JP3912886B2 - Manufacturing method of ion exchange filter - Google Patents

Manufacturing method of ion exchange filter Download PDF

Info

Publication number
JP3912886B2
JP3912886B2 JP03743998A JP3743998A JP3912886B2 JP 3912886 B2 JP3912886 B2 JP 3912886B2 JP 03743998 A JP03743998 A JP 03743998A JP 3743998 A JP3743998 A JP 3743998A JP 3912886 B2 JP3912886 B2 JP 3912886B2
Authority
JP
Japan
Prior art keywords
ion exchange
exchange resin
filter
polyurethane foam
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03743998A
Other languages
Japanese (ja)
Other versions
JPH11226338A (en
Inventor
巌 吉澤
進司 服部
直樹 入江
謙之 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAN-TAKUMA TECHNOLOGIES INC.
Original Assignee
DAN-TAKUMA TECHNOLOGIES INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAN-TAKUMA TECHNOLOGIES INC. filed Critical DAN-TAKUMA TECHNOLOGIES INC.
Priority to JP03743998A priority Critical patent/JP3912886B2/en
Priority to TW088102012A priority patent/TW469161B/en
Priority to KR1019990005517A priority patent/KR100578512B1/en
Priority to GB9918901A priority patent/GB2352987A/en
Publication of JPH11226338A publication Critical patent/JPH11226338A/en
Application granted granted Critical
Publication of JP3912886B2 publication Critical patent/JP3912886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/018Granulation; Incorporation of ion-exchangers in a matrix; Mixing with inert materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • B01J47/133Precoat filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造工場のクリーンルーム等において揮散イオンの除去等の目的で用いられるイオン交換フィルタの製造方法に関する。
【0002】
【従来の技術】
半導体産業において、高度の微細化プロセスによる集積化技術が向上しているが、そこで、クリーンルーム内の発塵を防止して固体微粒子を除去し、高度集積化に対応している。しかし、クリーンルーム内を発塵防止するだけの対応では、集積度の向上には限界があり、十分な高度集積化は達成できないという問題点が指摘され、揮発性の有機、無機化学汚染物質をも除去する事が試みられている。
【0003】
上述した揮発性の有機、無機化学汚染物質の除去に関する技術として、従来より用いられているケミカルフィルタについては、酸、アルカリ系イオンの吸着の目的で、粒状或いは造粒活性炭にリン酸、苛性カリなどの酸、アルカリを含浸添着した活性炭などが利用されている。しかし、上述の方法にあっては、酸、アルカリの中和反応で揮散酸、アルカリ系イオンの除去を試みるものであり、中性塩は薬品添着活性炭の内部並びに表面に析出し、これは単純に物理的に担持されているに過ぎない。
また、添着薬品の量より析出中性塩の方が量的に多くなると、析出物質は風量の変化、圧力損失のわずかな変化に伴う振動などの物理的要因により飛散し、下流側に設けたHEPAフィルタの汚染目詰まりによる圧力損失の上昇を招く危険性があり、高純度な雰囲気を要求するいわゆるスーパークリーンルームの循環系への採用には問題があった。また、本フィルタを外気導入系等に採用するには、相対湿度の影響を大きく受けてしまうという等の観点から、使用箇所に制約を受けてしまうという欠点があった。特に、酸、アルカリを添着した薬品添着活性炭は、薬品の影響を受け極めて吸湿性が強くなり、相対湿度によって予想以上に水分を含み添着薬品が流れ出す危険性がある。したがって、一年間を通じて37%RHから95%RHと大きく変化する日本の気候では、クリーンルーム導入系では外部空気調和機の入口側に設置することができず、温湿調整装置通過後の低湿度領域のみでしか使用できない。また、循環系においては、上述の活性炭のように吸着剤が吸放湿性を示す場合には、実際のクリーンルーム設備の湿度抑制の幅が大きくなる傾向を示すために、安定した環境を構築しにくくなるという問題点を生じやすい。
【0004】
また更に、酸添着活性炭にあって通常使用される添着薬品としては正リン酸が挙げられるが、この正リン酸は20℃の常温においても比較的大きな蒸気圧を有するという欠点がある。つまり、リン酸が、クリーンルーム内の温度にあっても揮散しやすいという問題点がある。本発明者らの実験によると、酸添着フィルタの場合、下流側が上流側濃度に比較して数ng/m3 高い値が得られている。
従って、スーパークリーンルームの構築を目指すには、このような酸添着フィルタを採用することができないという現状があるのである。
【0005】
また、大径連続気孔を有する網状ポリウレタンフォームの骨格に、前記活性炭などの吸着剤を接着して通気性の高い吸着フィルタが開発されている。このような吸着フィルタは、網状ポリウレタンフォームの大径連続気孔により通気性を大きく確保しながらも、前記骨格に密に配置される活性炭が効率よく空気と接触できることにより、高い吸着能力を発揮するという利点を有することが報告されている(例えば、特公平435201号公報参照)。
【0006】
また、クリーンルームの循環系にイオン交換樹脂を用いたフィルタを介装して前記化学汚染物質を除去することが実施されている。イオン交換樹脂を用いたフィルタを採用すると、イオン交換樹脂は揮散するイオンをイオン交換による結合を通じて除去するものであるために、一旦捕捉したイオンを再度揮散させてしまうような不都合は生じにくいために、上述の薬品添着活性炭に見られる問題点を解決することができるものとして注目されている。しかしながら、イオン交換樹脂をフィルタとするためには、そのイオン交換樹脂を繊維状に加工せざるを得ず、そのため、種々な問題点を有していた。具体的にはイオン交換体を繊維状のイオン交換繊維にする際の、紡糸特性を保つためには、繊維の保有する総イオン交換容量を小さくせざるを得ないという製造上の問題点がある。(例えば、強酸性の陽イオン交換繊維に関してはイオン交換樹脂の1/2となる。)そのために、そのイオン交換繊維をフィルタに成型する際に、そのイオン交換容量を大きくするためには、そのイオン交換繊維を高密度に抄造した不織布に形成する等の必要が生じる。しかしながら、フィルタとしての不織布などの濾材の密度0.1以上に上げると、急速に圧力損失が上昇し、使用に耐えないという現状がある。従って、圧力損失の面から、イオン交換繊維の充填密度を高めるにも限界があるために、単位面積あたりのイオン交換容量の小さなフィルタにならざるを得ない。すなわちフィルタとしての寿命が短いものにならざるを得ないという問題を生じやすい。
【0007】
【発明が解決しようとする課題】
つまり、低圧力損失、長寿命かつ低発ガスのイオン交換フィルタとして十分な性能を発揮するものは知られておらず、このようなイオン交換フィルタの性能向上が望まれているのである。
また、上述の活性炭を得るために、イオン交換樹脂の粒子を炭化させたものの利用が提案されている(特開平168633号公報(以下先行技術と称する)参照)。
【0008】
しかしながら、前記先行技術に記載の構成は、単に活性炭をイオン交換樹脂由来のものとする記載にとどまり、一旦炭化したイオン交換樹脂は、イオン交換能力を失ってしまっているために、イオン除去能は、活性炭のレベルにとどまり、やはり大容量のイオン交換能を期待することは難しい。
【0009】
従って、本発明は、上記実情に鑑みなされたものであって、イオン交換容量が大きく、かつ、圧力損失をあまり増大させずにフィルタとしての寿命を長くできるイオン交換フィルタの製造方法を提供することを目的とし、具体的には、網状ポリウレタンフォームに均一かつ十分量のイオン交換樹脂の接着されたイオン交換フィルタの製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、鋭意研究の結果、前記網状ポリウレタンフォームの骨格に、通常、他の基材に接着させて用いるようなことの少ないイオン交換樹脂の粒子を接着させることにより、前記網目状ポリウレタンフォームの通気性と、前記イオン交換樹脂のイオン除去性能とを共に兼ね備えたイオン交換フィルタを得ることができることを見出し、本発明に至ったものであり、
通常、単純に網状ポリウレタンフォームの骨格にイオン交換樹脂の粒子を接着しようとすると、イオン交換樹脂は比較的流動性に乏しく、樹脂表面の親水性から他の樹脂に対する接着性が低いために、イオン交換樹脂をポリウレタンフォームの全体に亘って、均一かつ十分量供給させて接着することは困難であった。そのため、イオン交換容量が大きくかつイオン交換樹脂が安定に接着したイオン交換フィルタを製造することは困難であり、また、イオン交換樹脂の粒子が均一に接着し、性能の安定したイオン交換フィルタを得るには多大な労力を要する場合があり、この点に関する製造上の問題点の指摘、あるいは、この問題点を解消するための構成の開示あるいは示唆は、前記先行技術からは得られないものである。
しかし、さらに、本発明者らは、前記イオン交換樹脂の粒子の接着性の乏しさ及び流動性の乏しさが、その表面のイオン交換基の水分率に依存していることに着目し、その水分率を調整することにより、そのイオン交換樹脂の特質を損なうことなく、接着性及び流動性を向上させて、取り扱いを容易にし、網状ポリウレタンフォームに均一かつ十分量のイオン交換樹脂を接着させられることを見出した。
この目的を達成するための本発明の特徴構成は、
骨格基材にイオン交換樹脂粒子を接着させてあるイオン交換フィルタの製造方法であって、
大径連続気孔を有する網状ポリウレタンフォームからなるシート状の骨格基材に、アクリル系、ウレタン系、酢酸ビニル系のいずれかの接着剤を含浸させ、前記骨格基材表面のほぼ全域に接着剤を付着させる接着剤塗布工程、
前記大径連続気孔の孔径の2%以上50%以下の粒径を有し水分率30%以下に乾燥させたイオン交換樹脂粒子を、前記骨格基材に付着することなく、厚み方向に通過するまで、前記大径連続気孔に過剰量注入する接着工程、
前記骨格基材に接着することなく前記大径連続気孔内に保持されているイオン交換樹脂粒子を除去する余剰粒子除去工程、
を順に行う点にある。
また、前記網状ポリウレタンフォームが、4個/inch〜10個/inchの連続大気泡を有するものであり、厚さ5mm〜50mmのシート状に形成してあるとともに、
前記接着工程を、前記イオン交換樹脂粒子を前記骨格基材の厚さ方向で下方向きにに噴射供給することにより行い、
前記余剰粒子除去工程を、前記骨格基材を通過する前記イオン交換樹脂粒子を落下回収することにより行うことが望ましい。
〔作用効果〕
つまり、イオン交換樹脂は、樹脂の表面に多数の交換基を有するとともに、そのイオン交換基が水分とイオン交換することにより極性のOH基、COOH基等が生じ、各粒子間の相互作用が増大したり、その交換基が水分を保持しやすくなって、その水分が粒子間の付着力を増大させるのに寄与したりすることによって流動性が阻害されているものと考えられる。しかし、前記水分の交換量及び保持量の割合(これを水分率と称するものとする)は、直接イオン交換容量に影響するものと考えられており、通常は、イオン交換容量に悪影響を及ぼさないために、この水分率の高い状態を維持したまま取り扱うことが行われている。そのため、流動性の低いイオン交換樹脂を用いざるを得ず、取り扱い困難な状態を強いられているものである。
しかしながら、本発明者らは、イオン交換樹脂の水分率を30%以下に設定してあれば、イオン交換樹脂の性能を損なうことなく、流動性の高い状態でイオン交換樹脂の粒子を取り扱うことができ、効率よく容量の大きなイオン交換フィルタを製造することができることを見出し、本発明を完成するに至ったのである。
【0013】
このようなイオン交換フィルタを製造する場合には、大径連続気孔を有する網状ポリウレタンフォームからなるシート状の骨格基材に、アクリル系、ウレタン系、酢酸ビニル系接着剤を含浸させ、前記骨格基材表面のほぼ全域に接着剤を付着させたる接着剤塗布工程、
前記大径連続気孔の孔径の2%以上50%以下の粒径を有し水分率30%以下に乾燥させたイオン交換樹脂粒子を、前記骨格基材に付着することなく、厚み方向に通過するまで、前記大径連続気孔に過剰量注入する接着工程、
前記骨格基材に接着することなく前記大径連続気孔内に保持されているイオン交換樹脂粒子を除去する余剰粒子除去工程、
を順に行えばよく、この順に各工程を行うことで、接着剤塗布工程において接着剤を含浸させる簡単な作業だけで、骨格基材の全領域に接着剤を付着させることができ、その後イオン交換樹脂を網状ポリウレタンフォームに注入供給するだけで接着工程を行うことができながらも、この方法によれば、前記イオン交換樹脂の表面が、接着剤によって被覆されてしまうような不都合はおきにくく、イオン交換樹脂のイオン交換性能を阻害するような不都合は生じにくいうえに、イオン交換樹脂が前記骨格基材に必要以上に接着されることもおきにくく、余剰のイオン交換樹脂粒子は、後続の余剰粒子除去工程において、単純に前記網状ポリウレタンフォームの厚み方向に通過させるだけの操作で除去されることになり、イオン交換樹脂の粒子は、適切に利用されることになる。
つまり、水分率30%以下に乾燥させたイオン交換樹脂粒子は、接着性及び流動性の良好な状態で取り扱えるため、網状ポリウレタンフォームの全域に亘って、均一に供給しやすく、しかも、そのイオン交換樹脂の粒径は、大径連続気孔の孔径の2%以上50%以下に設定してあるから、網状ポリウレタンフォームに容易に侵入するとともに、網状ポリウレタンフォームにイオン交換樹脂を十分量かつ確実に接着させることができ、また、十分量イオン交換樹脂が接着したとしても大径連続気孔には、十分な空隙を残しかつイオン交換樹脂の粒子が空気と接触しやすい環境を維持することができる。そのため、通気性がよく、しかもイオン交換容量の大きなイオン交換フィルタを製造できるようになった。
また、前記イオン交換樹脂としては、フェノール系イオン交換樹脂、スチレン系イオン交換樹脂等を用いることができる。
尚、前記網状ポリウレタンフォームが、4個/inch〜10個/inchの連続大気泡を有し、厚さ5mm〜50mmのシート状に形成してあるものであれば、網状ポリウレタンフォームにイオン交換樹脂を供給する際に、前記イオン交換樹脂粒子が取り扱い容易でかつ大径連続気孔に低抵抗で侵入しやすい大きさのものを選択しやすく、前記接着工程を、前記イオン交換樹脂粒子を前記骨格基材の厚さ方向で下方向きに噴射供給することにより行えば、前記余剰粒子除去工程を、前記骨格基材を通過する前記イオン交換樹脂粒子を落下回収することができるので、イオン交換フィルタを製造する装置を構成する上で、簡単な構成を採用することができて好ましい。
つまり、シート状に形成した網状ポリウレタンフォームに対してイオン交換樹脂粒子を下方向きに噴射供給するだけで、そのイオン交換樹脂粒子が網状ポリウレタンフォームの全体に供給されやすく、しかも、余剰のイオン交換樹脂が供給側とは反対側から回収可能な構成としやすく、かつ、十分なイオン交換容量と通気性を両立させやすく、たとえば、クリーンルームの循環系に用いるフィルタとして適したものを製造することができる。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、網状ポリウレタンフォームは、大径連続気孔1を多数有し、かつその気泡同士を隔てる壁が除去され、ほぼ骨格基材2のみが残存する網目構造を有するポリウレタンフォームから構成してある。たとえば、このようなポリウレタンフォームは、以下のように製造される。
1リットルあたり20〜60gで、1.5〜3mmの気孔を有するポリウレタンフォームを製造し、その各気孔に爆発性混合ガスを注入して点火爆発させる。すると、爆発により前記気孔同士を隔てる壁が除去されて、4個/inch〜8個/inchの連続大気泡を有し、骨格基材2のみの網目状ポリウレタンフォームとなるのである(図2(a)参照)。
【0015】
この大径連続気孔1に非溶剤系接着剤(以下バインダという)を含浸させ骨格基材2のほぼ全領域にバインダが供給された状態にしたあと、余剰のバインダを除去する(接着剤塗布工程)。余剰のバインダを除去するには、前記網状ポリウレタンフォームを圧縮してバインダを絞り出せばよく、前記網状ポリウレタンフォームの復元力によって気孔が復元し、イオン交換樹脂粒子3を注入可能な形態を実現できる。
【0016】
次に、バインダ塗布済みの網目状ポリウレタンフォームにイオン交換樹脂の微粒子を供給する。この際、例えば、水平に支持されつつ水平方向に搬送されるシート状に形成した網目状ポリウレタンフォームにイオン交換樹脂の粒子を落下供給するだけで、前記イオン交換樹脂を前記網目状ポリウレタンフォームにまんべんなく供給できるとともに均一に接着させた状態にできる(接着工程)。このとき過剰量のイオン交換樹脂は、前記網目状ポリウレタンフォームの下方に自然落下するので回収再利用が好適に可能となる。
【0017】
ここで、前記イオン交換樹脂粒子3は、陽イオン交換樹脂、陰イオン交換樹脂の粒子の双方ともに用いることができ、用途に応じてその接着量、割合等を決定すれば良く、また、フェノール系、スチレン系、メタクリル系、アクリル系等種々のものが用いられ、中でもフェノール系のものが好適に用いられる。また、これらイオン交換樹脂粒子3は単独で用いても良いし混合して用いても良い。ここで、陰イオン交換樹脂は、アミン臭を伴う場合が多く、このようなアミン臭は、陽イオン交換樹脂を併用することにより解消することができるとともに、両者を併用すると、陽・陰両イオンを同時に処理できる事になって有用であると言える。
また、このようなイオン交換樹脂は、通常、水分率50%程度のものが市販され一般に流通しているが、これらのイオン交換樹脂は、流動性が低く、網目状ポリウレタンフォームに均一に提供しようとする場合に固まってしまったり、抵抗となったりするのであるが、乾燥させて水分率25%程度まで低下させて用いれば、前記イオン交換樹脂の流動性を高めながらも、前記イオン交換樹脂が炭化してしまうなどの性状変化を伴わず、物性を低下させることなく供給することができる。
【0018】
この状態でも前記網目状ポリウレタンフォームの気孔内には、未接着状態のイオン交換樹脂の粒子がひっかかった状態に残存しやすい。そこで、前記網目状ポリウレタンフォームを圧縮・復元を繰り返すなどして加振し、余剰に引っかかったイオン交換樹脂粒子3を除去する。これによりフィルタとしての通気性を確保することができる。これにより、前記骨格基材2には、イオン交換樹脂の粒子が多数接着した状態になったイオン交換フィルタが得られる(図2(b)参照)。
【0019】
また、このようにして得られたイオン交換フィルタは、前記イオン交換樹脂粒子3の粒径よりも小さな網目を有する織布等に包装した状態で用いることが好ましい。というのは、製造上接着が不完全な粒子が残存したまま、使用されるような場合が生じ得るため、このような粒子が使用時に脱落する不都合が生じる場合があり、前記織布等が、その脱落により散乱する粒子を捕捉するので使用環境への悪影響を防止できるからである。また、このような粒子の脱落を防止する上でもイオン交換フィルタは、通気部を有するケーシング内に収容した状態でフィルタ装置として用いられることが好ましく、使用者の取り扱いにより前記イオン交換フィルタを不用意に変形させて粒子の脱落を促進させてしまうような事態を回避できるので好ましい。
【0020】
【実施例】
以下に具体的な実施例を示す。
実施例1,2
実施例1は厚みが10mm、実施例2は厚みが20mmの平均1インチ当たり4〜10個、好ましくは6〜8個の大径連続気孔1を持つ網目状ポリウレタンフォームからなる骨格基材2に、予め水溶性の一定量のバインダを一様に含浸塗布し、乾燥後タックのある内に基材のセルの表面にカチオン型イオン交換樹脂を過剰に注入して接着させ、余分のイオン交換樹脂(接着されなかった分)は除去する。 具体的には、イオン交換樹脂は製造プロセス上、陽イオン交換樹脂でナトリウム塩、陰イオン交換樹脂で塩化物であるが、各々5%程度の強酸、強アルカリ溶液の過剰量で再生して水とイオン交換させ、スルホン酸基、あるいは水酸基とした後水洗し、水分率25%程度まで乾燥させたイオン交換樹脂を用いる。連続気孔型ポリマシートをアクリル系などの接着剤を含浸させ、脱液後の上述のシートに乾燥イオン交換樹脂を吹付け、イオン交換樹脂を上述のポリマー骨格に点接着させる。
尚、イオン交換樹脂の量は、ポリマーシート10リットル当たり1.0〜1.5kgを目標とすればよい。
実施例3,4
実施例3は厚みが10mm、実施例2は実施例1,2と同様の厚みが20mmの平均1インチ当たり4〜10個、好ましくは6〜8個のセルを持つ基材(ポリウレタンフォーム)に予め水溶性の一定量の接着剤を一様に含浸塗布し、乾燥後タックのある内に基材のセルの表面に陰イオン交換樹脂10に対してカチオン型イオン交換樹脂1を混合したものを過剰に注入し接着させ、余分のイオン交換樹脂(接着されなかった分)は除去する。
【0021】
尚、いずれの実施例においても使用した原材料は、以下の通りである。
【0022】
【表1】
ポリウレタンフォーム (株)ブリヂストン製エバーライトSF
バインダ コニシ CH18
バインダ セメダイン EM772X
陽イオン交換樹脂 住友化学 C−20 (強酸性)
陰イオン交換樹脂 住友化学 A−116(強塩基性)
【0023】
また、その使用量等は表2の通りである。
【0024】
【表2】
基材 0.6kg/m2 (20mm)
接着剤 0.2kg/m2 (20mm)
イオン交換樹脂量 3.0kg/m2 (20mm)
(注:10mmのものについての使用量は、20mmのものの1/2量)
───────────────────────
総イオン交換能 3.6eq/kg
NH3 通風除去率 99.0%(20mm)
【0025】
イオン交換樹脂の総イオン交換容量は、強酸性陽イオン交換樹脂にあっては2.0eq/l、強塩基性陰イオン交換樹脂では1.4eq/lを示す。これを気体処理では相対湿度に対応した水分率で使用するために、単純に乾燥重量当たりに換算すると強酸性陽イオン交換樹脂で3.6eq/kg、強塩基性陰イオン交換樹脂では2.3eq/kgとなる。
【0026】
その結果、フィルタ単位容積当たりのイオン交換樹脂密度を約150g/l充填したフィルタを作成した場合、0.5m/secで圧力損失は0.1〜0.15mmAq/10mm(フィルタ厚さ)程度であった。
また、各実施例において作成したイオン交換フィルタは、以下の性能を発揮した。
【0027】
【表3】

Figure 0003912886
【0028】
これらイオン交換フィルタの総イオン交換容量は、実施例1,2で、アンモニウムイオン(NH4 +)量換算で、9.8kg/m3 、実施例3,4で、硫酸イオン(SO4 2-)換算で17kg/m3 であることが分かり、イオン交換容量が大きくかつ圧力損失の小さなイオン交換フィルタを提供できたことが分かる。
【0029】
尚、比較として、同一仕様寸法のフィルタについて、従来の技術において述べた薬品添着活性炭を接着させた網目状ポリウレタンフォームを基材とするフィルタ、イオン交換繊維を用いたフィルタ、及び本発明のイオン交換フィルタについて性能を調べたところ、表4、5のようになった。尚、表4はアルカリ系イオンとしてアンモニア除去、表5は酸系イオンとして塩素除去についてそれぞれ比較したものである。
各製法により作成したフィルタを同一寸法フィルタ枠に充填し、フィルタ製品とした場合、表4、5からも明らかな如く、総イオン交換容量は本発明の方法がアンモニア除去に対しては2.6倍以上、また塩素除去に対しては3.0倍の性能を有し長寿化できることがわかる。
【0030】
【表4】
Figure 0003912886
【0031】
【表5】
Figure 0003912886
【0032】
先の実施例では、イオン交換樹脂として陰、陽いずれかのみを用いた例を示したが、両方を混在させて用いても良い。また、陰イオン交換樹脂に対しては、陽イオン交換樹脂を併用すれば、陰イオン交換樹脂特有の臭いを軽減させることもできる。
また、イオン交換樹脂にくわえて、他のガス吸着剤等を併用し、前記網目状ポリウレタンフォームや、バインダから雑ガスが発生したとしても、その発生する雑ガスを除去可能に構成することが可能である。
【図面の簡単な説明】
【図1】網目状ポリウレタンフォームの概略図
【図2】大径連続気孔の拡大図((a)は、イオン交換樹脂粒子接着前、(b)は、その接着後の形態を示す)
【符号の説明】
1 大径連続気孔
2 骨格基材
3 イオン交換樹脂粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for the preparation of ion exchange filters used for the purpose of removing such volatilization ions in a clean room of a semiconductor manufacturing plant.
[0002]
[Prior art]
In the semiconductor industry, the integration technology by the advanced miniaturization process has been improved. Therefore, the dust generation in the clean room is prevented and the solid fine particles are removed to cope with the high integration. However, it has been pointed out that there is a limit to the improvement of the degree of integration if it is only to prevent dust generation in the clean room, and it is not possible to achieve a sufficiently high level of integration. Attempts to remove it.
[0003]
As a technology related to the removal of volatile organic and inorganic chemical pollutants, the chemical filters that have been used in the past have been used for the purpose of adsorbing acids and alkali ions. Activated carbon impregnated with acid or alkali is used. However, in the above method, neutralization reaction of acid and alkali tries to remove volatile acid and alkali ions, and neutral salt is deposited inside and on the surface of the chemical-impregnated activated carbon. It is only physically supported on.
In addition, if the amount of neutral salt deposited is larger than the amount of the adhering chemical, the deposited material will be scattered due to physical factors such as changes in the air volume and vibration caused by slight changes in pressure loss, and provided downstream. There is a risk of causing an increase in pressure loss due to contamination of the HEPA filter, and there is a problem in adopting it in a so-called super clean room circulation system that requires a high-purity atmosphere. In addition, the adoption of this filter in an outside air introduction system or the like has a drawback that the use location is restricted from the viewpoint of being greatly affected by the relative humidity. In particular, chemical-impregnated activated carbon impregnated with acids and alkalis is extremely hygroscopic under the influence of chemicals, and there is a risk that the impregnated chemicals will flow out more than expected due to the relative humidity. Therefore, in the Japanese climate, which changes greatly from 37% RH to 95% RH throughout the year, the clean room introduction system cannot be installed at the inlet side of the external air conditioner, and the low humidity region after passing the temperature and humidity control device Can only be used. In addition, in the circulation system, when the adsorbent exhibits moisture absorption / release properties like the above-mentioned activated carbon, it tends to increase the range of humidity control in actual clean room facilities, so it is difficult to construct a stable environment. The problem of becoming
[0004]
Furthermore, orthophosphoric acid is a commonly used additive chemical in acid impregnated activated carbon, but this orthophosphoric acid has a disadvantage that it has a relatively large vapor pressure even at room temperature of 20 ° C. In other words, there is a problem that phosphoric acid is easily volatilized even at a temperature in a clean room. According to the experiments by the present inventors, in the case of the acid impregnated filter, the downstream side has a value higher by several ng / m 3 than the upstream side concentration.
Therefore, there is a current situation that such an acid impregnated filter cannot be used to establish a super clean room.
[0005]
Adsorption filters with high air permeability have been developed by adhering an adsorbent such as activated carbon to a skeleton of a reticulated polyurethane foam having large-diameter continuous pores. Such an adsorption filter is said to exhibit a high adsorption capacity by ensuring that the activated carbon densely arranged in the skeleton can come into contact with air efficiently while ensuring large air permeability due to the large-diameter continuous pores of the reticulated polyurethane foam. It has been reported to have advantages (for example, see Japanese Patent Publication No. 435201).
[0006]
Further, the chemical contaminants are removed by inserting a filter using an ion exchange resin in the circulation system of the clean room. When a filter using an ion exchange resin is used, the ion exchange resin removes the volatilized ions through bonding by ion exchange, so that it is difficult to cause inconvenience that once trapped ions are volatilized again. Attention has been focused on solving the problems found in the above-mentioned chemical-impregnated activated carbon. However, in order to use the ion exchange resin as a filter, the ion exchange resin has to be processed into a fiber shape, and thus has various problems. Specifically, in order to maintain the spinning characteristics when the ion exchanger is made into a fibrous ion exchange fiber, there is a manufacturing problem that the total ion exchange capacity of the fiber must be reduced. . (For example, a strongly acidic cation exchange fiber is ½ of the ion exchange resin.) Therefore, in order to increase the ion exchange capacity when molding the ion exchange fiber into a filter, It is necessary to form ion exchange fibers on a non-woven fabric made with high density. However, when the density of a filter medium such as a nonwoven fabric as a filter is increased to 0.1 or more, there is a current situation that pressure loss rapidly increases and cannot be used. Therefore, in terms of pressure loss, there is a limit to increasing the packing density of the ion exchange fibers, and thus a filter having a small ion exchange capacity per unit area must be used. That is, there is a tendency that the filter must have a short lifetime.
[0007]
[Problems to be solved by the invention]
In other words, there is no known one that exhibits sufficient performance as an ion exchange filter having a low pressure loss, a long life, and a low gas generation, and an improvement in the performance of such an ion exchange filter is desired.
In addition, in order to obtain the above-mentioned activated carbon, use of carbonized ion exchange resin particles has been proposed (see JP-A-168633 (hereinafter referred to as prior art)).
[0008]
However, the configuration described in the above prior art is merely a description that the activated carbon is derived from the ion exchange resin, and the ion exchange resin once carbonized has lost the ion exchange ability, so the ion removal ability is However, it is difficult to expect high-capacity ion exchange capacity, staying at the level of activated carbon.
[0009]
Accordingly, the present invention has been made in view of the above circumstances, and provides an ion exchange filter manufacturing method that has a large ion exchange capacity and can extend the life of the filter without increasing pressure loss so much. Specifically, an object of the present invention is to provide a method for producing an ion exchange filter in which a uniform and sufficient amount of an ion exchange resin is adhered to a reticulated polyurethane foam.
[0010]
[Means for Solving the Problems]
As a result of diligent research, the present inventors have made it possible to bond ion-exchange resin particles, which are rarely used by being bonded to other substrates, to the skeleton of the network polyurethane foam. It has been found that an ion exchange filter having both the air permeability of the foam and the ion removal performance of the ion exchange resin can be obtained, and has led to the present invention.
Normally, when an ion exchange resin particle is simply bonded to the skeleton of a reticulated polyurethane foam, the ion exchange resin has relatively poor fluidity, and the hydrophilicity of the resin surface causes low adhesion to other resins. It was difficult to uniformly and sufficiently supply the exchange resin over the entire polyurethane foam for adhesion. Therefore, it is difficult to produce an ion exchange filter having a large ion exchange capacity and having an ion exchange resin stably adhered thereto, and the ion exchange resin particles are uniformly adhered to obtain an ion exchange filter having a stable performance. In some cases, a large amount of labor may be required, and it is not possible to point out a manufacturing problem related to this point or to disclose or suggest a configuration for solving this problem from the prior art. .
However, the present inventors have also noted that the poor adhesion and fluidity of the ion exchange resin particles depend on the moisture content of the ion exchange groups on the surface, By adjusting the moisture content, the adhesiveness and fluidity can be improved without damaging the properties of the ion exchange resin, making it easy to handle and allowing a uniform and sufficient amount of ion exchange resin to adhere to the reticulated polyurethane foam. I found out.
The characteristic configuration of the present invention for achieving this object is as follows:
A method for producing an ion exchange filter in which ion exchange resin particles are adhered to a skeleton substrate,
A sheet-like skeletal base material composed of a reticulated polyurethane foam having large-diameter continuous pores is impregnated with an acrylic, urethane, or vinyl acetate adhesive, and the adhesive is applied almost over the entire surface of the skeleton base material. Adhesive application process to attach,
The ion-exchange resin particles having a particle size of 2% to 50% of the pore diameter of the large-diameter continuous pores and dried to a moisture content of 30% or less pass in the thickness direction without adhering to the skeleton substrate. Until the bonding step of injecting an excessive amount into the large-diameter continuous pores,
Surplus particle removal step of removing the ion exchange resin particles held in the large-diameter continuous pores without adhering to the skeleton substrate;
The point is to perform in order.
The reticulated polyurethane foam has continuous large bubbles of 4 pieces / inch to 10 pieces / inch, and is formed into a sheet shape having a thickness of 5 mm to 50 mm.
The adhering step is performed by spraying the ion exchange resin particles downward in the thickness direction of the skeleton base material,
It is desirable to perform the surplus particle removing step by dropping and collecting the ion exchange resin particles that pass through the skeleton substrate.
[Function and effect]
In other words, the ion exchange resin has a large number of exchange groups on the surface of the resin, and the ion exchange groups ion-exchange with moisture to generate polar OH groups, COOH groups, etc., and increase the interaction between the particles. It is considered that the fluidity is hindered by the fact that the exchange group easily retains moisture and contributes to increase the adhesion between the particles. However, the ratio of the water exchange amount and the retention amount (hereinafter referred to as the moisture content) is considered to directly affect the ion exchange capacity, and usually does not adversely affect the ion exchange capacity. Therefore, handling is performed while maintaining this high moisture content. For this reason, an ion exchange resin having low fluidity must be used, which makes it difficult to handle.
However, the present inventors can handle the ion exchange resin particles in a highly fluid state without impairing the performance of the ion exchange resin if the moisture content of the ion exchange resin is set to 30% or less. Thus, the inventors have found that an ion exchange filter having a large capacity can be efficiently produced, and has completed the present invention.
[0013]
When producing such an ion exchange filter, a sheet-like skeleton base material made of a network polyurethane foam having large-diameter continuous pores is impregnated with an acrylic, urethane, or vinyl acetate-based adhesive, Adhesive application process that adheres adhesive to almost the entire surface of the material,
The ion-exchange resin particles having a particle size of 2% to 50% of the pore diameter of the large-diameter continuous pores and dried to a moisture content of 30% or less pass in the thickness direction without adhering to the skeleton substrate. Until the bonding step of injecting an excessive amount into the large-diameter continuous pores,
Surplus particle removal step of removing the ion exchange resin particles held in the large-diameter continuous pores without adhering to the skeleton substrate;
By performing each step in this order, the adhesive can be attached to the entire area of the skeletal substrate with a simple operation of impregnating the adhesive in the adhesive application step, and then ion exchange is performed. Although the bonding process can be performed simply by injecting and supplying the resin to the reticulated polyurethane foam, according to this method, it is difficult to cause inconvenience that the surface of the ion exchange resin is covered with the adhesive. In addition, it is difficult to cause inconveniences that hinder the ion exchange performance of the exchange resin, and it is also difficult for the ion exchange resin to adhere to the skeleton substrate more than necessary. In the removal step, the particles will be removed by simply passing the reticulated polyurethane foam in the thickness direction. It will be properly utilized.
In other words, since the ion exchange resin particles dried to a moisture content of 30% or less can be handled with good adhesiveness and fluidity, it is easy to supply uniformly over the entire area of the reticulated polyurethane foam, and the ion exchange The particle size of the resin is set to 2% or more and 50% or less of the pore size of the large continuous pores , so that it easily penetrates into the reticulated polyurethane foam and the ion-exchange resin is adhered to the reticulated polyurethane foam with a sufficient amount and surely. In addition, even if a sufficient amount of ion exchange resin is adhered, it is possible to maintain an environment in which sufficient pores remain in the large-diameter continuous pores and the ion exchange resin particles are easily in contact with air. Therefore, an ion exchange filter having good air permeability and high ion exchange capacity can be manufactured.
Moreover, as said ion exchange resin, a phenol type ion exchange resin, a styrene type ion exchange resin, etc. can be used.
If the reticulated polyurethane foam has continuous large bubbles of 4 pieces / inch to 10 pieces / inch and is formed into a sheet shape having a thickness of 5 mm to 50 mm, the reticulated polyurethane foam is replaced with an ion exchange resin. The ion-exchange resin particles can be easily handled and have a size that easily penetrates into the large-diameter continuous pores with low resistance, and the bonding step is performed by attaching the ion-exchange resin particles to the skeleton group. If the excess particles are removed by spraying downward in the thickness direction of the material, the ion exchange resin particles that pass through the skeleton substrate can be recovered by dropping, so that an ion exchange filter is manufactured. It is preferable that a simple configuration can be adopted in constructing the apparatus.
In other words, the ion exchange resin particles can be easily supplied to the entire reticulated polyurethane foam simply by spraying and supplying the ion exchange resin particles downward to the reticulated polyurethane foam formed into a sheet, and the surplus ion exchange resin. However, it is easy to obtain a configuration that can be recovered from the side opposite to the supply side, and it is easy to achieve both sufficient ion exchange capacity and air permeability. For example, a filter suitable for a clean room circulation system can be manufactured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the reticulated polyurethane foam is composed of a polyurethane foam having a reticulated structure in which a large number of large-diameter continuous pores 1 are removed and the walls separating the bubbles are removed, and only the skeleton base material 2 remains. It is. For example, such a polyurethane foam is manufactured as follows.
A polyurethane foam having a pore size of 1.5 to 3 mm is produced at 20 to 60 g per liter, and an explosive mixed gas is injected into each pore to cause ignition and explosion. Then, the walls separating the pores are removed by the explosion, and a continuous polyurethane foam of 4 / inch to 8 / inch is formed, resulting in a reticulated polyurethane foam having only the skeleton base material 2 (FIG. 2 ( a)).
[0015]
After the large-diameter continuous pores 1 are impregnated with a non-solvent adhesive (hereinafter referred to as a binder) so that the binder is supplied to almost the entire region of the skeleton base material 2, the excess binder is removed (adhesive application step). ). In order to remove the excess binder, it is only necessary to compress the reticulated polyurethane foam and squeeze out the binder. The pores are restored by the restoring force of the reticulated polyurethane foam, and a form in which the ion exchange resin particles 3 can be injected can be realized. .
[0016]
Next, fine particles of the ion exchange resin are supplied to the network-like polyurethane foam coated with the binder. At this time, for example, the ion-exchange resin is evenly distributed to the mesh-like polyurethane foam by simply dropping and supplying the ion-exchange resin particles to the mesh-like polyurethane foam that is horizontally supported and transported in the horizontal direction. It can be supplied and evenly bonded (bonding process). At this time, an excessive amount of the ion exchange resin naturally falls below the mesh-like polyurethane foam, so that it can be recovered and reused suitably.
[0017]
Here, the ion exchange resin particles 3 can be used both as cation exchange resin particles and anion exchange resin particles, and the adhesion amount, ratio, etc. of the ion exchange resin particles 3 may be determined according to the application. Various types such as styrene-based, methacrylic-based, and acrylic-based are used, and among them, phenol-based ones are preferably used. These ion exchange resin particles 3 may be used alone or in combination. Here, the anion exchange resin often has an amine odor, and such an amine odor can be eliminated by using a cation exchange resin together. It can be said that it can be processed at the same time.
Also, such ion exchange resins are usually marketed and generally distributed with a moisture content of about 50%. However, these ion exchange resins have low fluidity and should be provided uniformly to reticulated polyurethane foam. When it is used, it is hardened or becomes resistant, but if it is used after being dried and reduced to a moisture content of about 25%, the ion exchange resin is improved while improving the fluidity of the ion exchange resin. It can be supplied without deteriorating physical properties without causing property changes such as carbonization.
[0018]
Even in this state, unadhered ion exchange resin particles are likely to remain in the pores of the network polyurethane foam. Therefore, the mesh-like polyurethane foam is vibrated by repeatedly compressing and restoring it, and the excessively caught ion exchange resin particles 3 are removed. Thereby, the air permeability as a filter is securable. Thereby, an ion exchange filter in which a large number of ion exchange resin particles are adhered is obtained on the skeleton base material 2 (see FIG. 2B).
[0019]
The ion exchange filter thus obtained is preferably used in a state of being wrapped in a woven cloth having a mesh smaller than the particle size of the ion exchange resin particles 3. Because, in some cases, particles that are imperfectly bonded due to production may remain used, there may be a disadvantage that such particles may fall off during use. This is because particles that are scattered due to the drop-off are captured, so that adverse effects on the use environment can be prevented. Also, in order to prevent such particles from falling off, the ion exchange filter is preferably used as a filter device in a state of being accommodated in a casing having a ventilation portion, and the ion exchange filter is not prepared by handling of the user. This is preferable because it is possible to avoid such a situation that the particles are deformed to promote the drop-off of the particles.
[0020]
【Example】
Specific examples are shown below.
Examples 1 and 2
Example 1 has a thickness of 10 mm, and Example 2 has an average thickness of 20 to 10 mm per inch, preferably 6 to 8, and preferably a skeleton base material 2 made of a network-like polyurethane foam having large-diameter continuous pores 1 of 6 to 8. Apply a certain amount of a water-soluble binder uniformly in advance, and after drying, inject the cation-type ion exchange resin excessively onto the surface of the base cell and attach it to the substrate cell. Remove the part that was not adhered. Specifically, the ion exchange resin is a sodium salt as a cation exchange resin and a chloride as an anion exchange resin in the manufacturing process, but it is regenerated with an excess amount of strong acid and strong alkali solutions of about 5% each. An ion exchange resin that is ion-exchanged with sulfonic acid groups or hydroxyl groups, washed with water, and dried to a moisture content of about 25% is used. The continuous pore type polymer sheet is impregnated with an adhesive such as acrylic, and the dried ion exchange resin is sprayed on the above-mentioned sheet after liquid removal, and the ion exchange resin is point-bonded to the above polymer skeleton.
In addition, what is necessary is just to make the quantity of an ion exchange resin into 1.0-1.5 kg per 10 liters of polymer sheets.
Examples 3 and 4
Example 3 has a thickness of 10 mm, and Example 2 has a similar thickness to Examples 1 and 2 on a substrate (polyurethane foam) having an average thickness of 4 to 10 cells, preferably 6 to 8 cells per inch. A water-soluble fixed amount of adhesive is uniformly impregnated in advance, and after drying, the surface of the base cell is mixed with the cation-type ion exchange resin 1 with respect to the anion-exchange resin 10 in the presence of tack. Excess injection and adhesion are performed, and excess ion exchange resin (the amount not adhered) is removed.
[0021]
The raw materials used in all the examples are as follows.
[0022]
[Table 1]
Polyurethane foam Everlight SF manufactured by Bridgestone Corporation
Binder Konishi CH18
Binder Cemedine EM772X
Cation exchange resin Sumitomo Chemical C-20 (strongly acidic)
Anion exchange resin Sumitomo Chemical A-116 (strongly basic)
[0023]
In addition, the amount used is as shown in Table 2.
[0024]
[Table 2]
Base material 0.6kg / m 2 (20mm)
Adhesive 0.2kg / m 2 (20mm)
Ion exchange resin amount 3.0kg / m 2 (20mm)
(Note: The amount used for 10 mm is 1/2 of that for 20 mm)
───────────────────────
Total ion exchange capacity 3.6 eq / kg
NH3 ventilation removal rate 99.0% (20mm)
[0025]
The total ion exchange capacity of the ion exchange resin is 2.0 eq / l for the strongly acidic cation exchange resin and 1.4 eq / l for the strongly basic anion exchange resin. Since this is used at a moisture content corresponding to the relative humidity in the gas treatment, it is 3.6 eq / kg for a strongly acidic cation exchange resin and 2.3 eq for a strongly basic anion exchange resin when simply converted to dry weight. / Kg.
[0026]
As a result, when a filter filled with about 150 g / l of ion exchange resin density per unit volume of the filter is prepared, the pressure loss is about 0.1 to 0.15 mmAq / 10 mm (filter thickness) at 0.5 m / sec. there were.
Moreover, the ion exchange filter created in each Example demonstrated the following performance.
[0027]
[Table 3]
Figure 0003912886
[0028]
The total ion exchange capacities of these ion exchange filters are 9.8 kg / m 3 in Examples 1 and 2 in terms of ammonium ion (NH 4 + ), and sulfate ions (SO 4 2− in Examples 3 and 4). ) 17 kg / m 3 in terms of conversion, indicating that an ion exchange filter having a large ion exchange capacity and a small pressure loss could be provided.
[0029]
For comparison, for filters of the same specification size, a filter based on a mesh-like polyurethane foam bonded with chemical-added activated carbon described in the prior art, a filter using ion exchange fibers, and the ion exchange of the present invention When the performance of the filter was examined, it was as shown in Tables 4 and 5. Table 4 compares ammonia removal as alkaline ions, and Table 5 compares chlorine removal as acid ions.
When the filter produced by each manufacturing method is filled in a filter frame of the same size to obtain a filter product, as is clear from Tables 4 and 5, the total ion exchange capacity is 2.6 for the removal of ammonia by the method of the present invention. It can be seen that it has a performance of 3.0 times or more for chlorine removal and a long life.
[0030]
[Table 4]
Figure 0003912886
[0031]
[Table 5]
Figure 0003912886
[0032]
In the previous embodiment, an example was shown in which either yin or yang was used as the ion exchange resin, but both may be used in combination. In addition, when an anion exchange resin is used in combination with a cation exchange resin, the odor peculiar to the anion exchange resin can be reduced.
In addition to the ion exchange resin, other gas adsorbents can be used in combination, and even if miscellaneous gas is generated from the mesh polyurethane foam or binder, it can be configured to remove the generated miscellaneous gas. It is.
[Brief description of the drawings]
FIG. 1 is a schematic view of a reticulated polyurethane foam. FIG. 2 is an enlarged view of large-diameter continuous pores ((a) is before adhesion of ion exchange resin particles, and (b) is a form after adhesion).
[Explanation of symbols]
1 Large-diameter continuous pores 2 Skeletal substrate 3 Ion exchange resin particles

Claims (2)

骨格基材にイオン交換樹脂粒子を接着させてあるイオン交換フィルタの製造方法であって、
大径連続気孔を有する網状ポリウレタンフォームからなるシート状の骨格基材に、アクリル系、ウレタン系、酢酸ビニル系のいずれかの接着剤を含浸させ、前記骨格基材表面のほぼ全域に接着剤を付着させる接着剤塗布工程、
前記大径連続気孔の孔径の2%以上50%以下の粒径を有し水分率30%以下に乾燥させたイオン交換樹脂粒子を、前記骨格基材に付着することなく、厚み方向に通過するまで、前記大径連続気孔に過剰量注入する接着工程、
前記骨格基材に接着することなく前記大径連続気孔内に保持されているイオン交換樹脂粒子を除去する余剰粒子除去工程、
を順に行うイオン交換フィルタの製造方法。
A method for producing an ion exchange filter in which ion exchange resin particles are adhered to a skeleton substrate,
A sheet-like skeletal base material composed of a reticulated polyurethane foam having large-diameter continuous pores is impregnated with an acrylic, urethane, or vinyl acetate adhesive, and the adhesive is applied almost over the entire surface of the skeleton base material. Adhesive application process to attach,
The ion-exchange resin particles having a particle size of 2% to 50% of the pore diameter of the large-diameter continuous pores and dried to a moisture content of 30% or less pass in the thickness direction without adhering to the skeleton substrate. Until the bonding step of injecting an excessive amount into the large-diameter continuous pores,
Surplus particle removal step of removing the ion exchange resin particles held in the large-diameter continuous pores without adhering to the skeleton substrate;
The manufacturing method of the ion exchange filter which performs in order.
前記網状ポリウレタンフォームが、4個/inch〜10個/inchの連続大気泡を有するものであり、厚さ5mm〜50mmのシート状に形成してあるとともに、
前記接着工程を、前記イオン交換樹脂粒子を前記骨格基材の厚さ方向で下方向きに噴射供給することにより行い、
前記余剰粒子除去工程を、前記骨格基材を通過する前記イオン交換樹脂粒子を落下回収することにより行う請求項1に記載のイオン交換フィルタの製造方法。
The reticulated polyurethane foam has continuous large bubbles of 4 pieces / inch to 10 pieces / inch, and is formed into a sheet shape having a thickness of 5 mm to 50 mm.
The adhesion step is performed by supplying the ion exchange resin particles by spraying downward in the thickness direction of the skeleton base material,
The manufacturing method of the ion exchange filter of Claim 1 which performs the said excess particle removal process by carrying out the fall collection | recovery of the said ion exchange resin particle which passes the said frame | skeleton base material.
JP03743998A 1998-02-19 1998-02-19 Manufacturing method of ion exchange filter Expired - Fee Related JP3912886B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03743998A JP3912886B2 (en) 1998-02-19 1998-02-19 Manufacturing method of ion exchange filter
TW088102012A TW469161B (en) 1998-02-19 1999-02-09 Ion-exchange filter, method of manufacturing the filter and the filter apparatus using the filter
KR1019990005517A KR100578512B1 (en) 1998-02-19 1999-02-19 Ion exchange filter, method of manufacturing the filter, and filter apparatus
GB9918901A GB2352987A (en) 1998-02-19 1999-08-12 Ion-exchange filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP03743998A JP3912886B2 (en) 1998-02-19 1998-02-19 Manufacturing method of ion exchange filter
GB9918901A GB2352987A (en) 1998-02-19 1999-08-12 Ion-exchange filter

Publications (2)

Publication Number Publication Date
JPH11226338A JPH11226338A (en) 1999-08-24
JP3912886B2 true JP3912886B2 (en) 2007-05-09

Family

ID=26315840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03743998A Expired - Fee Related JP3912886B2 (en) 1998-02-19 1998-02-19 Manufacturing method of ion exchange filter

Country Status (2)

Country Link
JP (1) JP3912886B2 (en)
GB (1) GB2352987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347988B1 (en) * 2012-02-27 2014-01-07 (주)후산 A Filter Media Using Resin Powder and The Manufacturing Method Thereof
KR101351292B1 (en) * 2012-02-27 2014-01-14 (주)후산 Filter medium for ion exchange filter and a method for manufacturing the same
KR101417674B1 (en) 2013-08-26 2014-07-09 (주)후산 The Manufacturing Method Of A Filter Media Using Resin Powder

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3912886B2 (en) * 1998-02-19 2007-05-09 株式会社ダン・タクマ Manufacturing method of ion exchange filter
JP2001160408A (en) * 1999-12-01 2001-06-12 Asahi Glass Co Ltd Solid polymer electrolyte fuel cell
JP2004321930A (en) * 2003-04-24 2004-11-18 Japan Organo Co Ltd Chemical filter
DE102006033541A1 (en) * 2006-07-20 2008-01-24 Artemis Control Ag Adsorptive filter material
DE102007027026A1 (en) * 2007-06-08 2008-12-11 BLüCHER GMBH Mat-shaped foam material for air purification and / or air filtration
US10478517B2 (en) 2008-09-19 2019-11-19 Fipak Research And Development Company Method and apparatus for purging unwanted substances from air
JP2010099615A (en) * 2008-10-24 2010-05-06 Toyo Tire & Rubber Co Ltd Method of manufacturing ion exchange filter
JP5446712B2 (en) * 2009-10-20 2014-03-19 トヨタ紡織株式会社 Ion exchange resin and method for maintaining shape of ion exchange resin
JP5870394B2 (en) * 2010-07-02 2016-03-01 文男 前川 Liquid composition mainly composed of powder ion exchange resin and support containing powder ion exchange resin
JP2015516184A (en) * 2012-03-09 2015-06-11 フィパック・リサーチ・アンド・ディベロップメント・カンパニー Method and apparatus for removing unwanted substances from air
KR101885246B1 (en) 2012-04-06 2018-08-03 삼성전자주식회사 Ion exchanger, method of manufacturing same, and ion exchange filter device and electrodeionization device including the same
KR101179475B1 (en) * 2012-04-30 2012-09-07 주식회사 에코프로 Device for manufacturing chemical filter and manufacturing method thereof
JP7010452B2 (en) 2016-03-14 2022-02-10 スリーエム イノベイティブ プロパティズ カンパニー Air filter containing polymer sorbent for reactive gas
US10960341B2 (en) 2016-03-14 2021-03-30 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes
US11305224B2 (en) 2017-04-18 2022-04-19 3M Innovative Properties Company Air filter media with post-pleat-deposited sorbent particles
WO2018229604A2 (en) 2017-06-16 2018-12-20 3M Innovative Properties Company Air filters comprising polymeric sorbents for aldehydes

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594158A (en) * 1981-09-03 1986-06-10 Rohm And Haas Filter aid materials bearing anion exchange resins
JPS6014909A (en) * 1983-07-06 1985-01-25 Bridgestone Corp Adsorbing material
US4680040A (en) * 1986-01-17 1987-07-14 Xerox Corporation Multipurpose filtering material
DE3719418C1 (en) * 1987-06-11 1988-07-21 Sandler Helmut Helsa Werke Process for the production of a filter material
DE3813563C2 (en) * 1988-04-22 2002-01-17 Mhb Filtration Gmbh & Co Kg Adsorption filter with high air permeability
JPH02186244A (en) * 1989-01-12 1990-07-20 Sumitomo Heavy Ind Ltd Measurement of water held for amine based ion exchange resin
JPH0435201A (en) * 1990-05-25 1992-02-06 Yokowo Co Ltd Polarized wave selecting receiver
JPH07136448A (en) * 1993-11-19 1995-05-30 Fujitsu Ltd Exhaust cleaning mechanism
SE509743C2 (en) * 1994-06-17 1999-03-01 Bluecher Hasso Von Adsorptionsfilterskikt
JPH08168628A (en) * 1994-11-29 1996-07-02 Piyuaretsukusu:Kk Polyfunctional air filter and air circulating clean device having filter incorporated therein
JPH08243153A (en) * 1995-03-09 1996-09-24 Midori Anzen Co Ltd Deodorant for refrigerated stocker and deodorizing method using the same
JP3594043B2 (en) * 1995-08-24 2004-11-24 株式会社ブリヂストン Deodorizing filter and method for producing the same
AU725939B2 (en) * 1996-07-30 2000-10-26 3M Innovative Properties Company Filter sheet and process for purifying photoresist composition employing the filter sheet
ES2174294T3 (en) * 1996-10-15 2002-11-01 Carrier Corp PROCEDURE FOR MANUFACTURING A FILTER MATERIAL.
JP3912886B2 (en) * 1998-02-19 2007-05-09 株式会社ダン・タクマ Manufacturing method of ion exchange filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347988B1 (en) * 2012-02-27 2014-01-07 (주)후산 A Filter Media Using Resin Powder and The Manufacturing Method Thereof
KR101351292B1 (en) * 2012-02-27 2014-01-14 (주)후산 Filter medium for ion exchange filter and a method for manufacturing the same
KR101417674B1 (en) 2013-08-26 2014-07-09 (주)후산 The Manufacturing Method Of A Filter Media Using Resin Powder

Also Published As

Publication number Publication date
GB2352987A (en) 2001-02-14
JPH11226338A (en) 1999-08-24
GB9918901D0 (en) 1999-10-13

Similar Documents

Publication Publication Date Title
JP3912886B2 (en) Manufacturing method of ion exchange filter
JP2002506389A (en) Filter for obtaining clean air
KR100698555B1 (en) Chemical adsorption filter using 3 dimentional fiber structure as media, method of preparing the same and filter apparatus having the same
EP0800863A1 (en) Adsorbent article with dust collecting function
JP2003001028A (en) Filter
CN1894017A (en) Air filter for removing particulate matter and volatile organic compounds
CN100541897C (en) Fuel cell purification method and the device and the fuel cell of air
US20050212174A1 (en) Method for manufacturing chemical filter
KR100578512B1 (en) Ion exchange filter, method of manufacturing the filter, and filter apparatus
CN111229015A (en) Modified chemical fiber material for impregnation, preparation method and chemical filter
KR101061566B1 (en) Manufacturing method of porous deodorization filter
JPH0824534A (en) Regeneratable air purifying ion exchange filter unit and air purifying method using the same
JP2007237037A (en) Chemical filter
KR101190628B1 (en) Method for preparation of porous wet air filter
JPH10230117A (en) Chemical filter device and its control method
CN211913131U (en) Chemical filter for dipping modified chemical fiber material
WO1995019828A1 (en) Air filtering
JP4733940B2 (en) Anion gas adsorption filter and anion gas adsorption filter structure
WO2002005927A1 (en) Deodorizing filter material
JPH04108511A (en) Air cleaning filter
JP2013022583A (en) Air filter medium
KR101061567B1 (en) Porous deodorization filter manufacturing device
JPH10128040A (en) Corrugate lamination type air filter
JP2002058926A (en) Deodorizing filter medium
JP2001300222A (en) Air cleaning filter and air cleaning filter member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees