JP6922165B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP6922165B2
JP6922165B2 JP2016138390A JP2016138390A JP6922165B2 JP 6922165 B2 JP6922165 B2 JP 6922165B2 JP 2016138390 A JP2016138390 A JP 2016138390A JP 2016138390 A JP2016138390 A JP 2016138390A JP 6922165 B2 JP6922165 B2 JP 6922165B2
Authority
JP
Japan
Prior art keywords
water
adsorption
adsorption element
treated
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016138390A
Other languages
Japanese (ja)
Other versions
JP2018008209A (en
Inventor
大樹 河野
大樹 河野
繁 板山
繁 板山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016138390A priority Critical patent/JP6922165B2/en
Publication of JP2018008209A publication Critical patent/JP2018008209A/en
Application granted granted Critical
Publication of JP6922165B2 publication Critical patent/JP6922165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、処理対象の水(被処理水)からカビ臭物質を除去する水処理装置に関し、特に河川水や地下水などの原水を清浄化した水道水などの浄水からカビ臭物質を除去する水処理装置に関する。 The present invention relates to a water treatment device that removes a musty odor substance from water to be treated (water to be treated), and particularly water that removes a musty odor substance from purified water such as tap water obtained by purifying raw water such as river water or groundwater. Regarding processing equipment.

浄水場において、水道水の水質基準以下までカビ臭物質を除去する手段として、粒状活性炭を使用した吸着式水処理装置が従来装置として一般的に知られている(例えば特許文献1参照)。これは、粒状活性炭が充填された充填層へ被処理水を通水することで、被処理水中のカビ臭物質を吸着除去するシンプルな水処理装置である。 In a water purification plant, an adsorption type water treatment device using granular activated carbon is generally known as a conventional device as a means for removing a musty odor substance to a level equal to or lower than the water quality standard of tap water (see, for example, Patent Document 1). This is a simple water treatment device that adsorbs and removes musty odor substances in the water to be treated by passing water to be treated through a packed layer filled with granular activated carbon.

しかし、粒状活性炭はマクロポア、メソポア、ミクロポアの順に細孔を形成することが知られており、カビ臭物質の吸着サイトとなるミクロポアまでの拡散が小さく、また形状も粒状なので浄水との接触効率が低いため、吸着速度が遅く、被処理水がショートパスしやすいなどの問題があった。加えて、様々な細孔径をもつ吸着材なので、カビ臭物質の吸着に機能するミクロポアの割合が小さく、単位重量当りに有効に機能するカビ臭物質の吸着量(有効吸着量)が小さいという問題もあった。そのため、従来装置への粒状活性炭の充填量や装置が大規模になるので、粒状活性炭の交換費や設備コストがかかる問題があった。 However, it is known that granular activated carbon forms pores in the order of macropores, mesopores, and micropores, and the diffusion to the micropores, which are adsorption sites for musty odor substances, is small, and the shape is granular, so the contact efficiency with purified water is high. Since it is low, there are problems such as slow adsorption rate and easy short pass of water to be treated. In addition, since the adsorbent has various pore diameters, the proportion of micropores that function to adsorb mold odor substances is small, and the amount of mold odor substances that effectively function per unit weight (effective adsorption amount) is small. There was also. Therefore, since the filling amount of the granular activated carbon in the conventional apparatus and the apparatus become large-scale, there is a problem that the replacement cost of the granular activated carbon and the equipment cost are required.

また、従来装置は被処理水を一定期間通水し、上記のカビ臭物質が破過するなどの吸着能が得られなくなった場合に、新品へ交換もしくは、一旦取り出して再生するなどして、カビ臭物質除去能を維持することが知られている。しかし、上述の通り、従来装置のカビ臭物質の有効吸着量は小さいため、交換や再生頻度を少なくするために、大量の粒状活性炭を充填させ、長期間吸着(被処理水の通水)を行う処理形式が一般的である。この長期間吸着することによって、粒状活性炭への微生物の繁殖や固形物の付着などによって、充填層の目詰まりが生じるため、定期的な清掃や逆洗浄が必要になるという問題があった。 In addition, the conventional device allows the water to be treated to pass through for a certain period of time, and when the above-mentioned musty odor substance breaks out and the adsorption ability cannot be obtained, it is replaced with a new one or once taken out and regenerated. It is known to maintain the ability to remove musty odor substances. However, as described above, since the effective adsorption amount of the musty odor substance of the conventional device is small, in order to reduce the frequency of replacement and regeneration, a large amount of granular activated carbon is filled and adsorbed for a long period of time (water flow to be treated). The processing format to be performed is common. Due to this long-term adsorption, clogging of the packed bed occurs due to the propagation of microorganisms on the granular activated carbon and the adhesion of solid substances, so that there is a problem that regular cleaning and backwashing are required.

特開平7−171385号公報Japanese Unexamined Patent Publication No. 7-171385

粒状活性炭の粒径を細かくしたり、充填層の厚みを厚く(通水距離を長く)したりして、被処理水と吸着材の接触効率を高めて、一定の吸着性能へ改善することも可能であるが、通水圧損係数を大きくなるので、上述のような目詰まりがさらに起きやすくなる。そのため、設備として運転できないため、このような方策を従来装置では採用することができない。 It is also possible to improve the contact efficiency between the water to be treated and the adsorbent and improve the adsorption performance to a certain level by making the particle size of the granular activated carbon finer or increasing the thickness of the packed bed (longer water flow distance). Although it is possible, since the water flow pressure loss coefficient is increased, the above-mentioned clogging is more likely to occur. Therefore, since it cannot be operated as equipment, such a measure cannot be adopted by the conventional device.

そこで、本発明は上記の問題を解決するためになされ、その目的は、通水圧損係数が小さく、高速で被処理水を通水してもカビ臭物質の吸着性能が得られる吸着材を使用し、かつ、基本的に吸着材の目詰まりと交換のない水処理装置を提供することである。 Therefore, the present invention has been made to solve the above problems, and an object thereof is to use an adsorbent which has a small water flow pressure loss coefficient and can obtain an adsorbent performance of a musty odor substance even when water to be treated is passed at high speed. However, it is basically to provide a water treatment device that does not clog the adsorbent and replace it.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の構成からなる。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have arrived at the present invention. That is, the present invention has the following configuration.

1.通水圧損係数が200mmAq・s/cm以下でありかつ細孔径30Å以下の細孔容積が全細孔容積の95%以上である吸着素子に被処理水を通流させ、前記吸着素子に被処理水中の少なくともカビ臭物質を吸着させて処理水を排出する吸着工程と、前記吸着素子にガスを通気させて、前記吸着素子に付着した付着水を除去する脱水工程と、前記吸着素子に加熱ガスを通気させて、前記吸着素子に吸着された少なくともカビ臭物質を脱着する脱着工程と、を順に繰り返し実行することを特徴とする水処理装置。
2.吸着素子を収容した処理槽と、前記処理槽に接続され、前記処理槽内の前記吸着素子に被処理水を通流させて前記吸着素子に被処理水中の少なくともカビ臭物質を吸着させ、処理水を排出する水通流部と、前記処理槽に接続され、前記処理槽内の前記吸着素子にガスを通気させて前記吸着素子に付着した付着水を除去するガス通気部と、前記処理槽に接続され、前記処理槽内の前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された少なくともカビ臭物質を脱着する加熱ガス通気部と、を備え、前記吸着素子は、通水圧損係数が200mmAq・s/cm以下でありかつ細孔径30Å以下の細孔容積が全細孔容積の95%以上であることを特徴とする水処理装置。
3.前記吸着素子から除去した付着水を、再度、前記吸着素子に通流させるための返送ルートを備えることを特徴とする前記1又は2に記載の水処理装置。
4.前記吸着素子に対して、加熱ガスを通気させる通気方向と、被処理水を通流させる通流方向とが逆であることを特徴とする前記1から3のいずれか1つに記載の水処理装置。
5.前記吸着素子は、活性炭素繊維の構造体を含む請求項1から4のいずれか1項に記載の水処理装置。
6.前記活性炭素繊維の構造体は、繊維径が17〜40μmの活性炭素繊維で構成された不織布である前記5に記載の水処理装置。
7.前記活性炭素繊維の構造体は、活性炭素繊維からなる直径が100〜600μmの繊維束で構成された織物もしくは編物である前記5に記載の水処理装置。
8.前記吸着素子に吸着されるカビ臭物質に、ジオスミン及び/又は2−メチルイソボルネオールを含むことを特徴とする前記1から6のいずれか1つに記載の水処理装置。
1. 1. Water to be treated is passed through an adsorption element having a water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less and a pore volume of 30 Å or less of which is 95% or more of the total pore volume, and the adsorption element is covered. An adsorption step of adsorbing at least a musty odor substance in the treated water to discharge the treated water, a dehydration step of aerating gas through the adsorption element to remove the adsorbed water adhering to the adsorption element, and heating the adsorption element. A water treatment apparatus characterized in that a desorption step of ventilating a gas to desorb at least a musty odor substance adsorbed on the adsorption element is repeatedly performed in this order.
2. A treatment tank accommodating an adsorption element and a treatment tank connected to the treatment tank, the water to be treated is allowed to flow through the adsorption element in the treatment tank, and at least a musty odor substance in the water to be treated is adsorbed by the adsorption element for treatment. A water passage unit for discharging water, a gas ventilation unit connected to the treatment tank, and a gas ventilation unit for ventilating gas through the adsorption element in the treatment tank to remove the adsorbed water adhering to the adsorption element, and the treatment tank. The adsorbent element is provided with a heated gas aeration unit for desorbing at least a musty odor substance adsorbed on the adsorbent element by aerating the adsorbent element in the processing tank. A water treatment apparatus having a coefficient of 200 mm Aq · s / cm 2 or less and a pore volume of 30 Å or less having a pore volume of 95% or more of the total pore volume.
3. 3. The water treatment apparatus according to 1 or 2, further comprising a return route for allowing the adsorbed water removed from the adsorption element to flow through the adsorption element again.
4. The water treatment according to any one of 1 to 3 above, wherein the ventilation direction in which the heating gas is ventilated and the flow direction in which the water to be treated is allowed to flow through the adsorption element are opposite to each other. Device.
5. The water treatment apparatus according to any one of claims 1 to 4, wherein the adsorption element includes a structure of activated carbon fibers.
6. The structure of the active carbon fibers, water treatment apparatus according to 5 is a nonwoven fiber diameter composed of activated carbon fibers 17~40Myuemu.
7. The structure of the active carbon fibers, water treatment apparatus according to the 5 diameter made of activated carbon fiber is woven or knitted fabric composed of fiber bundles of 100~600Myuemu.
8. The water treatment apparatus according to any one of 1 to 6, wherein the musty odor substance adsorbed on the adsorption element contains geosmin and / or 2-methylisoborneol.

本発明の水処理装置によれば、吸着素子は、処理対象の水である被処理水中のカビ臭の原因であるカビ臭物質を効果的に吸着可能な細孔径30Å以下の細孔容積が全細孔容積の95%以上であるから、被処理水に含まれるカビ臭物質を効果的に除去することができる。加えて、吸着素子は、通水圧損係数が200mmAq・s/cm以下と非常に小さくて、吸着工程において吸着素子を被処理水が通流しやすいので、水道水などの多量の水を吸着処理により清浄化することができる。さらに、吸着素子が活性炭素繊維の構造体であると、被処理水との接触効率が高く、カビ臭物質の吸着サイトである細孔径30Å以下の細孔容積の割合が大きいため、吸着速度が速く、高速で通水しても十分なカビ臭物質の除去性能を得ることができる。 According to the water treatment apparatus of the present invention, the adsorption element has a total pore volume of 30 Å or less that can effectively adsorb a musty odor substance that causes a musty odor in the water to be treated. Since it is 95% or more of the pore volume, the musty odor substance contained in the water to be treated can be effectively removed. In addition, the adsorption element has a very small water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less, and the water to be treated easily flows through the adsorption element in the adsorption process, so that a large amount of water such as tap water is adsorbed. Can be cleaned by. Further, when the adsorption element is a structure of activated carbon fibers, the contact efficiency with the water to be treated is high, and the ratio of the pore volume having a pore diameter of 30 Å or less, which is the adsorption site of the musty odor substance, is large, so that the adsorption rate is high. Sufficient mold odor substance removal performance can be obtained even when water is passed at high speed.

本発明の一実施形態の水処理装置の概略構成図である。It is a schematic block diagram of the water treatment apparatus of one Embodiment of this invention. 吸着素子に用いられる編み物の組織構造の例を示す図である。It is a figure which shows the example of the structure structure of the knitting used for the adsorption element. 吸着素子に用いられる織物の組織構造の例を示す図である。It is a figure which shows the example of the tissue structure of the woven fabric used for the adsorption element.

本発明に係る水処理装置は、通水圧損係数が200mmAq・s/cm以下でありかつ細孔径30Å以下の細孔容積が全細孔容積の95%以上である吸着素子に処理対象の水である被処理水を通流させ、吸着素子に被処理水中の少なくともカビ臭物質(例えば2−メチルイソボルネオール(以下、「2‐MIB」とも言う。))を吸着させて処理水を排出する吸着工程と、吸着素子にガスを通気させて、吸着素子に付着した付着水を除去する脱水工程と、吸着素子に加熱ガスを通気させて、吸着素子に吸着された少なくともカビ臭物質を脱着する脱着工程と、を順に繰り返し実行する構成のものである。 In the water treatment apparatus according to the present invention, water to be treated on an adsorption element having a water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less and a pore volume of 30 Å or less is 95% or more of the total pore volume. The treated water is allowed to flow through, and at least a musty odor substance (for example, 2-methylisoborneol (hereinafter, also referred to as “2-MIB”)) in the treated water is adsorbed on the adsorption element to discharge the treated water. The adsorption step, the dehydration step of ventilating the adsorption element with gas to remove the adhering water adhering to the adsorption element, and the adsorption step of ventilating the heating gas through the adsorption element to desorb at least the musty odor substance adsorbed on the adsorption element. The structure is such that the desorption step and the desorption step are repeatedly executed in order.

また、本発明に係る水処理装置は、以下の構成のものと言うこともできる。つまり、水処理装置は、吸着素子を収容した処理槽と、前記処理槽に接続され、前記処理槽内の前記吸着素子に被処理水を通流させて前記吸着素子に被処理水中の少なくともカビ臭物質(例えば2−メチルイソボルネオール)を吸着させ、処理水を排出する水通流部と、前記処理槽に接続され、前記処理槽内の前記吸着素子にガスを通気させて前記吸着素子に付着した付着水を除去するガス通気部と、前記処理槽に接続され、前記処理槽内の前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された少なくともカビ臭物質を脱着する加熱ガス通気部と、を備えた構成のものである。 Further, the water treatment apparatus according to the present invention can be said to have the following configuration. That is, the water treatment device is connected to the treatment tank accommodating the adsorption element and the treatment tank, and the water to be treated is allowed to flow through the adsorption element in the treatment tank so that the adsorption element is at least moldy in the water to be treated. A water passage unit that adsorbs an odorous substance (for example, 2-methylisoborneol) and discharges treated water is connected to the adsorbent, and gas is ventilated through the adsorbent in the adsorbent to the adsorbent. A gas vent that removes adhering water and a heating gas that is connected to the treatment tank and ventilates the heating gas through the adsorption element in the treatment tank to desorb at least a musty odor substance adsorbed on the adsorption element. It is configured to have a ventilation part.

本発明に係る水処理装置は、上記構成により、吸着素子の交換をする必要がなく、処理対象の被処理水に含まれるカビ臭の原因物質である2‐MIBを効果的に除去する水処理を連続的に行うことができる。 According to the above configuration, the water treatment apparatus according to the present invention does not require replacement of the adsorption element, and effectively removes 2-MIB, which is a causative substance of musty odor, contained in the water to be treated. Can be performed continuously.

以下、本発明に係る水処理装置の実施形態について図面を参照しつつ詳細に説明する。図1は、本発明に係る水処理装置の一実施形態の概略構成を示している。本実施形態の水処理装置100は、吸着素子11,12をそれぞれ収容した複数の処理槽10,20と、各処理槽10,20内に被処理水を導入するための被処理水導入ラインL1(水通流部)と、各処理槽10,20内にガスを供給するためのガス供給ラインL5(ガス通気部)と、各処理槽10,20内に加熱ガスを供給するための加熱ガス供給ラインL3(加熱ガス通気部)と、を備えている。また、本実施形態の水処理装置100は、各処理槽10,20内の吸着素子11,12により清浄化された後の水である処理水を排出するための処理水導出ラインL2(水通流部)と、各処理槽10,20内に供給されたガス及び加熱ガスを排出するためのガス排出ラインL4と、ガス排出ラインL4から分岐して被処理水導入ラインL1に還流する循環ラインL6(返送ルート)と、をさらに備えている。 Hereinafter, embodiments of the water treatment apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment of a water treatment device according to the present invention. The water treatment device 100 of the present embodiment includes a plurality of treatment tanks 10 and 20 accommodating the adsorption elements 11 and 12, respectively, and a water treatment water introduction line L1 for introducing water to be treated into each of the treatment tanks 10 and 20. (Water flow section), gas supply line L5 (gas ventilation section) for supplying gas into each of the treatment tanks 10 and 20, and heating gas for supplying heating gas into each of the treatment tanks 10 and 20. It is provided with a supply line L3 (heated gas vent). Further, the water treatment device 100 of the present embodiment is a treated water lead-out line L2 (water passage) for discharging treated water which is water after being cleaned by the adsorption elements 11 and 12 in each of the treatment tanks 10 and 20. Flow section), a gas discharge line L4 for discharging the gas and heating gas supplied into each of the treatment tanks 10 and 20, and a circulation line that branches from the gas discharge line L4 and returns to the water to be treated line L1. It also has L6 (return route).

なお、本実施形態の水処理装置100は、吸着素子11,12を収容した処理槽10,20を複数備えている。そして、ダンパーやバルブなどを用いて各ラインL1〜L6を制御し、被処理水を導入・排出する経路、ガスを供給・排出する経路、加熱ガスを供給・排出する経路を適宜切り替えることで、吸着工程を行う処理槽と、脱水工程を行う処理槽と、脱着工程を行う処理槽とに分けられている。これにより、吸着工程をいずれかの処理槽により連続して行うことが可能であり、いずれかの処理槽にて吸着素子による被処理水の清浄化(吸着工程)が行われている間、他の処理槽では吸着素子の再生化(脱水工程及び/又は脱着工程)を行うことが可能である。 The water treatment device 100 of the present embodiment includes a plurality of treatment tanks 10 and 20 containing the adsorption elements 11 and 12. Then, by controlling each line L1 to L6 using a damper or a valve, and appropriately switching the route for introducing / discharging the water to be treated, the route for supplying / discharging the gas, and the route for supplying / discharging the heated gas. It is divided into a treatment tank for performing an adsorption step, a treatment tank for performing a dehydration step, and a treatment tank for performing a desorption step. As a result, the adsorption step can be continuously performed in any of the treatment tanks, and while the water to be treated is cleaned (adsorption step) by the adsorption element in any of the treatment tanks, the other In the treatment tank of No. 1, it is possible to regenerate the adsorption element (dehydration step and / or desorption step).

図1に示すように、本実施形態の水処理装置100は、それぞれ吸着素子11,12を内部に収容した処理槽10,20を2つ備えている。なお、吸着素子11,12及び処理槽10,20の数は限定されない。後述する各処理槽10,20内における吸着工程、脱水工程及び脱着工程は、各バルブV1〜V12の開閉操作を行い、被処理水を導入・導出する経路、ガスを供給・排出する経路、加熱ガスを供給・排出する経路を適宜切り替えることで行われる。 As shown in FIG. 1, the water treatment apparatus 100 of the present embodiment includes two treatment tanks 10 and 20 in which the adsorption elements 11 and 12 are housed, respectively. The number of adsorption elements 11 and 12 and treatment tanks 10 and 20 is not limited. In the adsorption step, dehydration step, and desorption step in each of the treatment tanks 10 and 20, which will be described later, the valves V1 to V12 are opened and closed to introduce / take out the water to be treated, supply / discharge gas, and heating. This is done by appropriately switching the gas supply / discharge route.

各処理槽10,20には、被処理水導入ラインL1がそれぞれバルブV7,V8を介して接続されている。また、各処理槽10,20には、処理水導出ラインL2がそれぞれバルブV2,V4を介して接続されている。 A water introduction line L1 to be treated is connected to each of the treatment tanks 10 and 20 via valves V7 and V8, respectively. Further, a treated water lead-out line L2 is connected to each of the treatment tanks 10 and 20 via valves V2 and V4, respectively.

水処理装置100は、被処理水導入ラインL1により各処理槽10,20内に被処理水を供給して各処理槽10,20内の吸着素子11,12に被処理水を通流させることで、被処理水に含まれる少なくとも臭気物質(特にカビ臭物質)を吸着する処理(吸着工程)が行われる。被処理水にカビ臭物質以外にも有機物質が含まれている場合には、吸着工程では、その有機物質も吸着される。これにより、被処理水が清浄化される。清浄化された後の処理水は、処理水導出ラインL4より各処理槽10,20の外部に排出される。 The water treatment device 100 supplies the water to be treated into the treatment tanks 10 and 20 by the water introduction line L1 to be treated, and allows the water to be treated to flow through the adsorption elements 11 and 12 in the treatment tanks 10 and 20. Then, a treatment (adsorption step) for adsorbing at least an odorous substance (particularly a musty odorous substance) contained in the water to be treated is performed. When the water to be treated contains an organic substance other than the musty odor substance, the organic substance is also adsorbed in the adsorption step. As a result, the water to be treated is purified. The purified treated water is discharged to the outside of each of the treatment tanks 10 and 20 from the treated water lead-out line L4.

吸着素子11,12は、活性炭素繊維の構造体を含んでいる。活性炭素繊維は、表面に微細な細孔を均一に多数有しているので、被処理水中のカビ臭物質の極めて高い除去効率を実現できる。活性炭素繊維の構造体は、原料である繊維を後述する構造体に加工し、炭化・賦活して得ることができる。 The adsorption elements 11 and 12 include a structure of activated carbon fibers. Since the activated carbon fiber uniformly has a large number of fine pores on the surface, it is possible to realize extremely high removal efficiency of the musty odor substance in the water to be treated. The structure of the activated carbon fiber can be obtained by processing the fiber as a raw material into a structure described later, carbonizing and activating it.

原料となる繊維は、特に限定されるものではないが、例えばフェノール系繊維、セルロース系繊維、アクリロニトリル系繊維、ピッチ系繊維などが好ましい。中でも、フェノール系繊維は、炭化・賦活後の活性炭素繊維の収率が高く、繊維強度が強い点でさらに好ましい。 The raw material fiber is not particularly limited, but for example, phenol-based fiber, cellulosic-based fiber, acrylonitrile-based fiber, pitch-based fiber and the like are preferable. Among them, phenolic fibers are more preferable because the yield of activated carbon fibers after carbonization and activation is high and the fiber strength is strong.

フェノール系繊維としては、フェノール樹脂に脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物(配合物)を混合した混合物を紡糸して得られるフェノール系繊維を原糸としてもよい。これにより、さらに繊維強度を高めることができる。 The phenolic fiber is a phenolic fiber obtained by spinning a mixture of a phenol resin mixed with at least one compound (composite) selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. It may be used as raw yarn. Thereby, the fiber strength can be further increased.

活性炭素繊維の構造体としては、不織布、織物、編み物を挙げることができる。この中でも、不織布、織物、編み物が好ましく、織物、編み物のような繊維束(例えば糸)で形成されたシート状の構造体がより好ましい。編み物もしくは織物は、均一に繊維が交絡された不織布と比較して、糸で形成された構造体のため、吸着素子11,12内の活性炭素繊維が適度に粗密構造をとるとともに活性炭素繊維が規則正しく配列する構造をとる。よって、後述する吸着素子11,12の通水圧損係数が小さくなり、詳細は後述するが、吸着工程において吸着素子11,12を被処理水が通流しやすくなる、つまりは吸着素子11,12の通水効率が向上するので、多量の被処理水を吸着処理により清浄化することができる。加えて、吸着素子11,12を被処理水が通りやすくなることで、吸着素子11,12に付着する付着水の量が減少するので、脱水工程における吸着素子11,12の脱水効率を向上することもできる。織物と編み物とでは、編み物がさらに好ましい。同じ長さの経糸と緯糸との交錯によって格子状の構造となる織物と比較して、縦方向もしくは横方向に糸を編んだ構造をとる編物の方が、上述した粗密構造をとりやすいので、通水圧損係数がより小さくなって吸着素子11,12の通水効率及び脱水効率が向上するからである。なお、繊維束からなる活性炭素繊維の構造体は、織物や編み物に限定されず、例えば糸を固めてシート状にしたものであってもよい。 Examples of the structure of the activated carbon fiber include non-woven fabric, woven fabric, and knitting. Among these, non-woven fabrics, woven fabrics, and knits are preferable, and sheet-like structures formed of fiber bundles (for example, threads) such as woven fabrics and knits are more preferable. Since the knitted fabric or the woven fabric has a structure formed of threads as compared with the non-woven fabric in which the fibers are uniformly entwined, the activated carbon fibers in the adsorption elements 11 and 12 have an appropriately coarse and dense structure, and the activated carbon fibers are formed. It has a structure that arranges them regularly. Therefore, the water flow pressure loss coefficient of the adsorption elements 11 and 12 described later becomes small, and the details will be described later, but the water to be treated easily flows through the adsorption elements 11 and 12 in the adsorption step, that is, the adsorption elements 11 and 12 Since the water flow efficiency is improved, a large amount of water to be treated can be purified by the adsorption treatment. In addition, since the water to be treated easily passes through the adsorption elements 11 and 12, the amount of the adhering water adhering to the adsorption elements 11 and 12 is reduced, so that the dehydration efficiency of the adsorption elements 11 and 12 in the dehydration step is improved. You can also do it. Of the woven and knitted fabrics, knitting is more preferred. Compared to a woven fabric that has a grid-like structure due to the crossing of warp and weft yarns of the same length, a knitted fabric that has a structure in which threads are knitted in the vertical or horizontal direction is easier to obtain the above-mentioned coarse and dense structure. This is because the water flow pressure loss coefficient becomes smaller and the water flow efficiency and dehydration efficiency of the adsorption elements 11 and 12 are improved. The structure of the activated carbon fiber composed of the fiber bundle is not limited to the woven fabric and the knitting, and may be, for example, a sheet made by hardening the yarn.

繊維束からなる活性炭素繊維の構造体が編み物である場合、編み物の組織構造は、フライス編(ゴム編)、天竺編(平編)、両面編(パール編)に分類されるニットの他、タック、ウェルトも含むよこ編、デンビー編、コード編、アトラス編などを含むたて編、またこれらの編組織を複合した編み物(例えば、フライス編とタック編とを複合した両畦編など)を挙げることができるが、特に限定されるものではない。なお、この中でも、フライス編は、適度な粗密構造をとるため好ましい。編物の例を図2に示す。 When the structure of activated carbon fiber composed of fiber bundles is knitting, the structure of the knitting is classified into milling (rubber), tenjiku (flat), double-sided (pearl), and other knits. Horizontal knitting including tack and welt, denby knitting, chord knitting, atlas knitting, and knitting that combines these knitting structures (for example, double ridge knitting that combines milling and tacking) It can be mentioned, but it is not particularly limited. Among these, the milling cutter is preferable because it has an appropriate coarse and dense structure. An example of knitting is shown in FIG.

繊維束からなる活性炭素繊維の構造体が織物である場合、織物の組織構造は、一重組織、重ね組織、添毛組織、からみ組織などを挙げることができるが、特に限定されるものではない。織物の例を図3に示す。 When the structure of the activated carbon fiber composed of the fiber bundle is a woven fabric, the structure of the woven fabric may include, but is not limited to, a single structure, a layered structure, a hair-attached structure, and an entangled structure. An example of a woven fabric is shown in FIG.

繊維束からなる活性炭素繊維の構造体における繊維束の太さは、100μm〜600μmが好ましい。100μm未満の場合、繊維束の強度が低下し、吸着素子1,12として組織構造を保持できない可能性があり、600μmを超えると、より粗密構造をとるので、吸着工程時に被処理水のショートパスが生じるなど、吸着性能が低下する可能性があるからである。ここで、繊維束の太さは、構造体のSEM写真を用いて、複数箇所の直径を測定することから求めることができる。 The thickness of the fiber bundle in the structure of the activated carbon fiber composed of the fiber bundle is preferably 100 μm to 600 μm. If it is less than 100 μm, the strength of the fiber bundle may decrease and the tissue structure may not be maintained as the adsorption elements 1 and 12, and if it exceeds 600 μm, a coarser and denser structure is formed. This is because the adsorption performance may be deteriorated. Here, the thickness of the fiber bundle can be obtained by measuring the diameters of a plurality of locations using an SEM photograph of the structure.

また、繊維束として糸を用いる場合、糸は所定の番手の一本の糸で形成される単糸や、二本以上の単糸を撚って形成される撚糸などを挙げることができるが、上述した繊維束からなる活性炭素繊維の構造体における繊維束の太さに収まれば、特に限定されない。また、原料の糸の繊度は、綿繊度で40番手単糸〜5番手単糸、またその繊度に相当する撚糸(20番手双糸など)を想定できるが、炭化・賦活によって、糸径が収縮するため、原料の繊度は、活性炭素繊維の構造体として、好適な糸径の範囲となる繊度であればよい。 Further, when a yarn is used as a fiber bundle, the yarn may be a single yarn formed by one yarn having a predetermined count, a twisted yarn formed by twisting two or more single yarns, or the like. The thickness is not particularly limited as long as it fits within the thickness of the fiber bundle in the structure of the activated carbon fiber composed of the fiber bundle described above. The fineness of the raw material yarn can be assumed to be 40th to 5th single yarn in cotton fineness, or twisted yarn (20th twin yarn, etc.) corresponding to the fineness, but the yarn diameter shrinks due to carbonization and activation. Therefore, the fineness of the raw material may be any fineness within the range of the yarn diameter suitable for the structure of the activated carbon fiber.

吸着素子11,12に用いられる活性炭素繊維の構造体は、その物性として、細孔径30Å以下の細孔の細孔容積が全細孔の細孔容積の95%以上である。本出願の発明者が、被処理水中のカビ臭の原因である2−MIBを効果的に除去するためにはどのような物性を吸着素子11,12が有する必要があるのかについて鋭意研究を重ねた結果、吸着素子11,12の所定径の細孔の割合に大きく関連しており、細孔径が30Å以下の細孔の細孔容積が全細孔の細孔容積の95%以上あれば2−MIBを効果的に吸着可能であり、カビ臭などの異臭のない水道水とすることができることを見出したため、本発明に係る水処理装置100の特徴とした。 The structure of the activated carbon fibers used in the adsorption elements 11 and 12 has a physical characteristic that the pore volume of pores having a pore diameter of 30 Å or less is 95% or more of the pore volume of all pores. The inventor of the present application has conducted extensive research on what kind of physical properties the adsorption elements 11 and 12 need to have in order to effectively remove 2-MIB, which is the cause of the musty odor in the water to be treated. As a result, it is greatly related to the ratio of the pores having a predetermined diameter of the adsorption elements 11 and 12, and if the pore volume of the pores having a pore diameter of 30 Å or less is 95% or more of the pore volume of all the pores, 2 Since it has been found that -MIB can be effectively adsorbed and tap water without offensive odor such as musty odor can be obtained, it is a feature of the water treatment apparatus 100 according to the present invention.

細孔径30Å以下の細孔の細孔容積V(cm/g)、及び、全細孔の細孔容積Vp(cm/g)は、後述する測定方法により測定することができる。そして、V及びVpの値から、Vに対するVpの割合(%)を式:(V/Vp)×100から求めることができる。 The pore volume V (cm 3 / g) of the pores having a pore diameter of 30 Å or less and the pore volume Vp (cm 3 / g) of all the pores can be measured by the measuring method described later. Then, from the values of V and Vp, the ratio (%) of Vp to V can be obtained from the formula: (V / Vp) × 100.

また、吸着素子11,12に用いられる活性炭素繊維の構造体は、その物性として、通水圧損係数が200mmAq・s/cm以下である。通水圧損係数とは、被処理水が吸着素子11,12を通過する際の圧力損失の大きさを示し、通水圧損係数が小さいほど通水時の圧力損失が低く、被処理水が流れやすいことを示す。本発明に係る水処理装置100では、吸着素子11,12の通水圧損係数が200mmAq・s/cm以下と非常に小さいことから、吸着工程において吸着素子11,12により多くの被処理水を通流させて吸着処理することができる。これは、特に水道水などの浄水を清浄化する際に有効である。水道水などの浄水を清浄化するためには、1日で数千〜数十万tの多量の水を高速で吸着素子11,12に通して吸着処理する必要があるが、本発明に係る水処理装置100では、吸着素子11,12の通水効率が向上していることで、水道水などの浄水についても良好に処理することができる。尚且つ、上述の通り、吸着素子11,12が活性炭素繊維の構造体であるので被処理水との接触効率が高く、カビ臭物質の吸着サイトである細孔径30Å以下の細孔容積の割合が大きいため、吸着速度が速く、高速で通水しても十分なカビ臭物質の除去性能を得ることができる。なお、吸着素子11,12の通水圧損係数は、後述する測定方法により測定することができる。 Further, the structure of the activated carbon fiber used for the adsorption elements 11 and 12 has a water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less as its physical properties. The water flow pressure loss coefficient indicates the magnitude of the pressure loss when the water to be treated passes through the adsorption elements 11 and 12, and the smaller the water flow pressure loss coefficient, the lower the pressure loss during water flow, and the water to be treated flows. Show that it is easy. In the water treatment apparatus 100 according to the present invention, since the water flow pressure loss coefficient of the adsorption elements 11 and 12 is as small as 200 mmAq · s / cm 2 or less, more water to be treated is applied to the adsorption elements 11 and 12 in the adsorption step. It can be passed through and adsorbed. This is particularly effective when purifying purified water such as tap water. In order to purify purified water such as tap water, it is necessary to pass a large amount of water of several thousand to several hundred thousand tons per day through the adsorption elements 11 and 12 at high speed for adsorption treatment. In the water treatment device 100, since the water flow efficiency of the adsorption elements 11 and 12 is improved, it is possible to satisfactorily treat purified water such as tap water. Moreover, as described above, since the adsorption elements 11 and 12 are structures of activated carbon fibers, the contact efficiency with the water to be treated is high, and the ratio of the pore volume having a pore diameter of 30 Å or less, which is an adsorption site for a musty odor substance. Therefore, the adsorption speed is high, and sufficient mold odor substance removal performance can be obtained even when water is passed at high speed. The water flow pressure loss coefficient of the adsorption elements 11 and 12 can be measured by a measuring method described later.

なお、吸着素子11,12に用いられる活性炭素繊維の構造体の上記以外の物性は特に限定されるものではないが、吸着素子の吸着量や強度、コストなどを考慮すると、BET比表面積が900m/g〜2500m/gであることが好ましく、全細孔容積が0.4cm/g〜0.9cm/gであることが好ましい。なお、BET比表面積は、後述する測定方法により測定することができる。 The physical properties of the activated carbon fiber structure used for the adsorption elements 11 and 12 other than the above are not particularly limited, but the BET specific surface area is 900 m in consideration of the adsorption amount, strength, cost, etc. of the adsorption element. is preferably 2 / g~2500m 2 / g, it is preferably the total pore volume is 0.4cm 3 /g~0.9cm 3 / g. The BET specific surface area can be measured by a measuring method described later.

なお、本実施形態では、吸着素子11,12は、活性炭素繊維の構造体を含む構成としているが、通水圧損係数が200mmAq・s/cm以下でありかつ細孔径30Å以下の細孔容積が全細孔容積の95%以上の材料であれば、活性炭素繊維の構造体を含むものに限定されない。例えば、不織布や織物・編物の担持体(それ自体に吸着能は無い)に、30Å以下で粉末状の活性炭やゼオライトを添着して外表面積を増やした吸着素子を用いてもよい。また、これ以外の構成のものでもよい。 In the present embodiment, the adsorption elements 11 and 12 are configured to include a structure of activated carbon fibers, but the pore volume having a water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less and a pore diameter of 30 Å or less. Is a material containing 95% or more of the total pore volume, and is not limited to those containing a structure of activated carbon fibers. For example, an adsorption element having an increased outer surface area may be used by adsorbing powdered activated carbon or zeolite at 30 Å or less on a carrier of a non-woven fabric, a woven fabric, or a knitted fabric (which itself has no adsorptive capacity). Further, other configurations may be used.

本実施形態では、処理対象の被処理水に含まれる処理対象物質は、2−メチルイソボルネオール(2−MIB)を例に説明しているが、以下の有機物質についても、本実施形態の水処理装置100は同様の除去効果がある。例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレインなどのアルデヒド類、メチルエチルケトン、ジアセチル、メチルイソブチルケトン、アセトンなどのケトン類、1,4−ジオキサン、2−メチル−1,3−ジオキソラン、1,3−ジオキソラン、テトラヒドロフラン、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどのエステル類、エタノール、n−プロピルアルコール、イソプロピルアルコール、ブタノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコールなどのグリコール類、酢酸、プロピオン酸などの有機酸、フェノール類、トルエン、キシレン、シクロヘキサンなどの芳香族有機物質、ジエチルエーテル、アリルグリシジルエーテルなどのエーテル類、アクリロニトリルなどの二トリル類、ジクロロメタン、1,2−ジクロロエタン、トリクロロエチレン、エピクロロヒドリンなどの塩素有機物質、N−メチル−2−ピロリドン、ジメチルアセトアミド、N,N−ジメチルホルムアミドの有機物質、ポリ塩化ジベンゾパラジオキシン (PCDD)、ポリ塩化ジベンゾフラン (PCDF)、ダイオキシン様ポリ塩化ビフェニル (DL-PCB)などのダイオキシン類、テトラサイクリン、オセルタミビル、リン酸オセルタミビル、ベザフィブラート、トリクロサンなどの抗生物質、ベザフィブラート、フェノフィブラートなどの抗脂血症剤成分、ジクロフェナク、サリチル酸、アセトアミノフェンなどの解熱鎮痛剤成分、カルバマゼピンなどの抗てんかん剤成分、フミン酸、フルボ酸などのフミン物質、ヘキサメチレンテトラミン、ジオスミンなどを一例として挙げることができる。本実施形態の水処理装置100が処理する被処理水に含まれる処理対象物質は、これらのうちの1種類あるいは複数種類であってもよい。 In the present embodiment, the substance to be treated contained in the water to be treated is described by taking 2-methylisoborneol (2-MIB) as an example, but the following organic substances are also described as the water of the present embodiment. The processing device 100 has a similar removing effect. For example, aldehydes such as formaldehyde, acetaldehyde, propionaldehyde, achlorine, ketones such as methyl ethyl ketone, diacetyl, methyl isobutyl ketone, acetone, 1,4-dioxane, 2-methyl-1,3-dioxolane, 1,3-dioxolane. , Ethers such as tetrahydrofuran, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, alcohols such as ethanol, n-propyl alcohol, isopropyl alcohol, butanol, glycols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol , Organic acids such as acetic acid and propionic acid, phenols, aromatic organic substances such as toluene, xylene and cyclohexane, ethers such as diethyl ether and allylglycidyl ether, ditrils such as acrylonitrile, dichloromethane, 1,2-dichloroethane , Chlorine organic substances such as trichloroethylene and epichlorohydrin, organic substances of N-methyl-2-pyrrolidone, dimethylacetamide, N, N-dimethylformamide, polychlorinated dibenzoparadioxin (PCDD), polychlorinated dibenzofuran (PCDF), Dioxins such as dioxin-like polychlorinated biphenyls (DL-PCB), tetracyclines, oseltamivir, oseltamivir phosphate, antibiotics such as bezafibrate and triclosan, antilipidemia components such as bezafibrate and phenofibrate, diclofenac, salicylic acid, acetamino Examples include anti-fever and pain-relieving agent components such as fen, anti-epileptic agent components such as carbamazepine, fumin substances such as fumic acid and fluboic acid, hexamethylenetetramine, and diosmine. The substance to be treated contained in the water to be treated by the water treatment apparatus 100 of the present embodiment may be one or more of these.

図1において、各処理槽10,20には、ガス供給ラインL5及び加熱ガス供給ラインL3がそれぞれバルブV5,V6を介して接続されている。なお、ガス供給ラインL5及び加熱ガス供給ラインL3は、各処理槽10,20に接続される下流側の一部分が共通しており、上流側で分岐していて、それぞれバルブV11,V9を有している。さらに、各処理槽10,20には、ガス排出ラインL4がバルブV1,V3を介して接続されている。 In FIG. 1, a gas supply line L5 and a heating gas supply line L3 are connected to the treatment tanks 10 and 20 via valves V5 and V6, respectively. The gas supply line L5 and the heating gas supply line L3 have a common part on the downstream side connected to the treatment tanks 10 and 20, and are branched on the upstream side, and have valves V11 and V9, respectively. ing. Further, gas discharge lines L4 are connected to the treatment tanks 10 and 20 via valves V1 and V3.

吸着工程後、水処理装置100は、ガス供給ラインL5により各処理槽10,20内にガスを供給して各処理槽10,20内の吸着素子11,12にガスを通気させることで、各吸着素子11,12に付着した付着水を除去する処理(脱水工程)が行われる。各吸着素子11,12は、付着した付着水がガスの通流により除去されて乾いた状態となることにより、その後の加熱ガスによるカビ臭物質の脱着を容易にすることができる。吸着素子11,12にカビ臭物質以外の有機物質も吸着された場合には、その有機物質も脱着される。 After the adsorption step, the water treatment apparatus 100 supplies gas into the treatment tanks 10 and 20 by the gas supply line L5 and causes the adsorption elements 11 and 12 in the treatment tanks 10 and 20 to be ventilated. A process (dehydration step) for removing the adhering water adhering to the adsorption elements 11 and 12 is performed. The adsorbed elements 11 and 12 are brought into a dry state by removing the adhering water by the flow of gas, so that the subsequent desorption of the musty odor substance by the heating gas can be facilitated. When an organic substance other than the musty odor substance is also adsorbed on the adsorption elements 11 and 12, the organic substance is also desorbed.

脱水工程において各処理槽10,20内に供給されるガスは、例えば空気、窒素、不活性ガス、水蒸気などを挙げることができるが、特に限定されない。脱水工程にて脱水された付着水はガスとともにガス排出ラインL4より各処理槽10,20の外部に排出される。このとき、付着水は、バルブV12の開操作により循環ラインL6より被処理水導入ラインL1に還流され、被処理水として再び吸着素子11,12に通流させるために各処理槽10,20内に導入される。これにより、工程数を省略することができるので、効率的である。 The gas supplied into each of the treatment tanks 10 and 20 in the dehydration step may include, for example, air, nitrogen, an inert gas, water vapor and the like, but is not particularly limited. The adhering water dehydrated in the dehydration step is discharged to the outside of each of the treatment tanks 10 and 20 from the gas discharge line L4 together with the gas. At this time, the adhering water is returned from the circulation line L6 to the water to be treated introduction line L1 by the opening operation of the valve V12, and is in the treatment tanks 10 and 20 to be passed through the adsorption elements 11 and 12 again as the water to be treated. Introduced in. As a result, the number of steps can be omitted, which is efficient.

脱水工程後、水処理装置100は、加熱ガス供給ラインL3によりにより各処理槽10,20内に加熱ガスを供給して各処理槽10,20内の吸着素子11,12に加熱ガスを通気させることで、各吸着素子11,12に吸着した少なくともカビ臭物質を除去する処理(脱着工程)が行われる。脱着工程において各処理槽10,20内に供給される加熱ガスは、例えば100〜400℃に加熱された空気、窒素、不活性ガス、水蒸気などを挙げることができるが、特に限定されない。脱着工程にて脱着されたカビ臭物質は加熱ガスとともに脱着ガス(排出ガス)としてガス排出ラインL5より各処理槽10,20の外部に排出される。カビ臭物質以外の有機物質も脱着された場合には、脱着ガスにはその有機物質も含まれる。 After the dehydration step, the water treatment apparatus 100 supplies the heating gas into the treatment tanks 10 and 20 by the heating gas supply line L3 to ventilate the heating gas to the adsorption elements 11 and 12 in the treatment tanks 10 and 20. As a result, a process (desorption step) of removing at least a musty odor substance adsorbed on each of the adsorption elements 11 and 12 is performed. Examples of the heating gas supplied into the treatment tanks 10 and 20 in the desorption step include air heated to 100 to 400 ° C., nitrogen, an inert gas, water vapor, and the like, but are not particularly limited. The musty odor substance desorbed in the desorption step is discharged to the outside of each of the treatment tanks 10 and 20 from the gas discharge line L5 as a desorption gas (exhaust gas) together with the heating gas. When an organic substance other than the musty odor substance is also desorbed, the desorbed gas also includes the organic substance.

脱着工程で各処理槽10,20から排出された脱着ガスは、例えば、直接燃焼装置、触媒酸化装置、蓄熱燃焼装置などの燃焼装置、溶剤回収装置、冷却凝縮装置などの一般的に用いられるガス処理装置を適宜選定して、二次処理すればよい。 The desorption gas discharged from each of the treatment tanks 10 and 20 in the desorption step is, for example, a commonly used gas such as a direct combustion device, a catalytic oxidation device, a combustion device such as a heat storage combustion device, a solvent recovery device, and a cooling condensing device. A processing device may be appropriately selected for secondary processing.

以上、図1を用いて説明した本実施形態の水処理装置100では、説明の簡略のため、ポンプやファンなどの流体搬送手段やストレージタンクなどの流体貯留手段などの構成要素を示していないが、これら構成要素は必要に応じて適宜の位置に配置すればよい。 As described above, in the water treatment apparatus 100 of the present embodiment described with reference to FIG. 1, components such as a fluid transport means such as a pump and a fan and a fluid storage means such as a storage tank are not shown for the sake of brevity. , These components may be arranged at appropriate positions as needed.

上記構成の水処理装置100によれば、吸着素子11,12は、被処理水中のカビ臭の原因である2−MIBを効果的に吸着可能な細孔径30Å以下の細孔容積が全細孔容積の95%以上であるから、被処理水中のカビ臭物質(2−MIB)を効果的に除去することができる。加えて、吸着素子11,12は、通水圧損係数が200mmAq・s/cm以下と非常に小さくて、吸着工程において吸着素子11,12を被処理水が通流しやすいので、水道水などの多量の水を吸着処理により清浄化することができる。尚且つ、吸着素子11,12が活性炭素繊維の構造体であるので被処理水との接触効率が高く、カビ臭物質の吸着サイトである細孔径30Å以下の細孔容積の割合が大きいため、吸着速度が速く、高速で通水しても十分なカビ臭物質の除去性能を得ることができる。 According to the water treatment device 100 having the above configuration, the adsorption elements 11 and 12 have a pore volume of 30 Å or less that can effectively adsorb 2-MIB, which is a cause of the musty odor in the water to be treated. Since it is 95% or more of the volume, the musty odor substance (2-MIB) in the water to be treated can be effectively removed. In addition, the adsorption elements 11 and 12 have a very small water flow pressure loss coefficient of 200 mmAq · s / cm 2 or less, and the water to be treated easily flows through the adsorption elements 11 and 12 in the adsorption step. A large amount of water can be purified by adsorption treatment. Moreover, since the adsorption elements 11 and 12 are structures of activated carbon fibers, the contact efficiency with the water to be treated is high, and the proportion of the pore volume having a pore diameter of 30 Å or less, which is an adsorption site for a musty odor substance, is large. The adsorption rate is high, and sufficient removal performance of musty odor substances can be obtained even when water is passed at high speed.

以上、本発明の一実施形態について説明したが、上述した実施形態は、全ての点で例示であって制限的なものではないため、本発明は上述した実施形態に限定されるものではない。本発明の技術的範囲は、特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものであり、よって、本発明は、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment because the above-described embodiment is exemplary in all respects and is not restrictive. The technical scope of the present invention is defined by the scope of claims and includes all modifications within the meaning and scope equivalent to the description of the scope of claims. Various changes can be made as long as they do not deviate from the purpose.

例えば、上述した実施形態では、水処理装置100は、吸着素子が複数(図1では2つ)の処理槽にそれぞれ収容され、吸着工程を行う処理槽と脱水工程及び脱着工程を行う処理槽とを交互に切り替えることで吸着素子による吸着工程が連続して行われる構成となっている。しかし、吸着素子を回転可能とし、吸着工程で少なくともカビ臭物質を吸着した吸着素子の部位を、吸着素子の回転により、脱水工程、脱着工程へ移動するように水処理装置100を構成することによっても、水処理装置100として吸着素子による吸着工程を連続して行うことが可能である。 For example, in the above-described embodiment, the water treatment apparatus 100 includes a treatment tank in which adsorption elements are housed in a plurality of treatment tanks (two in FIG. 1), and a treatment tank for performing an adsorption step and a treatment tank for performing a dehydration step and a desorption step. By alternately switching the above, the adsorption process by the adsorption element is continuously performed. However, by making the adsorption element rotatable and configuring the water treatment device 100 so that at least the portion of the adsorption element that has adsorbed the musty odor substance in the adsorption step is moved to the dehydration step and the desorption step by the rotation of the adsorption element. Also, as the water treatment device 100, it is possible to continuously perform the adsorption step by the adsorption element.

また、必ずしも吸着素子による吸着工程が連続して行われるように水処理装置100を構成する必要はなく、処理槽を1つとし、脱水工程及び脱着工程中は処理槽への被処理水の供給を一時的にストップしてタンクなどに貯水し、脱着工程後の吸着工程で一時的に貯水された被処理水も併せて吸着処理する構成としてもよい。 Further, it is not always necessary to configure the water treatment device 100 so that the adsorption step by the adsorption element is continuously performed, and the treatment tank is one, and the water to be treated is supplied to the treatment tank during the dehydration step and the desorption step. The water may be temporarily stopped and stored in a tank or the like, and the water to be treated temporarily stored in the adsorption step after the desorption step may also be adsorbed.

以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、本発明は、以下の実施例に限定されるものではない。 Examples of the present invention will be shown below, and the present invention will be described in more detail. The present invention is not limited to the following examples.

[実施例1]
フェノール系繊維であり、繊維径24μm、比表面積1950m/gの不織布である活性炭素繊維のシート状構造体を積層した吸着素子(厚み150mm・重量2kg)を作製し、図1と同様のダンパー切替方式の水処理装置に設置した。なお、吸着素子の全細孔の細孔容積に対する細孔径30Å以下の細孔の細孔容積の割合は95%以上であり、吸着素子の通水圧損係数は140mmAq・s/cmであった。
[Example 1]
An adsorption element (thickness 150 mm, weight 2 kg) in which a sheet-like structure of activated carbon fiber, which is a phenolic fiber and is a non-woven fabric having a fiber diameter of 24 μm and a specific surface area of 1950 m 2 / g, is laminated is produced, and a damper similar to that in FIG. 1 is produced. It was installed in a switching type water treatment device. The ratio of the pore volume of the pores having a pore diameter of 30 Å or less to the pore volume of the total pores of the adsorption element was 95% or more, and the water flow pressure loss coefficient of the adsorption element was 140 mmAq · s / cm 2 . ..

吸着工程では、20ng/lの2−MIBを含む被処理水(水温30℃)を単位時間あたり48m/hの供給量で14時間処理槽に導入した。次の脱水工程では、0.1MPaの飽和水蒸気を処理槽に供給し、吸着素子に付着した水分を除去した。次の脱着工程では、0.1MPaの過熱水蒸気(250℃)を処理槽に供給し、吸着素子に吸着された2−MIBを脱着した。脱着された2−MIBを含む水蒸気は、冷却器にて液化凝縮し、濃縮水として回収した。 In the adsorption step, water to be treated (water temperature 30 ° C.) containing 20 ng / l 2-MIB was introduced into the treatment tank at a supply amount of 48 m 3 / h per unit time for 14 hours. In the next dehydration step, 0.1 MPa of saturated steam was supplied to the treatment tank to remove the water adhering to the adsorption element. In the next desorption step, 0.1 MPa of superheated steam (250 ° C.) was supplied to the treatment tank to desorb the 2-MIB adsorbed on the adsorption element. The desorbed water vapor containing 2-MIB was liquefied and condensed in a cooler and recovered as concentrated water.

脱着工程が完了した後、再び吸着工程へ移行するサイクルを複数回実施し、吸着工程を計100時間行った。吸着工程を100時間行った後の出口2−MIB濃度は、表1に示すように1ng/l以下であり、2−MIBが効果的に除去されていた。また、表1に示すように、吸着工程に使用したポンプ電力は2.8KW/hであり、脱着工程に使用した水蒸気量は2.9kg/hであった。 After the desorption step was completed, the cycle of shifting to the adsorption step was carried out a plurality of times, and the adsorption step was carried out for a total of 100 hours. The outlet 2-MIB concentration after the adsorption step was carried out for 100 hours was 1 ng / l or less as shown in Table 1, and 2-MIB was effectively removed. Further, as shown in Table 1, the pump power used in the adsorption step was 2.8 KW / h, and the amount of water vapor used in the desorption step was 2.9 kg / h.

[実施例2]
フェノール系繊維を用いた綿繊度10番手の糸を使用したフライス編を炭化・賦活処理して、糸径(繊維束の太さ)400μmの糸(繊維束)で、比表面積1950m/gの活性炭素繊維のシート状構造体を積層した吸着素子(厚み150mm・重量3kg)を作製し、図1と同様のダンパー切替方式の水処理装置に設置した。なお、吸着素子の全細孔の細孔容積に対する細孔径30Å以下の細孔の細孔容積の割合は95%であり、吸着素子の通水圧損係数は85mmAq・s/cmであった。
[Example 2]
Milled knitting using yarn with a cotton fineness of 10th using phenolic fibers is carbonized and activated, and the yarn (fiber bundle) with a yarn diameter (thickness of the fiber bundle) of 400 μm has a specific surface area of 1950 m 2 / g. An adsorption element (thickness 150 mm, weight 3 kg) in which a sheet-like structure of activated carbon fibers was laminated was produced and installed in a damper switching type water treatment device similar to FIG. The ratio of the pore volume of the pores having a pore diameter of 30 Å or less to the pore volume of all the pores of the adsorption element was 95%, and the water flow pressure loss coefficient of the adsorption element was 85 mmAq · s / cm 2 .

吸着工程では、20ng/lの2−MIBを含む被処理水(水温30℃)を単位時間あたり48m/hの供給量で17時間処理槽に導入した。次の脱水工程では、0.1MPaの飽和水蒸気を処理槽に供給し、吸着素子に付着した水分を除去した。次の脱着工程では、0.1MPaの過熱水蒸気(250℃)を処理槽に供給し、吸着素子に吸着された2−MIBを脱着した。脱着された2−MIBを含む水蒸気は、冷却器にて液化凝縮し、濃縮水として回収した。 In the adsorption step, water to be treated (water temperature 30 ° C.) containing 20 ng / l 2-MIB was introduced into the treatment tank for 17 hours with a supply amount of 48 m 3 / h per unit time. In the next dehydration step, 0.1 MPa of saturated steam was supplied to the treatment tank to remove the water adhering to the adsorption element. In the next desorption step, 0.1 MPa of superheated steam (250 ° C.) was supplied to the treatment tank to desorb the 2-MIB adsorbed on the adsorption element. The desorbed water vapor containing 2-MIB was liquefied and condensed in a cooler and recovered as concentrated water.

脱着工程が完了した後、再び吸着工程へ移行するサイクルを複数回実施し、吸着工程を計100時間行った。吸着工程を100時間行った後の出口2−MIB濃度は、1ng/l以下であり、2−MIBが効果的に除去されていた。また、表1に示すように、吸着工程に使用したポンプ電力は1.7KW/hであり、脱着工程に使用した水蒸気量は2.4kg/hであった。 After the desorption step was completed, the cycle of shifting to the adsorption step was carried out a plurality of times, and the adsorption step was carried out for a total of 100 hours. The outlet 2-MIB concentration after the adsorption step was carried out for 100 hours was 1 ng / l or less, and 2-MIB was effectively removed. Further, as shown in Table 1, the pump power used in the adsorption step was 1.7 KW / h, and the amount of water vapor used in the desorption step was 2.4 kg / h.

[比較例1]
8/32メッシュの粒状の活性炭を積層した吸着素子(厚み150mm・重量80kg)を作製し、ダンパー切替方式のない水処理装置に設置した。なお、吸着素子の全細孔の細孔容積に対する細孔径30Å以下の細孔の細孔容積の割合は80%以下であり、吸着素子の通水圧損係数は80mmAq・s/cmであった。
[Comparative Example 1]
An adsorption element (thickness 150 mm, weight 80 kg) in which 8/32 mesh granular activated carbon was laminated was prepared and installed in a water treatment device without a damper switching method. The ratio of the pore volume of the pores having a pore diameter of 30 Å or less to the pore volume of the total pores of the adsorption element was 80% or less, and the water flow pressure loss coefficient of the adsorption element was 80 mmAq · s / cm 2 . ..

比較例1では、20ng/lの2−MIBを含む被処理水(水温30℃)を単位時間あたり48m/hの供給量で100時間連続して処理槽に導入して吸着工程を行った。吸着工程を100時間行った後の出口2−MIB濃度は、1ng/l以下であり、2−MIBが効果的に除去されていた。また、表1に示すように、吸着工程に使用したポンプ電力は1.6KW/hであった。 In Comparative Example 1, water to be treated (water temperature 30 ° C.) containing 20 ng / l 2-MIB was continuously introduced into the treatment tank at a supply amount of 48 m 3 / h per unit time for 100 hours to perform an adsorption step. .. The outlet 2-MIB concentration after the adsorption step was carried out for 100 hours was 1 ng / l or less, and 2-MIB was effectively removed. Further, as shown in Table 1, the pump power used in the adsorption step was 1.6 KW / h.

[比較例2]
8/32メッシュの粒状の活性炭を積層した吸着素子(厚み150mm・重量12kg)を作製し、図1と同様のダンパー切替方式の水処理装置に設置した。なお、吸着素子の全細孔の細孔容積に対する細孔径30Å以下の細孔の細孔容積の割合は80%以下であり、吸着素子の通水圧損係数は80mmAq・s/cmであった。
[Comparative Example 2]
An adsorption element (thickness 150 mm, weight 12 kg) in which 8/32 mesh granular activated carbon was laminated was produced and installed in a damper switching type water treatment device similar to that in FIG. The ratio of the pore volume of the pores having a pore diameter of 30 Å or less to the pore volume of the total pores of the adsorption element was 80% or less, and the water flow pressure loss coefficient of the adsorption element was 80 mmAq · s / cm 2 . ..

吸着工程では、20ng/lの2−MIBを含む被処理水(水温30℃)を単位時間あたり48m/hの供給量で15時間処理槽に導入した。次の脱水工程では、0.1MPaの飽和水蒸気を処理槽に供給し、吸着素子に付着した水分を除去した。次の脱着工程では、0.1MPaの過熱水蒸気(250℃)を処理槽に供給し、吸着素子に吸着された2−MIBを脱着した。脱着された2−MIBを含む水蒸気は、冷却器にて液化凝縮し、濃縮水として回収した。 In the adsorption step, water to be treated (water temperature 30 ° C.) containing 20 ng / l 2-MIB was introduced into the treatment tank at a supply amount of 48 m 3 / h per unit time for 15 hours. In the next dehydration step, 0.1 MPa of saturated steam was supplied to the treatment tank to remove the water adhering to the adsorption element. In the next desorption step, 0.1 MPa of superheated steam (250 ° C.) was supplied to the treatment tank to desorb the 2-MIB adsorbed on the adsorption element. The desorbed water vapor containing 2-MIB was liquefied and condensed in a cooler and recovered as concentrated water.

脱着工程が完了した後、再び吸着工程へ移行するサイクルを複数回実施し、吸着工程を計100時間行った。吸着工程を100時間行った後の出口2−MIB濃度は、1ng/l以下であり、2−MIBが効果的に除去されていた。また、表1に示すように、吸着工程に使用したポンプ電力は1.6KW/hであり、脱着工程に使用した水蒸気量は36kg/hであった。 After the desorption step was completed, the cycle of shifting to the adsorption step was carried out a plurality of times, and the adsorption step was carried out for a total of 100 hours. The outlet 2-MIB concentration after the adsorption step was carried out for 100 hours was 1 ng / l or less, and 2-MIB was effectively removed. Further, as shown in Table 1, the pump power used in the adsorption step was 1.6 KW / h, and the amount of water vapor used in the desorption step was 36 kg / h.

Figure 0006922165
Figure 0006922165

なお、実施例及び比較例における吸着素子の各物性の測定は、下記の方法により行った。また、処理槽入口・出口の水中の2−MIB濃度は、固相マイクロ抽出(SPME)−GC/MS法により分析し測定した。 The physical characteristics of the adsorption elements in Examples and Comparative Examples were measured by the following methods. The 2-MIB concentration in the water at the inlet and outlet of the treatment tank was analyzed and measured by the solid phase microextraction (SPME) -GC / MS method.

・細孔径30Å以下の細孔容積V
相対圧力0〜0.95の範囲で上昇させたときの試料への窒素吸着量を複数点測定し、この結果をMP法によって解析範囲0〜30Å、t決定式H.Jの条件で解析し、吸着時の細孔径分布数表の結果より30Å以下の細孔容積V(cm/g)を算出した。
-Pore volume V with a pore diameter of 30 Å or less
The amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0 to 0.95 was measured at multiple points, and the results were measured by the MP method in the analysis range of 0 to 30 Å. The analysis was performed under the condition of J, and the pore volume V (cm 3 / g) of 30 Å or less was calculated from the result of the pore size distribution number table at the time of adsorption.

・全細孔の細孔容積Vp
全細孔容積Vp(cm/g)は、相対圧0.95における窒素ガスの気体吸着法により測定した。
・ Pore volume Vp of all pores
The total pore volume Vp (cm 3 / g) was measured by the gas adsorption method of nitrogen gas at a relative pressure of 0.95.

・BET比表面積
BET比表面積(m/g)は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積を求めた。
-BET specific surface area The BET specific surface area (m 2 / g) is the nitrogen to the sample when the relative pressure is increased in the range of 0.0 to 0.15 under the boiling point (-195.8 ° C.) atmosphere of liquid nitrogen. The amount of adsorption was measured at several points, and the surface area per unit mass of the sample was determined by BET plotting.

・通水圧損係数
通水圧損係数(mmAq・s/cm)は、厚み150mmに充填した吸着素子に対し、吸着素子に対して通水線速3mm/sで純水を通水した際の吸着素子の圧力損失(mmAq)を測定し、当該値を風速と厚みで除することにより求めた。
- passing the water pressure loss coefficient through pressure loss coefficient (mmAq · s / cm 2), compared adsorption element filled in thickness 150 mm, at the time of Rohm & pure water through water line speed 3 mm / s relative to the adsorption element The pressure loss (mmAq) of the adsorption element was measured, and the value was obtained by dividing the value by the wind velocity and the thickness.

表1の結果から、比較例1は、実施例1及び実施例2と同程度の2−MIBの除去性能を得るためには、約27倍〜40倍の吸着素子重量が必要であり、尚且つ、100時間ごとに、新品に交換する必要がある。また、図1と同様のダンパー切替方式の水処理装置に設置された比較例2でも、実施例1及び実施例2と同程度の2−MIBの除去性能を得るためには、約4倍〜6倍の吸着素子重量が必要であることが分かる。よって、実施例1及び実施例2では、比較例1及び比較例2に比べて、2−MIBの除去性能が極めて効果的であることが確認される。 From the results in Table 1, Comparative Example 1 requires about 27 to 40 times the weight of the adsorption element in order to obtain the same level of 2-MIB removal performance as in Example 1 and Example 2. It is necessary to replace it with a new one every 100 hours. Further, even in Comparative Example 2 installed in the same damper switching type water treatment device as in FIG. 1, in order to obtain the same level of 2-MIB removal performance as in Example 1 and Example 2, it is about four times as much. It can be seen that 6 times the weight of the adsorption element is required. Therefore, in Example 1 and Example 2, it is confirmed that the removal performance of 2-MIB is extremely effective as compared with Comparative Example 1 and Comparative Example 2.

また、表1の結果から、比較例2は、吸着素子から2−MIBを脱着させるのに必要な過熱水蒸気(加熱ガス)の量(脱着水蒸気量)が実施例1及び実施例2に比べて、12倍以上必要であり、その分、濃縮倍率が極めて低く、12倍以上の濃縮水が排出されて、濃縮水の処理エネルギーが余分に必要であることが分かる。よって、実施例1及び実施例2では、比較例2に比べて、吸着素子を再生するための再生エネルギーを大幅に低減できるうえ、濃縮水の処理エネルギーを大幅に低減できることが確認される。 Further, from the results in Table 1, in Comparative Example 2, the amount of superheated steam (heating gas) required for desorbing 2-MIB from the adsorption element (desorption steam amount) was higher than that in Example 1 and Example 2. , 12 times or more is required, and the concentration ratio is extremely low by that amount, 12 times or more of concentrated water is discharged, and it can be seen that extra processing energy for concentrated water is required. Therefore, in Example 1 and Example 2, it is confirmed that the renewable energy for regenerating the adsorbent element can be significantly reduced and the processing energy for concentrated water can be significantly reduced as compared with Comparative Example 2.

さらに、表1の結果から、実施例2は、実施例1と比べて、吸着素子から2−MIBを脱着させるのに必要な脱着水蒸気量が低く、濃縮倍率が低いことが分かる。よって、実施例2では、実施例1に比べて、吸着素子を再生するための再生エネルギーを低減できるうえ、濃縮水の処理エネルギーを低減できることが確認される。そのうえ、実施例2は、実施例1と比べて、吸着素子に被処理水を通流させるために必要な電力が低く、脱着処理に必要なエネルギーが低減できることが分かる。よって、実施例2では、実施例1に比べて、水処理装置全体で、省エネルギー(低コスト)にて水処理が可能であることが確認される。 Further, from the results in Table 1, it can be seen that the amount of desorbed water vapor required for desorbing 2-MIB from the adsorption element is lower and the concentration ratio is lower in Example 2 than in Example 1. Therefore, it is confirmed that in the second embodiment, the renewable energy for regenerating the adsorbent element can be reduced and the processing energy of the concentrated water can be reduced as compared with the first embodiment. Moreover, it can be seen that in the second embodiment, the electric power required to allow the water to be treated to flow through the adsorption element is lower than that in the first embodiment, and the energy required for the desorption treatment can be reduced. Therefore, in the second embodiment, it is confirmed that the water treatment can be performed with energy saving (low cost) in the entire water treatment apparatus as compared with the first embodiment.

本発明による水処理装置は、各種工場や研究施設からの排水、最終処分場の浸出水、地下水に加えて、特に、浄水場の浄水中からカビ臭物質を除去する装置に好適に利用することができ、産業界に大いに寄与できる。 The water treatment device according to the present invention shall be suitably used for a device for removing musty odor substances from the purified water of a water purification plant, in addition to wastewater from various factories and research facilities, leachate of a final disposal site, and groundwater. Can make a great contribution to the industrial world.

10 処理槽
11 吸着素子
12 吸着素子
20 処理槽
100 水処理装置
L1 被処理水導入ライン(水流通部)
L2 処理水排出ライン(水流通部)
L3 加熱ガス供給ライン(加熱ガス通気部)
L4 ガス排出ライン
L5 ガス供給ライン(ガス通気部)
L6 還流ライン(返送ルート)
V1〜V12 バルブ
10 Treatment tank 11 Adsorption element 12 Adsorption element 20 Treatment tank 100 Water treatment device L1 Water to be treated introduction line (water flow section)
L2 treated water discharge line (water distribution department)
L3 heating gas supply line (heating gas ventilation part)
L4 gas discharge line L5 gas supply line (gas vent)
L6 return line (return route)
V1 to V12 valves

Claims (4)

活性炭素繊維の構造体を含む吸着素子を収容した処理槽と、
前記処理槽に接続され、前記処理槽内の前記吸着素子に被処理水を通流させて前記吸着素子に被処理水中の少なくともカビ臭物質を吸着させ、処理水を排出する水通流部と、
前記処理槽に接続され、前記処理槽内の前記吸着素子にガスを通気させて前記吸着素子に付着した付着水を除去するガス通気部と、
前記処理槽に接続され、前記処理槽内の前記吸着素子に加熱ガスを通気させて前記吸着素子に吸着された少なくともカビ臭物質を脱着する加熱ガス通気部と、を備え、
前記吸着素子は、通水圧損係数が85mmAq・s/cm以下でありかつ細孔径30Å以下の細孔容積が全細孔容積の95%以上であり、
前記活性炭素繊維の構造体は、活性炭素繊維からなる直径が100〜600μmの繊維束で構成された編物であることを特徴とする水処理装置。
A treatment tank containing an adsorption element containing an activated carbon fiber structure, and
A water flow section connected to the treatment tank, allowing water to be treated to flow through the adsorption element in the treatment tank, adsorbing at least a musty odor substance in the water to be treated by the adsorption element, and discharging the treated water. ,
A gas aeration unit connected to the treatment tank and aerated gas through the adsorption element in the treatment tank to remove adhering water adhering to the adsorption element.
It is provided with a heating gas aeration unit which is connected to the treatment tank and allows the adsorption element in the treatment tank to ventilate a heating gas to desorb at least a musty odor substance adsorbed on the adsorption element.
The adsorption element has a water flow pressure loss coefficient of 85 mm Aq · s / cm 2 or less and a pore volume of 30 Å or less in a pore volume of 95% or more of the total pore volume.
The water treatment apparatus, wherein the structure of the activated carbon fiber is a knitted fabric made of activated carbon fibers and composed of a fiber bundle having a diameter of 100 to 600 μm.
前記吸着素子から除去した付着水を、再度、前記吸着素子に通流させるための返送ルートを備えることを特徴とする請求項1に記載の水処理装置。 The water treatment apparatus according to claim 1, further comprising a return route for allowing the adsorbed water removed from the adsorption element to flow through the adsorption element again. 前記吸着素子に対して、加熱ガスを通気させる通気方向と、被処理水を通流させる通流方向とが逆であることを特徴とする請求項1又は2に記載の水処理装置。 The water treatment apparatus according to claim 1 or 2, wherein the ventilation direction in which the heating gas is ventilated and the flow direction in which the water to be treated is allowed to flow through the adsorption element are opposite to each other. 前記吸着素子に吸着されるカビ臭物質に、ジオスミン及び/又は2−メチルイソボルネオールを含むことを特徴とする請求項1からのいずれか1項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 3 , wherein the musty odor substance adsorbed on the adsorption element contains geosmin and / or 2-methylisoborneol.
JP2016138390A 2016-07-13 2016-07-13 Water treatment equipment Active JP6922165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138390A JP6922165B2 (en) 2016-07-13 2016-07-13 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138390A JP6922165B2 (en) 2016-07-13 2016-07-13 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2018008209A JP2018008209A (en) 2018-01-18
JP6922165B2 true JP6922165B2 (en) 2021-08-18

Family

ID=60994669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138390A Active JP6922165B2 (en) 2016-07-13 2016-07-13 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP6922165B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142394A (en) * 1984-08-07 1986-02-28 Zousui Sokushin Center Treatment of water
JP3239537B2 (en) * 1993-06-07 2001-12-17 東陶機器株式会社 Water purifier
JPH07328606A (en) * 1994-06-03 1995-12-19 Toto Ltd Concentrical city water purifying device for household
JP5948822B2 (en) * 2011-11-30 2016-07-06 東洋紡株式会社 Water treatment system
JP6332599B2 (en) * 2014-01-17 2018-05-30 東洋紡株式会社 Water treatment system

Also Published As

Publication number Publication date
JP2018008209A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6897572B2 (en) Water treatment equipment, adsorption elements, and water treatment methods
JP5948822B2 (en) Water treatment system
WO2012120948A1 (en) Method for removing organic solvent, and removal device
JP5029590B2 (en) Wastewater treatment system
JP6393965B2 (en) Wastewater treatment system
JP6922165B2 (en) Water treatment equipment
JP2008188493A (en) Water treatment apparatus
JP6311342B2 (en) Wastewater treatment system
JP2010142792A (en) Wastewater treatment system
JP6862700B2 (en) Water treatment system
JPH0476751B2 (en)
JP2013111552A (en) Device for processing organic solvent-containing gas
JP2017205684A (en) Water treatment system
JP6409589B2 (en) Water treatment equipment
JP2012035232A (en) Wastewater treatment system
JP2010142790A (en) System for treating exhaust
JP6765921B2 (en) Water treatment equipment, water treatment system and water treatment method
JP6699129B2 (en) Water treatment system
JP2015196102A (en) Adsorbent element for deodorization and production method thereof
KR101670728B1 (en) Apparatus for water treatment combined vehicle using activated carbon fiber
JP6819284B2 (en) Water treatment system
JP5978808B2 (en) Wastewater treatment system
JP6834512B2 (en) Fluid processing equipment
JP2015042396A (en) Water treatment apparatus and water treatment system
JP6428992B2 (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210406

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210413

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6922165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350