JP2017205684A - Water treatment system - Google Patents
Water treatment system Download PDFInfo
- Publication number
- JP2017205684A JP2017205684A JP2016097893A JP2016097893A JP2017205684A JP 2017205684 A JP2017205684 A JP 2017205684A JP 2016097893 A JP2016097893 A JP 2016097893A JP 2016097893 A JP2016097893 A JP 2016097893A JP 2017205684 A JP2017205684 A JP 2017205684A
- Authority
- JP
- Japan
- Prior art keywords
- water
- organic compound
- treatment system
- gas
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 266
- 238000011282 treatment Methods 0.000 title claims abstract description 118
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 98
- 238000001179 sorption measurement Methods 0.000 claims abstract description 86
- 239000000835 fiber Substances 0.000 claims abstract description 54
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 51
- 238000003795 desorption Methods 0.000 claims abstract description 45
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000018044 dehydration Effects 0.000 claims abstract description 25
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 71
- 230000008569 process Effects 0.000 claims description 54
- 238000012545 processing Methods 0.000 claims description 41
- 238000005273 aeration Methods 0.000 claims description 36
- 238000002485 combustion reaction Methods 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 239000004744 fabric Substances 0.000 claims description 11
- 239000003463 adsorbent Substances 0.000 claims description 10
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000003801 milling Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 6
- 239000002759 woven fabric Substances 0.000 claims description 6
- 238000005868 electrolysis reaction Methods 0.000 claims description 4
- 238000009423 ventilation Methods 0.000 claims description 2
- 238000013022 venting Methods 0.000 claims description 2
- 229920000049 Carbon (fiber) Polymers 0.000 abstract description 7
- 239000004917 carbon fiber Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 71
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 39
- 238000009940 knitting Methods 0.000 description 19
- 239000011148 porous material Substances 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 238000006864 oxidative decomposition reaction Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229920006282 Phenolic fiber Polymers 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- -1 triethylene glycol, organic acids Chemical class 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- IIBYAHWJQTYFKB-UHFFFAOYSA-N bezafibrate Chemical compound C1=CC(OC(C)(C)C(O)=O)=CC=C1CCNC(=O)C1=CC=C(Cl)C=C1 IIBYAHWJQTYFKB-UHFFFAOYSA-N 0.000 description 2
- 229960000516 bezafibrate Drugs 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000007084 catalytic combustion reaction Methods 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VSZGPKBBMSAYNT-RRFJBIMHSA-N oseltamivir Chemical compound CCOC(=O)C1=C[C@@H](OC(CC)CC)[C@H](NC(C)=O)[C@@H](N)C1 VSZGPKBBMSAYNT-RRFJBIMHSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- HTWIZMNMTWYQRN-UHFFFAOYSA-N 2-methyl-1,3-dioxolane Chemical compound CC1OCCO1 HTWIZMNMTWYQRN-UHFFFAOYSA-N 0.000 description 1
- LFYXNXGVLGKVCJ-FBIMIBRVSA-N 2-methylisoborneol Chemical compound C1C[C@@]2(C)[C@](C)(O)C[C@@H]1C2(C)C LFYXNXGVLGKVCJ-FBIMIBRVSA-N 0.000 description 1
- LFYXNXGVLGKVCJ-UHFFFAOYSA-N 2-methylisoborneol Natural products C1CC2(C)C(C)(O)CC1C2(C)C LFYXNXGVLGKVCJ-UHFFFAOYSA-N 0.000 description 1
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 description 1
- JHUUPUMBZGWODW-UHFFFAOYSA-N 3,6-dihydro-1,2-dioxine Chemical compound C1OOCC=C1 JHUUPUMBZGWODW-UHFFFAOYSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 230000003556 anti-epileptic effect Effects 0.000 description 1
- 230000002402 anti-lipaemic effect Effects 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- FFGPTBGBLSHEPO-UHFFFAOYSA-N carbamazepine Chemical compound C1=CC2=CC=CC=C2N(C(=O)N)C2=CC=CC=C21 FFGPTBGBLSHEPO-UHFFFAOYSA-N 0.000 description 1
- 229960000623 carbamazepine Drugs 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- GZSOSUNBTXMUFQ-YFAPSIMESA-N diosmin Chemical compound C1=C(O)C(OC)=CC=C1C(OC1=C2)=CC(=O)C1=C(O)C=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)O1 GZSOSUNBTXMUFQ-YFAPSIMESA-N 0.000 description 1
- 229960004352 diosmin Drugs 0.000 description 1
- 230000000185 dioxinlike effect Effects 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- 229960002297 fenofibrate Drugs 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000002509 fulvic acid Substances 0.000 description 1
- 229940095100 fulvic acid Drugs 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229960004011 methenamine Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003752 oseltamivir Drugs 0.000 description 1
- 229960002194 oseltamivir phosphate Drugs 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical group 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940072172 tetracycline antibiotic Drugs 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Knitting Of Fabric (AREA)
- Woven Fabrics (AREA)
Abstract
Description
本発明は、有機化合物を含有する水(被処理水、原水)から有機化合物を除去して浄化する装置に関し、特に各種工場、研究施設の排水、最終処分場の浸出水、地下水等から有機溶剤等の有機化合物を除去する装置に関するものである。 The present invention relates to an apparatus for removing and purifying organic compounds from water containing organic compounds (treated water, raw water), and in particular, organic solvents from various factories, wastewater from research facilities, leachate from final disposal sites, groundwater, etc. It is related with the apparatus which removes organic compounds, such as.
有機化合物などを含有する水を浄化する装置として、例えば特許文献1記載の吸脱着式の水処理装置が知られている。この水処理装置は、吸着素子に有機化合物を含有する水を通流させて有機化合物を吸着させる吸着工程と、その後有機化合物を吸着した吸着素子にガスを供給して吸着素子に付着する付着水を除去するパージ(脱水)工程と、高温の加熱ガスを供給して吸着素子に吸着された有機化合物を脱離させて吸着素子を再生する脱着工程とを実施し、これらの工程を繰返し行うことで、吸着素子を再生しながら、基本的に吸着素子の交換なしに、連続的に水の浄化ができる。 As an apparatus for purifying water containing an organic compound or the like, for example, an adsorption / desorption type water treatment apparatus described in Patent Document 1 is known. This water treatment apparatus has an adsorption process in which water containing an organic compound is allowed to flow through the adsorption element to adsorb the organic compound, and then water is attached to the adsorption element by supplying gas to the adsorption element that has adsorbed the organic compound. Performing a purge (dehydration) process for removing water and a desorption process for supplying a high-temperature heating gas to desorb an organic compound adsorbed on the adsorption element and regenerating the adsorption element, and repeating these steps Thus, it is possible to continuously purify water while regenerating the adsorbing element and basically without exchanging the adsorbing element.
特許文献1の水処理装置において、吸着素子に吸着除去された有機化合物は、再生時に吸着素子から脱離され、有機化合物を含んだガス(脱着ガス)として排出される。ここで、脱着媒体(加熱ガス)に水蒸気を使用した場合、脱着ガスを液化凝縮することで、有機化合物を高濃度に含有した濃縮水として回収できるので、濃縮装置としても機能する(例えば、特許文献2および特許文献3)。さらに、濃縮水は燃焼装置や湿式酸化分解装置などの二次処理装置で二次処理され、有機化合物は無害化し、水処理システムとして完結する。 In the water treatment apparatus of Patent Document 1, the organic compound adsorbed and removed by the adsorbing element is desorbed from the adsorbing element during regeneration, and is discharged as a gas containing the organic compound (desorption gas). Here, when water vapor is used as the desorption medium (heated gas), the desorption gas can be recovered as concentrated water containing a high concentration of organic compounds by liquefying and condensing the desorption gas, so that it also functions as a concentrator (for example, a patent) Document 2 and Patent Document 3). Further, the concentrated water is secondarily treated by a secondary treatment device such as a combustion device or a wet oxidative decomposition device, the organic compound is rendered harmless, and the water treatment system is completed.
水処理システムに上記濃縮装置を使用することで、被処理水を減容化し有機化合物濃度を縮減できるので、被処理水を直接、二次処理装置で処理する場合と比較して、システムの大型化を防ぎ省エネルギーに水処理が可能となる効果がある。このようなシステムにおいては、より濃縮倍率の高い濃縮装置を配置することによって、上記の効果が高まる。 By using the above concentration device in the water treatment system, the volume of the treated water can be reduced and the organic compound concentration can be reduced. Compared with the case where the treated water is directly treated by the secondary treatment device, the size of the system is large. There is an effect that water treatment is possible in order to save energy. In such a system, the above effect is enhanced by arranging a concentrator having a higher concentration ratio.
特許文献2や特許文献3などの濃縮装置では、脱着工程前に脱水を行い、吸着素子に付着する付着水を除去している。この脱水工程によって、吸着素子の付着水の脱離に必要な水蒸気量が減り、濃縮水に混入する付着水量が減るので濃縮倍率が高まる。そのため、付着水の脱水効率を向上することができれば、濃縮倍率が高まると言える。 In the concentrators such as Patent Document 2 and Patent Document 3, dehydration is performed before the desorption process to remove the adhering water adhering to the adsorption element. By this dehydration step, the amount of water vapor necessary for desorption of the adhering water of the adsorption element is reduced, and the amount of adhering water mixed into the concentrated water is reduced, so that the concentration ratio is increased. Therefore, if the dewatering efficiency of the attached water can be improved, it can be said that the concentration rate increases.
ここで、特許文献1〜3に開示の装置では、吸着速度が速く、高効率に有機化合物を除去できる活性炭素繊維を好適な吸着素子として使用している。本出願人らは、吸着素子として用いられる繊維径を太くした活性炭素繊維の不織布を開発し(特許文献4)、上述の水処理装置に適用することで、脱水効率の向上を可能としている(特許文献5)。 Here, in the apparatuses disclosed in Patent Documents 1 to 3, activated carbon fibers that have a high adsorption rate and can remove organic compounds with high efficiency are used as suitable adsorption elements. The present applicants have developed an activated carbon fiber non-woven fabric with a thick fiber diameter used as an adsorbing element (Patent Document 4) and applied to the above-described water treatment apparatus, thereby enabling improvement in dewatering efficiency ( Patent Document 5).
上記のように、特許文献5より、不織布を構成する活性炭素繊維をより太くすることが、脱水効率が高まり、結果として濃縮倍率を向上させるに有効な手段と言える。しかし、特許文献4より、活性炭素繊維径を40μmを超えて太くすると、繊維が交絡せず、強度低下が起き、吸着素子として組織構造を保持しにくいことがわかる。そのため、活性炭素繊維径を40μmを超えて太くした吸着素子を用いると、上述の濃縮装置の処理槽への充填時や吸脱着操作の繰返しによって破損や繊維の脱落などの問題が発生することがある。 As described above, from Patent Document 5, it can be said that making activated carbon fibers constituting the nonwoven fabric thicker is an effective means for improving dehydration efficiency and consequently improving the concentration rate. However, from Patent Document 4, it can be seen that when the activated carbon fiber diameter is increased beyond 40 μm, the fibers are not entangled, the strength is reduced, and it is difficult to maintain the tissue structure as an adsorbing element. Therefore, if an adsorption element having an activated carbon fiber diameter larger than 40 μm is used, problems such as breakage and fiber dropping may occur due to the filling of the above-described concentration apparatus into the treatment tank or repeated adsorption / desorption operations. is there.
本発明は、上記の課題を解決するためになされたものであり、その目的は、破損や繊維の脱落が抑制され、濃縮倍率の向上が可能な吸着素子が充填された濃縮装置を備え、より小型で省エネルギーにて水処理が可能な水処理システムを提供することにある。 The present invention has been made in order to solve the above-mentioned problems, and the object thereof is to provide a concentrating device filled with an adsorbing element capable of suppressing breakage and fiber dropping and capable of improving the concentration ratio, and more. The object is to provide a water treatment system which is small and can perform water treatment with energy saving.
本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の構成からなる。 As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention has the following configuration.
1.有機化合物を含有する被処理水から、当該有機化合物を除去および無害化する水処理システムであって、
有機化合物を含有する被処理水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させて処理水を排出する吸着工程と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水工程と、前記吸着素子に水蒸気を通気させて前記吸着素子に吸着された前記有機化合物を脱着した後凝縮し、前記被処理水よりも前記有機化合物の濃度が高い濃縮水を排出する脱着工程と、を繰返し実行する濃縮装置と、前記濃縮装置から排出された濃縮水中の前記有機化合物を分解する分解処理装置と、を備えたことを特徴とする水処理システム。
2.有機化合物を含有する被処理水から、当該有機化合物を除去および無害化する水処理システムであって、吸着材が充填された槽であり、導入された前記被処理水から前記有機化合物を当該吸着材に吸着させて処理水を排出する処理槽と、前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、前記吸着素子から前記有機化合物を脱着するために前記処理槽に水蒸気を通気させる水蒸気通気部と、前記吸着素子から脱着された前記有機化合物を含有する脱着ガスを前記被処理水よりも前記有機化合物の濃度が高い濃縮水に濃縮する濃縮部と、前記濃縮部から排出された濃縮水中の前記有機化合物を分解する分解処理装置と、を備え、前記吸着素子は、繊維束から成る活性炭素繊維の構造体を含む、ことを特徴とする水処理システム。
3.前記繊維束の径が、100〜600μmである前記1または2に記載の水処理システム。
4.前記分解処理装置からの排出水を前記吸着素子に吸着させるルートを備えたことを特徴とする前記1から3のいずか1つに記載の水処理システム。
5.前記吸着素子から除去した付着水を、再度、前期吸着素子に吸着させるルートを備えた前記1まから4のいずれか1つに記載の水処理システム。
6.前記構造体が、織物または編物であることを特徴とする前記1から5のいずれか1つに記載の水処理システム。
7.前記構造体が、フライス編による編物であることを特徴とする前記1から5のいずれか1つに記載の水処理システム。
8.前記分解処理装置が、前記濃縮水を曝気処理して前記有機化合物を揮発させて曝気ガスとして排出させる曝気装置と、前記曝気ガスを燃焼するガス燃焼装置とを備えていることを特徴とする前記1から7のいずれか1つに記載の水処理システム。
9.前記分解処理装置が、フェントン法、促進酸化法、電気分解法のいずれか1つを用いて前記濃縮水を処理する処理装置であることを特徴とする前記1から7のいずれか1つに記載の水処理システム。
1. A water treatment system for removing and detoxifying the organic compound from water to be treated containing the organic compound,
An adsorption step of passing water to be treated containing an organic compound through an adsorption element including an activated carbon fiber structure composed of fiber bundles, adsorbing the organic compound to the adsorption element and discharging the treated water; A dehydration step of removing gas adhering to the adsorbing element by allowing gas to flow through the adsorbing element; and desorbing the organic compound adsorbed on the adsorbing element by allowing water vapor to flow through the adsorbing element; A desorption step of discharging concentrated water having a higher concentration of the organic compound than the water to be treated; a concentrating device that repeatedly executes; a decomposition processing device that decomposes the organic compound in the concentrated water discharged from the concentrating device; A water treatment system comprising:
2. A water treatment system for removing and detoxifying the organic compound from the treated water containing the organic compound, a tank filled with an adsorbent, and adsorbing the organic compound from the introduced treated water A treatment tank for adsorbing the material to discharge treated water; a gas vent for allowing gas to flow through the treatment tank to remove adhering water from the adsorption element; and for desorbing the organic compound from the adsorption element A water vapor ventilation part for allowing water vapor to flow into the treatment tank; and a concentration part for concentrating the desorption gas containing the organic compound desorbed from the adsorption element into concentrated water having a higher concentration of the organic compound than the water to be treated; A decomposition treatment apparatus for decomposing the organic compound in the concentrated water discharged from the concentration section, wherein the adsorption element includes a structure of activated carbon fibers formed of fiber bundles. That the water treatment system.
3. 3. The water treatment system according to 1 or 2, wherein the fiber bundle has a diameter of 100 to 600 μm.
4). 4. The water treatment system according to any one of items 1 to 3, further comprising a route for adsorbing discharged water from the decomposition treatment device to the adsorption element.
5. 5. The water treatment system according to any one of 1 to 4, further comprising a route for adhering the water removed from the adsorbing element to the adsorbing element again.
6). The water treatment system according to any one of 1 to 5, wherein the structure is a woven fabric or a knitted fabric.
7). The water treatment system according to any one of 1 to 5, wherein the structural body is a knitted fabric by milling.
8). The decomposition treatment apparatus includes: an aeration apparatus that performs an aeration process on the concentrated water to volatilize the organic compound and discharge it as an aeration gas; and a gas combustion apparatus that burns the aeration gas. The water treatment system according to any one of 1 to 7.
9. 8. The decomposition apparatus according to any one of 1 to 7, wherein the decomposition treatment apparatus is a treatment apparatus that treats the concentrated water using any one of a Fenton method, an accelerated oxidation method, and an electrolysis method. Water treatment system.
本発明の上記構成によれば、吸着素子の破損や繊維の脱落を抑制し、吸着素子としての構造を保持でき、濃縮装置の濃縮倍率を向上できる。よって、濃縮水を処理する分解処理装置(二次処理装置)をより小型化でき、分解処理にかかるエネルギーを低減することができる、水処理システムを提供することができる。 According to the above configuration of the present invention, it is possible to suppress breakage of the adsorbing element and dropout of fibers, maintain the structure as the adsorbing element, and improve the concentration ratio of the concentrating device. Therefore, it is possible to provide a water treatment system that can further reduce the size of a decomposition treatment apparatus (secondary treatment apparatus) that processes concentrated water and can reduce energy required for the decomposition treatment.
本発明の実施形態について詳細に説明する。
本発明にかかる水処理システムは、有機化合物を含有する被処理水から、当該有機化合物を除去および無害化する水処理システムであり、濃縮装置と分解処理装置とを備えている。
Embodiments of the present invention will be described in detail.
The water treatment system according to the present invention is a water treatment system for removing and detoxifying the organic compound from the water to be treated containing the organic compound, and includes a concentration device and a decomposition treatment device.
本発明に係る濃縮装置は、有機化合物を含有する被処理水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させて処理水を排出する吸着工程と、前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水工程と、前記吸着素子に水蒸気を通気させて前記吸着素子に吸着された前記有機化合物を脱着した後凝縮し、前記被処理水よりも前記有機化合物の濃度が高い濃縮水を排出する脱着工程と、を繰返し実行する装置である。この構成により、吸着素子の交換無しに、水処理を連続的に行うことができる。 The concentration apparatus according to the present invention allows water to be treated containing an organic compound to flow through an adsorbing element including an activated carbon fiber structure composed of fiber bundles, and adsorbs the organic compound to the adsorbing element. An adsorption process for discharging water; a dehydration process for removing gas adhering to the adsorption element by passing a gas through the adsorption element; and the organic compound adsorbed on the adsorption element by passing water vapor through the adsorption element Is a device that repeatedly performs a desorption step of condensing and discharging condensed water having a concentration of the organic compound higher than that of the water to be treated. With this configuration, water treatment can be continuously performed without replacement of the adsorption element.
また、本発明に係る濃縮装置は、以下の構成と言うこともできる。本発明に係る濃縮装置は、吸着材が充填された槽であり、導入された前記被処理水から前記有機化合物を当該吸着材に吸着させて処理水を排出する処理槽と、前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、前記吸着素子から前記有機化合物を脱着するために前記処理槽に水蒸気を通気させる水蒸気通気部と、前記吸着素子から脱着された前記有機化合物を含有する脱着ガスを前記被処理水よりも前記有機化合物の濃度が高い濃縮水に濃縮する濃縮部と、を備えた装置である。 Moreover, it can be said that the concentration apparatus which concerns on this invention is the following structures. The concentration apparatus according to the present invention is a tank filled with an adsorbent, a treatment tank that adsorbs the organic compound from the introduced water to be treated to the adsorbent and discharges the treated water, and the adsorption element. A gas vent for passing gas through the treatment tank to remove adhering water; a water vapor vent for venting water vapor into the treatment tank to desorb the organic compound from the adsorption element; and desorption from the adsorption element. And a concentrating section that concentrates the desorbed gas containing the organic compound into concentrated water having a higher concentration of the organic compound than the water to be treated.
好ましい濃縮装置の構造としては、吸着素子を複数備えており、吸着工程と脱水工程と脱着工程とをダンパー等にて切替操作を行い、吸着、脱水、脱着を連続的に行う濃縮装置である。また、吸着素子が回転可能に構成されており、吸着工程で有機化合物を吸着した吸着素子の部位が、吸着素子の回転により、脱水、脱着工程へ移動する構造を有する濃縮装置も好ましい装置の構造である。 A preferred concentrating device structure is a concentrating device that includes a plurality of adsorbing elements, and performs adsorption, dehydration, and desorption continuously by switching between an adsorption process, a dehydration process, and a desorption process using a damper or the like. Also preferred is a concentrator having a structure in which the adsorbing element is configured to be rotatable and the part of the adsorbing element that adsorbs the organic compound in the adsorption process moves to the dehydration and desorption process by the rotation of the adsorbing element. It is.
本発明に係る分解処理装置は、濃縮装置から排出された濃縮水中の前記有機化合物を分解する装置である。一例としては、有機化合物質を含有する水を曝気処理し有機化合物を揮発させて曝気ガスとして排出させる曝気装置と、前記曝気ガスを燃焼するガス燃焼装置とを備えた処理装置である。別の例としては、フェントン法、促進酸化法、および電気分解法の少なくとも1つを用いて有機化合物質を含有する水を処理する湿式酸化分解装置である。分解処理装置によって、水中の有機化合物は分解され、水を清浄化できる。 The decomposition treatment apparatus according to the present invention is an apparatus that decomposes the organic compound in the concentrated water discharged from the concentration apparatus. As an example, there is a processing apparatus including an aeration apparatus that performs aeration processing of water containing an organic compound substance, volatilizes the organic compound, and discharges it as an aeration gas, and a gas combustion apparatus that burns the aeration gas. Another example is a wet oxidative decomposition apparatus that treats water containing an organic compound using at least one of a Fenton method, an accelerated oxidation method, and an electrolysis method. By the decomposition treatment apparatus, organic compounds in water are decomposed and water can be purified.
そこで、本実施形態では、以下に、本発明に係る濃縮装置の一例として、図1に示すダンパー切替方式の濃縮装置100について説明する。また、本発明に係る分解処理装置の一例として、図3に示す曝気装置210とガス燃焼装置220とで構成される分解処理装置200A、および図4に示す促進酸化法を用いた湿式酸化分解装置である分化処理装置200Bについて説明する。 Therefore, in this embodiment, a damper switching type concentrator 100 shown in FIG. 1 will be described below as an example of the concentrator according to the present invention. Moreover, as an example of the decomposition treatment apparatus according to the present invention, a decomposition treatment apparatus 200A including an aeration apparatus 210 and a gas combustion apparatus 220 shown in FIG. 3, and a wet oxidation decomposition apparatus using the accelerated oxidation method shown in FIG. The differentiation processing device 200B as will be described.
図1は、本発明の実施の一形態の水処理システム300の構成を示している。図1に示すように、水処理システムは、濃縮装置100と分解処理装置200とを備えている。 FIG. 1 shows a configuration of a water treatment system 300 according to an embodiment of the present invention. As shown in FIG. 1, the water treatment system includes a concentration device 100 and a decomposition treatment device 200.
図1に示すように、濃縮装置100は、それぞれ吸着素子11、12が充填された第1処理槽10および第2処理槽20を有している。処理槽の数は限定されない。第1処理槽10および第2処理槽20にはダンパーや弁(バルブV1〜V12)等が取付けられており、吸着工程、脱水工程および脱着工程は、これらのダンパーや弁等の開閉操作を行うことで流路を切替える制御にて実行される。 As shown in FIG. 1, the concentrating device 100 includes a first processing tank 10 and a second processing tank 20 filled with adsorption elements 11 and 12, respectively. The number of processing tanks is not limited. The first treatment tank 10 and the second treatment tank 20 are provided with dampers and valves (valves V1 to V12). The adsorption process, the dehydration process, and the desorption process perform opening / closing operations of these dampers and valves. This is executed by the control for switching the flow path.
吸着素子11、12は、被処理水(原水)を接触させることで被処理水に含有される有機化合物を吸着する。濃縮装置100では、第1処理槽10に被処理水を被処理水導入ラインL1から供給することで有機化合物が吸着素子11に吸着され、これにより被処理水が清浄化されて処理水排出ラインL2を通して処理水として排出される。同様に、第1処理槽20に被処理水を被処理水導入ラインL1から供給することで有機化合物が吸着素子12に吸着され、これにより被処理水が清浄化されて処理水排出ラインL2を通して処理水として排出される。 The adsorbing elements 11 and 12 adsorb organic compounds contained in the water to be treated by bringing the water to be treated (raw water) into contact therewith. In the concentrator 100, the organic compound is adsorbed by the adsorbing element 11 by supplying the treated water from the treated water introduction line L1 to the first treatment tank 10, whereby the treated water is purified and the treated water discharge line. It is discharged as treated water through L2. Similarly, by supplying the treated water from the treated water introduction line L1 to the first treatment tank 20, the organic compound is adsorbed by the adsorption element 12, whereby the treated water is cleaned and passed through the treated water discharge line L2. It is discharged as treated water.
濃縮装置100は、吸着工程後に吸着素子11,12に付着した付着水をガスの通流により除去する脱水工程を実施する。第1処理槽10および第2処理槽20には、ガス供給ラインL5よりガスの通流が流通される。付着水をガスの通流により除去することにより、その後の加熱ガスによる有機化合物の脱着が容易になる。 The concentrating device 100 performs a dehydration process in which the adhering water adhering to the adsorption elements 11 and 12 is removed by gas flow after the adsorption process. A gas flow is circulated to the first processing tank 10 and the second processing tank 20 from the gas supply line L5. By removing the adhering water by the gas flow, the organic compound can be easily desorbed by the heated gas thereafter.
脱水工程で供給するガスは、空気、窒素、不活性ガス、水蒸気などが挙げられるが、特に限定しない。脱水工程で排出される付着水は、戻水返却ラインL6より濃縮装置100入口の被処理水に戻すことが好ましい。かかる方法によれば、工程数を省略でき、効率的だからである。 Examples of the gas supplied in the dehydration step include air, nitrogen, inert gas, and water vapor, but are not particularly limited. The adhering water discharged in the dehydration process is preferably returned to the treated water at the inlet of the concentrating device 100 from the return water return line L6. This is because the number of steps can be omitted and this method is efficient.
濃縮装置100は、脱水工程後に吸着素子11,12に吸着した有機化合物を水蒸気の通流により脱着する脱着工程を実施する。第1処理槽10および第2処理槽20には、加熱ガス供給ラインL3より水蒸気が通流される。 The concentrator 100 performs a desorption process in which the organic compound adsorbed on the adsorption elements 11 and 12 is desorbed by the flow of water vapor after the dehydration process. Steam is passed through the first treatment tank 10 and the second treatment tank 20 from the heated gas supply line L3.
脱着工程で供給される水蒸気は、水蒸気もしくは水蒸気を加熱した過熱水蒸気などが挙げられる。脱着工程にて脱着された有機化合物は水蒸気と混合されて脱着ガスとして脱着ガス排出ラインL4を通じて、冷却器30へ供給される。 Examples of the water vapor supplied in the desorption process include water vapor or superheated steam obtained by heating water vapor. The organic compound desorbed in the desorption step is mixed with water vapor and supplied to the cooler 30 through the desorption gas discharge line L4 as a desorption gas.
冷却器30は脱着ガスを冷却する装置である。脱着ガスは冷却器30にて冷却されて液化凝縮され、吸着素子11,12から脱着した有機化合物を含む水(濃縮水)として、濃縮装置100から濃縮水排出ラインL7を通じて排出される。冷却器30の冷却方式は特に限定しないが、例えば、冷媒(冷却水、冷水など)を使用して間接的に脱着ガスを冷却する方式を用いることができる。濃縮装置100から濃縮水排出ラインL7を通じて排出された濃縮水は、分解処理装置200に供給されて処理される。分解処理装置200の例については後段で詳細に説明する。分解処理装置200からの排水は返水ラインL8に濃縮装置100入口の被処理水に戻してもよい。 The cooler 30 is a device that cools the desorption gas. The desorbed gas is cooled by the cooler 30, is liquefied and condensed, and is discharged from the concentrator 100 through the concentrated water discharge line L7 as water (concentrated water) containing the organic compound desorbed from the adsorption elements 11 and 12. Although the cooling method of the cooler 30 is not particularly limited, for example, a method of indirectly cooling the desorption gas using a refrigerant (cooling water, cold water, etc.) can be used. The concentrated water discharged from the concentrating device 100 through the concentrated water discharge line L7 is supplied to the decomposition processing device 200 and processed. An example of the decomposition processing apparatus 200 will be described in detail later. The waste water from the decomposition treatment apparatus 200 may be returned to the treated water at the inlet of the concentration apparatus 100 to the return water line L8.
濃縮装置100では、吸着素子が複数(ここでは2つ)の処理槽に分割して充填され、吸着工程を行う処理槽(吸着槽)と脱水および脱着工程を行う処理槽(脱着槽)とを交互に切替える構成となっている。しかし、例えば、処理槽を単槽とし、脱水および脱着工程中は被処理水を一時的にタンクなどに貯水し、次の吸着工程に一時貯水された被処理水も併せて吸着処理する構成であってもよい。 In the concentration apparatus 100, the adsorption element is divided into a plurality of (here, two) treatment tanks and filled, and a treatment tank (adsorption tank) for performing an adsorption process and a treatment tank (desorption tank) for performing dehydration and desorption processes are provided. It is configured to switch alternately. However, for example, the treatment tank is a single tank, the treated water is temporarily stored in a tank or the like during the dehydration and desorption processes, and the treated water temporarily stored in the next adsorption process is also adsorbed. There may be.
吸着素子11,12は、繊維束から成る活性炭素繊維の構造体を有する。吸着素子11,12は、性能面から活性炭素繊維を用いる。つまり、活性炭素繊維は表面にミクロ孔を有することと構造であることで、水との接触効率が高く、特に水中の有機化合物の吸着速度が速くなり、他の吸着材に比べて、極めて高い除去効率を発現できる。 The adsorbing elements 11 and 12 have a structure of activated carbon fibers composed of fiber bundles. The adsorption elements 11 and 12 use activated carbon fiber from the viewpoint of performance. In other words, the activated carbon fiber has a micropore on the surface and a structure, so that the contact efficiency with water is high, especially the adsorption rate of the organic compound in water is high, and it is extremely high compared to other adsorbents. The removal efficiency can be expressed.
吸着素子11,12に用いる繊維束から成る活性炭素繊維の構造体は、原料である繊維を、後述する構造体に加工し、炭化・賦活して得ることができる。 The activated carbon fiber structure composed of fiber bundles used for the adsorbing elements 11 and 12 can be obtained by processing a fiber as a raw material into a structure to be described later, and carbonizing and activating the structure.
吸着素子11,12に用いる繊維束から成る活性炭素繊維の構造体の原料となる繊維は、特に限定されるものではないが、フェノール系繊維、セルロース系繊維、アクリロニトリル系繊維、ピッチ系繊維が好ましい。中でもフェノール系繊維がさらに好ましい。炭化・賦活後の活性炭素繊維の収率が高く、繊維強度が強いからである。 The fiber that is the raw material of the activated carbon fiber structure composed of the fiber bundle used for the adsorbing elements 11 and 12 is not particularly limited, but phenol-based fiber, cellulose-based fiber, acrylonitrile-based fiber, and pitch-based fiber are preferable. . Of these, phenol fibers are more preferable. This is because the yield of activated carbon fiber after carbonization / activation is high and the fiber strength is strong.
前記フェノール系繊維としては、フェノール樹脂に脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物(配合物)を混合した混合物を紡糸して得られるフェノール系繊維を原糸としてもよい。さらに繊維強度が高まるからである。 As the phenol fiber, a phenol fiber obtained by spinning a mixture obtained by mixing a phenol resin with at least one compound (compound) selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. May be used as raw yarn. This is because the fiber strength is further increased.
繊維束から成る活性炭素繊維の構造体は、糸で形成された組織構造体であるのが好ましい。編物もしくは織物であるのがより好ましい。均一に繊維が交絡された不織布と比較して、糸で形成された組織構造のため、吸着素子内の活性炭素繊維の適度に粗密構造をとり、尚且つ規則正しく活性炭素繊維が配列する構造をとるので、低圧損となり、結果として脱水効率が高くなるからである。さらに編物が好ましい。同じ長さの経糸と緯糸の交錯によって格子状の組織構造が形成される織物と比較して、縦もしくは横方向に糸を編んで組織構造を形成する編物の方が、上述した粗密構造をとりやすいので、より低圧損で脱水効率が高くなるからである。繊維束から成る活性炭素繊維の構造体は、上記に限定されず、例えば、糸を固めてシート状にしたものであってもよい。 The activated carbon fiber structure composed of fiber bundles is preferably a tissue structure formed of yarn. More preferably a knitted or woven fabric. Compared with a nonwoven fabric in which fibers are entangled uniformly, because of the structure formed by yarns, the activated carbon fibers in the adsorption element have a moderately dense structure, and the activated carbon fibers are regularly arranged. As a result, low-pressure loss occurs, resulting in high dewatering efficiency. Furthermore, a knitted fabric is preferable. Compared to a woven fabric in which a lattice-like structure is formed by crossing warps and wefts of the same length, a knitted fabric in which a structure is formed by knitting yarns in the vertical or horizontal direction has the above-described coarse and dense structure. This is because the dehydration efficiency is increased with lower pressure loss. The structure of the activated carbon fiber composed of the fiber bundle is not limited to the above, and may be, for example, a sheet formed by solidifying a thread.
繊維束から成る活性炭素繊維の構造体が織物である場合、織物の組織は、一重組織、重ね組織、添毛組織、からみ組織など挙げられ、特に限定されるものではない。織物の例を図2の(b)に示す。 In the case where the activated carbon fiber structure composed of fiber bundles is a woven fabric, examples of the woven fabric structure include, but are not particularly limited to, a single tissue, a layered tissue, an added tissue, and an entangled tissue. An example of the fabric is shown in FIG.
繊維束から成る活性炭素繊維の構造体が編物である場合、編物の組織構造は、フライス編(ゴム編)、天竺編(平編)、両面編(パール編)に分類されるニットの他、タック、ウェルトも含むよこ編、デンビー編、コード編、アトラス編などを含むたて編、またこれらの編組織を複合した編物(例えば、フライスとタック編を複合した両畦編など、が挙げられる。特に限定されるものではないが、フライス編が好ましい。適度な粗密構造をとるからである。編物の例を図2の(a)に示す。 When the activated carbon fiber structure composed of fiber bundles is a knitted fabric, the knitted fabric has a structure of milling (rubber knitting), tengu knitting (flat knitting), double knitting (pearl knitting), Weft knitting including tuck and welt, warp knitting including denby knitting, cord knitting, atlas knitting, etc., and knitting which combines these knitting structures (for example, double knitting which combines milling and tack knitting, etc.) Although not particularly limited, a milling knitting is preferable because it has a moderately dense structure, and an example of the knitting is shown in FIG.
吸着素子11,12に用いる繊維束から成る活性炭素繊維の構造体における繊維束の太さは、100〜600μmが好ましい。100μm未満の場合、繊維束の強度が低下し、吸着材として組織構造を保持できない可能性が生じ、600μmを超えると、より粗密構造をとるので、吸着工程時に被処理水のショートパスが生じるなどの吸着性能が低下する可能性があるからである。ここで、繊維束の太さは、構造体のSEM写真を用いて、複数個所の直径(太さ)の測定から求めることができる。他の方法にて計測してもよい。 As for the thickness of the fiber bundle in the structure of the activated carbon fiber which consists of the fiber bundle used for the adsorption elements 11 and 12, 100-600 micrometers is preferable. If the thickness is less than 100 μm, the strength of the fiber bundle is reduced, and there is a possibility that the tissue structure cannot be maintained as an adsorbent. If the thickness exceeds 600 μm, a more dense structure is formed, and thus a short path of water to be treated is generated during the adsorption process This is because the adsorption performance may be reduced. Here, the thickness of the fiber bundle can be obtained from the measurement of the diameter (thickness) at a plurality of locations using an SEM photograph of the structure. You may measure by another method.
また、繊維束として糸を用いる場合、糸は所定の番手の一本の糸で形成される単糸や、二本以上の単糸を撚って形成される撚糸などが挙げられるが、上記の繊維束から成る活性炭素繊維の構造体における繊維束の太さに収まれば、特に限定しない。また、原料の糸の繊度は、綿繊度で40番手単糸〜5番手単糸、またその繊度に相当する撚糸(20番手双糸など)が想定されるが、炭化・賦活によって、糸径が収縮するため、原料の繊度は、活性炭素繊維の構造体として、好適な糸径の範囲となる繊度であればよい。 In addition, when a yarn is used as a fiber bundle, examples of the yarn include a single yarn formed by a single yarn of a predetermined count, and a twisted yarn formed by twisting two or more single yarns. If it fits in the thickness of the fiber bundle in the structure of the activated carbon fiber which consists of fiber bundles, it will not specifically limit. In addition, the fineness of the raw material yarn is assumed to be 40th single yarn to 5th single yarn in cotton fineness, and twisted yarn (20th double yarn, etc.) corresponding to the fineness, but the yarn diameter is reduced by carbonization and activation. In order to shrink, the fineness of a raw material should just be the fineness used as the range of a suitable thread diameter as a structure of activated carbon fiber.
吸着素子11,12に用いる繊維束から成る活性炭素繊維の構造体の上記以外の物性は特に限定されるものではないが、BET比表面積が900〜2500m2/gで、細孔容積が0.4〜0.9cm3/gで平均細孔経が14〜18Åのものが好ましい。BET比表面積が900m2/g未満、細孔容積が0.4cm3/g未満、細孔径が14Å未満では、有機化合物の吸着量が低くなる。BET比表面積が2500m2/gを超え、細孔容積が0.9cm3/gを超え、細孔径が18Åを超えると、細孔径が大きくなることで、有機化合物の吸着能力が低下したり、吸着素子の強度が弱くなったり、また素材のコストが高くなったりと、経済的では無くなる。 The physical properties of the activated carbon fiber structure composed of the fiber bundles used for the adsorbing elements 11 and 12 are not particularly limited, but the BET specific surface area is 900 to 2500 m 2 / g and the pore volume is 0.1. It is preferably 4 to 0.9 cm 3 / g and an average pore diameter of 14 to 18 mm. When the BET specific surface area is less than 900 m 2 / g, the pore volume is less than 0.4 cm 3 / g, and the pore diameter is less than 14 mm, the adsorption amount of the organic compound is low. When the BET specific surface area exceeds 2500 m 2 / g, the pore volume exceeds 0.9 cm 3 / g, and the pore diameter exceeds 18 mm, the pore diameter increases, thereby reducing the adsorption ability of organic compounds, When the strength of the adsorption element becomes weak and the cost of the material becomes high, it is not economical.
濃縮装置100が処理する被処理水に含まれる有機化合物は、特に限定されないが、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレインなどのアルデヒド類、メチルエチルケトン、ジアセチル、メチルイソブチルケトン、アセトンなどのケトン類、1,4−ジオキサン、2−メチル−1,3−ジオキソラン、1,3−ジオキソラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール類、酢酸、プロピオン酸などの有機酸、フェノール類、トルエン、キシレン、シクロヘキサンなどの芳香族有機化合物、ジエチルエーテル、アリルグリシジルエーテルなどのエーテル類、アクリロニトリルなどの二トリル類、ジクロロメタン、1,2−ジクロロエタン、トリクロロエチレン、エピクロロヒドリンなどの塩素有機化合物、N−メチル−2−ピロリドン、ジメチルアセトアミド、N,N−ジメチルホルムアミドの有機化合物、ポリ塩化ジベンゾパラジオキシン (PCDD)、ポリ塩化ジベンゾフラン (PCDF)、ダイオキシン様ポリ塩化ビフェニル (DL-PCB)などのダイオキシン類、テトラサイクリン、オセルタミビル、リン酸オセルタミビル、ベザフィブラート、トリクロサンなどの抗生物質、ベザフィブラート、フェノフィブラートなどの抗脂血症剤成分、ジクロフェナク、サリチル酸、アセトアミノフェンなどの解熱鎮痛剤成分、カルバマゼピンなどの抗てんかん剤成分、フミン酸、フルボ酸などのフミン物質、ヘキサメチレンテトラミン、ジオスミン、2−メチルイソボルネオールなどが、一例として挙げられる。本実施形態の濃縮装置100が処理する被処理水に含まれる有機化合物は、これらのうちの1種類あるいは複数種類であってもよい。 The organic compound contained in the water to be treated to be processed by the concentrator 100 is not particularly limited, but aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, acrolein, ketones such as methyl ethyl ketone, diacetyl, methyl isobutyl ketone, acetone, Esters such as 4-dioxane, 2-methyl-1,3-dioxolane, 1,3-dioxolane, tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethanol, n-propyl alcohol, isopropyl alcohol, butanol, etc. Alcohols such as ethylene glycol, propylene glycol, diethylene glycol and triethylene glycol, organic acids such as acetic acid and propionic acid, phenols, toluene, xyle , Aromatic organic compounds such as cyclohexane, ethers such as diethyl ether and allyl glycidyl ether, nitriles such as acrylonitrile, chlorinated organic compounds such as dichloromethane, 1,2-dichloroethane, trichloroethylene, epichlorohydrin, N-methyl Organic compounds of 2-pyrrolidone, dimethylacetamide, N, N-dimethylformamide, dioxins such as polychlorinated dibenzopararadixin (PCDD), polychlorinated dibenzofuran (PCDF), dioxin-like polychlorinated biphenyl (DL-PCB), tetracycline Antibiotics such as oseltamivir, oseltamivir phosphate, bezafibrate, triclosan, antilipidemic ingredients such as bezafibrate, fenofibrate, diclofenac, salicylic acid, acetaminophen, etc. Examples include heat analgesic components, antiepileptic components such as carbamazepine, humic substances such as humic acid and fulvic acid, hexamethylenetetramine, diosmine, 2-methylisoborneol and the like. The organic compound contained in the for-treatment water to be treated by the concentration apparatus 100 of the present embodiment may be one or more of them.
図3および図4は、それぞれ、水処理システム300が備えた分解処理装置200の一例である、分解処理装置200A、分解処理装置200Bを示す構成図である。 FIGS. 3 and 4 are configuration diagrams showing a decomposition treatment apparatus 200A and a decomposition treatment apparatus 200B, which are examples of the decomposition treatment apparatus 200 provided in the water treatment system 300, respectively.
図3に示すように、分解処理装置200Aは、曝気装置21とガス燃焼装置22とを備えている。濃縮装置100から排出される濃縮水を曝気装置21で曝気して有機化合物をガス化させ、ガス燃焼装置で燃焼することで有機化合物を分解する処理装置である。 As shown in FIG. 3, the decomposition processing device 200 </ b> A includes an aeration device 21 and a gas combustion device 22. This is a processing device that decomposes the organic compound by aspirating the concentrated water discharged from the concentration device 100 with the aeration device 21 to gasify the organic compound and burning it with the gas combustion device.
曝気装置21は、濃縮装置100から排出された、濃縮水排出ラインL7を通して供給される濃縮水を処理するための装置であり、曝気槽211と曝気槽211へ気泡ガスを供給するガス供給器212を有している。曝気槽211では、供給された濃縮水がガス供給器212から発生する気泡と接触し、濃縮水中の有機化合物がガスへ移行する。曝気槽211は、有機化合物濃度が低減された水(曝気水)と有機化合物を含んだ曝気ガスとを排出する。曝気水は、返水ラインL8を通して濃縮装置100の被処理水として再供給する構成が好ましい。 The aeration apparatus 21 is an apparatus for processing the concentrated water discharged from the concentration apparatus 100 and supplied through the concentrated water discharge line L7. The aeration tank 211 and the gas supply device 212 for supplying bubble gas to the aeration tank 211 are used. have. In the aeration tank 211, the supplied concentrated water comes into contact with bubbles generated from the gas supply device 212, and the organic compound in the concentrated water is transferred to gas. The aeration tank 211 discharges water with reduced organic compound concentration (aeration water) and aeration gas containing organic compounds. A configuration in which the aerated water is re-supplied as treated water of the concentrating device 100 through the return line L8 is preferable.
ガス燃焼装置22は、曝気装置21から排出された曝気ガスを処理するための装置である。ガス燃焼装置22は、熱交換器221と加熱炉222とを備えている。曝気槽21から排出された曝気ガスは曝気ガス排出ライン9Lを通ってガス燃焼装置22に供給され、曝気ガスは熱交換器221にて熱交換により予熱され、加熱炉222にて所定温度にてガス中の有機化合物を酸化分解することで清浄化された処理ガスを清浄ガス排出ラインL10から排出する。処理ガスは熱交換器221を通過して曝気ガスと熱交換された後、装置外へ排出される。 The gas combustion device 22 is a device for processing the aerated gas discharged from the aeration device 21. The gas combustion device 22 includes a heat exchanger 221 and a heating furnace 222. The aeration gas discharged from the aeration tank 21 is supplied to the gas combustion device 22 through the aeration gas discharge line 9L. The aeration gas is preheated by heat exchange in the heat exchanger 221 and is heated at a predetermined temperature in the heating furnace 222. The processing gas purified by oxidative decomposition of the organic compound in the gas is discharged from the clean gas discharge line L10. The processing gas passes through the heat exchanger 221 and is subjected to heat exchange with the aeration gas, and is then discharged out of the apparatus.
ガス燃焼装置22としては、特にその種類が限定されるものではないが、例えば、曝気ガスを650〜800℃の高温で直接的に酸化分解させる直接燃焼装置、白金触媒等を利用して曝気ガスを触媒酸化反応させて酸化分解する触媒燃焼装置、蓄熱体を利用して熱回収を行ないつつ経済的に直接酸化分解を行なう蓄熱式直接燃焼装置、白金触媒等と蓄熱体とを組み合わせて効率的に曝気ガスを触媒酸化反応させて酸化分解する蓄熱式触媒燃焼装置等を使用することが可能である。 The type of the gas combustion device 22 is not particularly limited. For example, a direct combustion device that directly oxidatively decomposes the aerated gas at a high temperature of 650 to 800 ° C., an aerated gas using a platinum catalyst, or the like. Catalytic combustion equipment that oxidizes and decomposes by catalytic oxidation reaction, thermal storage direct combustion equipment that performs direct oxidative decomposition economically while performing heat recovery using a heat storage body, efficient combination of a platinum catalyst and a heat storage body It is possible to use a regenerative catalytic combustion apparatus that oxidizes and decomposes aeration gas by catalytic oxidation reaction.
図4は、分解処理装置200の別の一例である分解装置200Bの構成を示す図である。分解処理装置200Bは、濃縮装置100から排出される濃縮水を装置内で発生させたラジカル類によって水中の有機化合物を酸化分解する、促進酸化法を用いた湿式酸化分解装置である。 FIG. 4 is a diagram illustrating a configuration of a decomposition apparatus 200B, which is another example of the decomposition processing apparatus 200. The decomposition treatment apparatus 200B is a wet oxidative decomposition apparatus using an accelerated oxidation method that oxidizes and decomposes organic compounds in water with radicals generated in the apparatus of concentrated water discharged from the concentration apparatus 100.
図4に示すように、分解装置200Bは反応槽31を備えている。さらに、ラジカル類を発生させる機器としてオゾン発生器32、紫外線ランプ33、薬剤供給器34のうち、1つ以上を備える。
ここでいう薬剤は過酸化水素などの酸化剤である。反応槽31では、オゾン、薬剤、紫外線などが供給されることで、水中にヒドロキシラジカルなどのラジカル類が発生し、濃縮水中の有機化合物はラジカル類と酸化反応することで分解され、有機化合物濃度が低減された水を排出する。詳しくは説明しないが、フェントン法、電気分解法を用いた装置もラジカル類を発せさせて水中の有機化合物を酸化分解する湿式酸化分解装置である。
As shown in FIG. 4, the decomposition apparatus 200 </ b> B includes a reaction tank 31. Furthermore, one or more of an ozone generator 32, an ultraviolet lamp 33, and a medicine supply device 34 are provided as devices for generating radicals.
The chemical | medical agent here is oxidizing agents, such as hydrogen peroxide. In the reaction tank 31, radicals such as hydroxy radicals are generated in water by supplying ozone, chemicals, ultraviolet rays, and the like, and organic compounds in the concentrated water are decomposed by oxidizing reaction with radicals, and the concentration of organic compounds Discharges reduced water. Although not described in detail, an apparatus using the Fenton method or electrolysis method is also a wet oxidative decomposition apparatus that emits radicals to oxidatively decompose organic compounds in water.
分解処理装置200Bにて処理されて有機化合物濃度が低減された水(分解水)は、返水ラインL8を通して濃縮装置100の被処理水として再供給する構成が好ましい。 It is preferable that the water (decomposed water) that has been processed by the decomposition treatment apparatus 200B and has a reduced organic compound concentration be re-supplied as treated water of the concentration apparatus 100 through the water return line L8.
図5は、オゾン添加量に対する有機化合物濃度の低減傾向の一例を示すグラフである。図5に示す通り、処理開始初期においては、有機化合物の低減量が多いが、有機化合物濃度の低減に伴い、低減量は小さくなる傾向を示すことが知られている。図5を基に、処理効率(分解率)と必要電力の関係の一例を図6に示す。図5の傾向を受けて、高効率に処理するに応じて膨大に電力が必要となる。これは、曝気装置21についても同様の傾向示すことが知られている。そのため、高効率(例えば、99.9%以上の除去効率)に有機化合物を処理する場合は、分解処理装置200,200A,200Bの除去効率を高めるよりも、濃縮装置100にて吸着処理した方が効率的である。
従って、分解処理装置200,200A,200Bの処理水(曝気水、分解水)は、濃縮装置100へ供給される被処理水と同等の有機化合物濃度まで除去できる処理効率でよく、高除去効率に処理する必要はない。
FIG. 5 is a graph showing an example of a tendency of the organic compound concentration to decrease with respect to the ozone addition amount. As shown in FIG. 5, it is known that the amount of reduction of the organic compound is large at the initial stage of the treatment, but the amount of reduction tends to decrease as the concentration of the organic compound decreases. FIG. 6 shows an example of the relationship between processing efficiency (decomposition rate) and required power based on FIG. In response to the trend shown in FIG. 5, enormous amount of power is required for high-efficiency processing. It is known that this also shows the same tendency for the aeration apparatus 21. Therefore, when organic compounds are processed with high efficiency (for example, removal efficiency of 99.9% or more), the adsorption treatment is performed by the concentration device 100 rather than the removal efficiency of the decomposition treatment devices 200, 200A, and 200B. Is efficient.
Therefore, the treated water (aerated water, decomposed water) of the decomposition treatment apparatuses 200, 200A, and 200B may have a treatment efficiency that can be removed up to an organic compound concentration equivalent to the treated water supplied to the concentration apparatus 100, with high removal efficiency. There is no need to process.
図1から6を用いて説明した以上の本実施形態では、説明の簡略のため、ポンプやファン等の流体搬送手段やストレージタンク等の流体貯留手段などの構成要素を示していないが、これら構成要素は必要に応じて適宜の位置に配置すればよい。 In the present embodiment described above with reference to FIGS. 1 to 6, for simplicity of explanation, components such as a fluid conveying means such as a pump and a fan and a fluid storage means such as a storage tank are not shown. What is necessary is just to arrange | position an element in an appropriate position as needed.
このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 Thus, the above-described embodiments disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
以下に実施例を示し、本発明をより具体的に説明する。後段で説明する実施例および比較例についての各測定は、下記の方法により行った。 Hereinafter, the present invention will be described in more detail with reference to examples. Each measurement about the Example and comparative example which are demonstrated in the back | latter stage was performed with the following method.
(繊維束の太さ)
繊維束太さ(直径)は、走査型電子顕微鏡(SEM)にて撮影を行い、SEM画像に映し出された多数の繊維束からランダムに100本の繊維束を選び、繊維束直径を測定し、その平均を繊維束の直径とした。
(Fiber bundle thickness)
The fiber bundle thickness (diameter) is taken with a scanning electron microscope (SEM), 100 fiber bundles are randomly selected from the many fiber bundles projected on the SEM image, and the fiber bundle diameter is measured. The average was taken as the diameter of the fiber bundle.
(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m2/g)を求めた。
(BET specific surface area)
The BET specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.
(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(Pore volume)
The pore volume was measured by a nitrogen gas adsorption method at a relative pressure of 0.95.
(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m2/g)
(Average pore diameter)
The average pore diameter was determined by the following formula.
dp = 40000 Vp / S (where dp: average pore diameter (径))
Vp: pore volume (cc / g)
S: BET specific surface area (m 2 / g)
(有機化合物濃度)
装置入口・出口の水中の有機化合物濃度は、ガスクロマトグラフ法により分析し測定した。
(Organic compound concentration)
The concentration of organic compounds in the water at the inlet / outlet of the apparatus was analyzed and measured by gas chromatography.
(付着水分量)
付着水分量は、脱水操作後の吸着材の重量を測定し、以下の式で求めた。
付着水分量(g/g)=脱水操作後の吸着材重量(g)/絶乾時の吸着材重量(g)
(Moisture content)
The amount of adhering moisture was determined by the following equation by measuring the weight of the adsorbent after the dehydration operation.
Adhesive water content (g / g) = Adsorbent weight after dehydration operation (g) / Adsorbent weight in absolute dryness (g)
[実施例1]
本実施例1では、水処理システム300として、図1に示す濃縮装置100と、図3に示す曝気装置21およびガス燃焼装置22で構成された分解処理装置200Aと、を備えたシステムを構成した。さらに、本実施例1では、分解処理装置200Aにおいて、ガス処理装置22として触媒酸化装置、触媒として白金を使用し、加熱は電気ヒーターを使用した。
[Example 1]
In the first embodiment, as the water treatment system 300, a system including the concentrating device 100 illustrated in FIG. 1 and the decomposition processing device 200A including the aeration device 21 and the gas combustion device 22 illustrated in FIG. 3 is configured. . Furthermore, in the first embodiment, in the decomposition processing apparatus 200A, a catalytic oxidation apparatus is used as the gas processing apparatus 22, platinum is used as the catalyst, and an electric heater is used for heating.
まず、フェノール系繊維を用いた綿繊度20番手の糸を使用したフライス編を炭化および賦活処理して、糸径(繊維束の直径)250μmの糸(繊維束)であり、比表面積1500m2/gの活性炭素繊維シート(繊維束から成る活性炭素繊維の構造体)を作製した。この活性炭素繊維シート20kgを積層した吸着素子を2つ作製し、図1に示す濃縮装置100の処理槽10,20それぞれに設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm3/gであり、平均細孔径は、15Åであった。 First, a milling knitting using a yarn having a cotton fineness of 20th using phenolic fibers was carbonized and activated to obtain a yarn (fiber bundle) having a yarn diameter (fiber bundle diameter) of 250 μm, and a specific surface area of 1500 m 2 / g activated carbon fiber sheet (activated carbon fiber structure comprising fiber bundles) was prepared. Two adsorbing elements on which 20 kg of the activated carbon fiber sheets were laminated were produced and installed in the treatment tanks 10 and 20 of the concentrator 100 shown in FIG. The activated carbon fiber sheet had a pore volume of 0.60 cm 3 / g and an average pore diameter of 15 mm.
吸着工程では、500mg/lのイソプロピルアルコールを含む原水を3000L/hで導入した。その際の処理水のイソプロピルアルコール濃度は、0.5mg/L以下であり、99.9%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 500 mg / l isopropyl alcohol was introduced at 3000 L / h. The isopropyl alcohol concentration of the treated water at that time was 0.5 mg / L or less, which was a good result capable of removing 99.9% or more.
次に、脱水工程では、0.1MPaの水蒸気を供給し、吸着素子に付着する水分を脱水除去し、原水へ返送した。その際の付着水分量は、後段の表1に示す通り1.8g/gであった。 Next, in the dehydration step, 0.1 MPa of water vapor was supplied to dehydrate and remove the water adhering to the adsorption element and returned to the raw water. The adhering water amount at that time was 1.8 g / g as shown in Table 1 below.
次に、脱着工程では、0.1MPaの水蒸気を供給した。脱着されたイソプロピルアルコールと水蒸気とは冷却器30にて液化凝縮され、濃縮水として回収した。その際の濃縮水量は120L/h、イソプロピルアルコール濃度は12500mg/Lであり、原水に対して25倍に濃縮されたことがわかった。なお、各処理槽は、脱着工程が完了した後、再び吸着工程へ移行して繰り返し処理を実施した。また、各処理槽は交互に脱着工程と吸着工程とを実施した。 Next, in the desorption process, water vapor of 0.1 MPa was supplied. The desorbed isopropyl alcohol and water vapor were liquefied and condensed in the cooler 30 and recovered as concentrated water. The amount of concentrated water at that time was 120 L / h, and the isopropyl alcohol concentration was 12500 mg / L. It was found that the concentration was 25 times that of the raw water. In addition, after the desorption process was completed, each processing tank transferred to the adsorption process again and repeatedly performed the process. Moreover, each treatment tank performed the desorption process and the adsorption process alternately.
次に、回収した濃縮水を図3に示す分解処理装置200Aに供給して処理した。濃縮水を、水蒸気を使用して60℃加温された曝気槽211へ供給し、曝気処理された曝気水として回収した。その際の曝気水のイソプロピルアルコール濃度は500mg/L以下であった。また、曝気水は濃縮装置100の原水に返送した。 Next, the collected concentrated water was supplied to the decomposition treatment apparatus 200A shown in FIG. The concentrated water was supplied to the aeration tank 211 heated at 60 ° C. using water vapor, and recovered as aerated water subjected to aeration treatment. The isopropyl alcohol concentration of the aerated water at that time was 500 mg / L or less. Aerated water was returned to the raw water of the concentrator 100.
曝気ガスはガス燃焼装置22に供給されて300℃に加熱された後、触媒によって酸化分解され、清浄空気として排出された。 The aerated gas was supplied to the gas combustion device 22 and heated to 300 ° C., and then oxidized and decomposed by a catalyst and discharged as clean air.
一連の処理を、100時間実施した。100時間においても出口イソプロピルアルコール濃度は、0.5mg/L以下であり、安定して除去できる結果であった。後段の表1に示す通り、濃縮装置100の脱着に必要な水蒸気量は105kg/h、曝気装置21の加温に必要な水蒸気量は28kg/h、ガス燃焼装置22の加熱に必要な電気ヒーターの使用電力量は20kwであった。 A series of treatments was carried out for 100 hours. Even at 100 hours, the outlet isopropyl alcohol concentration was 0.5 mg / L or less, which was a result that could be removed stably. As shown in Table 1 below, the amount of water vapor required for desorption of the concentrating device 100 is 105 kg / h, the amount of water vapor required for heating the aeration device 21 is 28 kg / h, and the electric heater required for heating the gas combustion device 22 The amount of power used was 20 kW.
[実施例2]
本実施例2では、水処理システム300として、図1に示す濃縮装置100と、図4に示す促進酸化法を使用した促進酸化装置である分解処理装置200Bとを備えたシステムを構成した。また、本実施形態2では、分解処理装置200Bは、反応槽31に加え、オゾン発生器32および過酸化水素使用した薬剤供給器34を備えた装置として構成した。
[Example 2]
In the second embodiment, a system including the concentration apparatus 100 shown in FIG. 1 and a decomposition treatment apparatus 200B which is an accelerated oxidation apparatus using the accelerated oxidation method shown in FIG. 4 is configured as the water treatment system 300. In the second embodiment, the decomposition processing apparatus 200B is configured as an apparatus including an ozone generator 32 and a chemical supplier 34 using hydrogen peroxide in addition to the reaction tank 31.
まず、フェノール系繊維を用いた綿繊度20番手の糸を使用したフライス編を炭化および賦活処理して、糸径(繊維束の直径)250μmの糸(繊維束)であり、比表面積1500m2/gの活性炭素繊維シート(繊維束から成る活性炭素繊維の構造体)を作製した。この活性炭素繊維シート20kgを積層した吸着素子を2つ作成し、図1の濃縮装置100の処理槽10,20それぞれに設置した。なお、活性炭素繊維シートの細孔容積は、0.60cm3/gであり、平均細孔径15Åであった。 First, a milling knitting using a yarn having a cotton fineness of 20th using phenolic fibers was carbonized and activated to obtain a yarn (fiber bundle) having a yarn diameter (fiber bundle diameter) of 250 μm, and a specific surface area of 1500 m 2 / g activated carbon fiber sheet (activated carbon fiber structure comprising fiber bundles) was prepared. Two adsorbing elements on which 20 kg of the activated carbon fiber sheets were laminated were prepared and installed in the treatment tanks 10 and 20 of the concentrator 100 of FIG. The activated carbon fiber sheet had a pore volume of 0.60 cm 3 / g and an average pore diameter of 15 mm.
吸着工程では、5mg/lの1,4−ジオキサンを含む原水を8000L/hで導入した。その際の出口1,4−ジオキサン濃度は、0.05mg/L以下であり、99.9%以上の除去が可能な良好な結果であった。 In the adsorption step, raw water containing 5 mg / l 1,4-dioxane was introduced at 8000 L / h. At that time, the outlet 1,4-dioxane concentration was 0.05 mg / L or less, which was a good result capable of removing 99.9% or more.
次に、脱水工程では、0.1MPaの水蒸気を供給し、吸着素子に付着する水分を脱水除去し、原水へ返送した。その際の付着水分量は、後段の表1に示す通り1.8g/gであった。 Next, in the dehydration step, 0.1 MPa of water vapor was supplied to dehydrate and remove the water adhering to the adsorption element and returned to the raw water. The adhering water amount at that time was 1.8 g / g as shown in Table 1 below.
次に、脱着工程では、0.1MPaの水蒸気を供給した。脱着された1,4−ジオキサンと水蒸気とは冷却器30にて液化凝縮され、濃縮水として回収した。その際の濃縮水量は120L/h、1,4−ジオキサン濃度は330mg/L以上であり、原水に対して65倍以上に濃縮されたことがわかった。なお、各処理槽は、脱着工程が完了した後、再び吸着工程へ移行して繰り返し処理を実施した。また、各処理槽は交互に脱着工程と吸着工程とを実施した。 Next, in the desorption process, water vapor of 0.1 MPa was supplied. The desorbed 1,4-dioxane and water vapor were liquefied and condensed in the cooler 30 and recovered as concentrated water. The amount of concentrated water at that time was 120 L / h, the 1,4-dioxane concentration was 330 mg / L or more, and it was found that the concentrated water was concentrated 65 times or more with respect to the raw water. In addition, after the desorption process was completed, each processing tank transferred to the adsorption process again and repeatedly performed the process. Moreover, each treatment tank performed the desorption process and the adsorption process alternately.
次に、回収した濃縮水を図4に示す分解処理装置200Bへ供給して処理した。分解処理装置200Bの、オゾン発生器32からオゾン、および薬剤供給器34から過酸化水素を反応槽31へ供給し、濃縮水中の有機化合物を酸化分解し、分解水として回収した。回収した分解水中の1,4−ジオキサン濃度は5mg/L以下であった。回収した分解水は濃縮装置100の原水へ返送した。 Next, the collected concentrated water was supplied to the decomposition treatment apparatus 200B shown in FIG. Ozone from the ozone generator 32 and hydrogen peroxide from the chemical supplier 34 of the decomposition treatment apparatus 200B were supplied to the reaction tank 31, and the organic compounds in the concentrated water were oxidatively decomposed and recovered as decomposition water. The 1,4-dioxane concentration in the recovered cracked water was 5 mg / L or less. The recovered cracked water was returned to the raw water of the concentrator 100.
一連の処理を、100時間実施した。100時間においても出口1,4−ジオキサン濃度は、0.05mg/L以下であり、安定して除去できる結果であった。後段の表1に示す通り、濃縮装置100の脱着に使用する水蒸気量は105kg/h、実施例2の分解処理装置200Bのオゾン発生に必要な電力は0.6kwであった。 A series of treatments was carried out for 100 hours. Even at 100 hours, the exit 1,4-dioxane concentration was 0.05 mg / L or less, which was a result that could be removed stably. As shown in Table 1 in the subsequent stage, the amount of water vapor used for desorption of the concentrating device 100 was 105 kg / h, and the electric power required for ozone generation in the decomposition processing device 200B of Example 2 was 0.6 kw.
[比較例1]
フェノール系繊維であり、繊維径20μm、比表面積1500m2/gの不織布である活性炭素繊維シート20kgを積層した吸着素子を作成し、図1と同様の構成の濃縮装置に設置した。吸着工程では、500mg/lのイソプロピルアルコールを含む原水を3000L/hで導入した。その際の処理水のイソプロピルアルコール濃度は、0.5mg/L以下であり、99.9%以上の除去が可能な良好な結果であった。
[Comparative Example 1]
An adsorbing element in which 20 kg of activated carbon fiber sheets, which are phenolic fibers and have a fiber diameter of 20 μm and a specific surface area of 1500 m 2 / g, were laminated was prepared and installed in a concentrator having the same configuration as in FIG. In the adsorption step, raw water containing 500 mg / l isopropyl alcohol was introduced at 3000 L / h. The isopropyl alcohol concentration of the treated water at that time was 0.5 mg / L or less, which was a good result capable of removing 99.9% or more.
次に、脱水工程では、0.1MPaの水蒸気を供給し、吸着素子に付着する水分を脱水除去し、原水に返送した。その際の付着水分量は、後段の表2に示す通り2.4g/gであった。 Next, in the dehydration step, 0.1 MPa of water vapor was supplied to dehydrate and remove the water adhering to the adsorption element and returned to the raw water. The adhering water amount at that time was 2.4 g / g as shown in Table 2 below.
次に、脱着工程では、0.1MPaの水蒸気を供給した。脱着されたイソプロピルアルコールと水蒸気とは冷却器30にて液化凝縮され、濃縮水として回収した。その際の濃縮水量は170L/h、イソプロピルアルコール濃度は8800mg/Lであり、原水に対して17倍に濃縮されたことがわかった。なお、各処理槽は、脱着工程が完了した後、再び吸着工程へ移行して繰り返し処理を実施した。また、各処理槽は交互に脱着工程と吸着工程とを実施した。 Next, in the desorption process, water vapor of 0.1 MPa was supplied. The desorbed isopropyl alcohol and water vapor were liquefied and condensed in the cooler 30 and recovered as concentrated water. The amount of concentrated water at that time was 170 L / h, and the isopropyl alcohol concentration was 8800 mg / L. It was found that the concentrated water was concentrated 17 times with respect to the raw water. In addition, after the desorption process was completed, each processing tank transferred to the adsorption process again and repeatedly performed the process. Moreover, each treatment tank performed the desorption process and the adsorption process alternately.
次に、濃縮水を、実施例1と同じ分解処理装置200Aにて処理したところ、実施例1と同様の処理性能であった。 Next, when the concentrated water was processed by the same decomposition treatment apparatus 200A as in Example 1, the processing performance was the same as in Example 1.
一連の処理を、100時間実施した。100時間においても出口イソプロピルアルコール濃度は、0.5mg/L以下であり、安定して除去できる結果であった。しかし、後段の表2に示す通り、比較例1の濃縮装置の脱着に必要な水蒸気量は125kg/h、の曝気装置21の加温に必要な水蒸気量は40kg/h、ガス燃焼装置22の加熱に必要な電気ヒーターの使用電力量は29kwと、実施例1と比べて処理エネルギーが必要であった。 A series of treatments was carried out for 100 hours. Even at 100 hours, the outlet isopropyl alcohol concentration was 0.5 mg / L or less, which was a result that could be removed stably. However, as shown in Table 2 below, the amount of water vapor required for desorption of the concentrator of Comparative Example 1 is 125 kg / h, the amount of water vapor required for heating of the aeration device 21 is 40 kg / h, and the gas combustion device 22 The amount of electric power used by the electric heater necessary for heating was 29 kW, which required processing energy as compared with Example 1.
[比較例2]
フェノール系繊維であり、繊維径20μm、比表面積1500m2/gの不織布である活性炭素繊維シート20kgを積層した吸着素子を作成し、図1と同様の構成の濃縮装置に設置した。吸着工程では、5mg/lの1,4−ジオキサンを含む原水を1500L/hで導入した。その際の出口1,4−ジオキサン濃度は、0.05mg/L以下であり、99.9%以上の除去が可能な良好な結果であった。
[Comparative Example 2]
An adsorbing element in which 20 kg of activated carbon fiber sheets, which are phenolic fibers and have a fiber diameter of 20 μm and a specific surface area of 1500 m 2 / g, were laminated was prepared and installed in a concentrator having the same configuration as in FIG. In the adsorption step, raw water containing 5 mg / l 1,4-dioxane was introduced at 1500 L / h. At that time, the outlet 1,4-dioxane concentration was 0.05 mg / L or less, which was a good result capable of removing 99.9% or more.
次に、脱水工程では、0.1MPaの水蒸気を供給し、吸着素子に付着する水分を脱水除去した。その際の付着水分量は、後段の表2に示す通り2.4g/gであった。 Next, in the dehydration step, 0.1 MPa of water vapor was supplied to dehydrate and remove the water adhering to the adsorption element. The adhering water amount at that time was 2.4 g / g as shown in Table 2 below.
次に、脱着工程では、0.1MPaの水蒸気を供給した。脱着された1,4−ジオキサンと水蒸気とは冷却器にて液化凝縮され、濃縮水として回収した。その際の濃縮水量は170L/h、1,4−ジオキサン濃度は235mg/Lであり、原水に対して47倍に濃縮されたことがわかった。なお、各処理槽は、脱着工程が完了した後、再び吸着工程へ移行して繰り返し処理を実施した。また、各処理槽は交互に脱着工程と吸着工程とを実施した。 Next, in the desorption process, water vapor of 0.1 MPa was supplied. The desorbed 1,4-dioxane and water vapor were liquefied and condensed in a cooler and recovered as concentrated water. The amount of concentrated water at that time was 170 L / h, and the concentration of 1,4-dioxane was 235 mg / L, indicating that it was concentrated 47 times with respect to the raw water. In addition, after the desorption process was completed, each processing tank transferred to the adsorption process again and repeatedly performed the process. Moreover, each treatment tank performed the desorption process and the adsorption process alternately.
次に、濃縮水を実施例2と同じ分解処理装置200Bにて処理したところ、実施例2と同様の処理性能であった。 Next, when the concentrated water was processed by the same decomposition treatment apparatus 200B as in Example 2, the processing performance was the same as in Example 2.
一連の処理を、100時間実施した。100時間においても出口イソプロピルアルコール濃度は、0.5mg/L以下であり、安定して除去できる結果であった。しかし、後段の表2に示す通り、比較例2の濃縮装置の脱着に必要な水蒸気量は125kg/h、湿式酸化分解装置300のオゾン発生に必要な電力は1kwと、実施例2と比べて処理エネルギーが必要であった。 A series of treatments was carried out for 100 hours. Even at 100 hours, the outlet isopropyl alcohol concentration was 0.5 mg / L or less, which was a result that could be removed stably. However, as shown in Table 2 below, the amount of water vapor required for desorption of the concentrator of Comparative Example 2 is 125 kg / h, and the power required for ozone generation of the wet oxidative decomposition apparatus 300 is 1 kW, compared to Example 2. Processing energy was required.
なお、上記開示した実施形態および各実施例はすべて例示であり制限的なものではない。本発明の技術的範囲は、特許請求の範囲によって有効であり、特許請求の範囲の記載と均等の意味および範囲内のすべての変更・修正・置き換え等を含むものである。 It should be noted that the disclosed embodiments and examples are all illustrative and not restrictive. The technical scope of the present invention is effective according to the scope of the claims, and includes the meanings equivalent to the description of the scope of claims and all changes, modifications, and substitutions within the scope.
本発明による濃縮装置は、各種工場や研究施設の排水、最終処分場の浸出水、地下水等から有機溶剤等の有機化合物を除去する装置に好適に利用することができ、産業界に大いに寄与できる。 The concentrator according to the present invention can be suitably used for an apparatus for removing organic compounds such as organic solvents from wastewater from various factories and research facilities, leachate from final disposal sites, groundwater, etc., and can greatly contribute to the industry. .
10 第1処理槽
20 第2処理槽
11,12 吸着素子
21 曝気装置
22 ガス燃焼装置
31 反応槽
100 濃縮装置
200,200A,200B 分解処理装置
300 水処理システム
L1 被処理水導入ライン
L2 処理水排出ライン
L3 加熱ガス供給ライン
L4 脱着ガス排出ライン
L5 ガス供給ライン
L6 戻水返却ライン
L7 濃縮水排出ライン
L8 返水ライン
L9 曝気ガス排出ライン
L10 清浄ガス排出ライン
V1〜V12 バルブ
DESCRIPTION OF SYMBOLS 10 1st processing tank 20 2nd processing tank 11,12 Adsorption element 21 Aeration apparatus 22 Gas combustion apparatus 31 Reaction tank 100 Concentration apparatus 200,200A, 200B Decomposition processing apparatus 300 Water treatment system L1 To-be-treated water introduction line L2 Discharge of treated water Line L3 Heating gas supply line L4 Desorption gas discharge line L5 Gas supply line L6 Return water return line L7 Concentrated water discharge line L8 Return water line L9 Aeration gas discharge line L10 Clean gas discharge line V1-V12 Valve
Claims (9)
有機化合物を含有する被処理水を、繊維束から成る活性炭素繊維の構造体を含む吸着素子に通流させて、該吸着素子に前記有機化合物を吸着させて処理水を排出する吸着工程と、
前記吸着素子にガスを通気させて、前記吸着素子の付着水を除去する脱水工程と、
前記吸着素子に水蒸気を通気させて前記吸着素子に吸着された前記有機化合物を脱着した後凝縮し、前記被処理水よりも前記有機化合物の濃度が高い濃縮水を排出する脱着工程と、を繰返し実行する濃縮装置と、
前記濃縮装置から排出された濃縮水中の前記有機化合物を分解する分解処理装置と、
を備えたことを特徴とする水処理システム。 A water treatment system for removing and detoxifying the organic compound from water to be treated containing the organic compound,
An adsorption step of passing water to be treated containing an organic compound through an adsorption element including an activated carbon fiber structure composed of fiber bundles, adsorbing the organic compound to the adsorption element and discharging the treated water;
A dehydration step of removing gas adhering to the adsorption element by allowing gas to flow through the adsorption element;
A desorption step in which water vapor is passed through the adsorbing element to desorb the organic compound adsorbed on the adsorbing element and then condensed, and the concentrated water having a higher concentration of the organic compound than the water to be treated is discharged. A concentrating device to perform,
A decomposition treatment device for decomposing the organic compound in the concentrated water discharged from the concentration device;
A water treatment system comprising:
吸着材が充填された槽であり、導入された前記被処理水から前記有機化合物を当該吸着材に吸着させて処理水を排出する処理槽と、
前記吸着素子から付着水を除去するために前記処理槽にガスを通気させるガス通気部と、
前記吸着素子から前記有機化合物を脱着するために前記処理槽に水蒸気を通気させる水蒸気通気部と、
前記吸着素子から脱着された前記有機化合物を含有する脱着ガスを前記被処理水よりも前記有機化合物の濃度が高い濃縮水に濃縮する濃縮部と、
前記濃縮部から排出された濃縮水中の前記有機化合物を分解する分解処理装置と、を備え、
前記吸着素子は、繊維束から成る活性炭素繊維の構造体を含む、ことを特徴とする水処理システム。 A water treatment system for removing and detoxifying the organic compound from water to be treated containing the organic compound,
A tank filled with an adsorbent, a treatment tank for adsorbing the organic compound from the introduced treated water to the adsorbent and discharging the treated water;
A gas vent for venting gas through the treatment tank to remove adhering water from the adsorbing element;
A water vapor ventilation part for allowing water vapor to flow through the treatment tank in order to desorb the organic compound from the adsorption element;
A concentration unit for condensing a desorption gas containing the organic compound desorbed from the adsorption element into concentrated water having a higher concentration of the organic compound than the water to be treated;
A decomposition treatment device for decomposing the organic compound in the concentrated water discharged from the concentration unit,
The said adsorption | suction element contains the structure of the activated carbon fiber which consists of a fiber bundle, The water treatment system characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016097893A JP6862680B2 (en) | 2016-05-16 | 2016-05-16 | Water treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016097893A JP6862680B2 (en) | 2016-05-16 | 2016-05-16 | Water treatment system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017205684A true JP2017205684A (en) | 2017-11-24 |
JP6862680B2 JP6862680B2 (en) | 2021-04-21 |
Family
ID=60414617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016097893A Active JP6862680B2 (en) | 2016-05-16 | 2016-05-16 | Water treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6862680B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6395963B1 (en) * | 2018-03-15 | 2018-09-26 | Jトップ株式会社 | Adsorbent regenerator |
WO2020203779A1 (en) * | 2019-03-29 | 2020-10-08 | 東洋紡株式会社 | Water treatment system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213615A (en) * | 1982-06-07 | 1983-12-12 | Toyobo Co Ltd | Knit cloth of fibrous active carbon |
JPH03153515A (en) * | 1989-11-10 | 1991-07-01 | Kawasaki Steel Corp | Bundled-fiber-lump activated carbon and its production |
JP2014217833A (en) * | 2013-04-12 | 2014-11-20 | 東洋紡株式会社 | Wastewater treatment system |
-
2016
- 2016-05-16 JP JP2016097893A patent/JP6862680B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58213615A (en) * | 1982-06-07 | 1983-12-12 | Toyobo Co Ltd | Knit cloth of fibrous active carbon |
JPH03153515A (en) * | 1989-11-10 | 1991-07-01 | Kawasaki Steel Corp | Bundled-fiber-lump activated carbon and its production |
JP2014217833A (en) * | 2013-04-12 | 2014-11-20 | 東洋紡株式会社 | Wastewater treatment system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6395963B1 (en) * | 2018-03-15 | 2018-09-26 | Jトップ株式会社 | Adsorbent regenerator |
JP2019155302A (en) * | 2018-03-15 | 2019-09-19 | Jトップ株式会社 | Absorbent regenerator |
WO2020203779A1 (en) * | 2019-03-29 | 2020-10-08 | 東洋紡株式会社 | Water treatment system |
Also Published As
Publication number | Publication date |
---|---|
JP6862680B2 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6897572B2 (en) | Water treatment equipment, adsorption elements, and water treatment methods | |
JP5948822B2 (en) | Water treatment system | |
JP6393965B2 (en) | Wastewater treatment system | |
JP6332599B2 (en) | Water treatment system | |
KR20140009270A (en) | Method for removing organic solvent, and removal device | |
JP6862680B2 (en) | Water treatment system | |
JP6311342B2 (en) | Wastewater treatment system | |
JP2014104407A (en) | System for treating waste water | |
JP2012040479A (en) | Wastewater treatment system | |
JP2008188492A (en) | Water treatment system | |
JP6428992B2 (en) | Wastewater treatment system | |
JP2012035232A (en) | Wastewater treatment system | |
JP2013111552A (en) | Device for processing organic solvent-containing gas | |
JP6332586B2 (en) | Water treatment device and water treatment system | |
JP6862700B2 (en) | Water treatment system | |
JP2016131950A (en) | Water treatment apparatus | |
JP2000140654A (en) | Treatment of gas or water to be treated, and treating device | |
JP5861547B2 (en) | Wastewater treatment system | |
JP6922165B2 (en) | Water treatment equipment | |
JP6819284B2 (en) | Water treatment system | |
JP2011092870A (en) | Organic solvent recovery system | |
JP5929130B2 (en) | Water treatment equipment | |
JP6834512B2 (en) | Fluid processing equipment | |
JP2011092871A (en) | Organic solvent recovery system | |
JP2013158666A (en) | Organic solvent recovery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200923 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201222 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201222 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20210104 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20210105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210315 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6862680 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |