO)を用い、第1遮光層を構成する材料として窒化タンタル(TaN)を用いる。そして、フッ素系エッチングガスを用いたドライエッチングにより第2遮光層をパターニングし、第2遮光層パターンをハードマスクパターン31の代わりとして用い、塩素系エッチングガスを用いたドライエッチングにより第1遮光層をパターニングして遮光パターン2を形成する。このように、遮光膜20が複数のタンタル系材料の積層膜として構成される場合、一方(透明基板11の第1面11A側から見たときの上層)をハードマスク層30の代わりとして用いることができるため、この場合には、ハードマスク層30が設けられていなくてもよい。
ハードマスク層30の膜厚は、遮光膜20をエッチングする際のエッチングマスクとして機能し得る程度の厚さであればよいが、過度に厚い場合には、遮光膜20をエッチングして形成される遮光パターン2(図2(F)、図3(E)参照)を微細な寸法で形成するのが困難となるおそれがある。そのため、ハードマスク層30の膜厚は、好ましくは4〜8nm程度、より好ましくは5〜7nm程度に設定され得る。
<遮光パターン形成工程>
次に、遮光パターン2(図2(F)、図3(E)参照)を形成する(S02)。遮光パターン2を形成するにあたり、まず、ハードマスク層30上にレジスト膜40を形成する(図2(B)参照)。次に、当該レジスト膜40に電子線描画装置を用いてパターン潜像を形成した後に現像し、ハードマスク層30をエッチングする際のマスクとして用いられるレジストパターン41を形成する(図2(C)参照)。
レジスト膜40を構成するレジスト材料としては、特に限定されるものではないが、電子線感応型ポジレジスト材料、電子線感応型ネガレジスト材料等を用いることができる。なお、レジストパターン41の形状及び寸法は、本実施形態において製造されるフォトマスク1の遮光パターン2の形状及び寸法に応じて適宜設定され得る。
レジスト膜40とハードマスク層30との間に異物が混入したり、レジスト膜40の表面に異物が付着したり、電子線描画における電子線照射量の不足部位が生じて不要な余剰部分が残ったりすることにより、上記のようにして形成されるレジストパターン41に黒欠陥41aが生じることがある。この黒欠陥41aが種々の工程を経て転写されることで、フォトマスク1の遮光パターン2に欠陥(黒欠陥2a)を生じさせ得る(図2(F)参照)。
次に、レジストパターン41をマスクとしてハードマスク層30をエッチングし、ハードマスクパターン31を形成し、その後、レジストパターン41を除去する(図2(D),(E)参照)。ハードマスク層30のエッチング方法としては、例えば、ハードマスク層30がクロム系材料により構成されている場合、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチング法が挙げられる。
上述したように、レジストパターン41が黒欠陥41aを有すると、当該黒欠陥41aがハードマスクパターン31にも転写され、黒欠陥31aを生じさせてしまう(図2(D),(E)参照)。しかし、本実施形態においては、この段階(ハードマスクパターン31が形成された段階)ではハードマスクパターン31の欠陥検査を行わない。
続いて、ハードマスクパターン31をマスクとして遮光膜20をエッチングし、遮光パターン2を形成し、その後、ハードマスクパターン31を除去する(図2(E),(F)参照)。遮光膜20のエッチング法としては、例えば、遮光膜20がモリブデンシリサイド系材料により構成されている場合、フッ素系ガスとヘリウムガスとの混合ガスを用いるドライエッチング法が挙げられる。なお、遮光膜20がタンタル系材料により構成される場合、フッ素系ガス、塩素系ガス等をエッチングガスとして用いるドライエッチング法が採用され、特に遮光膜20が酸化タンタル(TaO)により構成される場合には、フッ素系ガスをエッチングガスとして用いるドライエッチング法が採用される。
<欠陥検査工程>
上述したように、レジストパターン41の黒欠陥41aがハードマスクパターン31に転写され、ハードマスクパターン31の黒欠陥31aが遮光パターン2にも転写されることになる(図2(F),図3(A)参照)。本実施形態においては、このようにして生じ得る遮光パターン2の黒欠陥2aを、欠陥検査を実施することにより検出する(S03)。
本実施形態において、欠陥検査は、従来公知のフォトマスク用欠陥検査装置等を用いて実施され得る。例えば、遮光パターン2の欠陥検査は、透明基板11と遮光パターン2(遮光膜20)とにおける検査光の透過率の差を利用する、フォトマスク用欠陥検査装置(光外観検査装置(レーザーテック社製、製品名:Matrics)等)を用いて行われ得る。
<欠陥修正工程>
欠陥検査の結果、遮光パターン2が黒欠陥2aを有する場合、当該遮光パターン2の黒欠陥2aを修正する(S04,図3,4参照)。遮光パターン2の黒欠陥2aを修正するにあたり、まず、黒欠陥2aの近傍において任意に選択した遮光パターン2(例えば、黒欠陥2aを有する遮光パターン2に隣接する遮光パターン2)上に、少なくとも1つの参照パターン5を形成する(図3(B),図4(B)参照)。なお、本実施形態においては、黒欠陥2aを囲むようにして4つの参照パターン5を形成する例を挙げて説明するが、このような態様に限定されるものではなく、参照パターン5の数は1つ以上であればよく、好ましくは3つ以上である。
参照パターン5を構成する材料としては、電子ビームの走査による二次電子を検出可能な材料を用いることができ、好ましくは遮光パターン2に損傷を生じさせることなく参照パターン5のみを除去可能な材料が用いられ得る。このような材料としては、例えば、SiO2等が挙げられる。
参照パターン5の大きさは、特に限定されるものではないが、遮光パターン2の寸法よりも小さいのが好ましい。また、参照パターン5の形状(平面視形状)は、特に限定されるものではなく、例えば、略円形状、略方形状等が挙げられる。
参照パターン5を形成する方法としては、黒欠陥2aの周辺に位置する遮光パターン2上に局所的に形成可能な方法であれば特に限定されるものではなく、例えば、荷電粒子ビーム(電子ビーム、イオンビーム等)を用いたCVD法が挙げられる。かかる方法においては、テトラエトキシシラン(Si(OC25)4)、テトラメトキシシラン(Si(OCH3)4)等の金属アルコキシド等を含むアシストガスを供給しながら荷電粒子ビームを照射することで、参照パターン5が形成される。
次に、参照パターン5を被覆する保護膜6を形成する(図3(C),図4(C)参照)。参照パターン5を被覆する保護膜6が形成されていることで、後述するドリフト補正時に、参照パターン5に電子ビームが照射されることにより参照パターン5周辺の遮光パターン2に損傷が生じるのを抑制することができる。
本実施形態においては、参照パターン5上に保護膜6を形成するのとともに、黒欠陥2aの近傍の遮光パターン2上にも保護膜6’を形成する。黒欠陥2aの修正時に電子ビームのドリフトが生じると、黒欠陥6’の近傍の遮光パターン2(特に遮光パターン2のエッジ部分)に損傷が生じるおそれがあるが、黒欠陥2aの近傍の遮光パターン2上に保護膜6’が形成されることで、当該損傷が生じるのを抑制することができる。
保護膜6,6’を構成する材料としては、黒欠陥2aの修正時に供給されるエッチングガスに対するエッチング耐性を有する材料であればよく、例えば、遮光パターン2を構成する材料がモリブデンシリサイド系材料である場合、酸化クロム、酸化モリブデン、酸化ルテニウム等が挙げられる。
保護膜6の大きさは、参照パターン5とその周辺の遮光パターン2とを被覆可能な大きさであればよい。また、保護膜6,6’の膜厚は、遮光パターン2に損傷を生じさせない程度の厚さであればよく、特に制限されない。さらに、保護膜6,6’の形状(平面視形状)は、特に限定されるものではなく、例えば、略円形状、略方形状等が挙げられる。
保護膜6,6’を形成する方法としては、参照パターン5及びその周辺の遮光パターン2と、黒欠陥2a近傍の遮光パターン2とを被覆するようにして局所的に形成可能な方法であれば特に限定されるものではなく、例えば、荷電粒子ビーム(電子ビーム、イオンビーム等)を用いたCVD法が挙げられる。かかる方法においては、ヘキサカルボニルクロム(Cr(CO)6)、ヘキサカルボニルモリブデン(Mo(CO)6)、ドデカカルボニルトリルテニウム(Ru3(CO)12)等の金属カルボニル等の保護膜形成用材料を含むアシストガスを供給しながら荷電粒子ビームを照射することで、保護膜6,6’が形成される。なお、保護膜6,6’の形成後、黒欠陥2aの近傍の領域を走査型電子顕微鏡(SEM)等で観察し、二次電子像から参照パターン5及び黒欠陥2aの位置を特定しておく。
次に、黒欠陥2aにアシストガスを供給し、電子ビームの軌道を検知するため、参照パターン5を電子ビームで走査し、二次電子像から参照パターン5の位置を検出する。そして、事前に特定した参照パターン5の位置との差から電子ビームのドリフト量を算出し、電子ビームのドリフト補正を行う。続いて、アシストガスが供給された雰囲気中で黒欠陥2aに電子ビームを局所的に照射して、黒欠陥2aをエッチングする。
アシストガスとしては、黒欠陥2aをエッチング可能なものであればよく、遮光パターン2がモリブデンシリサイド系材料により構成される場合、例えば、フッ化キセノン(XeF2)等のフッ素系ガス、ヨウ素(I2)等のヨウ素系ガス等を用いることができ、遮光パターン2がタンタル系材料により構成される場合、例えば、フッ化キセノン(XeF2)等のフッ素系ガス、塩化ニトロシル(NOCl)等の塩素系ガス等を用いることができる。
上記アシストガスとともに、酸素(O2)、水蒸気(H2O)、オゾン(O3)、一酸化窒素(NO)、二酸化窒素(NO2)、炭酸アンモニウム((NH4)2CO3)等の少なくとも1種の添加材を含むガスを供給するのが好ましい。上述したように、モリブデンシリサイド系材料やタンタル系材料により構成される遮光パターン2は、所望とする表面反射率及び遮光性能を示すために、透明基板11の第1面11A側から順に窒素含有量が相対的に少ない遮光層と、窒素含有量が相対的に多い低反射層との2層構造を有する。アシストガスとしてフッ化キセノン(XeF2)等のフッ素系ガスを用いた場合、窒素含有量が相対的に少ない遮光層が顕著にエッチングされてしまい、アンダーカットが生じるおそれがある。しかし、上記添加材を含むガスが供給されることで、フッ素系ガスによりエッチングされた黒欠陥2aの表面が酸化及び/又は窒化され、エッチング耐性を向上させ得るため、大きなアンダーカットが生じるのを抑制することができる。
上記添加材を含むガスは、所定の間隔で間欠的に供給されるのが好ましい。上記添加材を含むガスが連続的に供給されると、黒欠陥2aのエッチング速度を著しく低下させてしまい、黒欠陥2aの修正処理の効率が低下するおそれがある。
上記欠陥修正工程において、黒欠陥2aのエッチング開始から一定時間経過後に、再び参照パターン5を電子ビームで走査し、二次電子像から参照パターン5の位置を検出する。そして、事前に特定した参照パターン5の位置との差からドリフト量を算出し、電子ビームのドリフト補正を行い、黒欠陥2aのエッチングを再開する。
このように、参照パターン5の位置を検出する工程、電子ビームのドリフト補正を行う工程、黒欠陥2aをエッチングする工程の一連の工程を複数回繰り返し行うことで、高い精度で黒欠陥2aを修正することができる。このとき、参照パターン5及びその周辺の遮光パターン2は保護膜6により被覆されているため、参照パターン5の位置を検出するための電子ビームの走査により参照パターン5の周辺の遮光パターン2aに損傷が生じるのを防止することができる。
黒欠陥2aの修正が完了したら、不活性化ガスを供給し、雰囲気中に残留するフッ素を不活性化する。これにより、必要な遮光パターン2(モリブデンシリサイド系材料により構成される遮光パターン2においては、特に、窒素含有量が相対的に少ない遮光層)が、残留するフッ素によってさらにエッチングされてしまうのを抑制することができる。不活性化ガスとしては、例えば、水蒸気(H2O)等を含むガスが挙げられる。
最後に、保護膜6,6’及び参照パターン5を除去する(図3(E),図4(E)〜(F)参照)。保護膜6,6’及び参照パターン5は、例えば、エッチング等により除去され得る。このようにして、無欠陥のフォトマスク1が製造される。
なお、本実施形態における保護膜6,6’及び参照パターン5は遮光パターン2上に形成されるため、保護膜6,6’及び参照パターン5の存在する分だけ、その部分の遮光パターン2の膜厚が厚くなる。これにより、当該フォトマスク1を利用したフォトリソグラフィーにより被転写基板に転写されるパターンの線幅が細くなってしまうことがある。しかし、そのような問題を生じさせないのであれば、保護膜6,6’及び参照パターン5は除去されなくてもよい。すなわち、本実施形態におけるフォトマスク1は、第1面11A及びそれに対向する第2面11Bを有する透明基板11と、透明基板11の第1面11A上に設けられてなる遮光パターン2と、遮光パターン2上に設けられてなる、少なくとも1つの参照パターン5と、参照パターン5を被覆する保護膜6とを備えるものであってもよい。本実施形態によりフォトマスク1の黒欠陥2aを修正し、所定のスペックを満足すると判断された後、さらに厳しいスペックを要求された場合、再びその黒欠陥2aを修正する必要がある。この場合に、参照パターン5及び保護膜6を備えるフォトマスク1においては、黒欠陥2aの再修正にあたって参照パターン5及び保護膜6を再利用することができるという効果が奏される。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
上記実施形態においては、欠陥修正対象として遮光パターン2を有するフォトマスク1(バイナリーマスク)を例に挙げたが、本発明はこのような態様に限定されるものではなく、例えば、モリブデンシリサイド系材料等の金属シリサイドにより構成される半透過パターンを有するハーフトーン位相シフトマスクであってもよい。この場合において、半透過パターン上に参照パターン5及び保護膜6を形成すればよい。
以下、実験例を挙げて本発明をさらに詳細に説明するが、本発明は下記の実験例により何ら限定されるものではない。
〔実験例1〕
モリブデンシリサイド窒化物により構成される遮光パターン2(ハーフピッチ160nm,ラインアンドスペース状)と、黒欠陥2aとを有するフォトマスク1を準備し、当該黒欠陥2aの周囲に位置する遮光パターン2上に、当該黒欠陥2aを囲むようにして4つの略円形の参照パターン5(φ80nm)を形成した(図4(B)参照)。参照パターン5は、テトラエトキシシラン(Si(OC25)4)を含むガスを供給しながら、参照パターン5の形成予定位置に電子ビームを照射することで形成された。
次に、4つの参照パターン5のうちから任意に選択した2つの参照パターン5を被覆する略矩形の保護膜6(160nm×180nm,膜厚:10nm)を形成した。保護膜6は、ヘキサカルボニルクロム(Cr(CO)2)を含むガスを供給しながら、保護膜6の形成予定位置に電子ビームを照射することで形成された。
続いて、フッ化キセノン(XeF2)をエッチングガスとして供給し、黒欠陥2aに電子ビームを照射することで当該黒欠陥2aをエッチングにより除去した。このとき、30秒間隔で添加材としての二酸化窒素(NO2)を1秒間、0.5sccmで供給した。また、所定の時間間隔で電子ビームを参照パターン5に照射し、電子ビームのドリフト補正を行った。
上記のようにして黒欠陥2aを修正したところ、保護膜6にて被覆された参照パターン5周辺の遮光パターン2には損傷が生じていなかったが、保護膜6にて被覆されていない参照パターン5周辺の遮光パターン2には損傷が生じていた。この結果から、参照パターン5を被覆する保護膜6を形成することで、フォトマスク1の遮光パターン2の欠陥2aを修正するときに、参照パターン5周辺の遮光パターン2に損傷を生じさせることなく、高い精度で欠陥修正が可能であることが確認された。
1…フォトマスク(バイナリーマスク)
2…遮光パターン(光透過制限膜パターン)
3…光透過パターン
5…参照パターン
6,6’…保護膜
10…フォトマスクブランクス
11…透明基板(透明基材)
11A…第1面
11B…第2面
20…遮光膜(光透過制限膜)
30…ハードマスク層

Claims (12)

  1. 第1面及び当該第1面に対向する第2面を有する透明基材と、前記透明基材の前記第1面上に設けられ、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンとを備えるフォトマスクにおいて、前記光透過制限膜パターンの欠陥を修正する方法であって、
    前記欠陥の存在する領域の周辺に位置する前記光透過制限膜パターン上に、少なくとも1つの参照パターンを形成する工程と、
    前記参照パターン上に、前記参照パターンを被覆する保護膜を形成する工程と、
    前記光透過制限膜パターンの前記欠陥に荷電粒子ビームを照射することで、前記欠陥を修正する工程と
    を含み、
    前記欠陥を修正する工程において、前記参照パターンへの前記荷電粒子ビームの照射と前記欠陥への前記荷電粒子ビームの照射とを複数回交互に行うことを特徴とするフォトマスクの欠陥修正方法。
  2. 前記参照パターン上に保護膜形成用材料を含むアシストガスを供給しながら荷電粒子ビームを照射することで、前記保護膜を形成することを特徴とする請求項1に記載のフォトマスクの欠陥修正方法。
  3. 前記保護膜形成用材料が、金属カルボニル化合物であることを特徴とする請求項2に記載のフォトマスクの欠陥修正方法。
  4. 前記保護膜形成用材料が、ヘキサカルボニルクロム、ヘキサカルボニルモリブデン又はドデカカルボニルトリルテニウムであることを特徴とする請求項2又は3に記載のフォトマスクの欠陥修正方法。
  5. 前記保護膜を形成する工程において、前記欠陥に近接する前記光透過制限膜パターン上に保護膜を形成することを特徴とする請求項1〜4のいずれかに記載のフォトマスクの欠陥修正方法。
  6. 前記光透過制限膜パターンは、モリブデン及びシリコン、又はタンタルを含むことを特徴とする請求項1〜5のいずれかに記載のフォトマスクの欠陥修正方法。
  7. 前記光透過制限膜パターンは、窒素をさらに含むことを特徴とする請求項6に記載のフォトマスクの欠陥修正方法。
  8. 前記光透過制限膜パターンの膜厚が、30〜75nmであることを特徴とする請求項1〜7のいずれかに記載のフォトマスクの欠陥修正方法。
  9. 前記欠陥を修正した後、前記保護膜を除去する工程をさらに含むことを特徴とする請求項1〜8のいずれかに記載のフォトマスクの欠陥修正方法。
  10. 前記保護膜を除去した後に、前記参照パターンを除去する工程をさらに含むことを特徴とする請求項9に記載のフォトマスクの欠陥修正方法。
  11. 第1面及び当該第1面に対向する第2面を有する透明基材と、前記透明基材の前記第1面上に設けられてなる光透過制限膜と、前記光透過制限膜上に設けられてなるハードマスク層とを有するフォトマスクブランクスを準備する工程と、
    前記ハードマスク層をエッチングすることでハードマスクパターンを形成する工程と、
    前記ハードマスクパターンをマスクとして前記光透過制限膜をエッチングすることで、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンを形成する工程と、
    前記光透過制限膜パターンの欠陥検査を行う工程と
    を含み、
    前記光透過制限膜パターンが欠陥を有する場合に、請求項1〜10のいずれかに記載の方法により当該欠陥を修正することを特徴とするフォトマスクの製造方法。
  12. 第1面及び当該第1面に対向する第2面を有する透明基材と、
    前記透明基材の前記第1面上に設けられ、前記透明基材の厚さ方向における光の透過を制限する光透過制限膜パターンと、
    前記光透過制限膜パターン上に設けられてなる、少なくとも1つの参照パターンと、
    前記参照パターンを被覆する保護膜と
    を備えることを特徴とするフォトマスク。
JP2016107084A 2016-05-30 2016-05-30 フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法 Active JP6673016B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016107084A JP6673016B2 (ja) 2016-05-30 2016-05-30 フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016107084A JP6673016B2 (ja) 2016-05-30 2016-05-30 フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法

Publications (2)

Publication Number Publication Date
JP2017215354A true JP2017215354A (ja) 2017-12-07
JP6673016B2 JP6673016B2 (ja) 2020-03-25

Family

ID=60576813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016107084A Active JP6673016B2 (ja) 2016-05-30 2016-05-30 フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法

Country Status (1)

Country Link
JP (1) JP6673016B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036895A1 (en) * 2021-09-10 2023-03-16 Carl Zeiss Smt Gmbh Method and apparatus for repairing a defect of a sample using a focused particle beam

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213425A (ja) * 1982-06-07 1983-12-12 Fujitsu Ltd 電子ビ−ム直接露光用位置合わせマ−クとその製造方法
JPS59152443A (ja) * 1983-02-18 1984-08-31 Fuji Xerox Co Ltd フオトマスクの位置合わせマ−ク形成法
JPH07122484A (ja) * 1993-10-28 1995-05-12 Toshiba Corp 電子線描画装置のパターン修正装置におけるパターン修正方法
JP2004251964A (ja) * 2003-02-18 2004-09-09 Seiko Instruments Inc 電子ビーム加工方法
JP2014519046A (ja) * 2011-04-26 2014-08-07 カール ツァイス エスエムエス ゲーエムベーハー 集束粒子ビームを用いて基板を処理する方法及び装置
JP2014174552A (ja) * 2013-03-08 2014-09-22 Carl Zeiss Sms Gmbh 粒子ビームを用いた処理中に基板を保護する方法及び装置
JP2014204074A (ja) * 2013-04-09 2014-10-27 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法
JP2014216365A (ja) * 2013-04-23 2014-11-17 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213425A (ja) * 1982-06-07 1983-12-12 Fujitsu Ltd 電子ビ−ム直接露光用位置合わせマ−クとその製造方法
JPS59152443A (ja) * 1983-02-18 1984-08-31 Fuji Xerox Co Ltd フオトマスクの位置合わせマ−ク形成法
JPH07122484A (ja) * 1993-10-28 1995-05-12 Toshiba Corp 電子線描画装置のパターン修正装置におけるパターン修正方法
JP2004251964A (ja) * 2003-02-18 2004-09-09 Seiko Instruments Inc 電子ビーム加工方法
JP2014519046A (ja) * 2011-04-26 2014-08-07 カール ツァイス エスエムエス ゲーエムベーハー 集束粒子ビームを用いて基板を処理する方法及び装置
JP2014174552A (ja) * 2013-03-08 2014-09-22 Carl Zeiss Sms Gmbh 粒子ビームを用いた処理中に基板を保護する方法及び装置
JP2014204074A (ja) * 2013-04-09 2014-10-27 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法
JP2014216365A (ja) * 2013-04-23 2014-11-17 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023036895A1 (en) * 2021-09-10 2023-03-16 Carl Zeiss Smt Gmbh Method and apparatus for repairing a defect of a sample using a focused particle beam

Also Published As

Publication number Publication date
JP6673016B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
US9651859B2 (en) Mask blank, transfer mask and method of manufacturing transfer mask
US9017902B2 (en) Mask blank, transfer mask, and method of manufacturing a transfer mask
TWI422965B (zh) 光罩及其製造方法暨光罩之修正方法及經修正之光罩
JP6642493B2 (ja) ハーフトーン位相シフト型フォトマスクブランク
TW201719270A (zh) 光罩基底、相位偏移光罩、相位偏移光罩之製造方法及半導體裝置之製造方法
US11016382B2 (en) Mask blanks, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
US9372393B2 (en) Mask blank, transfer mask, method of manufacturing a transfer mask, and method of manufacturing a semiconductor device
JP2011215614A (ja) 多階調フォトマスク、多階調フォトマスクの製造方法、及びパターン転写方法
US10712654B2 (en) Photomask blank
TWI772645B (zh) 空白光罩、光罩之製造方法及光罩
JP6502143B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
JP2008256759A (ja) グレートーンマスクの欠陥修正方法、グレートーンマスクの製造方法及びグレートーンマスク、並びにパターン転写方法
WO2014103867A1 (ja) 位相シフトマスクおよびその製造方法
US9057961B2 (en) Systems and methods for lithography masks
JP6673016B2 (ja) フォトマスク及びその製造方法、並びにフォトマスクの欠陥修正方法
JP5644973B1 (ja) フォトマスクの製造方法
US20220229358A1 (en) Photomask blank, method for producing photomask, and photomask
JP5630592B1 (ja) フォトマスクの製造方法
JP2017227804A (ja) マスクパターンの白欠陥修正方法及びフォトマスクの製造方法
JP2015161834A (ja) フォトマスクの製造方法
JP6361328B2 (ja) フォトマスクの製造方法
JP7154572B2 (ja) マスクブランク、転写用マスク、及び半導体デバイスの製造方法
US10712655B2 (en) Mask blank, transfer mask, method for manufacturing transfer mask, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6673016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150