JP2017206740A - Method for reducing iron ore - Google Patents

Method for reducing iron ore Download PDF

Info

Publication number
JP2017206740A
JP2017206740A JP2016099631A JP2016099631A JP2017206740A JP 2017206740 A JP2017206740 A JP 2017206740A JP 2016099631 A JP2016099631 A JP 2016099631A JP 2016099631 A JP2016099631 A JP 2016099631A JP 2017206740 A JP2017206740 A JP 2017206740A
Authority
JP
Japan
Prior art keywords
slag
iron ore
converter
basicity
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099631A
Other languages
Japanese (ja)
Other versions
JP6627642B2 (en
Inventor
寛弥 谷川
Hiroya Tanigawa
寛弥 谷川
玲洋 松澤
Tamahiro Matsuzawa
玲洋 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016099631A priority Critical patent/JP6627642B2/en
Publication of JP2017206740A publication Critical patent/JP2017206740A/en
Application granted granted Critical
Publication of JP6627642B2 publication Critical patent/JP6627642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing iron ore where iron ore is reduced at high efficiency, thus the optimization of a molten iron temperature, the improvement of dephosphorization efficiency and the reduction of iron loss are made possible.SOLUTION: Provided is a method for reducing iron ore in converter type molten iron preliminary treatment, including: the first step where the basicity of slag 11 in a converter 10 is controlled to 0.5 to below 1, and also, the viscosity of the slag 11 is controlled to 0.15 Pa s or lower, and iron ore is charged inside the converter 10; and the second step where lime-based raw material is charged inside the converter 10 to increase the basicity of the slag 11 into 1 to 1.5.SELECTED DRAWING: Figure 1

Description

本発明は、鉄鋼製品の製造における転炉精錬方法に係り、更に詳細には、脱Siと脱Pを行う転炉型溶銑予備処理における鉄鉱石の還元方法に関する。   The present invention relates to a converter refining method in the manufacture of steel products, and more particularly to a method of reducing iron ore in a converter-type hot metal pretreatment for removing Si and removing P.

転炉型溶銑予備処理を行う場合、脱P(脱りん)に適した溶銑温度に調整するため、冷却材である固体酸化鉄として、鉄鉱石やダスト、ミルスケール等を、溶銑に投入することが一般的である。
例えば、特許文献1には、溶銑が装入された第1の転炉内に焼石灰等の副原料を投入し、スラグの塩基度を1〜4に調整した後、吹錬を開始し、鉄鉱石を投入して溶銑温度を1250〜1400℃に調整しながら脱P吹錬を行い、この吹錬の終了後、第1の転炉から脱P溶銑を出銑し、これを第2の転炉に装入して本吹錬を行う方法が開示されている。
また、特許文献2、3には、脱Pに必要な、スラグと溶湯の反応界面積、及び、溶銑温度を確保するため、全酸素に対する固体酸素源(鉄鉱石、焼結鉱、ミルスケール等)の比率を制約しながら、固体酸素源の投入のタイミングを適正化することで、溶銑中のP濃度を低減させ、汎用鋼を確実に溶製する方法が開示されている。
When converter-type hot metal preliminary treatment is performed, iron ore, dust, mill scale, etc. should be put into the hot metal as solid iron oxide as a coolant in order to adjust the hot metal temperature suitable for de-P (dephosphorization). Is common.
For example, Patent Document 1 introduces auxiliary raw materials such as calcined lime into a first converter charged with hot metal, and after adjusting the basicity of slag to 1 to 4, starts blowing. Iron ore was added and demetalization blowing was carried out while adjusting the hot metal temperature to 1250 to 1400 ° C. After the completion of this blowing, dephosphorized iron was removed from the first converter, A method for carrying out the main blowing by charging a converter is disclosed.
In Patent Documents 2 and 3, a solid oxygen source (iron ore, sintered ore, mill scale, etc.) for all oxygen is used to ensure the reaction interface area between the slag and the molten metal and the hot metal temperature necessary for de-P. ), The method of reducing the concentration of P in the hot metal and making the general-purpose steel reliably produced by optimizing the timing of charging the solid oxygen source.

特開2002−60826号公報Japanese Patent Laid-Open No. 2002-60826 特開2011−219817号公報JP 2011-219817 A 特開2011−219818号公報JP 2011-211981 A

しかしながら、鉄鉱石は、ダスト等と比較して粒径が大きく、またFeを主体とした組成であることから、溶解と還元に時間を要する。そのため、鉄鉱石の溶解と還元が不十分となり、溶銑温度の冷却不足や、脱P効率の低下、還元不足による鉄分ロスが発生する。
なお、この現象は、特に、鉄鉱石を大量に投入し、短時間で処理しようとする場合に顕著になる。
However, iron ore has a larger particle size than dust or the like, and has a composition mainly composed of Fe 2 O 3 , so that it takes time for dissolution and reduction. Therefore, dissolution and reduction of iron ore become insufficient, and iron loss due to insufficient cooling of the hot metal temperature, reduction in de-P efficiency, and insufficient reduction occurs.
This phenomenon is particularly noticeable when a large amount of iron ore is added and processing is performed in a short time.

本発明はかかる事情に鑑みてなされたもので、鉄鉱石を高効率で還元させて、溶銑温度の適正化、脱P効率の向上、及び、鉄分ロスの低減を可能にする鉄鉱石の還元方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and reduces the iron ore with high efficiency to optimize the hot metal temperature, improve de-P efficiency, and reduce iron loss. The purpose is to provide.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)転炉型溶銑予備処理における鉄鉱石の還元方法において、
転炉内のスラグの塩基度を0.5以上1未満、かつ、スラグの粘度を0.15Pa・s以下にして、前記転炉内に鉄鉱石を投入する第1工程と、
前記転炉内に石灰系原料を投入してスラグの塩基度を上昇させ、1以上1.5以下に調整する第2工程とを有することを特徴とする鉄鉱石の還元方法。
The gist of the present invention made to solve the above problems is as follows.
(1) In the iron ore reduction method in the converter type hot metal preliminary treatment,
A first step in which the basicity of the slag in the converter is 0.5 or more and less than 1 and the viscosity of the slag is 0.15 Pa · s or less, and iron ore is charged into the converter;
And a second step of adjusting the slag basicity to 1 to 1.5 by introducing a lime-based raw material into the converter.

(2)前記石灰系原料の一部又は全部が、前記転炉又は他の転炉で発生したスラグであることを特徴とする(1)に記載の鉄鉱石の還元方法。 (2) The iron ore reduction method according to (1), wherein a part or all of the lime-based raw material is slag generated in the converter or another converter.

本発明に係る鉄鉱石の還元方法は、転炉内のスラグの塩基度と粘度を所定の範囲内にして、転炉内に鉄鉱石を投入する第1工程を有するので、鉄鉱石の溶解速度を向上できる。そして、石灰系原料を用いてスラグの塩基度を上昇させ、所定の範囲内に調整する第2工程を行うので、鉄鉱石の還元反応を促進でき、スラグ中のFeO濃度を低減できる。
従って、鉄鉱石を高効率で還元して、溶銑温度の適正化と脱P効率の向上を達成しながら、鉄分ロスの低減を図ることができる。このため、特に鉄鉱石を大量に投入し短時間で処理する場合に、本発明の効果がより顕著になる。
Since the iron ore reduction method according to the present invention has the first step of setting the basicity and viscosity of the slag in the converter within a predetermined range and putting the iron ore into the converter, the dissolution rate of the iron ore Can be improved. And since the 2nd process of raising the basicity of slag using a lime-type raw material and adjusting within a predetermined range is performed, the reduction reaction of an iron ore can be accelerated | stimulated and the FeO density | concentration in slag can be reduced.
Therefore, it is possible to reduce iron loss while reducing iron ore with high efficiency and achieving optimization of the hot metal temperature and improvement of de-P efficiency. For this reason, especially when a large amount of iron ore is added and processed in a short time, the effect of the present invention becomes more remarkable.

ここで、石灰系原料に転炉で発生したスラグを用いる場合、石灰系原料として使用可能な、例えば、生石灰や石灰石の使用量を低減、更には、ゼロにできるため、ランニングコストの低減が図れて経済的である。   Here, when using slag generated in a converter as a lime-based material, the amount of quick lime and limestone that can be used as a lime-based material, for example, can be reduced to zero, and the running cost can be reduced. And economical.

本発明の一実施の形態に係る鉄鉱石の還元方法の説明図である。It is explanatory drawing of the reduction method of the iron ore which concerns on one embodiment of this invention. スラグの塩基度が鉄鉱石とダストの溶解速度へ及ぼす影響を示したグラフである。It is the graph which showed the influence which the basicity of slag has on the dissolution rate of iron ore and dust.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る鉄鉱石の還元方法は、転炉10を用いた溶銑予備処理(転炉型溶銑予備処理)方法であり、転炉10内のスラグ11の塩基度と粘度を所定の範囲内にして、鉄鉱石投入シュート15で転炉10内に鉄鉱石を投入する第1工程と、転炉10内に石灰系原料を投入してスラグ11の塩基度を上昇させ、所定の範囲内に調整する第2工程とを有し、従来よりも鉄鉱石を高効率で還元可能な方法である。
以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the iron ore reduction method according to one embodiment of the present invention is a hot metal pretreatment (converter type hot metal pretreatment) method using a converter 10, and slag in the converter 10. The first step of putting iron ore into the converter 10 with the iron ore charging chute 15 with the basicity and viscosity of 11 within the predetermined ranges, and the lime-based raw material into the converter 10 and the slag 11 And a second step of adjusting the basicity within a predetermined range, and is a method capable of reducing iron ore with higher efficiency than before.
This will be described in detail below.

(準備工程)
まず、転炉(上底吹き転炉)10内へ溶銑12を装入する。
このとき、必要に応じて鉄スクラップを、転炉10内に、溶銑12装入前に予め配置することも、また、溶銑12装入後に投入することもできる。
転炉10内へ溶銑12を装入した後は、転炉10の下部に設けられた底吹きノズル13から、不活性ガス(例えば、Arガス(アルゴンガス)やNガス(窒素ガス)等)を吹込み、撹拌しながら、以下の各工程を行う。
(Preparation process)
First, the hot metal 12 is charged into the converter (upper bottom blowing converter) 10.
At this time, if necessary, iron scrap can be placed in the converter 10 in advance before the hot metal 12 is charged, or can be charged after the hot metal 12 is charged.
After the hot metal 12 is charged into the converter 10, an inert gas (for example, Ar gas (argon gas), N 2 gas (nitrogen gas), etc.) is supplied from the bottom blowing nozzle 13 provided at the lower part of the converter 10. ) And the following steps are performed while stirring.

(第1工程)
ここでは、転炉10内のスラグ11の塩基度を、0.5以上1未満、かつ、スラグ11の粘度を0.15Pa・s以下に調整して、転炉10内に鉄鉱石を投入する。このスラグ11の塩基度は、「{スラグ中のCaO濃度(質量%)}/{スラグ中のSiO濃度(質量%)}」で表される(以下、単に塩基度、又は、C/Sとも記載する)。また、鉄鉱石は、Feを主成分(例えば、70質量%以上、更には80質量%以上)とするものである。
上記したスラグ11の塩基度は、以下の試験に基づいて規定した。
(First step)
Here, the basicity of the slag 11 in the converter 10 is adjusted to 0.5 or more and less than 1 and the viscosity of the slag 11 is adjusted to 0.15 Pa · s or less, and iron ore is charged into the converter 10. . The basicity of the slag 11 is represented by “{CaO concentration in slag (mass%)} / {SiO 2 concentration in slag (mass%)}” (hereinafter simply referred to as basicity or C / S Also described). Further, the iron ore contains Fe 2 O 3 as a main component (for example, 70% by mass or more, and further 80% by mass or more).
The basicity of the slag 11 described above was defined based on the following test.

試験は、Arガス雰囲気下で、鉄製るつぼ内で溶融させたスラグ100gをArガスで撹拌しながら、このスラグに予熱した試料50gを投入して行った。この試料には、鉄鉱石(FeO:0.14質量%、Fe:97.94質量%)と、比較としてダスト(FeO:30.78質量%、Fe:55.75質量%)を用いた。
また、試料(鉄鉱石とダスト)を投入するスラグは、FeOを25質量%含有し、残りがCaOとSiOとからなり、CaOとSiOの比率を変えて、塩基度を0.6と1.0にそれぞれ調整した。なお、スラグの温度は1350℃とした。
The test was performed by adding 50 g of a preheated sample to the slag while stirring 100 g of the slag melted in an iron crucible under an Ar gas atmosphere. This sample includes iron ore (FeO: 0.14% by mass, Fe 2 O 3 : 97.94% by mass) and dust (FeO: 30.78% by mass, Fe 2 O 3 : 55.75% by mass) for comparison. %) Was used.
Also, slag to inject sample (iron ore and dust) contains a FeO 25 wt%, the remainder consists of a SiO 2 Metropolitan CaO, by changing the CaO and SiO 2 ratio, a basicity of 0.6 Each was adjusted to 1.0. The slag temperature was 1350 ° C.

試料投入から3分後にスラグを採取し、試料中の全Fe濃度T.Fe(質量%)と試料中の金属Fe濃度M.Fe(質量%)をそれぞれ分析して、以下の式で換算FeO濃度(質量%)を求めた。
(換算FeO濃度)={(T.Fe)−(M.Fe)}/56×72
この換算FeO濃度(質量%)から初期のFeO濃度(30質量%)を引いたものを3分で除した、スラグ中の換算FeO濃度の上昇速度(%/分)を、試料の溶解速度として評価した。
The slag was collected 3 minutes after the sample was charged, and the total Fe concentration T.I. Fe (mass%) and metal Fe concentration in the sample Each Fe (mass%) was analyzed, and the converted FeO concentration (mass%) was determined by the following formula.
(Converted FeO concentration) = {(T.Fe)-(M.Fe)} / 56 × 72
The rate of increase in the converted FeO concentration in slag (% / min) obtained by dividing the value obtained by subtracting the initial FeO concentration (30% by mass) from this converted FeO concentration (% by mass) by 3 minutes is taken as the dissolution rate of the sample. evaluated.

図2に、試験結果を示す。
鉄鉱石を、塩基度が1以上2以下のスラグ(転炉10内)に上方から添加した場合、鉄鉱石の溶解が大きく阻害されるため、スラグの塩基度を1未満にした。
例えば、図2に示すように、スラグの塩基度(C/S)が1.0の場合、溶解速度は、ダストが鉄鉱石よりも良好な傾向が得られた。しかし、スラグの塩基度を0.6まで低下させることで、鉄鉱石の溶解速度を塩基度が1.0の場合よりも上昇させることができると共に、ダストと同程度にまで上昇できることがわかった。
FIG. 2 shows the test results.
When iron ore was added from above to slag having a basicity of 1 or more and 2 or less (in the converter 10), dissolution of the iron ore was greatly inhibited, so the basicity of the slag was set to less than 1.
For example, as shown in FIG. 2, when the basicity (C / S) of slag was 1.0, a tendency that the dissolution rate of dust was better than that of iron ore was obtained. However, it was found that by reducing the basicity of slag to 0.6, the dissolution rate of iron ore can be increased as compared with the case where the basicity is 1.0 and can be increased to the same level as dust. .

なお、スラグの塩基度を0.5未満まで低下させた場合、スラグ中のSiO量が過剰となってスラグの粘性が高くなる。このため、鉄鉱石をスラグの上方から添加した場合、鉄鉱石がスラグ層に捕捉され易くなり、鉄鉱石の溶解と還元が阻害されて好ましくない。
以上の知見に基づいて、スラグ11の塩基度を0.5以上1未満(好ましくは、下限を0.6、上限を0.9、更には0.8)とした。
In addition, when the basicity of slag is reduced to less than 0.5, the amount of SiO 2 in the slag becomes excessive and the viscosity of the slag increases. For this reason, when iron ore is added from above the slag, the iron ore becomes easy to be captured by the slag layer, and dissolution and reduction of the iron ore are hindered.
Based on the above findings, the basicity of the slag 11 is set to 0.5 or more and less than 1 (preferably, the lower limit is 0.6, the upper limit is 0.9, and further 0.8).

また、スラグの粘度は、以下の知見に基づいて規定した。
上記したように、スラグの粘性が高いと、鉄鉱石をスラグの上方から添加した場合に、鉄鉱石がスラグ層に捕捉され易くなり、鉄鉱石の還元が阻害されて好ましくない。
上記したスラグの塩基度の範囲内において、鉄鉱石をスラグ層に捕捉されにくくするには、スラグ11の粘度を0.15Pa・s以下にする必要がある。
Moreover, the viscosity of slag was prescribed | regulated based on the following knowledge.
As described above, when the viscosity of the slag is high, when iron ore is added from above the slag, the iron ore is easily captured by the slag layer, and the reduction of the iron ore is hindered.
In order to make it difficult for iron ore to be captured by the slag layer within the above-described range of slag basicity, the viscosity of the slag 11 needs to be 0.15 Pa · s or less.

この粘度の下限値については、粘度の低下と共に、鉄鉱石がスラグ層に捕捉されにくくなることから、特に規定していないが、スラグの組成等を考慮すれば、例えば、0.10Pa・s程度である。
上記したスラグ11の粘度は、スラグ11の組成等に基づき、飯田らによる推算粘度式(飯田孝道、外4名、「溶融スラグ・ガラスの粘性−物性工学的アプローチによる多成分系複雑液体の高精度な粘度推算法−」、アグネ技術センター、2003年6月25日、p.124)を用いて算出(推定)できる。
The lower limit of the viscosity is not particularly specified because the iron ore becomes difficult to be captured by the slag layer as the viscosity decreases, but considering the composition of the slag, for example, about 0.10 Pa · s It is.
The viscosity of the slag 11 is based on the composition of the slag 11 and the like. The estimated viscosity formula by Iida et al. (Takamichi Iida, 4 others, “Viscosity of Molten Slag / Glass— It can be calculated (estimated) using “accurate viscosity estimation method—”, Agne Technical Center, June 25, 2003, p.

なお、鉄鉱石の添加は、スラグ11の塩基度と粘度を、上記した範囲内にして行えばよく、具体的には、溶銑予備処理で生成するSiO量と、転炉10内に投入されるCaO源(例えば、生石灰、石灰石、リサイクルスラグ)とのバランスから、塩基度が0.5以上1未満、かつ、粘度が0.15Pa・s以下となるタイミングで行う。ここで、スラグ11の粘性を低下させる方法としては、例えば、鉄鉱石と比較してFeO濃度が高い(例えば、20質量%以上、更に25質量%以上の)ダスト等を、転炉10内に投入する方法を用いることが望ましい。 The iron ore may be added within the above-described ranges of the basicity and viscosity of the slag 11, and specifically, the amount of SiO 2 generated in the hot metal preliminary treatment and the converter 10 are charged. From the balance with the CaO source (for example, quicklime, limestone, recycled slag), the basicity is 0.5 or more and less than 1 and the viscosity is 0.15 Pa · s or less. Here, as a method for reducing the viscosity of the slag 11, for example, dust having a high FeO concentration (for example, 20 mass% or more, and further 25 mass% or more) in the converter 10 as compared with iron ore. It is desirable to use the charging method.

(第2工程)
上記した第1工程で、転炉10への鉄鉱石の投入が全量完了した後、転炉10内に石灰系原料を投入して、スラグ11の塩基度を第1工程での塩基度よりも上昇させ、1以上1.5以下(好ましくは、1.1以上1.5未満、更には1.2以上1.5未満)に調整する。
鉄鉱石の投入が終了した後のスラグ11はFeO濃度が高くなる(例えば、20質量%以上)。このため、石灰系原料を投入して上記した範囲内に塩基度を調整し、FeOの還元を促進して、FeO濃度を低下させたスラグにすることにより、鉄分ロスを低減できる。なお、スラグの塩基度が1.5超の場合、副原料の溶解不良を招いて、脱Pが阻害される。
(Second step)
In the first step described above, after all of the iron ore has been charged into the converter 10, the lime-based raw material is charged into the converter 10, and the basicity of the slag 11 is made higher than the basicity in the first step. It is raised and adjusted to 1 or more and 1.5 or less (preferably 1.1 or more and less than 1.5, and further 1.2 or more and less than 1.5).
The slag 11 after the iron ore is charged has a high FeO concentration (for example, 20% by mass or more). For this reason, iron loss can be reduced by adding a lime-based raw material, adjusting the basicity within the above-described range, accelerating the reduction of FeO, and forming a slag having a reduced FeO concentration. In addition, when the basicity of slag is more than 1.5, the dissolution of the auxiliary raw material is caused, and de-P is inhibited.

ここで、石灰系原料には、例えば、生石灰、石灰石、リサイクルスラグ等のいずれか1又は2以上を組合わせて使用できるが、経済性の観点から、石灰系原料の一部又は全部にリサイクルスラグを用いることが好ましい。
このリサイクルスラグは、上記した転炉10の過去の操業又は他の転炉で発生したスラグであり、塩基度が例えば、3〜4程度のものである(前記した第1工程で記載のリサイクルスラグも同様)。
Here, for the lime-based raw material, for example, quick lime, limestone, recycled slag or the like can be used in combination with one or more, but from the viewpoint of economy, recycled slag is partly or wholly part of the lime-based raw material. Is preferably used.
This recycled slag is slag generated in the past operation of the converter 10 or other converter, and has a basicity of about 3 to 4 (recycled slag described in the first step described above). The same).

このように、スラグ11の塩基度を上昇させて、1以上1.5以下にした後(にした時点で)、ランス14を用いて上吹き送酸する吹錬を行う。
これにより、転炉10内へ鉄鉱石を上方から添加する場合において、鉄鉱石を高効率で還元させることができるため、溶銑温度の適正化、脱P効率の向上、鉄分ロスの低減が可能になる。
In this manner, after the basicity of the slag 11 is increased to 1 or more and 1.5 or less (at the time when it is set), the slag 11 is blown by performing top blowing acid using the lance 14.
As a result, when iron ore is added into the converter 10 from above, the iron ore can be reduced with high efficiency, so that it is possible to optimize the hot metal temperature, improve de-P efficiency, and reduce iron loss. Become.

なお、上記したように、本発明の鉄鉱石の還元方法は、転炉10内への鉄鉱石の上方添加に有効であるため、鉄鉱石の投入量については特に規定していない。
しかし、鉄鉱石を高効率で還元させることができることから、本発明の鉄鉱石の還元方法による効果は、特に、鉄鉱石を大量に投入し、短時間で処理しようとする場合に顕著になる。
As described above, since the iron ore reduction method of the present invention is effective for the upward addition of iron ore into the converter 10, the amount of iron ore input is not particularly specified.
However, since iron ore can be reduced with high efficiency, the effect of the iron ore reduction method of the present invention is particularly remarkable when a large amount of iron ore is added and processing is performed in a short time.

従って、鉄鉱石の投入量は、例えば、溶銑1トンあたり数kg程度でもよいが、溶銑1トンあたり15kg以上、更には、30kg以上にすることが、本発明の効果の観点から好ましい。一方、投入量の上限値については、実際の操業を考慮すれば、例えば、50kg程度である。
また、溶銑予備処理の処理時間(吹錬時間)は、例えば、10分以下(更には5分以下)である。一方、処理時間の下限値は、例えば、処理する溶銑の量にもよるが、2分程度である。
Accordingly, the input amount of iron ore may be, for example, about several kg per ton of hot metal, but is preferably 15 kg or more, more preferably 30 kg or more per ton of hot metal from the viewpoint of the effect of the present invention. On the other hand, the upper limit value of the input amount is, for example, about 50 kg in consideration of actual operation.
Moreover, the treatment time (blowing time) of the hot metal preliminary treatment is, for example, 10 minutes or less (further 5 minutes or less). On the other hand, the lower limit value of the treatment time is, for example, about 2 minutes although it depends on the amount of hot metal to be treated.

(第3工程)
上記した吹錬が終了した後は、転炉10を傾動させ、生成した炉内のスラグ11を転炉10の炉口から排滓する。そして、転炉10内に新たに生石灰を添加した後、ランス14を用いて上吹き送酸する吹錬を行う。
この吹錬が終了した後、転炉10を傾動させ、溶製した溶鋼を出鋼口16から出鋼する。
なお、図1中の符号17は、転炉10の内面に付着し固化したスラグである。
(Third step)
After the above-described blowing is completed, the converter 10 is tilted, and the generated slag 11 in the furnace is discharged from the furnace port of the converter 10. And after adding quick lime newly in the converter 10, the blow blasting which carries out top blowing acid using the lance 14 is performed.
After this blowing is completed, the converter 10 is tilted, and the molten steel is discharged from the outlet 16.
In addition, the code | symbol 17 in FIG. 1 is the slag which adhered to the inner surface of the converter 10, and was solidified.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、転炉を用いた溶銑予備処理において、転炉内の400トンの溶銑に対して鉄鉱石を投入した。
この溶銑中のSi濃度は0.5質量%、溶銑と鉄スクラップの合計質量に対する溶銑の質量(即ち、HMR)は90質量%、溶銑の温度は約1350℃、にした。
以下に、鉄鉱石を転炉内に投入する際の手順を示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, in the hot metal preliminary treatment using the converter, iron ore was charged into 400 tons of hot metal in the converter.
The Si concentration in the hot metal was 0.5% by mass, the mass of hot metal with respect to the total mass of hot metal and iron scrap (ie, HMR) was 90% by mass, and the temperature of the hot metal was about 1350 ° C.
The procedure for putting iron ore into the converter is shown below.

まず、転炉型溶銑予備処理を行うことで生成するSiOと、投入されるCaO源(生石灰、石灰石、リサイクルスラグ)とのバランスから、スラグの塩基度(C/S)が0.5〜1.2の範囲、スラグの粘度が0.12〜0.21Pa・sとなるタイミングで、鉄鉱石を30〜36kg/トン(kg/t)投入した。この鉄鉱石の投入量は、必要脱P量等に応じて、溶銑予備処理後の温度で1270〜1320℃を目標温度として決定した(以上、第1工程)。
次に、鉄鉱石の投入が全量完了したタイミングで、リサイクルスラグ(石灰系原料)を投入し、スラグの塩基度(C/S)を上昇させて、0.9〜1.6に調整した。
そして、ランスによる吹錬を開始した後、10分以下で終了した(以上、第2工程)。
試験条件と結果を表1に示す。
First, the basicity (C / S) of slag is 0.5 to 0.5 from the balance between SiO 2 produced by performing the converter type hot metal preliminary treatment and the CaO source (quick lime, limestone, recycled slag) to be introduced. Iron ore was charged at 30 to 36 kg / ton (kg / t) at a timing in which the viscosity of the slag became 0.12 to 0.21 Pa · s in the range of 1.2. The input amount of the iron ore was determined as a target temperature at 1270 to 1320 ° C. at the temperature after the hot metal preliminary treatment according to the required amount of dephosphorization (the first step).
Next, at the timing when the amount of iron ore was completely charged, recycled slag (lime-based raw material) was added, and the basicity (C / S) of the slag was increased and adjusted to 0.9 to 1.6.
And after starting blowing by a lance, it was completed in 10 minutes or less (the above, 2nd process).
Table 1 shows the test conditions and results.

Figure 2017206740
Figure 2017206740

実施例1〜5は、第1工程でスラグの塩基度と粘度を適正範囲内(塩基度:0.5以上1未満、粘度:0.15Pa・s以下)にして、転炉内に鉄鉱石を投入した後、第2工程でスラグの塩基度を上昇させて適正範囲内(1以上1.5以下)にした場合の試験条件と結果である。
この場合、鉄鉱石の溶解速度を向上させることができ、吹錬を10分行った溶銑予備処理後の溶銑温度を、目標温度±10℃の範囲に下げることができた。これにより、溶銑中のP濃度を37×10−3質量%以下に低減でき、しかも、スラグ中のFeO濃度を19質量%以下に低減できた。
In Examples 1 to 5, the basicity and viscosity of the slag are within the appropriate ranges (basicity: 0.5 to less than 1, viscosity: 0.15 Pa · s or less) in the first step, and iron ore is placed in the converter. Are the test conditions and results when the basicity of the slag is increased in the second step to be within an appropriate range (1 to 1.5).
In this case, the melting rate of the iron ore could be improved, and the hot metal temperature after the hot metal pretreatment after blowing for 10 minutes could be lowered to the target temperature ± 10 ° C. As a result, the P concentration in the hot metal could be reduced to 37 × 10 −3 mass% or less, and the FeO concentration in the slag could be reduced to 19 mass% or less.

一方、比較例1、3は、第1工程でのスラグの塩基度を適正範囲外(比較例1:1.2、比較例3:1.1)にし、比較例1、2は、第1工程でのスラグの粘度を適正範囲外(比較例1:0.21Pa・s、比較例2:0.20Pa・s)にした場合の試験条件と結果である。なお、比較例1〜3の第2工程でのスラグの塩基度は適正範囲内にしている。
この場合、鉄鉱石の溶解速度が低下し、溶銑予備処理後の溶銑温度を、目標温度に対し25℃以上までしか低減できなかった。このため、溶銑中のP濃度が40×10−3質量%以上に上昇し、スラグ中のFeO濃度も20質量%以上に上昇した。
On the other hand, in Comparative Examples 1 and 3, the basicity of the slag in the first step is out of the appropriate range (Comparative Example 1: 1.2, Comparative Example 3: 1.1). These are test conditions and results when the viscosity of the slag in the process is outside the proper range (Comparative Example 1: 0.21 Pa · s, Comparative Example 2: 0.20 Pa · s). In addition, the basicity of the slag in the 2nd process of Comparative Examples 1-3 is made into the appropriate range.
In this case, the dissolution rate of the iron ore decreased, and the hot metal temperature after the hot metal preliminary treatment could only be reduced to 25 ° C. or higher with respect to the target temperature. For this reason, the P concentration in the hot metal rose to 40 × 10 −3 mass% or more, and the FeO concentration in the slag also increased to 20 mass% or more.

また、比較例4、5は、第2工程でのスラグの塩基度を適正範囲外(比較例4:0.9、比較例5:1.6)にした場合の試験条件と結果である。なお、第1工程でのスラグの塩基度と粘度は適正範囲内にしている。
この場合、比較例4は、スラグの塩基度が適正範囲の下限値未満であったため、FeOの還元を促進できず、スラグ中のFeO濃度が高くなり、また、比較例5では、スラグの塩基度が適正範囲の上限値超であったため、溶銑中のP濃度が上昇した。
Comparative Examples 4 and 5 are test conditions and results when the basicity of the slag in the second step is outside the appropriate range (Comparative Example 4: 0.9, Comparative Example 5: 1.6). In addition, the basicity and viscosity of the slag in the first step are within an appropriate range.
In this case, since the basicity of the slag was less than the lower limit of the appropriate range in Comparative Example 4, the reduction of FeO could not be promoted, and the FeO concentration in the slag increased. In Comparative Example 5, the slag base Since the degree exceeded the upper limit of the appropriate range, the P concentration in the hot metal increased.

以上のことから、本発明の鉄鉱石の還元方法を用いることで、鉄鉱石を高効率で還元させて、溶銑温度の適正化、脱P効率の向上、及び、鉄分ロスの低減が図れることを確認できた。
なお、上記した実施例1〜5では、転炉内に鉄鉱石を30〜35kg/トン投入した場合について説明したが、鉄鉱石の投入量が、数kg/トン〜50kg/トン程度の範囲内でも、実施例1〜5の結果と略同様の傾向が得られた。
From the above, by using the iron ore reduction method of the present invention, it is possible to reduce iron ore with high efficiency, to optimize the hot metal temperature, to improve de-P efficiency, and to reduce iron loss. It could be confirmed.
In Examples 1 to 5 described above, the case where 30 to 35 kg / ton of iron ore was charged into the converter was described, but the amount of iron ore charged was within the range of several kg / ton to 50 kg / ton. However, the same tendency as the results of Examples 1 to 5 was obtained.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の鉄鉱石の還元方法を構成する場合も本発明の権利範囲に含まれる。   As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where the iron ore reduction method of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

10:転炉、11:スラグ、12:溶銑、13:底吹きノズル、14:ランス、15:鉄鉱石投入シュート、16:出鋼口、17:スラグ 10: Converter, 11: Slag, 12: Hot metal, 13: Bottom blowing nozzle, 14: Lance, 15: Iron ore charging chute, 16: Steel outlet, 17: Slag

Claims (2)

転炉型溶銑予備処理における鉄鉱石の還元方法において、
転炉内のスラグの塩基度を0.5以上1未満、かつ、スラグの粘度を0.15Pa・s以下にして、前記転炉内に鉄鉱石を投入する第1工程と、
前記転炉内に石灰系原料を投入してスラグの塩基度を上昇させ、1以上1.5以下に調整する第2工程とを有することを特徴とする鉄鉱石の還元方法。
In the iron ore reduction method in the converter type hot metal preliminary treatment,
A first step in which the basicity of the slag in the converter is 0.5 or more and less than 1 and the viscosity of the slag is 0.15 Pa · s or less, and iron ore is charged into the converter;
And a second step of adjusting the slag basicity to 1 to 1.5 by introducing a lime-based raw material into the converter.
請求項1記載の鉄鉱石の還元方法において、前記石灰系原料の一部又は全部が、前記転炉又は他の転炉で発生したスラグであることを特徴とする鉄鉱石の還元方法。   2. The iron ore reduction method according to claim 1, wherein a part or all of the lime-based raw material is slag generated in the converter or another converter.
JP2016099631A 2016-05-18 2016-05-18 How to reduce iron ore Active JP6627642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099631A JP6627642B2 (en) 2016-05-18 2016-05-18 How to reduce iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099631A JP6627642B2 (en) 2016-05-18 2016-05-18 How to reduce iron ore

Publications (2)

Publication Number Publication Date
JP2017206740A true JP2017206740A (en) 2017-11-24
JP6627642B2 JP6627642B2 (en) 2020-01-08

Family

ID=60414887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099631A Active JP6627642B2 (en) 2016-05-18 2016-05-18 How to reduce iron ore

Country Status (1)

Country Link
JP (1) JP6627642B2 (en)

Also Published As

Publication number Publication date
JP6627642B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
JPWO2014068933A1 (en) Hot metal refining method
JP2018178260A (en) Converter steelmaking process
JP2013064188A (en) Method for recycling steelmaking slag as resource
JP2016188423A (en) Method for dephosphorizing and decarbonizing molten iron
JP6135449B2 (en) How to use generated slag
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
KR102189097B1 (en) Pre-treatment method of molten iron and manufacturing method of ultra-low-tough steel
JP2008063645A (en) Steelmaking method
JP6269974B2 (en) Steel melting method
CN103225009A (en) Method for producing high-cleanness steel
US20220396844A1 (en) Molten steel production method
KR101735001B1 (en) Method of desulfurizing ultra low sulfur steel
JP2017206740A (en) Method for reducing iron ore
JP5286892B2 (en) Dephosphorization method of hot metal
KR100977795B1 (en) Manufacturing method of clean steel
JP2016079462A (en) Method for refining hot pig iron
KR20200075651A (en) Refining method of high-purity molten steel
JP4854933B2 (en) Refining method with high reaction efficiency
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP7328535B2 (en) steel smelting method
JP5874578B2 (en) High-speed blowing method for converters
KR101412570B1 (en) Refining method of high strength steel
KR102349427B1 (en) Method for manufacturing high clean steel using electric furnace slag
KR101363923B1 (en) Method for producing of steel
KR20180057701A (en) Pre-processing method of charcoal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151