JP2017206844A - Earthquake resistant wall structure - Google Patents

Earthquake resistant wall structure Download PDF

Info

Publication number
JP2017206844A
JP2017206844A JP2016098856A JP2016098856A JP2017206844A JP 2017206844 A JP2017206844 A JP 2017206844A JP 2016098856 A JP2016098856 A JP 2016098856A JP 2016098856 A JP2016098856 A JP 2016098856A JP 2017206844 A JP2017206844 A JP 2017206844A
Authority
JP
Japan
Prior art keywords
earthquake
resistant wall
wall
column
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016098856A
Other languages
Japanese (ja)
Other versions
JP6863684B2 (en
Inventor
爲博 荒木
Tamehiro Araki
爲博 荒木
哲 日下
Satoru Kusaka
哲 日下
信行 柳澤
Nobuyuki Yanagisawa
信行 柳澤
公人 土井
Masato Doi
公人 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2016098856A priority Critical patent/JP6863684B2/en
Publication of JP2017206844A publication Critical patent/JP2017206844A/en
Application granted granted Critical
Publication of JP6863684B2 publication Critical patent/JP6863684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resistant wall structure using a precast concrete superior in workability.SOLUTION: The earthquake resistant wall structure includes: a column beam frame 10 of reinforced-concrete formed for each plural floor; an earthquake-resisting wall 20 of precast concrete disposed in the column beam frame 10; a cotter 30 which is formed between the column beam frame 10 and the earthquake-resisting wall 20 to transmit a shear force from the column beam frame 10 to the earthquake-resisting wall 20; and a steel rod (reinforcement 40) which is embedded in both end parts of the earthquake-resisting wall 20 along the column 12 of the column beam frame 10, and the end part thereof is fixed to a joist 14 of the column beam frame 10 or other earthquake-resisting wall 20.SELECTED DRAWING: Figure 1

Description

本発明は、耐震壁構造に関する。   The present invention relates to a seismic wall structure.

下記特許文献1における耐震補強構造体では、柱梁架構の柱及び梁にアンカー筋を所定の間隔で埋設し、このアンカー筋の端部を柱及び梁から架構の構面内へ突出させている。そして、このアンカー筋を構面内に打設したコンクリートに定着させて耐震壁を構築している。   In the seismic reinforcement structure in Patent Document 1 below, anchor bars are embedded at predetermined intervals in the columns and beams of the column beam frame, and the ends of the anchor bars protrude from the columns and beams into the frame structure. . And this anchor reinforcement is fixed to the concrete cast in the construction surface, and the earthquake-resistant wall is constructed.

特開2013−221331号公報JP2013-221331A

上記特許文献1における耐震補強構造体では、アンカー筋を施工する手間がかかる。また、配筋作業、型枠設置作業、コンクリート打設作業、型枠解体作業が必要となり、耐震壁を施工する手間がかかる。   In the seismic reinforcement structure in Patent Document 1, it takes time to construct anchor bars. In addition, reinforcement work, formwork installation, concrete placement work, and formwork dismantling work are required, and it takes time to construct a seismic wall.

本発明は上記事実を考慮して、プレキャストコンクリートを用いて施工性がよい耐震壁構造を提供することを目的とする。   In view of the above fact, an object of the present invention is to provide a seismic wall structure having good workability using precast concrete.

請求項1に記載の耐震壁構造は、複数階に設けられた鉄筋コンクリート製の柱梁架構と、前記柱梁架構内に配置されたプレキャストコンクリート製の耐震壁と、前記柱梁架構と前記耐震壁との間に形成され、前記柱梁架構から前記耐震壁へせん断力を伝達するコッターと、前記耐震壁の両端部に前記柱梁架構の柱に沿って埋設され、端部が前記柱梁架構の梁又は他の耐震壁に固定された鋼棒と、を有する。   The seismic wall structure according to claim 1 is a reinforced concrete column beam frame provided on a plurality of floors, a precast concrete earthquake beam arranged in the column beam frame, the column beam frame and the earthquake wall. And a cotter for transmitting a shear force from the column beam frame to the earthquake-resistant wall, and embedded at both ends of the earthquake-resistant wall along the columns of the column beam frame, and end portions thereof are embedded in the column beam frame Steel bars fixed to other beams or other shear walls.

請求項1に記載の耐震壁構造は、柱梁架構と耐震壁との間に形成されたコッターにより柱から耐震壁へせん断力が伝達される。また、梁からコッターを介して耐震壁へせん断力が伝達される。このため、柱梁架構に作用する鉛直方向の力と水平方向の力を、耐震壁に負担させることができる。   In the seismic wall structure according to claim 1, shear force is transmitted from the column to the seismic wall by a cotter formed between the column beam frame and the seismic wall. In addition, shear force is transmitted from the beam to the seismic wall through the cotter. For this reason, the vertical direction force and the horizontal direction force which act on the column beam frame can be borne on the earthquake resistant wall.

このため、耐震壁の壁筋を柱及び梁に定着させ、この壁筋を介して柱及び梁から耐震壁へ力を伝達させる必要がない。したがって、耐震壁の壁筋を柱及び梁に跨って施工する必要がなく施工性がよい。   For this reason, it is not necessary to fix the wall bars of the earthquake-resistant wall to the columns and beams, and to transmit the force from the columns and beams to the earthquake-resistant walls via the wall bars. Therefore, it is not necessary to construct the wall of the seismic wall across the columns and beams, and the workability is good.

また、耐震壁の両端部に埋設された鋼棒の端部が、柱梁架構の梁又は他の耐震壁に固定される。このため、柱に曲げモーメントが作用して耐震壁寄りの柱の側面が引張力を受けた際、鋼棒が引張力を負担することにより、柱の側面の伸び変形が抑制される。したがって、柱のひび割れを抑制できる。   Moreover, the edge part of the steel bar embed | buried under the both ends of a seismic wall is fixed to the beam of a column beam frame, or another seismic wall. For this reason, when a bending moment acts on the column and the side surface of the column near the earthquake-resistant wall receives a tensile force, the steel rod bears the tensile force, so that the elongation deformation of the side surface of the column is suppressed. Therefore, cracks of the column can be suppressed.

請求項2に記載の耐震壁構造は、前記梁には、下階に配置された前記耐震壁の上端面から突出した前記鋼棒が貫通する貫通孔が形成され、上階に配置された前記耐震壁の下端面には前記鋼棒が挿入される挿入孔が形成されている。   The seismic wall structure according to claim 2, wherein the beam is formed with a through-hole through which the steel bar protruding from the upper end surface of the seismic wall arranged on the lower floor passes, and is arranged on the upper floor. An insertion hole into which the steel rod is inserted is formed in the lower end surface of the earthquake resistant wall.

請求項2に記載の耐震壁構造は、下階に配置された耐震壁の上端面から突出した鋼棒が、梁の貫通孔を貫通し、さらに上階に配置された耐震壁の下端面に形成された挿入孔に挿入される。すなわち、上階に配置された耐震壁の挿入孔が、梁に形成された貫通孔と連通している。このため、挿入孔へグラウト材を注入することで、貫通孔を通じて下階に配置された耐震壁と柱梁架構の間にもグラウト材が回り込む。したがって、グラウト材の注入作業の効率が高い。   In the seismic wall structure according to claim 2, the steel rod protruding from the upper end surface of the seismic wall arranged on the lower floor penetrates the through hole of the beam, and further on the lower end surface of the seismic wall arranged on the upper floor. It is inserted into the formed insertion hole. That is, the insertion hole of the seismic wall arranged on the upper floor communicates with the through hole formed in the beam. For this reason, by injecting the grout material into the insertion hole, the grout material also flows between the earthquake resistant wall and the column beam frame arranged on the lower floor through the through hole. Therefore, the efficiency of the grout material injection operation is high.

請求項3に記載の耐震壁構造は、前記コッターは、互いに対向する前記柱の側面と前記耐震壁の端面及び前記梁の下面と前記耐震壁の端面にそれぞれ形成され、グラウト材が注入される凹部を有している。   The seismic wall structure according to claim 3, wherein the cotters are respectively formed on the side surfaces of the columns facing each other, the end surface of the seismic wall, the lower surface of the beam, and the end surface of the seismic wall, and grout material is injected. Has a recess.

請求項3に記載の耐震壁構造は、コッターが凹部で形成されているので、柱、梁、耐震壁の端面から突出していない。このため、耐震壁を配置する際にコッター同士が干渉することがなく、施工しやすい。   In the earthquake-resistant wall structure according to the third aspect, since the cotter is formed by the concave portion, it does not protrude from the end face of the column, the beam, or the earthquake-resistant wall. For this reason, when installing a seismic wall, cotters do not interfere with each other and construction is easy.

本発明に係る耐震壁構造によると、プレキャストコンクリートを用いて施工性がよい耐震壁構造を提供することができる。   According to the seismic wall structure according to the present invention, it is possible to provide a seismic wall structure with good workability using precast concrete.

(A)は本発明の実施形態に係る耐震壁構造を示す立面図であり、(B)は(A)のB−B線断面図であり、(C)は(A)のC−C線断面図である。(A) is an elevational view showing a seismic wall structure according to an embodiment of the present invention, (B) is a sectional view taken along line BB of (A), and (C) is a CC line of (A). It is line sectional drawing. 本発明の実施形態に係る耐震壁構造における鉄筋の接続構造を示す部分断面図であり、(A)は接続管を紐で耐震壁に固定した状態を示し、(B)は接続管で鉄筋を囲繞した状態を示し、(C)は鉄筋と接続管とをグラウト材で固定した状態を示す。It is a fragmentary sectional view which shows the connection structure of the reinforcing bar in the earthquake-resistant wall structure which concerns on embodiment of this invention, (A) shows the state which fixed the connecting pipe to the earthquake-resistant wall with the string, (B) shows the reinforcing bar with the connecting pipe. A closed state is shown, and (C) shows a state in which the reinforcing bar and the connecting pipe are fixed with a grout material. 本発明の実施形態に係る耐震壁構造の施工手順を示す立面図であり、耐震壁を梁の上部に載置した状態を示す。It is an elevation view which shows the construction procedure of the earthquake-resistant wall structure which concerns on embodiment of this invention, and shows the state which mounted the earthquake-resistant wall on the upper part of a beam. 本発明の実施形態に係る耐震壁構造の施工手順を示す立面図であり、耐震壁の上部へ梁を架け渡した状態を示す。It is an elevation view which shows the construction procedure of the earthquake-resistant wall structure which concerns on embodiment of this invention, and shows the state which spanned the beam over the upper part of the earthquake-resistant wall. 本発明の実施形態に係る耐震壁構造の施工手順を示す立面図であり、耐震壁の上部へ架け渡した梁へ上階の耐震壁を載置した状態を示す。It is an elevation view which shows the construction procedure of the earthquake-resistant wall structure which concerns on embodiment of this invention, and shows the state which mounted the earthquake-resistant wall of the upper floor on the beam laid over the upper part of the earthquake-resistant wall. 本発明の実施形態に係る耐震壁構造の施工手順を示す立面図であり、梁と耐震壁との間の空間へグラウト材を充填した状態を示す。It is an elevation view which shows the construction procedure of the earthquake-resistant wall structure which concerns on embodiment of this invention, and shows the state which filled the grout material into the space between a beam and an earthquake-resistant wall. 本発明の実施形態に係る耐震壁構造のコッターの変形例を示す部分立面図であり、(A)は柱、梁に凸部を形成した状態を示し、(B)は耐震壁に凸部を形成した状態を示し、(C)は柱、梁及び耐震壁に凸部を形成した状態を示し、(D)は梁、耐震壁に形成した凹部にせん断力伝達部材を係合させた状態を示し、(E)はせん断力伝達部材を凹部に係合させる前の状態を示す部分断面図であり、(F)はせん断力伝達部材を凹部に係合させた後の状態を示す部分断面図である。It is a partial elevation which shows the modification of the cotter of the earthquake-resistant wall structure which concerns on embodiment of this invention, (A) shows the state which formed the convex part in the pillar and the beam, (B) is the convex part in the earthquake-resistant wall (C) shows a state in which convex portions are formed on the columns, beams and the earthquake-resistant wall, and (D) shows a state in which a shear force transmission member is engaged with the concave portions formed in the beams and the earthquake-resistant wall. (E) is a partial sectional view showing a state before the shearing force transmission member is engaged with the recess, and (F) is a partial section showing a state after the shearing force transmission member is engaged with the recess. FIG. 本発明の実施形態に係る耐震壁構造において耐震壁に埋設した鉄筋の変形例を示す部分立面図であり、(A)は鉄筋の上端部を上階の耐震壁に固定した状態を示し、(B)は鉄筋の上端部を梁に固定した状態を示し、(C)は鉄筋に代えてPC鋼線を複数階に亘って通した状態を示し、(D)は(C)のPC鋼線の施工に先立ち耐震壁を柱に仮固定した状態を示す部分平断面図である。In the seismic wall structure according to the embodiment of the present invention, in the seismic wall structure is a partial elevation view showing a modification of the reinforcing bar embedded in the seismic wall, (A) shows a state in which the upper end of the reinforcing bar is fixed to the upper level seismic wall, (B) shows a state where the upper end of the reinforcing bar is fixed to the beam, (C) shows a state where a PC steel wire is passed over a plurality of floors instead of the reinforcing bar, and (D) shows the PC steel of (C). It is a partial plane sectional view which shows the state which temporarily fixed the earthquake-resistant wall to the column prior to construction of the wire.

(耐震壁構造)
図1(A)に示すように、本実施形態の耐震壁構造は、プレキャストコンクリート製の柱12及び梁14で形成された柱梁架構10と、柱梁架構10内に配置されたプレキャストコンクリート製の耐震壁20と、柱梁架構10と耐震壁20との間に形成されたコッター30、32と、耐震壁20の両端部に柱12に沿って埋設された鉄筋40と、を備えている。
(Seismic wall structure)
As shown in FIG. 1 (A), the seismic wall structure of the present embodiment includes a column beam frame 10 formed by columns 12 and beams 14 made of precast concrete, and a precast concrete frame arranged in the column beam frame 10. Of the seismic wall 20, cotters 30 and 32 formed between the column beam frame 10 and the seismic wall 20, and reinforcing bars 40 embedded along the columns 12 at both ends of the seismic wall 20. .

(柱梁架構)
柱梁架構10は複数階に亘って連続して設けられており、柱梁架構10を構成する柱12及び梁14はプレキャストコンクリート製とされている。柱12の側面には凹部12Vが高さ方向(図1(A)における矢印V方向)に等間隔に並んで形成されている。図1(A)、(B)に示すように、凹部12Vは柱12の成形時に脱型しやすくするために内側から外側へ向かって拡がる台形状に形成されている。また、梁14の上下端面には凹部14Hが水平方向(図1(A)における矢印H方向)に等間隔に並んで形成されており、凹部12Vと同様に台形状に形成されている。
(Column beam structure)
The column beam frame 10 is provided continuously over a plurality of floors, and the columns 12 and the beams 14 constituting the column beam frame 10 are made of precast concrete. Concave portions 12 </ b> V are formed on the side surfaces of the columns 12 at regular intervals in the height direction (the direction of arrow V in FIG. 1A). As shown in FIGS. 1A and 1B, the recess 12 </ b> V is formed in a trapezoidal shape that expands from the inside toward the outside in order to facilitate demolding when the column 12 is formed. Moreover, the recessed part 14H is formed in the horizontal direction (arrow H direction in FIG. 1 (A)) at equal intervals in the upper-lower-end surface of the beam 14, and is formed in trapezoid shape similarly to the recessed part 12V.

梁14の両端部にはそれぞれシース管50が埋設され、梁14の上下を連通する貫通孔が形成されている。このシース管50は、図2(C)に示すように、梁14の上端面へ開口した大径部52と梁14の下端面へ開口した小径部54とを備えており、小径部54から挿入された鉄筋40が大径部52まで貫通して配置されている。また、大径部52の内部には、鉄筋40を囲繞するように機械式継手60が配置されている。   Sheath tubes 50 are embedded at both ends of the beam 14, and through-holes communicating with the upper and lower sides of the beam 14 are formed. As shown in FIG. 2C, the sheath tube 50 includes a large diameter portion 52 that opens to the upper end surface of the beam 14 and a small diameter portion 54 that opens to the lower end surface of the beam 14. The inserted reinforcing bar 40 is arranged to penetrate to the large diameter portion 52. A mechanical joint 60 is disposed inside the large diameter portion 52 so as to surround the reinforcing bar 40.

機械式継手60の下端部は、シース管50の大径部52と小径部54との間に形成された段差部53と当接し、機械式継手60の上端部は、梁14の上部に配置された耐震壁20Uの下端面に埋設されたスリーブ70Uに挿入されている。また、機械式継手60の上端部には、上階の耐震壁20Uの鉄筋40Uが挿入されている。   The lower end portion of the mechanical joint 60 abuts on a stepped portion 53 formed between the large diameter portion 52 and the small diameter portion 54 of the sheath tube 50, and the upper end portion of the mechanical joint 60 is disposed on the upper portion of the beam 14. It is inserted into a sleeve 70U embedded in the lower end surface of the earthquake-resistant wall 20U. In addition, a reinforcing bar 40U of the earthquake-resistant wall 20U on the upper floor is inserted into the upper end portion of the mechanical joint 60.

機械式継手60は、鉄筋をねじ込まずに挿入可能な差し込み式の機械式継手であり、鉄筋40及び鉄筋40Uと機械式継手60との間にグラウト材Gが充填されることにより、鉄筋40及び鉄筋40U間で応力を伝達することができる。なお、シース管50、機械式継手60、スリーブ70の内部全体にグラウト材Gが注入され、このグラウト材Gは梁と耐震壁20との間に充填されたグラウト材Gと一体化されている。   The mechanical joint 60 is a plug-in mechanical joint that can be inserted without screwing the reinforcing bar, and the grout material G is filled between the reinforcing bar 40 and the reinforcing bar 40U and the mechanical joint 60, so that the reinforcing bar 40 and Stress can be transmitted between the reinforcing bars 40U. The grout material G is injected into the entire inside of the sheath tube 50, the mechanical joint 60, and the sleeve 70, and this grout material G is integrated with the grout material G filled between the beam and the earthquake resistant wall 20. .

なお、鉄筋40は本発明における鋼棒の一例であり、本実施形態においては異形鉄筋とされ、グラウト材Gの付着力が高められている。鉄筋40としては異形鉄筋に代えて丸鋼を用いてもよい。また、梁14に埋設されたシース管50は必ずしも必要ではなく、梁14には大径部と小径部とを備えた貫通孔が形成されていればよい。同様に耐震壁20にはスリーブ70は必ずしも必要ではなく、耐震壁20の下端面に挿入孔が形成されていればよい。   Reinforcing bar 40 is an example of a steel bar in the present invention. In this embodiment, the reinforcing bar 40 is a deformed reinforcing bar, and the adhesion of grout material G is enhanced. As the reinforcing bar 40, a round steel bar may be used instead of the deformed reinforcing bar. Further, the sheath tube 50 embedded in the beam 14 is not necessarily required, and the beam 14 may be formed with a through hole having a large diameter portion and a small diameter portion. Similarly, the sleeve 70 is not necessarily required in the earthquake resistant wall 20, and an insertion hole may be formed in the lower end surface of the earthquake resistant wall 20.

なお、図1(A)における領域Fは、柱12、梁14、耐震壁20の断面を示している。鉄筋40、シース管50、スリーブ70は領域Fの外部、すなわち柱12、梁14、耐震壁20の立面を示した領域においても、領域Fと同様に実線で描かれているが、これは説明を分かり易くするために単純化しているものであり、外部から視認することはできない。図3、4、5、6についても同様とする。   In addition, the area | region F in FIG. 1 (A) has shown the cross section of the pillar 12, the beam 14, and the earthquake-resistant wall 20. FIG. The reinforcing bar 40, the sheath tube 50, and the sleeve 70 are drawn by solid lines in the same manner as the region F in the outside of the region F, that is, in the region showing the vertical surfaces of the column 12, the beam 14, and the earthquake resistant wall 20. It is simplified for easy understanding and cannot be visually recognized from the outside. The same applies to FIGS.

(耐震壁)
図1(A)に示すように、耐震壁20は柱梁架構10と隙間を空けて配置され、この隙間に形成された空間にグラウト材Gが充填されることにより耐震壁20が柱梁架構10に固定されている。なお、耐震壁20の下方の梁14と耐震壁20との間にはスペーサー16が配置され、耐震壁20の下方の梁14と耐震壁20との間の隙間を確保している。
(Seismic wall)
As shown in FIG. 1 (A), the seismic wall 20 is arranged with a gap from the column beam frame 10, and the space formed in the gap is filled with the grout material G, so that the earthquake wall 20 becomes the column beam frame. 10 is fixed. In addition, a spacer 16 is disposed between the beam 14 below the earthquake-resistant wall 20 and the earthquake-resistant wall 20 to ensure a gap between the beam 14 below the earthquake-resistant wall 20 and the earthquake-resistant wall 20.

なお、スペーサー16は樹脂製のブロックとされているが、金属製のブロックとしてもよい。又は、耐震壁20と一体的に形成され、耐震壁20から突出するコンクリート突起としたり、耐震壁20に埋設したナットに捩じ込んだボルトとすることもできる。スペーサー16をボルトにすれば、捩じ込み量を調整することで耐震壁20の水平精度を調整することができる。   The spacer 16 is a resin block, but may be a metal block. Alternatively, it can be a concrete protrusion that is integrally formed with the earthquake resistant wall 20 and protrudes from the earthquake resistant wall 20, or a bolt that is screwed into a nut embedded in the earthquake resistant wall 20. If the spacer 16 is a bolt, the horizontal accuracy of the earthquake resistant wall 20 can be adjusted by adjusting the screwing amount.

なお、図1(A)において耐震壁20の下方の梁14と耐震壁20との間の隙間は、耐震壁20の上方の梁14と耐震壁20との間の隙間と幅がほぼ等しく形成されているが、この隙間幅はさらに小さくすることができる。隙間幅を小さくすることで、耐震壁20の下方の梁14と耐震壁20との間でせん断力を伝えやすくなる。   In FIG. 1A, the gap between the beam 14 below the earthquake-resistant wall 20 and the earthquake-resistant wall 20 is formed so that the gap and the width between the beam 14 above the earthquake-resistant wall 20 and the earthquake-resistant wall 20 are substantially equal. However, the gap width can be further reduced. By reducing the gap width, the shear force can be easily transmitted between the beam 14 below the earthquake-resistant wall 20 and the earthquake-resistant wall 20.

耐震壁20の側面には凹部20Vが高さ方向に等間隔に並んで形成されている。また、凹部20Vは柱12の凹部12Vと対向する位置に形成されている。さらに、凹部20V、凹部12Vには、耐震壁20と柱梁架構10との間の空間に充填されたグラウト材Gが一体的に充填されている。   Concave portions 20 </ b> V are formed on the side surface of the earthquake resistant wall 20 at equal intervals in the height direction. Further, the recess 20 </ b> V is formed at a position facing the recess 12 </ b> V of the column 12. Furthermore, the grout material G filled in the space between the earthquake-resistant wall 20 and the column beam frame 10 is integrally filled in the recess 20V and the recess 12V.

このため、柱12に作用する軸力が凹部12V、20Vに充填されたグラウト材Gを介して耐震壁20へ伝達される。すなわち凹部12V、20V及びグラウト材Gが柱12と耐震壁20の間でせん断力QVを伝達するコッター30として機能する。   For this reason, the axial force acting on the column 12 is transmitted to the earthquake resistant wall 20 via the grout material G filled in the recesses 12V and 20V. That is, the recesses 12 </ b> V and 20 </ b> V and the grout material G function as a cotter 30 that transmits the shearing force QV between the column 12 and the earthquake resistant wall 20.

同様に耐震壁20の上下端面には凹部20Hが水平方向に等間隔に並んで形成されている。また、凹部20Hは梁14の凹部14Hと対向する位置に形成されている。さらに、凹部20H、凹部14Hには、耐震壁20と柱梁架構10との隙間に充填されたグラウト材Gが一体的に充填されている。   Similarly, recesses 20H are formed on the upper and lower end surfaces of the earthquake resistant wall 20 so as to be arranged at equal intervals in the horizontal direction. The recess 20H is formed at a position facing the recess 14H of the beam 14. Further, the grout material G filled in the gap between the earthquake resistant wall 20 and the column beam frame 10 is integrally filled in the recess 20H and the recess 14H.

このため、梁14に作用する軸力が凹部14H、20Hに充填されたグラウト材Gを介して耐震壁20へ伝達される。すなわち凹部14H、20H及びグラウト材Gが柱12と耐震壁20の間でせん断力QHを伝達するコッター32として機能する。   For this reason, the axial force acting on the beam 14 is transmitted to the earthquake resistant wall 20 via the grout material G filled in the recesses 14H and 20H. That is, the concave portions 14H and 20H and the grout material G function as a cotter 32 that transmits the shearing force QH between the column 12 and the earthquake-resistant wall 20.

耐震壁20の両端部には、それぞれ、図1(A)の矢印H方向に2本、図1(C)の矢印D方向に2本、合計4本(両端部の合計8本)の鉄筋40が埋設されている。鉄筋40は、耐震壁20の側端面(矢印H方向の端面)から概ね100mm〜150mm程度離れた位置より内側に埋設されている。   At the both ends of the seismic wall 20, two bars in the direction of arrow H in FIG. 1 (A) and two in the direction of arrow D in FIG. 1 (C), a total of four bars (a total of eight bars at both ends). 40 is buried. The reinforcing bar 40 is embedded inside a position approximately 100 mm to 150 mm away from the side end surface (the end surface in the arrow H direction) of the earthquake resistant wall 20.

鉄筋40の上端部は耐震壁20の上端面から突出し、梁14に埋設されたシース管50に挿入されている。また、鉄筋40の下端部は、耐震壁20の下端面に埋設されたスリーブ70に挿入されている。また、図2(C)に示すように、鉄筋40の下端部は、耐震壁20の下方の梁14に埋設されたシース管50から突出した機械式継手60に挿入されている。   The upper end portion of the reinforcing bar 40 protrudes from the upper end surface of the earthquake resistant wall 20 and is inserted into a sheath tube 50 embedded in the beam 14. Further, the lower end portion of the reinforcing bar 40 is inserted into a sleeve 70 embedded in the lower end surface of the earthquake resistant wall 20. Further, as shown in FIG. 2C, the lower end portion of the reinforcing bar 40 is inserted into a mechanical joint 60 that protrudes from a sheath tube 50 embedded in the beam 14 below the earthquake resistant wall 20.

(施工方法)
耐震壁20を柱梁架構10内に施工するためには、まず図3に示すように、下階の梁14Bの上部にスペーサー16を介して耐震壁20を載置する。このとき耐震壁20は柱12の間に配置されるが、図2(A)に示すように、下階の耐震壁20Bの上端面から突出した鉄筋40Bの上端部は、下階の梁14Bに埋設されたシース管50Bから突出していない。また、耐震壁20に埋設された鉄筋40の下端部は、耐震壁20に埋設されたスリーブ70から突出していない。さらに、機械式継手60はスリーブ70の内部に収容されている。すなわち、耐震壁20の下端面と下階の梁14Bの上端面からは突出するものがない。
(Construction method)
In order to construct the seismic wall 20 in the column beam frame 10, first, as shown in FIG. 3, the seismic wall 20 is placed on the upper part of the beam 14B on the lower floor via the spacer 16. At this time, the seismic wall 20 is disposed between the columns 12, but as shown in FIG. 2 (A), the upper end of the reinforcing bar 40B protruding from the upper end surface of the seismic wall 20B on the lower floor is the beam 14B on the lower floor. It does not protrude from the sheath tube 50B embedded in the tube. Further, the lower end portion of the reinforcing bar 40 embedded in the earthquake-resistant wall 20 does not protrude from the sleeve 70 embedded in the earthquake-resistant wall 20. Further, the mechanical joint 60 is accommodated in the sleeve 70. That is, nothing protrudes from the lower end surface of the earthquake resistant wall 20 and the upper end surface of the beam 14B on the lower floor.

このため、耐震壁20は梁14Bの上部で横方向(水平方向)に容易にスライドすることができ、所定の位置に位置合わせしやすい。なお、所定の位置とは、図2(A)における下階の耐震壁20Bの上端面から突出した鉄筋40Bと、配置する耐震壁20に埋設された鉄筋40との平面位置が概ね合致する位置である。   For this reason, the seismic wall 20 can be easily slid in the horizontal direction (horizontal direction) above the beam 14B, and can be easily positioned at a predetermined position. In addition, the predetermined position is a position at which the planar positions of the reinforcing bars 40B protruding from the upper end surface of the earthquake-resistant wall 20B on the lower floor in FIG. 2A and the reinforcing bars 40 embedded in the arranged earthquake-resistant wall 20 substantially coincide. It is.

機械式継手60をスリーブ70の内部に収容するために、機械式継手60の上端部には紐62の一方の端部が接合され、紐62は耐震壁20に略水平に形成されたグラウト注入孔22を通されて、他方の端部が耐震壁20の側面に固定されている。なお、本実施形態においては柱12の後に耐震壁20を配置しているが、この施工順序は逆でもよい。   In order to accommodate the mechanical joint 60 in the sleeve 70, one end of a string 62 is joined to the upper end of the mechanical joint 60, and the string 62 is a grout injection formed substantially horizontally on the earthquake resistant wall 20. The other end is fixed to the side surface of the earthquake resistant wall 20 through the hole 22. In addition, in this embodiment, although the earthquake-resistant wall 20 is arrange | positioned after the pillar 12, this construction order may be reverse.

次に、図2(B)に示すように紐62の固定を解除し、機械式継手60を自重により梁14のシース管50の内部へ落とし、段差部53へ係止させる。これにより、機械式継手60は耐震壁20に埋設されたスリーブ70と梁14に埋設されたシース管50とに跨って配置される。   Next, as shown in FIG. 2 (B), the string 62 is released, and the mechanical joint 60 is dropped into the sheath tube 50 of the beam 14 by its own weight and is locked to the stepped portion 53. As a result, the mechanical joint 60 is disposed across the sleeve 70 embedded in the earthquake-resistant wall 20 and the sheath tube 50 embedded in the beam 14.

さらに、図4に示すように、耐震壁20と、梁14Bとの間の隙間をエアーホース18や図示しない型枠等によって塞ぐ。これにより、梁14Bと上階の耐震壁20との間の空間VUと、梁14Bと下階の耐震壁20との間の空間VDとが、シース管50、機械式継手60、スリーブ70を介して連通される。なお、下階の耐震壁20と梁14Bとの間の隙間は、梁14Bを設置した際にエアーホース18で塞がれている。このため、耐震壁20に形成されたグラウト注入孔22からグラウト材Gを注入することで、グラウト材Gはスリーブ70、機械式継手60、シース管50、空間VD及び空間VUに充填される。このとき、グラウト材Gは凹部14H、20Hにも一体に充填される。なお、図4では構成を分かり易くするため、図1に示したスペーサー16は省略している。   Further, as shown in FIG. 4, the gap between the earthquake resistant wall 20 and the beam 14 </ b> B is closed with an air hose 18, a formwork (not shown), or the like. As a result, the space VU between the beam 14B and the seismic wall 20 on the upper floor and the space VD between the beam 14B and the seismic wall 20 on the lower floor connect the sheath tube 50, the mechanical joint 60, and the sleeve 70 to each other. Is communicated via. The gap between the seismic wall 20 on the lower floor and the beam 14B is closed by the air hose 18 when the beam 14B is installed. For this reason, the grout material G is filled into the sleeve 70, the mechanical joint 60, the sheath tube 50, the space VD, and the space VU by injecting the grout material G from the grout injection hole 22 formed in the earthquake resistant wall 20. At this time, the grout material G is also integrally filled in the recesses 14H and 20H. In FIG. 4, the spacer 16 shown in FIG. 1 is omitted for easy understanding of the configuration.

グラウト材Gの充填後、柱12の上部に仕口部材12A及び梁14を載置する。このとき、耐震壁20の上端面から突出した鉄筋40を梁14に埋設されたシース管50に通しながら、梁14を鉛直方向へ落とし込む。仕口部材12Aは、平断面寸法が柱12の平断面寸法と同一とされ、両側の梁14と一体化されている。また、梁14は中央部で分割され、分割されたそれぞれの部材は鉄筋とスリーブ等を用いて接合される。   After filling with the grout material G, the joint member 12A and the beam 14 are placed on the top of the column 12. At this time, the beam 14 is dropped in the vertical direction while passing the reinforcing bar 40 protruding from the upper end surface of the earthquake resistant wall 20 through the sheath tube 50 embedded in the beam 14. The joint member 12A has the same cross-sectional dimension as that of the column 12 and is integrated with the beams 14 on both sides. Moreover, the beam 14 is divided | segmented in the center part, and each divided member is joined using a reinforcing bar and a sleeve.

なお、本実施形態において仕口部材12Aはプレキャストコンクリートで形成されているが、本発明の実施形態はこれに限らない。例えば柱主筋、梁主筋の継手として併用される現場打ちコンクリートで形成してもよい。   In the present embodiment, the joint member 12A is formed of precast concrete, but the embodiment of the present invention is not limited to this. For example, it may be formed of cast-in-place concrete used as a joint between column main bars and beam main bars.

また、本実施形態において柱12及び梁14はプレキャストコンクリートで形成されているが、本発明の実施形態はこれに限らず、現場打ちコンクリートで形成してもよい。また、柱梁架構10の構造形式としては鉄筋コンクリート造、鉄骨鉄筋コンクリート造、これらの混合構造など、さまざまな構造や規模のものであってもよい。   Moreover, in this embodiment, although the pillar 12 and the beam 14 are formed with the precast concrete, embodiment of this invention is not restricted to this, You may form with a cast-in-place concrete. In addition, the structure of the column beam frame 10 may have various structures and scales such as a reinforced concrete structure, a steel reinforced concrete structure, and a mixed structure thereof.

柱12及び梁14を現場打ちコンクリートで形成する場合は、例えば柱12の型枠を設置後、耐震壁20を所定の位置に配置して梁14の型枠を設置する。そして柱12、梁14のコンクリートを打設する。この場合、柱12と耐震壁20の間、梁14と耐震壁20の間を、互いの応力伝達を十分に行える程度に十分に近接させることで、柱12の凹部12V及び梁14の凹部14Hを設けない構成とすることができる。   When the pillar 12 and the beam 14 are formed of on-site concrete, for example, after installing the form of the pillar 12, the seismic wall 20 is arranged at a predetermined position and the form of the beam 14 is installed. And the concrete of pillar 12 and beam 14 is laid. In this case, the recesses 12V of the column 12 and the recesses 14H of the beam 14 are made sufficiently close to each other between the column 12 and the earthquake-resistant wall 20 and between the beam 14 and the earthquake-resistant wall 20 so that mutual stress transmission can be sufficiently performed. It can be set as the structure which does not provide.

あるいは、柱12のコンクリートを打設後、耐震壁20を所定の位置に配置して梁14の型枠を設置する。そして梁14のコンクリートを打設する。この場合、梁14と耐震壁20の間を、互いの応力伝達を十分に行える程度に十分に近接させることで、梁14の凹部14Hを設けない構成とすることができる。   Alternatively, after placing the concrete of the pillar 12, the seismic wall 20 is arranged at a predetermined position and the form of the beam 14 is installed. And the concrete of the beam 14 is laid. In this case, the concave portion 14H of the beam 14 can be provided without making the beam 14 and the seismic wall 20 sufficiently close to each other so that mutual stress transmission can be sufficiently performed.

次に、図5に示すように耐震壁20と梁14との間の隙間を、エアーホース18や型枠等で塞ぎ、耐震壁20と柱12との間の隙間を図示しないエアーホースや型枠等によって塞ぐ。これにより、柱12と耐震壁20との間には空間VVが形成される。この空間VVにグラウト材Gを注入することで、グラウト材Gは空間VVに充填される。このとき、グラウト材Gは凹部12V、20Vにも一体に充填される。   Next, as shown in FIG. 5, the gap between the earthquake-resistant wall 20 and the beam 14 is closed with an air hose 18 or a mold, and the gap between the earthquake-resistant wall 20 and the column 12 is not shown. Close it with a frame. Thereby, a space VV is formed between the column 12 and the earthquake resistant wall 20. By injecting the grout material G into the space VV, the grout material G is filled into the space VV. At this time, the grout material G is also integrally filled into the recesses 12V and 20V.

さらに、仕口部材12Aの上部に上階の柱12Uを載置し、梁14の上部にスペーサー16を介して上階の耐震壁20Uを載置する。   Furthermore, the upper floor pillar 12U is placed on the upper part of the joint member 12A, and the upper floor earthquake resistant wall 20U is placed on the beam 14 via the spacer 16.

以上の工程を繰り返すことで、図6に示すように、複数階に亘って耐震壁20が施工される。なお、本実施形態においては耐震壁20に形成されたグラウト注入孔22からグラウト材Gを注入することで、スリーブ70、機械式継手60、シース管50、空間VD及び空間VUにグラウト材Gが充填されるものとしたが、本発明の実施形態はこれに限らない。例えば空間VDと空間VUにはグラウト材を別々に注入してもよい。この場合は、柱12の上部に仕口部材12A及び梁14を載置した後、シース管50からグラウト材を注入し、シース管50と空間VDにグラウト材を充填する。さらに上階の耐震壁20Uを載置した後、スリーブ70、機械式継手60、空間VUにグラウト材Gを充填する。   By repeating the above steps, as shown in FIG. 6, the earthquake resistant wall 20 is constructed over a plurality of floors. In this embodiment, the grout material G is injected into the sleeve 70, the mechanical joint 60, the sheath tube 50, the space VD, and the space VU by injecting the grout material G from the grout injection hole 22 formed in the earthquake resistant wall 20. However, the embodiment of the present invention is not limited to this. For example, grout materials may be separately injected into the space VD and the space VU. In this case, after placing the joint member 12A and the beam 14 on the upper part of the column 12, a grout material is injected from the sheath tube 50, and the sheath tube 50 and the space VD are filled with the grout material. Further, after placing the seismic wall 20U on the upper floor, the sleeve 70, the mechanical joint 60, and the space VU are filled with the grout material G.

(作用・効果)
本実施形態の耐震壁構造によると、図1(A)に示すように、凹部12V、20V及びグラウト材Gによって形成されたコッター30、凹部14H、20H及びグラウト材Gによって形成されたコッター32によって、柱梁架構10に作用する鉛直方向の力と水平方向の力を、耐震壁20に負担させることができる。したがって、例えば耐震壁20から突出させた壁筋を、柱12及び梁14に跨って施工する必要がない。このため耐震壁20の施工性が高い。
(Action / Effect)
According to the earthquake-resistant wall structure of the present embodiment, as shown in FIG. 1A, the cotter 30 formed by the recesses 12V and 20V and the grout material G, the recesses 14H and 20H, and the cotter 32 formed by the grout material G. The seismic wall 20 can be loaded with the vertical force and the horizontal force acting on the column beam frame 10. Therefore, for example, it is not necessary to construct a wall line protruding from the earthquake resistant wall 20 across the column 12 and the beam 14. For this reason, the workability of the earthquake resistant wall 20 is high.

なお、本実施形態においてコッター30は、柱12に形成された凹部12V、耐震壁20に形成された凹部20Vを備えているが、本発明の実施形態はこれに限らない。例えば図7(A)に示すように、柱12の凹部12Vに代えて凸部12VEを形成してもよい。   In addition, in this embodiment, although the cotter 30 is provided with the recessed part 12V formed in the pillar 12, and the recessed part 20V formed in the earthquake-resistant wall 20, embodiment of this invention is not restricted to this. For example, as shown in FIG. 7A, a convex portion 12VE may be formed instead of the concave portion 12V of the column 12.

又は、図7(B)に示すように、耐震壁20の凹部20Vに代えて凸部20VEを形成してもよい。   Alternatively, as shown in FIG. 7B, a convex portion 20VE may be formed instead of the concave portion 20V of the earthquake resistant wall 20.

あるいは、図7(C)に示すように、柱12、耐震壁20の何れにも凹部を形成せず、柱12に凸部12VEを形成し、耐震壁20に凸部20VEを形成してもよい。この場合、凸部12VEと凸部20VEとを高さ方向で交互に配置することで、柱12と耐震壁20との間の間隔t1を狭くすることができる。t1を狭くすれば充填するグラウト材の量を少なくできる。   Alternatively, as shown in FIG. 7C, even if the concave portion is not formed on either the column 12 or the earthquake-resistant wall 20, the convex portion 12 VE is formed on the column 12, and the convex portion 20 VE is formed on the earthquake-resistant wall 20. Good. In this case, the space | interval t1 between the pillar 12 and the earthquake-resistant wall 20 can be narrowed by arrange | positioning the convex part 12VE and the convex part 20VE alternately by the height direction. If t1 is narrowed, the amount of grout material to be filled can be reduced.

なお、耐震壁20は柱梁架構10の構面内へ設置する際、凸部12VEと凸部20VEとの干渉を避けるため、水平方向からスライドさせて設置する必要がある。しかし、図2(A)に示したように、耐震壁20の下端面及び梁14の上端面から突出するものがないので、容易に施工できる。   In addition, when installing the earthquake-resistant wall 20 in the construction surface of the column beam frame 10, it is necessary to install it by sliding from the horizontal direction in order to avoid interference with the convex part 12VE and the convex part 20VE. However, as shown in FIG. 2A, since there is nothing protruding from the lower end surface of the earthquake-resistant wall 20 and the upper end surface of the beam 14, it can be easily constructed.

同様に本実施形態においてコッター32は、梁14に形成された凹部14H、耐震壁20に形成された凹部20Hを備えているが、本発明の実施形態はこれに限らない。例えば図7(A)に示すように、梁14の凹部14Hに代えて凸部14HEを形成してもよい。   Similarly, in the present embodiment, the cotter 32 includes the recess 14H formed in the beam 14 and the recess 20H formed in the earthquake-resistant wall 20, but the embodiment of the present invention is not limited thereto. For example, as shown in FIG. 7A, a convex portion 14HE may be formed instead of the concave portion 14H of the beam 14.

又は、図7(B)に示すように、耐震壁20の凹部20Hに代えて凸部20HEを形成してもよい。   Alternatively, as shown in FIG. 7B, a convex portion 20HE may be formed instead of the concave portion 20H of the earthquake resistant wall 20.

あるいは、図7(C)に示すように、柱12、耐震壁20の何れにも凹部を形成せず、梁14に凸部14HEを形成し、耐震壁20に凸部20HEを形成してもよい。この場合、凸部14HEと凸部20HEとを水平方向で交互に配置することで、梁14と耐震壁20との間の間隔t2を狭くすることができる。t2を狭くすれば充填するグラウト材の量を少なくできる。コッター32がこれらの何れの形態とされていても、柱梁架構10に作用する水平方向の力を、耐震壁20に負担させることができる。   Alternatively, as shown in FIG. 7C, the concave portion is not formed in either the column 12 or the seismic wall 20, the convex portion 14 HE is formed in the beam 14, and the convex portion 20 HE is formed in the seismic wall 20. Good. In this case, the space | interval t2 between the beam 14 and the earthquake-resistant wall 20 can be narrowed by arrange | positioning convex part 14HE and convex part 20HE alternately in a horizontal direction. If t2 is narrowed, the amount of grout material to be filled can be reduced. Even if the cotter 32 is in any of these forms, the seismic wall 20 can be loaded with a horizontal force acting on the column beam frame 10.

また、図7(A)〜(C)に示すように、凸部12VE、20VE、14HE、20HEの形状は台形状であっても立方体形状であってもよい。台形状であれば成形後の脱型が容易であるし、立方体形状であれば型枠の構造が単純になる。   Moreover, as shown to FIG. 7 (A)-(C), the shape of convex part 12VE, 20VE, 14HE, 20HE may be trapezoid shape or a cube shape. If it is trapezoidal, it is easy to remove the mold after molding, and if it is cubic, the structure of the mold becomes simple.

また、図7(D)〜(F)に示すように、耐震壁20に形成した凹部20HP及び梁14に形成した凹部14HPに対して、図7(D)に示した矢印H方向に係合するせん断力伝達部材36を配置してもよい。せん断力伝達部材36は例えば金属ブロックや高強度コンクリートブロックとされ、せん断歪みが生じにくいため、梁14に作用する水平力を耐震壁20へ伝達しやすい。   Further, as shown in FIGS. 7D to 7F, the concave portion 20HP formed in the earthquake-resistant wall 20 and the concave portion 14HP formed in the beam 14 are engaged in the direction of the arrow H shown in FIG. 7D. A shearing force transmission member 36 may be disposed. The shear force transmission member 36 is, for example, a metal block or a high-strength concrete block, and is less susceptible to shear distortion, so that the horizontal force acting on the beam 14 can be easily transmitted to the earthquake resistant wall 20.

せん断力伝達部材36を配置するためには、例えば図7(D)、(E)に示すように耐震壁20には壁面20F間を貫通する凹部20HPを形成しておく。そして、図7(E)に示すように、せん断力伝達部材36を矢印D方向(柱梁架構10の構面と直交する方向)からスライドさせて凹部20HPへ挿入する。次いで図7(F)に示すように、矢印V方向(上方向)へスライドさせ、凹部20HPにスペーサー等を入れてせん断力伝達部材36を持ち上げた状態で凹部14HPへ係合させる。これにより、せん断力伝達部材36は、耐震壁20に形成した凹部20HP及び梁14に形成した凹部14HPに係合する。   In order to arrange the shearing force transmission member 36, for example, as shown in FIGS. 7D and 7E, the seismic wall 20 is formed with a recess 20HP penetrating between the wall surfaces 20F. Then, as shown in FIG. 7E, the shearing force transmission member 36 is slid from the direction of arrow D (direction perpendicular to the construction surface of the column beam frame 10) and inserted into the recess 20HP. Next, as shown in FIG. 7 (F), it is slid in the direction of arrow V (upward), a spacer or the like is inserted into the recess 20HP, and the shearing force transmission member 36 is lifted and engaged with the recess 14HP. Thereby, the shear force transmission member 36 is engaged with the recess 20HP formed in the earthquake-resistant wall 20 and the recess 14HP formed in the beam 14.

また、図1(A)に示すように、本実施形態の耐震壁構造によると、耐震壁20に埋設された鉄筋40の上端部は、梁14に固定され、機械式継手60によって上階の耐震壁20Uに埋設された鉄筋40Uと接続される。そして鉄筋40の下端部は、耐震壁20の下端面に埋設されたスリーブ70に挿入され、機械式継手60によって下階の耐震壁20Bの上端面から突出した鉄筋40Bと接続される。   Further, as shown in FIG. 1A, according to the earthquake resistant wall structure of the present embodiment, the upper end portion of the reinforcing bar 40 embedded in the earthquake resistant wall 20 is fixed to the beam 14 and is It is connected to a reinforcing bar 40U embedded in the seismic wall 20U. The lower end portion of the reinforcing bar 40 is inserted into a sleeve 70 embedded in the lower end surface of the earthquake-resistant wall 20 and connected to the reinforcing bar 40B protruding from the upper end surface of the earthquake-resistant wall 20B on the lower floor by a mechanical joint 60.

これにより、地震時等において柱12に曲げモーメントが作用して耐震壁20寄りの柱12の側面が引張力を受けた際、鉄筋40が引張力を負担することができる。このため柱12の側面の伸び変形が抑制され、柱12のひび割れを抑制できる。   Thus, when a bending moment acts on the column 12 during an earthquake or the like and the side surface of the column 12 near the earthquake-resistant wall 20 receives a tensile force, the reinforcing bar 40 can bear the tensile force. For this reason, the elongation deformation of the side surface of the column 12 is suppressed, and the crack of the column 12 can be suppressed.

なお、本実施形態において鉄筋40の上端部は梁14に固定され、機械式継手60によって上階の耐震壁20Uに埋設された鉄筋40Uと接続されているが、本発明の実施形態はこれに限らない。   In this embodiment, the upper end portion of the reinforcing bar 40 is fixed to the beam 14 and connected to the reinforcing bar 40U embedded in the earthquake-resistant wall 20U on the upper floor by the mechanical joint 60. Not exclusively.

例えば、図8(A)に示す鉄筋42のように、上端部を梁14のシース管50を貫通させ、さらに上階の耐震壁20Uの下端面に埋設されたスリーブ70Uに挿入することで、上階の耐震壁20Uに固定してもよい。この場合機械式継手60を用いなくても、鉄筋42と上階の耐震壁20Uに埋設された鉄筋42Uとはスリーブ70Uが機械式継手となって接合される。また、シース管50には機械式継手60を係合させるための段差部53(図2(C)参照)を設ける必要がないため、シース管50の構成を単純にすることができる。このように、機械式継手60を用いない構成とすることもできる。なお、このときスリーブ70Uとしては、内周面にリブを設けたモルタル充填継手を用いることが好適であるが、鉄筋42と鉄筋42Uとの間で引張力を伝達できるものであればよい。   For example, like the rebar 42 shown in FIG. 8A, the upper end portion penetrates the sheath tube 50 of the beam 14 and is further inserted into the sleeve 70U embedded in the lower end surface of the earthquake resistant wall 20U on the upper floor. You may fix to the earthquake-resistant wall 20U of an upper floor. In this case, even if the mechanical joint 60 is not used, the reinforcing bar 42 and the reinforcing bar 42U embedded in the earthquake-resistant wall 20U on the upper floor are joined by the sleeve 70U as a mechanical joint. Moreover, since it is not necessary to provide the step part 53 (refer FIG.2 (C)) for engaging with the mechanical coupling 60 in the sheath pipe | tube 50, the structure of the sheath pipe | tube 50 can be simplified. As described above, the mechanical joint 60 may not be used. At this time, as the sleeve 70U, it is preferable to use a mortar-filled joint provided with ribs on the inner peripheral surface, but any sleeve that can transmit a tensile force between the reinforcing bar 42 and the reinforcing bar 42U may be used.

また、例えば図8(B)に示す鉄筋44のように、上端部を梁14の下端面に埋設したスリーブ56に挿入し、梁14に埋設した鉄筋46と接続してもよい。この場合、鉄筋46を梁14の上端面から突出させ、上階の耐震壁20Uの下端面に埋設したスリーブ70Uに挿入する。このようにすれば、耐震壁20から突出する鉄筋44の突出長さを短くできるので、耐震壁20を運搬しやすく梁14も施工しやすい。   Further, for example, as in a reinforcing bar 44 shown in FIG. 8B, the upper end portion may be inserted into a sleeve 56 embedded in the lower end surface of the beam 14 and connected to the reinforcing bar 46 embedded in the beam 14. In this case, the reinforcing bar 46 protrudes from the upper end surface of the beam 14 and is inserted into a sleeve 70U embedded in the lower end surface of the earthquake resistant wall 20U on the upper floor. In this way, since the protruding length of the reinforcing bar 44 protruding from the earthquake-resistant wall 20 can be shortened, the earthquake-resistant wall 20 can be easily carried and the beam 14 can be easily constructed.

また、例えば図8(C)に示すように、耐震壁20に上下方向に貫通するシース管72を埋設し、PC鋼線48を複数階に亘って貫通させて配置してもよい。この場合PC鋼線48の施工に先立って、例えば図8(D)に示すようにアングル材80を用いて複数階の柱12に耐震壁20を仮固定しておけば、複数階の梁14のシース管50、耐震壁20のシース管72に対して一度にPC鋼線48を通すことができる。   Further, for example, as shown in FIG. 8C, a sheath tube 72 penetrating in the vertical direction may be embedded in the earthquake resistant wall 20 and the PC steel wire 48 may be disposed through a plurality of floors. In this case, prior to the construction of the PC steel wire 48, for example, as shown in FIG. The PC steel wire 48 can be passed through the sheath tube 50 and the sheath tube 72 of the earthquake resistant wall 20 at a time.

このPC鋼線48は、所望の階数に亘って通したあと油圧ジャッキなどを用いて緊張させることにより、梁14、耐震壁20及び梁14に接合された柱12にプレストレスを与えることができる。プレストレスを与えたあと、シース管72、シース管50の内部にはグラウトが充填される。このようにして柱12にプレストレスを与えることで、柱12の伸び変形が抑制され、柱12のひび割れを抑制できる。なお、必要とするプレストレス力の大きさに応じて、断面積の大きいPC鋼棒を用いてもよい。   The PC steel wire 48 can be prestressed to the beam 14, the seismic wall 20, and the column 12 joined to the beam 14 by passing through the desired number of floors and then using a hydraulic jack or the like. . After prestressing, the inside of the sheath tube 72 and the sheath tube 50 is filled with grout. By prestressing the pillar 12 in this manner, the elongation deformation of the pillar 12 is suppressed, and the crack of the pillar 12 can be suppressed. A PC steel bar having a large cross-sectional area may be used according to the required prestressing force.

なお、PC鋼線48は複数階に亘って通さずに、1階分の長さ毎に分割してもよい。この場合、各階の耐震壁20を施工する毎に機械式継手を用いて順次繋ぎながら施工することができる。このように1階分の長さ毎に分割すれば、柱12に耐震壁20を仮固定する必要がないので施工性がよい。   In addition, you may divide | segment the PC steel wire 48 for every length for one floor, without letting it pass over several floors. In this case, every time the seismic wall 20 of each floor is constructed, it can be constructed while sequentially connecting using mechanical joints. Thus, if it divides | segments for every length of one floor, since it is not necessary to fix the earthquake-resistant wall 20 to the pillar 12 temporarily, workability | operativity is good.

また、シース管72には、PC鋼線48やPC鋼棒ではなく、異形鉄筋を通してもよい。この異形鉄筋はPC鋼線48と同様、複数階に亘って耐震壁20を貫通させてもよいし、一階毎に分割してもよい。分割した場合は、内周面に形成したネジと異形鉄筋とを係合させるねじ節鉄筋継手や、鉄筋とスリーブとを圧着して固定する鋼管圧着継手等、各種の機械式継手を用いることができる。   The sheath tube 72 may be passed through a deformed bar instead of the PC steel wire 48 or the PC steel rod. Similar to the PC steel wire 48, the deformed reinforcing bar may penetrate the earthquake resistant wall 20 over a plurality of floors, or may be divided for each floor. When divided, it is possible to use various mechanical joints such as a threaded joint that engages the deformed reinforcing bar with the screw formed on the inner peripheral surface, and a steel pipe crimping joint that presses and fixes the reinforcing bar and the sleeve. it can.

また、図6に示すように、本実施形態の耐震壁構造によると、梁14の上部の空間VUと梁14の下部の空間VDがシース管50により連通される。このため、耐震壁20に形成したグラウト注入孔22からグラウト材Gを注入するだけで、グラウト材Gをシース管50、機械式継手60、スリーブ70及び空間VB、VUに充填することができる。つまり、個別にグラウト材を注入する必要がないので、グラウト注入作業の手間が減る。   In addition, as shown in FIG. 6, according to the earthquake resistant wall structure of the present embodiment, the space VU above the beam 14 and the space VD below the beam 14 are communicated by the sheath tube 50. For this reason, the grout material G can be filled into the sheath tube 50, the mechanical joint 60, the sleeve 70, and the spaces VB and VU only by injecting the grout material G from the grout injection hole 22 formed in the earthquake resistant wall 20. That is, since it is not necessary to individually inject the grout material, the labor for injecting the grout is reduced.

なお、本実施形態においてグラウト材Gはグラウト注入孔22から注入しているが、本発明の実施形態はこれに限らない。例えば、梁14の下側の空間VDにグラウト注入孔を形成し、このグラウト注入孔からグラウト材Gを圧入してもよい。   In this embodiment, the grout material G is injected from the grout injection hole 22, but the embodiment of the present invention is not limited to this. For example, a grout injection hole may be formed in the space VD below the beam 14 and the grout material G may be press-fitted from the grout injection hole.

また、本実施形態においては梁14と耐震壁20との間の空間VU、VDへグラウト材Gを充填した後、柱12と耐震壁20との間の空間VVへグラウト材Gを充填しているが、本発明の実施形態はこれに限らない。例えば空間VDと空間VVとの境界に設けられたエアーホース18を省略して空間VDとVVとを連通してもよい。このとき、空間VUと空間VVとの境界に設けたエアーホース18は設けたままにしておく。このようにすれば、グラウト注入孔22にグラウト材Gを注入することで、空間VDから空間VVにもグラウト材Gが流れ込むので、グラウト注入作業の手間をさらに削減できる。   In this embodiment, after filling the grout material G into the spaces VU and VD between the beam 14 and the seismic wall 20, the grout material G is filled into the space VV between the column 12 and the seismic wall 20. However, the embodiment of the present invention is not limited to this. For example, the air hose 18 provided at the boundary between the space VD and the space VV may be omitted to communicate the spaces VD and VV. At this time, the air hose 18 provided at the boundary between the space VU and the space VV is kept provided. In this way, by injecting the grout material G into the grout injection hole 22, the grout material G flows from the space VD into the space VV, so that the labor for grout injection can be further reduced.

10 柱梁架構
12、12U 柱
14、14B 梁
20、20B、20U 耐震壁
12V、14H、20H、20V 凹部
14HP、20HP 凹部
30、32 コッター
40、40B、40U 鉄筋(鋼棒)
42、42U、44、48 鉄筋(鋼棒)
48 PC鋼線(鋼棒)
50、50B シース管(貫通孔)
70、70U スリーブ(挿入孔)
G グラウト材
10 Column beam frame 12, 12U Column 14, 14B Beam 20, 20B, 20U Earthquake resistant wall 12V, 14H, 20H, 20V Recess 14HP, 20HP Recess 30, 32 Cotters 40, 40B, 40U Rebar (steel bar)
42, 42U, 44, 48 Reinforcing bars (steel bars)
48 PC steel wire (steel bar)
50, 50B Sheath tube (through hole)
70, 70U Sleeve (insertion hole)
G Grout

Claims (3)

複数階に設けられた鉄筋コンクリート製の柱梁架構と、
前記柱梁架構内に配置されたプレキャストコンクリート製の耐震壁と、
前記柱梁架構と前記耐震壁との間に形成され、前記柱梁架構から前記耐震壁へせん断力を伝達するコッターと、
前記耐震壁の両端部に前記柱梁架構の柱に沿って埋設され、端部が前記柱梁架構の梁又は他の耐震壁に固定された鋼棒と、
を有する耐震壁構造。
Column beam frames made of reinforced concrete on multiple floors,
A precast concrete seismic wall arranged in the column beam frame,
A cotter that is formed between the column beam frame and the earthquake-resistant wall, and transmits shearing force from the column beam frame to the earthquake-resistant wall;
Steel bars embedded in the both ends of the seismic wall along the columns of the column beam frame, and ends fixed to beams of the column beam frame or other earthquake walls,
A seismic wall structure.
前記梁には、下階に配置された前記耐震壁の上端面から突出した前記鋼棒が貫通する貫通孔が形成され、
上階に配置された前記耐震壁の下端面には前記鋼棒が挿入される挿入孔が形成されている、請求項1に記載の耐震壁構造。
The beam is formed with a through-hole through which the steel rod protruding from the upper end surface of the earthquake-resistant wall disposed on the lower floor passes.
The earthquake-resistant wall structure according to claim 1, wherein an insertion hole into which the steel rod is inserted is formed on a lower end surface of the earthquake-resistant wall arranged on an upper floor.
前記コッターは、互いに対向する前記柱の側面と前記耐震壁の端面及び前記梁の下面と前記耐震壁の端面にそれぞれ形成され、グラウト材が注入される凹部を有している、請求項1又は請求項2に記載の耐震壁構造。   The cotter has recesses formed on the side surfaces of the pillars facing each other, the end surface of the earthquake-resistant wall, the lower surface of the beam, and the end surface of the earthquake-resistant wall, respectively, and into which grout material is injected. The earthquake-resistant wall structure according to claim 2.
JP2016098856A 2016-05-17 2016-05-17 Shear wall structure Active JP6863684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098856A JP6863684B2 (en) 2016-05-17 2016-05-17 Shear wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098856A JP6863684B2 (en) 2016-05-17 2016-05-17 Shear wall structure

Publications (2)

Publication Number Publication Date
JP2017206844A true JP2017206844A (en) 2017-11-24
JP6863684B2 JP6863684B2 (en) 2021-04-21

Family

ID=60415466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098856A Active JP6863684B2 (en) 2016-05-17 2016-05-17 Shear wall structure

Country Status (1)

Country Link
JP (1) JP6863684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111576656A (en) * 2019-02-19 2020-08-25 黑龙江八一农垦大学 Beam-slab separation type layered shock insulation structure
CN113136991A (en) * 2021-04-27 2021-07-20 申保军 Connection method for filling gaps between wall and main structure beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111576656A (en) * 2019-02-19 2020-08-25 黑龙江八一农垦大学 Beam-slab separation type layered shock insulation structure
CN113136991A (en) * 2021-04-27 2021-07-20 申保军 Connection method for filling gaps between wall and main structure beam

Also Published As

Publication number Publication date
JP6863684B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
KR101708760B1 (en) Construction method for precast concrete wall
JP5955108B2 (en) Pile reinforcement structure of existing building and its construction method
KR101478131B1 (en) Construction Method of Precast Pier
KR101663132B1 (en) Self-supporting type column structure
KR101204040B1 (en) precast concrete member and assembled concrete abutment of bridge
KR20020011706A (en) Fabricated pier and Fabricated pier construction method
KR101328045B1 (en) Reinforced concrete composite columns using precast high-performance fiber-reinforced cement
JP2008266910A (en) Projection structure of anchorage or deviator of tendon, and construction method therefor
JP2017206844A (en) Earthquake resistant wall structure
JP2009114755A (en) Joint structure of precast concrete column member, and method for joining precast concrete column members
JP5865567B2 (en) Connecting slab and its construction method
JP2007092354A (en) Joint method of pre-cast concrete construction beam-column
JP2009144399A (en) Connection method for prestressed concrete member and reinforced concrete building
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
KR20140110491A (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP2017125322A (en) Base structure
JP6102010B2 (en) Pile reinforcement structure of existing building and its construction method
KR100860592B1 (en) Temporary system for vertical structure using precast concreat block
KR20090083586A (en) Reinforcement for reinforced concrete footing and construction method using the same
JP2015048643A (en) Aseismic reinforcing method for existing building, and aseismic reinforcing structure
JP4842093B2 (en) Flat plate construction method
CN113863679A (en) Construction method of prefabricated house structure
KR100626326B1 (en) concrete structure
JP4439938B2 (en) Wall type reinforced concrete structure and its construction method
JP2009162003A (en) Joint structure of precast concrete column-beam member, building, and construction method for building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150