JP5929130B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP5929130B2
JP5929130B2 JP2011261782A JP2011261782A JP5929130B2 JP 5929130 B2 JP5929130 B2 JP 5929130B2 JP 2011261782 A JP2011261782 A JP 2011261782A JP 2011261782 A JP2011261782 A JP 2011261782A JP 5929130 B2 JP5929130 B2 JP 5929130B2
Authority
JP
Japan
Prior art keywords
adsorption
water
water treatment
treatment apparatus
adsorption element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011261782A
Other languages
Japanese (ja)
Other versions
JP2013111551A (en
Inventor
大樹 河野
大樹 河野
杉浦 勉
勉 杉浦
幹典 杉田
幹典 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011261782A priority Critical patent/JP5929130B2/en
Publication of JP2013111551A publication Critical patent/JP2013111551A/en
Application granted granted Critical
Publication of JP5929130B2 publication Critical patent/JP5929130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、有機化合物を含有する水から有機化合物を除去して浄化する装置に関し、特に各種工場、研究施設等から排出される有機溶剤等の有機化合物を含有した産業排水の浄化に用いられる装置に関するものである。   The present invention relates to an apparatus for removing and purifying organic compounds from water containing organic compounds, and in particular, an apparatus used for purifying industrial wastewater containing organic compounds such as organic solvents discharged from various factories and research facilities. It is about.

従来、有機化合物など被吸着物を含有する水を浄化する装置として、活性炭などの吸着材からなる交換可能な吸着素子を用いた交換式吸着装置が広く用いられている。交換式吸着装置においては、被吸着物を含有する水が吸着材を充填された槽に流入されて、吸着材が被吸着物を吸着することにより、水中に含まれる被吸着物が除去される。   Conventionally, as an apparatus for purifying water containing an adsorbent such as an organic compound, an exchangeable adsorption apparatus using a replaceable adsorption element made of an adsorbent such as activated carbon has been widely used. In the exchangeable adsorption device, water containing an adsorbent is introduced into a tank filled with an adsorbent, and the adsorbent adsorbs the adsorbent to remove the adsorbate contained in the water. .

しかしながら、交換式吸着装置は被吸着物を一定時間吸着し続け、吸着材の吸着能力が飽和に達すれば、新品への交換、もしくは一度装置から吸着材を取り出して再生が必要となって連続浄化ができず、更に、水の浄化は、空気の浄化と異なり、微生物の繁殖が不可避であり、吸着材の寿命を縮めることもあって、交換および再生への労力、コスト増大が問題であった。
また、従来の浄化装置では、吸着材使用開始時と使用終了前では吸着性能が変化しており、安定に浄化処理することができないという問題点も有していた。
However, the exchangeable adsorption device continues to adsorb the adsorbed material for a certain period of time, and if the adsorption capacity of the adsorbent reaches saturation, it is necessary to replace it with a new one, or to remove the adsorbent from the device once and regenerate it for continuous purification. Furthermore, unlike the purification of air, the purification of water is unavoidable for the growth of microorganisms, and the life of the adsorbent may be shortened. .
Further, the conventional purification apparatus has a problem that the adsorption performance changes between the start of use of the adsorbent and before the end of use, and the purification process cannot be stably performed.

特許文献1には、有機化合物など被吸着物を含有する水を連続浄化可能で、基本的に吸着材の交換の必要がない水処理装置が記載されている。この水処理装置においては、活性炭素繊維を含む吸着素子に被吸着物を含有する水を通流させて被吸着物を吸着させる吸着工程、その後被吸着物を吸着した吸着素子に高速のガスを通風させて吸着素子に付着する付着水を除去するパージ(脱水)工程、高温の加熱ガスを通気させることにより、吸着素子に吸着された被吸着物を脱離させて吸着素子を再生する脱着工程を連続的に行なっている。   Patent Document 1 describes a water treatment apparatus that can continuously purify water containing an adsorbed substance such as an organic compound and basically does not require replacement of an adsorbent. In this water treatment apparatus, an adsorption process in which water containing an adsorbed substance is caused to flow through an adsorbing element containing activated carbon fibers to adsorb the adsorbing object, and then a high-speed gas is applied to the adsorbing element that adsorbs the adsorbing object. A purge (dehydration) process for removing adhering water adhering to the adsorbing element by ventilating, and a desorption process for regenerating the adsorbing element by desorbing the adsorbed material adsorbed on the adsorbing element by ventilating high-temperature heated gas Is performed continuously.

特許文献1の水処理装置において、吸着素子の再生エネルギーとしては、吸着素子に吸着された被吸着物の脱離のほかに、吸着素子に吸着した水の脱離および吸着素子表面に残存した付着水の乾燥に使用される加熱ガスの供給に必要なエネルギーが必要となる。そのため、付着水を高効率に脱水除去させることができれば、吸着素子の再生エネルギーの削減が可能となる。   In the water treatment apparatus of Patent Document 1, as the regeneration energy of the adsorption element, in addition to the desorption of the adsorbed object adsorbed on the adsorption element, the desorption of water adsorbed on the adsorption element and the adhesion remaining on the surface of the adsorption element The energy required to supply the heated gas used for water drying is required. Therefore, if the adhering water can be dehydrated and removed with high efficiency, the regeneration energy of the adsorption element can be reduced.

また、特許文献1の水処理装置において、吸着素子の再生エネルギーとしては、加熱ガスの給気手段である送風機やブロワーなどに使用される電気エネルギーがかかるが、吸着素子に含まれる吸着材の圧力損失が高い場合、給気に使用する電気エネルギーが多くかかる。そのため、低圧力損失な吸着材を吸着素子として使用することができれば、吸着素子の再生エネルギーの削減が可能となる。   Further, in the water treatment apparatus of Patent Document 1, as the regeneration energy of the adsorption element, electric energy used for a blower or a blower that is a heating gas supply means is applied, but the pressure of the adsorbent contained in the adsorption element When the loss is high, a lot of electric energy is used for supplying air. Therefore, if an adsorbent with a low pressure loss can be used as the adsorbing element, the regeneration energy of the adsorbing element can be reduced.

特開2008−188493号公報JP 2008-188493 A

本発明は、吸着素子の再生エネルギーの削減を課題としてなされたものであって、吸着性能を維持しながら、吸着素子の再生エネルギー量を低減することができる、水処理装置を提供することを課題とする。   The present invention has been made with the object of reducing the regeneration energy of the adsorption element, and it is an object to provide a water treatment apparatus capable of reducing the amount of regeneration energy of the adsorption element while maintaining adsorption performance. And

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の構成からなる。   As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention has the following configuration.

1.有機化合物を含有する水を、繊維径21〜40μm以、トルエン吸着容量200〜750mg/gの活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通気させて該吸着素子に吸着された有機化合物を脱着する脱着工程とを、交互に行うことを特徴とする水処理装置。
2.前記脱着工程の前に高速ガスを前記吸着素子に通風させて、該吸着素子表面に付着する水分を除去する脱水工程を含む上記1に記載の水処理装置。
3.前記付着水を前記吸着素子の前に返送させて、再度、該吸着素子に吸着させる上記2に記載の水処理装置。
4.前記活性炭素繊維が、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得たフェノール系繊維を炭化・賦活して得られる活性炭素繊維である上記1〜3のいずれかに記載の水処理装置。
1. An adsorption step in which water containing an organic compound is passed through an adsorption element containing activated carbon fibers having a fiber diameter of 21 to 40 μm or less and a toluene adsorption capacity of 200 to 750 mg / g to adsorb the organic compound to the adsorption element; A water treatment apparatus characterized by alternately performing a desorption step of desorbing an organic compound adsorbed on the adsorption element by passing a high-temperature heating gas through the adsorption element.
2. 2. The water treatment apparatus according to 1 above, comprising a dehydration step in which a high-speed gas is passed through the adsorption element before the desorption step to remove water adhering to the surface of the adsorption element.
3. 3. The water treatment apparatus according to 2 above, wherein the adhering water is returned before the adsorbing element and is adsorbed by the adsorbing element again.
4). A phenolic fiber obtained by spinning and curing a mixture in which the activated carbon fiber is a phenol resin mixed with at least one compound selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. 4. The water treatment apparatus according to any one of 1 to 3, which is an activated carbon fiber obtained by carbonization / activation.

本発明の水処理装置によれば、吸着素子の再生エネルギー量を低減することができる。   According to the water treatment apparatus of the present invention, the amount of regeneration energy of the adsorption element can be reduced.

本発明の好ましい一形態の例である、ダンパー切替方式の水処理装置。A water treatment apparatus of a damper switching system, which is an example of a preferred embodiment of the present invention.

本発明にかかる水処理装置は、有機化合物を含有する水を吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機化合物を脱着する脱着工程を備え、かかる工程を交互に行う水処理装置である。かかる構造を採用することにより、処理を連続的に行うことができるからである。   The water treatment apparatus according to the present invention includes an adsorption step of allowing water containing an organic compound to flow through an adsorption element and adsorbing the organic compound to the adsorption element, and passing a high-temperature heating gas through the adsorption element. A water treatment apparatus includes a desorption process for desorbing an organic compound adsorbed on an adsorption element, and alternately performs the process. This is because the processing can be continuously performed by adopting such a structure.

より好ましい装置の構造としては、吸着素子が幾つかに分割されており、それらの吸着工程と脱着工程をダンパー等にて切替操作を行い、吸着と脱着を連続的に行う水処理装置である。また、吸着素子が回転することができ、吸着工程で有機化合物を吸着した吸着素子の部位が、吸着素子の回転により、脱着工程へ移動する構造を有する水処理装置も好ましい装置の構造である。   A more preferable apparatus structure is a water treatment apparatus in which the adsorption element is divided into several parts, and the adsorption process and the desorption process are switched by a damper or the like, and the adsorption and desorption are continuously performed. A water treatment apparatus having a structure in which the adsorbing element can rotate and the part of the adsorbing element that adsorbs the organic compound in the adsorption process moves to the desorption process by the rotation of the adsorbing element is also a preferable apparatus structure.

本発明の水処理装置は、有機化合物の吸着工程後に吸着素子表面に残存する付着水を、ガスの通流により除去する脱水工程を有することが好ましい。付着水を気流で除去することにより、加熱による有機化合物の脱着が容易になるからである。除去した水滴は、戻りラインより装置入口の有機化合物を含有する原水に戻すことが好ましい。かかる方法によれば、工程数を省略でき、効率的だからである。   The water treatment apparatus of the present invention preferably has a dehydration step of removing adhering water remaining on the surface of the adsorption element after the organic compound adsorption step by gas flow. This is because the organic compound can be easily desorbed by heating by removing the adhering water with an air stream. The removed water droplets are preferably returned to the raw water containing the organic compound at the inlet of the apparatus from the return line. This is because the number of steps can be omitted and this method is efficient.

本発明の吸着素子は回転し、脱水工程の後工程で脱着領域にて加熱ガスにより吸着素子を加熱することで吸着した有害物質を脱着して再度吸着が行える状態に再生される脱着工程を有することが好ましい。加熱により有機化合物を脱着した後、連続的に吸着工程に移動することができるからである。脱着工程により発生した有機化合物を含有したガスは、直接燃焼装置や触媒燃焼装置、蓄熱式燃焼装置等の燃焼装置や活性炭素繊維を使用した溶剤回収装置等の一般的に用いられるガス処理装置にて処理することができる。   The adsorbing element of the present invention has a desorption step that rotates and is regenerated to a state in which the adsorbed harmful substance is desorbed and heated again by heating the adsorbing element with a heated gas in the desorption region after the dehydration step. It is preferable. This is because the organic compound can be desorbed by heating and then moved to the adsorption step continuously. Gas containing organic compounds generated in the desorption process is used in gas processing devices such as direct combustion devices, catalytic combustion devices, regenerative combustion devices, and other commonly used gas processing devices such as solvent recovery devices using activated carbon fibers. Can be processed.

本発明の吸着素子は、性能面から活性炭素繊維を用いたものである。つまり、活性炭素繊維は表面にミクロ孔を有することと繊維状構造であることで、水との接触効率が高く、特に水中の有機化合物の吸着速度が速くなり、他の吸着材に比べて、極めて高い除去効率を発現できるからである。   The adsorbing element of the present invention uses activated carbon fibers from the viewpoint of performance. In other words, the activated carbon fiber has micropores on the surface and a fibrous structure, so the contact efficiency with water is high, especially the adsorption rate of organic compounds in water is faster, compared to other adsorbents, This is because extremely high removal efficiency can be expressed.

本発明で用いる活性炭素繊維は、繊維径が21〜40μmである。繊維径が22μm未満では、繊維表面に付着する水分量が多くなることで、脱着効率が低下する。繊維径が40μmを超えると、繊維径が大きくなることにより、水中の被吸着物質と吸着素子との接触効率が低下するために、吸着速度が低下する。   The activated carbon fiber used in the present invention has a fiber diameter of 21 to 40 μm. If the fiber diameter is less than 22 μm, the amount of moisture adhering to the fiber surface increases, and the desorption efficiency decreases. When the fiber diameter exceeds 40 μm, the fiber diameter increases, and the contact efficiency between the substance to be adsorbed in water and the adsorbing element decreases, so the adsorption rate decreases.

本発明で用いる活性炭素繊維の前駆体であるフェノール繊維としては、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得られるフェノール系繊維であることが好ましい。前記化合物を混合させることで、化合物を混合させていない太繊維径のフェノール繊維では、引張伸度が低く、不織布の製造が困難であったり、例え不織布が製造できても炭化・賦活後の活性炭素繊維不織布の引張強度が低いという問題を、解決でき、引張強度の高い活性炭素繊維不織布を得ることができる。   As the phenol fiber which is a precursor of the activated carbon fiber used in the present invention, a mixture obtained by mixing a phenol resin with at least one compound selected from the group consisting of fatty acid amides, phosphate esters and celluloses is spun. And phenolic fibers obtained by curing. By mixing the compound, the phenol fiber having a thick fiber diameter not mixed with the compound has low tensile elongation and it is difficult to produce a nonwoven fabric. The problem that the tensile strength of the carbon fiber nonwoven fabric is low can be solved, and an activated carbon fiber nonwoven fabric having a high tensile strength can be obtained.

本発明で用いるフェノール系繊維としては、フェノール樹脂に脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物(配合物)を混合した混合物を紡糸して得られるフェノール系繊維が好適に用いられる。   The phenol fiber used in the present invention is obtained by spinning a mixture obtained by mixing a phenol resin with at least one compound (compound) selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. Phenol fiber is preferably used.

フェノール樹脂としては、酸性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるノボラック型フェノール樹脂、塩基性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるレゾール型フェノール樹脂、各種変性フェノール樹脂又はこれらの混合物等が挙げられる。   As the phenol resin, a novolac type phenol resin obtained by reacting phenols and aldehydes in the presence of an acidic catalyst, or a resol type phenol obtained by reacting phenols and aldehydes in the presence of a basic catalyst Examples thereof include resins, various modified phenolic resins, and mixtures thereof.

本発明では、ノボラック型フェノール樹脂、レゾール型フェノール樹脂を用いることが好ましい。フェノール樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。   In the present invention, it is preferable to use a novolac type phenol resin or a resol type phenol resin. A phenol resin may be used individually by 1 type, and may use 2 or more types together.

本発明において配合物として用いられる脂肪酸アミド類とは、アンモニア又はアミンの窒素原子に結合する水素原子の1以上がアシル基によって置換された構造をもつ非重合体を意味し、該窒素原子に水素原子が2つ結合する第1級アミド、該窒素原子に水素原子が1つ結合する第2級アミド、該窒素原子に水素原子が結合していない第3級アミド、ラクタム、及び1分子中にアミンの窒素原子を2個以上有するものを包含する。したがって、本発明における「脂肪酸アミド類」は、ナイロン−6、ナイロン−6,6に代表される所謂、脂肪族ポリアミドのような重合体とは異なる。なお、「脂肪酸アミド類」は脂肪酸アマイド類とも称される。   The fatty acid amides used as a blend in the present invention means a non-polymer having a structure in which one or more hydrogen atoms bonded to the nitrogen atom of ammonia or amine are substituted with an acyl group. A primary amide in which two atoms are bonded, a secondary amide in which one hydrogen atom is bonded to the nitrogen atom, a tertiary amide in which no hydrogen atom is bonded to the nitrogen atom, a lactam, and one molecule Includes those having two or more amine nitrogen atoms. Therefore, the “fatty acid amides” in the present invention are different from polymers such as so-called aliphatic polyamides typified by nylon-6 and nylon-6,6. “Fatty acid amides” are also referred to as fatty acid amides.

上脂肪酸アミド類のなかでも、原料混合物の取扱い性、安定性又は紡糸性等の点から、第1級アミド、第2級アミドが好ましく、第1級アミドがより好ましく、飽和脂肪酸モノアミド、不飽和脂肪酸モノアミドが特に好ましい。   Among the above fatty acid amides, primary amides and secondary amides are preferred, primary amides are more preferred, saturated fatty acid monoamides, unsaturated, from the viewpoints of handleability, stability or spinnability of the raw material mixture. Fatty acid monoamides are particularly preferred.

本発明において配合物として用いられるリン酸エステル類の「リン酸」とは、十酸化四リン(P410)が加水分解を受けて生ずる種々のオキソ酸の総称であり、オルトリン酸、ピロリン酸(二リン酸)、三リン酸、四リン酸、メタリン酸等を包含する。 “Phosphoric acid” of the phosphoric acid esters used as a compound in the present invention is a general term for various oxo acids generated by hydrolysis of tetraphosphorus decaoxide (P 4 O 10 ). Including acid (diphosphoric acid), triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and the like.

本発明において「リン酸エステル類」とは、リン酸における−OHの一つ以上が下記一般式(1)で表される基に置換されたもの(リン酸エステル)又はその塩を意味する。   In the present invention, the “phosphate esters” mean those in which one or more of —OH in phosphoric acid is substituted with a group represented by the following general formula (1) (phosphate esters) or salts thereof.

[式中、R13はヘテロ原子(炭素と水素以外の原子)を有していてもよい炭素数4以上の炭化水素基であり、AOは炭素数2〜4のオキシアルキレン基であり、nは平均付加モル数であり、0〜100の数を示す。] [Wherein R 13 is a hydrocarbon group having 4 or more carbon atoms which may have a hetero atom (atom other than carbon and hydrogen), AO is an oxyalkylene group having 2 to 4 carbon atoms, n Is the average number of moles added and represents a number from 0 to 100. ]

リン酸エステル類としては、特に太径のフェノール系繊維とした際に機械的強度が高まりやすいことから、オルトリン酸における−OHの一つ以上が前記式(1)で表される基に置換されたもの(オルトリン酸エステル)又はその塩が好ましい。   As phosphate esters, since mechanical strength is likely to increase particularly when a large-diameter phenolic fiber is used, at least one of —OH in orthophosphoric acid is substituted with the group represented by the above formula (1). (Orthophosphoric acid ester) or a salt thereof is preferred.

リン酸エステルの塩としては、リン酸エステルのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられる。リン酸エステル類は、単独で用いても、二種以上を併用してもよい。   Examples of the phosphate ester salt include alkali metal salts, alkaline earth metal salts, ammonium salts and amine salts of phosphate esters. Phosphate esters may be used alone or in combination of two or more.

本発明において配合物として用いられるセルロース類としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。セルロース類は、単独で用いても、二種以上を併用してもよい。   Examples of celluloses used as a blend in the present invention include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like. Cellulose may be used independently or may use 2 or more types together.

本発明で用いる活性炭素繊維は、前記フェノール繊維を前駆体とし、炭化・賦活処理することで得られる。   The activated carbon fiber used in the present invention is obtained by carbonizing and activating the phenol fiber as a precursor.

本発明で用いる活性炭素繊維の上記以外の物性は特に限定されるものではないが、BET比表面積が900〜2000m/gで、細孔容積が0.4〜0.9cm/gで平均細孔経が14〜18Åのものが好ましい。BET比表面積が900m/g未満、細孔容積が0.4cm/g未満、細孔径が14Å未満では、有機化合物の吸着量が低くなり、BET比表面積が2000m/gを超え、細孔容積が0.9cm/gを超え、細孔径が18Åを超えると、細孔径が大きくなることで、有機化合物の吸着能力が低下したり、吸着素子の強度が弱くなり、また素材のコストが高くなり経済的では無くなる。 The physical properties other than those described above of the activated carbon fiber used in the present invention are not particularly limited, but the BET specific surface area is 900 to 2000 m 2 / g, and the pore volume is 0.4 to 0.9 cm 3 / g on average. Those having a pore diameter of 14 to 18 mm are preferred. When the BET specific surface area is less than 900 m 2 / g, the pore volume is less than 0.4 cm 3 / g, and the pore diameter is less than 14 mm, the amount of adsorption of the organic compound is low, and the BET specific surface area exceeds 2000 m 2 / g. When the pore volume exceeds 0.9 cm 3 / g and the pore diameter exceeds 18 mm, the pore diameter increases, so that the adsorption capacity of the organic compound decreases, the strength of the adsorption element decreases, and the cost of the material Becomes expensive and not economical.

以下に実施例を示し、本発明をより具体的に説明する。実施例中に示した特性は以下の方法で測定した。   Hereinafter, the present invention will be described in more detail with reference to examples. The characteristics shown in the examples were measured by the following methods.

(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。
(BET specific surface area)
The BET specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.

(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(Pore volume)
The pore volume was measured by a nitrogen gas adsorption method at a relative pressure of 0.95.

(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m/g)
(Average pore diameter)
The average pore diameter was determined by the following formula.
dp = 40000 Vp / S (where dp: average pore diameter (径))
Vp: pore volume (cc / g)
S: BET specific surface area (m 2 / g)

(トルエン吸着容量)
トルエン吸着容量は、JIS K1477に定める方法で測定した。
(Toluene adsorption capacity)
The toluene adsorption capacity was measured by the method defined in JIS K1477.

(有機化合物濃度)
装置入口・出口の水中の有機化合物濃度は、ガスクロマトグラフ法により分析し測定した。
(Organic compound concentration)
The concentration of organic compounds in the water at the inlet / outlet of the apparatus was analyzed and measured by gas chromatography.

(平衡吸着量)
平衡吸着量(q)は、50%破過時間を測定し、以下の式で求めた。
(mg/g)=有機化合物供給量×50%破過時間/吸着材重量
(Equilibrium adsorption amount)
The equilibrium adsorption amount (q * ) was determined by measuring the 50% breakthrough time and using the following equation.
q * (mg / g) = organic compound supply amount × 50% breakthrough time / adsorbent weight

(吸着帯厚み)
吸着帯厚み(10%Za)は、10%破過する破過時間を測定し、以下の式で求めた。
10%Za=(50%破過時間−10%破過時間)×2/(50%破過時間)
(Adsorption band thickness)
The adsorption band thickness (10% Za) was determined by the following formula by measuring the breakthrough time for breakthrough by 10%.
10% Za = (50% breakthrough time−10% breakthrough time) × 2 / (50% breakthrough time)

(付着水分量)
付着水分量は、脱水操作後の吸着材の重量を測定し、以下の式で求めた。
付着水分量(g/g)=脱水操作後の吸着材重量(g)/絶乾時の吸着材重量(g)
(Moisture content)
The amount of adhering moisture was determined by the following equation by measuring the weight of the adsorbent after the dehydration operation.
Adhesive water content (g / g) = Adsorbent weight after dehydration operation (g) / Adsorbent weight in absolute dryness (g)

(吸着材の平均圧力損失)
吸着材の平均圧力損失は、脱水及び脱着操作中の装置入口・出口の圧力をマノスターケージにて測定し、装置入口・出口の圧力の平均値より以下の式で求めた。
吸着材の平均圧力損失(kPa)=装置入口の圧力(kPa)−装置出口の圧力(kPa)
(Average pressure loss of adsorbent)
The average pressure loss of the adsorbent was determined by measuring the pressure at the inlet / outlet of the apparatus during the dehydration and desorption operations with a manostar cage and calculating the average value of the pressure at the inlet / outlet of the apparatus by the following formula.
Average pressure loss of adsorbent (kPa) = apparatus inlet pressure (kPa) −apparatus outlet pressure (kPa)

(ブロワー動力)
ブロワー動力は、以下の式で求めた。
ブロワー動力(W)=風量(m/min)×装置入口の圧力(kPa)/6120/9.81/0.7×10
(Blower power)
The blower power was obtained by the following formula.
Blower power (W) = air volume (m 3 / min) × inlet pressure (kPa) /6120/9.81/0.7×10 6

(脱着熱量)
脱着熱量は、以下の式で求めた。
脱着熱量(kJ)=付着水の加温熱量(kJ)+付着水の蒸発熱量(kJ)
(Desorption heat amount)
The desorption heat amount was determined by the following equation.
Desorption heat amount (kJ) = Heating heat amount (kJ) of adhering water + Evaporation heat amount (kJ) of adhering water

[実施例1 ]
フェノール1000質量部と37質量%ホルマリン733質量部とシュウ酸5質量部を、還流冷却器を備えた反応容器に仕込み、40分間で常温から100℃に昇温させ、さらに100℃で4時間反応させた後、200℃まで加熱して脱水濃縮した後、冷却してノボラック型フェノール樹脂を得た。
[Example 1]
1000 parts by weight of phenol, 733 parts by weight of formalin 733 parts by weight and 5 parts by weight of oxalic acid were charged into a reaction vessel equipped with a reflux condenser, heated from room temperature to 100 ° C. over 40 minutes, and further reacted at 100 ° C. for 4 hours. Then, the mixture was heated to 200 ° C., dehydrated and concentrated, and then cooled to obtain a novolac type phenol resin.

上記ノボラック型フェノール樹脂475kgとベヘン酸アミド25kgとを、二軸混練機(高速二軸連続ミキサー)に投入して、150℃で混練(溶融混合)を行い、室温まで冷却して、淡黄色透明なブロック状物を得た。なお、ベヘン酸アミドは日本精化社製のベヘニン酸アミド(BNT−22H)を用いた。   475 kg of the above-mentioned novolak type phenol resin and 25 kg of behenamide are charged into a biaxial kneader (high-speed biaxial continuous mixer), kneaded (melted and mixed) at 150 ° C., cooled to room temperature, and light yellow transparent A block-like product was obtained. In addition, behenic acid amide (BNT-22H) manufactured by Nippon Seika Co., Ltd. was used as the behenic acid amide.

次に、このブロック状物を粗粉砕し、溶融紡糸装置(グリッドメルター式)を用いて200℃で溶融し、該溶融により得られた溶融物を、170℃に保たれた孔径0.1mm、L/D=3、ホール数10個の紡糸口金から一定吐出量を保ちながら紡糸速度75m/分で紡糸(溶融紡糸)して糸条を得た。   Next, this block-like product is coarsely pulverized and melted at 200 ° C. using a melt spinning apparatus (grid melter type), and the melt obtained by the melting has a pore diameter of 0.1 mm maintained at 170 ° C., A yarn was obtained by spinning (melt spinning) at a spinning speed of 75 m / min while maintaining a constant discharge rate from a spinneret with L / D = 3 and 10 holes.

得られた糸条を、長さ70mmにカットして容器に入れ、塩酸14質量%かつホルムアルデヒド8質量%の水溶液に常温で30分間浸漬した後、2時間で98℃まで昇温し、さらに98℃で2時間保持することにより硬化を行った。   The obtained yarn was cut into a length of 70 mm, placed in a container, immersed in an aqueous solution of 14% by mass hydrochloric acid and 8% by mass formaldehyde for 30 minutes at room temperature, heated to 98 ° C. in 2 hours, and further 98 Curing was performed by holding at 2 ° C. for 2 hours.

次いで、得られた硬化物を、前記容器から取出して十分に水洗した後、3質量%アンモニア水溶液で60℃、30分間の中和を行った。その後、再度十分に水洗し、90℃、30分間乾燥することにより、単繊維繊度11dtex、繊維長70mm、繊維クリンプなしのフェノール系繊維を得た。   Subsequently, after taking out the hardened | cured material obtained from the said container and fully washing with water, neutralization was performed for 30 minutes at 60 degreeC with 3 mass% ammonia aqueous solution. Thereafter, it was thoroughly washed with water again and dried at 90 ° C. for 30 minutes to obtain a phenolic fiber having a single fiber fineness of 11 dtex, a fiber length of 70 mm, and no fiber crimp.

得られたフェノール系繊維を使用し、ニードルパンチ機により、針密度500本/inch2、針深度12mm(裏)、7mm(表)の条件で裏表処理を行い、ACF不織布前駆体を得、その前駆体を不活性雰囲気(窒素雰囲気)中30分かけて、常温から890℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で100分間賦活して、繊維径が24μm、平均細孔径14Å、BET比表面積1650m/g、全細孔容積0.7cm/g、トルエン吸着容量490mg/gの活性炭素繊維からなる不織布を得た。 Using the obtained phenol-based fiber, a back and front treatment was performed with a needle punch machine under the conditions of a needle density of 500 / inch 2 , a needle depth of 12 mm (back) and 7 mm (front) to obtain an ACF nonwoven fabric precursor, The precursor is heated from normal temperature to 890 ° C. for 30 minutes in an inert atmosphere (nitrogen atmosphere) and carbonized, and then activated for 100 minutes at a temperature of 890 ° C. in an atmosphere containing 12% by mass of water vapor. A nonwoven fabric composed of activated carbon fibers having a diameter of 24 μm, an average pore diameter of 14 mm, a BET specific surface area of 1650 m 2 / g, a total pore volume of 0.7 cm 3 / g, and a toluene adsorption capacity of 490 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して1000mg/lの1,4−ジオキサンを含む原水を通水線速3.6cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が39mmであり、平衡吸着量(q)が177mg/gと良好な吸着性能であった。 Two adsorbing elements with a dry weight of 200 g having a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber nonwoven fabric were prepared and installed in the damper-switching water treatment apparatus of FIG. -Raw water containing dioxane was introduced at a water linear velocity of 3.6 cm / min. As a result of confirming the change with time of the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 39 mm and the equilibrium adsorption amount (q * ) was 177 mg / g, which was a good adsorption performance. .

次に、水処理装置の脱水工程のガスとして30℃の空気を風速50cm/sで5min通風し、吸着素子に付着する水分を脱水除去した。その際の付着水分量は1.9g/gであった。   Next, 30 ° C. air was passed for 5 minutes at a wind speed of 50 cm / s as a gas for the dehydration process of the water treatment apparatus, and water adhering to the adsorption element was dehydrated and removed. The amount of moisture adhering at that time was 1.9 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速50cm/sで通風した。その際の吸着材の平均圧力損失は4.8kPaであった。また、ブロワー動力は46W、脱着熱量は969kJと試算された。   Next, air at 120 ° C. was blown at a wind speed of 50 cm / s as a heating gas in the desorption process. At that time, the average pressure loss of the adsorbent was 4.8 kPa. The blower power was 46 W, and the heat of desorption was 969 kJ.

[実施例2 ]
実施例1で製造したフェノール系繊維を使用し、実施例1と同様のACF不織布前駆体を得、その前駆体を、不活性雰囲気中18分かけて、常温から870℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中870℃の温度で120分間賦活して、繊維径が24μm、平均細孔径14Å、BET比表面積1100m/g、全細孔容積0.5cm/g、トルエン吸着容量320mg/gの活性炭素繊維からなる不織布を得た。
[Example 2]
Using the phenol-based fiber produced in Example 1, an ACF nonwoven fabric precursor similar to that in Example 1 was obtained, and the precursor was heated from normal temperature to 870 ° C. for 18 minutes in an inert atmosphere to be carbonized. Next, activation was performed at 870 ° C. for 120 minutes in an atmosphere containing 12% by mass of water vapor, the fiber diameter was 24 μm, the average pore diameter was 14 mm, the BET specific surface area was 1100 m 2 / g, and the total pore volume was 0.5 cm 3 /. g, A nonwoven fabric made of activated carbon fibers having a toluene adsorption capacity of 320 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して1000mg/lのイソプロピルアルコールを含む原水を通水線速3.6cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が42mmであり、平衡吸着量(q)が130mg/gと良好な吸着性能であった。 Two adsorbing elements with an absolute dry weight of 200 g with a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber nonwoven fabric were prepared, and installed in the damper-switching water treatment apparatus of FIG. 1 to supply 1000 mg / l isopropyl alcohol. The raw water containing was introduced at a water linear velocity of 3.6 cm / min. As a result of confirming the change with time of the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 42 mm and the equilibrium adsorption amount (q * ) was 130 mg / g, which was a good adsorption performance. .

次に、水処理装置の脱水工程のガスとして30℃の空気を風速50cm/sで5min通風し、吸着素子に付着する水分を脱水除去した。その際の付着水分量は1.8g/gであった。   Next, 30 ° C. air was passed for 5 minutes at a wind speed of 50 cm / s as a gas for the dehydration process of the water treatment apparatus, and water adhering to the adsorption element was dehydrated and removed. The amount of moisture attached was 1.8 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速50cm/sで通風した。その際の吸着材の平均圧力損失は3.8kPaであった。また、ブロワー動力は36W、脱着熱量は918kJと試算された。   Next, air at 120 ° C. was blown at a wind speed of 50 cm / s as a heating gas in the desorption process. At that time, the average pressure loss of the adsorbent was 3.8 kPa. The blower power was estimated to be 36 W, and the heat of desorption was estimated to be 918 kJ.

[比較例1 ]
単繊維繊度5.6dtex、繊維長70mm、繊維クリンプなしのフェノール系繊維(群栄化学工業(株)社製、カイノールKF−0570)を使用し、ニードルパンチ機により、針密度500本/inch2、針深度12mm(裏)、7mm(表)の条件で裏表処理を行いACF不織布前駆体を得、その前駆体を不活性雰囲気中18分かけて、常温から890℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で60分間賦活して、繊維径17μm、平均細孔径14Å、BET比表面積1650m/g、全細孔容積0.7cm/g、トルエン吸着容量490mg/gの活性炭素繊維からなる不織布を得た。
[Comparative Example 1]
A monofilament fineness of 5.6 dtex, a fiber length of 70 mm, a phenolic fiber (Kinei Chemical Industry Co., Ltd., Kynol KF-0570) without fiber crimp is used, and a needle density of 500 / inch 2 is obtained by a needle punch machine. The ACF nonwoven fabric precursor was obtained by performing backside treatment under conditions of needle depth 12 mm (back) and 7 mm (front), and the precursor was heated from normal temperature to 890 ° C. over 18 minutes in an inert atmosphere, and carbonized. Next, activation was performed for 60 minutes at a temperature of 890 ° C. in an atmosphere containing 12% by mass of water vapor, a fiber diameter of 17 μm, an average pore diameter of 14 mm, a BET specific surface area of 1650 m 2 / g, a total pore volume of 0.7 cm 3 / g, A nonwoven fabric made of activated carbon fibers having a toluene adsorption capacity of 490 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して1000mg/lの1,4−ジオキサンを含む原水を通水線速3.6cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が40mmであり、平衡吸着量(q)が175mg/gと良好な吸着性能であった。 Two adsorbing elements with a dry weight of 200 g having a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber nonwoven fabric were prepared and installed in the damper-switching water treatment apparatus of FIG. -Raw water containing dioxane was introduced at a water linear velocity of 3.6 cm / min. As a result of confirming the change with time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 40 mm, and the equilibrium adsorption amount (q * ) was 175 mg / g, which was a good adsorption performance. .

次に、水処理装置の脱水工程のガスとして30℃の空気を風速50cm/sで5min通風し、吸着素子に付着する水分を脱水除去した。その際の付着水分量は2.6g/gであった。   Next, 30 ° C. air was passed for 5 minutes at a wind speed of 50 cm / s as a gas for the dehydration process of the water treatment apparatus, and water adhering to the adsorption element was dehydrated and removed. The amount of moisture adhering at that time was 2.6 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速を風速50cm/sで通風した。その際の吸着材の平均圧力損失は8.5kPaであった。ブロワー動力は81W、脱着熱量は1326kJと試算され、実施例1と比較して1.7倍以上のブロワー動力、1.4倍以上の脱着熱量が必要であった。   Next, air at 120 ° C. was blown at a wind speed of 50 cm / s as a heating gas in the desorption process. The average pressure loss of the adsorbent at that time was 8.5 kPa. The blower power was 81 W and the heat of desorption was estimated to be 1326 kJ. Compared with Example 1, the blower power was 1.7 times or more and the heat of desorption was 1.4 times or more.

[比較例2 ]
比較例1で製造したフェノール繊維を使用し、比較例1と同様のACF不織布前駆体を得、その前駆体を、不活性雰囲気中18分かけて、常温から870℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中870℃の温度で60分間賦活して、繊維径17μm、平均細孔径13Å、BET比表面積1100m/g、全細孔容積0.5cm/g、トルエン吸着容量320mg/gの活性炭素繊維からなる不織布を得た。
[Comparative Example 2]
Using the phenol fiber produced in Comparative Example 1, the same ACF nonwoven fabric precursor as in Comparative Example 1 was obtained, and the precursor was carbonized by heating from room temperature to 870 ° C. over 18 minutes in an inert atmosphere. Next, activation was performed for 60 minutes at a temperature of 870 ° C. in an atmosphere containing 12% by mass of water vapor, a fiber diameter of 17 μm, an average pore diameter of 13 mm, a BET specific surface area of 1100 m 2 / g, a total pore volume of 0.5 cm 3 / g, A nonwoven fabric made of activated carbon fibers having a toluene adsorption capacity of 320 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して1000mg/lのイソプロピルアルコールを含む原水を通水線速3.6cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が42mmであり、平衡吸着量(q)が130mg/gと良好な吸着速度と破過時間であった。 Two adsorbing elements with an absolute dry weight of 200 g with a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber nonwoven fabric were prepared, and installed in the damper-switching water treatment apparatus of FIG. 1 to supply 1000 mg / l isopropyl alcohol. The raw water containing was introduced at a water linear velocity of 3.6 cm / min. As a result of confirming the change over time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) is 42 mm, and the equilibrium adsorption amount (q * ) is 130 mg / g. It was time.

次に、水処理装置の脱水工程のガスとして30℃の空気を風速50cm/sで5min通風し、吸着素子に付着する水分を脱水除去した。その際の付着水分量は2.5g/gであった。   Next, 30 ° C. air was passed for 5 minutes at a wind speed of 50 cm / s as a gas for the dehydration process of the water treatment apparatus, and water adhering to the adsorption element was dehydrated and removed. The amount of moisture attached was 2.5 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速を風速50cm/sで通風した。その際の吸着材の平均圧力損失は7.0kPaであった。ブロワー動力は66W、脱着熱量は1275kJと試算され、実施例2と比較して1.8倍以上のブロワー動力、1.4倍以上の脱着熱量が必要であった。   Next, air at 120 ° C. was blown at a wind speed of 50 cm / s as a heating gas in the desorption process. The average pressure loss of the adsorbent at that time was 7.0 kPa. The blower power was 66 W and the heat of desorption was estimated to be 1275 kJ. Compared with Example 2, the blower power was 1.8 times or more and the heat of desorption was 1.4 times or more.

本発明の水処理装置は、有機化合物を含む水の連続浄化を実現し、基本的に吸着材の交換が必要なく、多量の有機化合物を高効率かつ安定に除去することができる処理装置であるため、設備増大を必要とせずに、吸着材交換作業を省略でき、コスト低減、有害物質を安定除去でき、特に研究所や工場等の幅広い分野に利用することができ、産業界に寄与することが大である。   The water treatment apparatus of the present invention is a treatment apparatus that realizes continuous purification of water containing an organic compound, basically eliminates the need for replacement of an adsorbent, and can remove a large amount of organic compounds with high efficiency and stability. Therefore, the adsorbent replacement work can be omitted without the need for additional equipment, cost reduction, toxic substances can be removed stably, and it can be used in a wide range of fields such as laboratories and factories, contributing to the industry. Is big.

11 原水導入ライン
12 吸着素子
13 吸着領域
14 脱水領域
15 戻りライン
16 脱着領域
21 原水
22 処理出口水
23 脱着空気
24 濃縮ガス
25 吸着素子
DESCRIPTION OF SYMBOLS 11 Raw water introduction line 12 Adsorption element 13 Adsorption area 14 Dehydration area 15 Return line 16 Desorption area 21 Raw water 22 Treatment outlet water 23 Desorption air 24 Concentrated gas 25 Adsorption element

Claims (3)

有機化合物を含有する水を、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得たフェノール系繊維を炭化・賦活して得た活性炭素繊維であって、繊維径21〜40μm、トルエン吸着容量200〜750mg/gである活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通気させて該吸着素子に吸着された有機化合物を脱着する脱着工程とを、交互に行うことを特徴とする水処理装置。 A phenolic resin obtained by spinning and curing water containing an organic compound in a phenol resin and a mixture of at least one compound selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. fibers and an active carbon fiber obtained by carbonization and activation, the fiber diameter is 21~40Myuemu, the adsorption element flowed through the adsorption element toluene adsorption capacity containing activated carbon fiber is 200~750mg / g A water treatment apparatus, wherein an adsorption process for adsorbing an organic compound and a desorption process for desorbing an organic compound adsorbed on the adsorption element by passing a high-temperature heating gas through the adsorption element are alternately performed. 前記脱着工程の前に高速ガスを前記吸着素子に通風させて、該吸着素子表面に付着する水分を除去する脱水工程を含む請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising a dehydration step in which high-speed gas is passed through the adsorption element before the desorption step to remove moisture adhering to the surface of the adsorption element. 前記付着水を前記吸着素子の前に返送させて、再度、該吸着素子に吸着させる請求項2に記載の水処理装置。   The water treatment apparatus according to claim 2, wherein the adhering water is returned before the adsorbing element and is adsorbed by the adsorbing element again.
JP2011261782A 2011-11-30 2011-11-30 Water treatment equipment Active JP5929130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261782A JP5929130B2 (en) 2011-11-30 2011-11-30 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261782A JP5929130B2 (en) 2011-11-30 2011-11-30 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2013111551A JP2013111551A (en) 2013-06-10
JP5929130B2 true JP5929130B2 (en) 2016-06-01

Family

ID=48707678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261782A Active JP5929130B2 (en) 2011-11-30 2011-11-30 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP5929130B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108430929B (en) * 2016-01-08 2021-12-03 东洋纺株式会社 Water treatment device, adsorption element and water treatment method
JP6919789B2 (en) * 2018-07-31 2021-08-18 東レ株式会社 Carrier for adsorbing organic substances

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988110B2 (en) * 2000-09-12 2007-10-10 東洋紡績株式会社 Low pressure loss nonwoven activated carbon fiber and method for producing the same
JP2005256183A (en) * 2004-03-09 2005-09-22 Gun Ei Chem Ind Co Ltd Method for producing activated carbon fiber
JP2008188492A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment system
JP2008188493A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment apparatus
JP5315293B2 (en) * 2010-05-26 2013-10-16 群栄化学工業株式会社 Method for producing phenolic fiber
JP5443268B2 (en) * 2010-05-26 2014-03-19 群栄化学工業株式会社 Method for producing phenolic fiber
KR101891377B1 (en) * 2011-11-30 2018-08-24 도요보 가부시키가이샤 Active carbon fiber non-woven fabric, and element using said non-woven fabric

Also Published As

Publication number Publication date
JP2013111551A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5948822B2 (en) Water treatment system
Chaúque et al. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents
KR101337207B1 (en) Combination Filter for Air Cleaning
KR101751370B1 (en) Activated carbon having large active surface area
JP5982796B2 (en) Gas processing equipment containing organic solvent
JP6897572B2 (en) Water treatment equipment, adsorption elements, and water treatment methods
KR101744343B1 (en) Metal-complex polymer film for air cleaning filter and method for manufacturing same
CN103132250A (en) Active carbon fiber non-woven fabric, and element using said non-woven fabric
JP3912886B2 (en) Manufacturing method of ion exchange filter
JP5929130B2 (en) Water treatment equipment
JP2011106051A (en) Activated carbon fiber
KR20130040273A (en) Absorbent for purifying air, filter comprising the absorbent and method for preparing the filter
JP2008188492A (en) Water treatment system
JP2008188493A (en) Water treatment apparatus
JPH09173829A (en) Air purifying agent and filter for purifying air
CN210675794U (en) Epoxy board rubber coating drying device
KR20230137411A (en) Activated carbon fiber, activated carbon fiber molded body, and their manufacturing method, organic solvent adsorption and desorption treatment device, organic solvent recovery system, organic solvent adsorption and desorption treatment method, and organic solvent recovery method
JP4512993B2 (en) Water treatment equipment
JP2017205684A (en) Water treatment system
JPWO2017086177A1 (en) Composite gas adsorbent, adsorption filter using the same, and method for producing composite gas adsorbent
JP2011251232A (en) Waste water treatment apparatus
JP2011106052A (en) Activated carbon fiber
JP5078445B2 (en) Method for purifying activated carbon
JP4579939B2 (en) Method for purifying activated carbon
JPH08252304A (en) Deodorizing activated carbon and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R151 Written notification of patent or utility model registration

Ref document number: 5929130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250