JPS6142394A - Treatment of water - Google Patents

Treatment of water

Info

Publication number
JPS6142394A
JPS6142394A JP16550684A JP16550684A JPS6142394A JP S6142394 A JPS6142394 A JP S6142394A JP 16550684 A JP16550684 A JP 16550684A JP 16550684 A JP16550684 A JP 16550684A JP S6142394 A JPS6142394 A JP S6142394A
Authority
JP
Japan
Prior art keywords
water
activated carbon
fibrous activated
raw water
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16550684A
Other languages
Japanese (ja)
Other versions
JPH0476751B2 (en
Inventor
Kunitaro Kawazoe
河添 邦太朗
Gennosuke Inoue
井上 源之助
Hisao Ogasawara
小笠原 尚夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZOUSUI SOKUSHIN CENTER
Original Assignee
ZOUSUI SOKUSHIN CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZOUSUI SOKUSHIN CENTER filed Critical ZOUSUI SOKUSHIN CENTER
Priority to JP16550684A priority Critical patent/JPS6142394A/en
Publication of JPS6142394A publication Critical patent/JPS6142394A/en
Publication of JPH0476751B2 publication Critical patent/JPH0476751B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To facilitate regeneration by increasing the spatial speed of the amount of treating water, by contacting fibrous activated carbon having fine pores with a specific radius with raw water to remove a noxious substance by adsorption before excluding the greater part of water held by said fibrous activated carbon. CONSTITUTION:Fibrous activated carbon, wherein the fine pore volume occupied by fine pores with a pore radius of 15Angstrom or less is 0.3cc/g or more, is prepared. This fibrous activated carbon is brought into contact with raw water containing a noxious substance such as a malodorous substance or a lower organohalogen compound and the noxious substance is adsorbed with the fibrous activated carbon to be removed from raw water. Air over-saturated water is passed through this fibrous activated carbon bed having the noxious substance adsorbed therewith to substitute the greater part of water held by the activated carbon bed by air bubbles to remove said water. Subsequently, fibrous activated carbon is regenerated by pressurized or over-heated steam with temp. of 100-200 deg.C. Said fibrous activated carbon is prepared, for example, by carbonizing a cellulosic fiber at 200-300 deg.C before activation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水処理方法に関し、特に水中に溶存する臭気物
質、有機ハロゲン化合物等の有害物質を吸着除去する水
処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a water treatment method, and particularly to a water treatment method for adsorbing and removing harmful substances such as odor substances and organic halogen compounds dissolved in water.

最近、上水、工業用水の水源である河川、湖沼等が、各
種排水の流入により、汚濁が進んでおり、これらの水源
を利用するためには従来の水処理方法に加えて高度な処
理が要求されるようになっている。特に湖沼の富栄養化
による微生物の繁殖の結果から生ずる飲用水のかび奥、
あるいは工業用溶剤やドライクリーニング用洗浄剤の混
入による地下水源の汚染などの問題が発生しており、特
に後者は臭気の他に発がん性などの健康上の問題があり
、有機ハロゲン化合物の除去も水処理上の急務となって
いる。
Recently, rivers, lakes, etc., which are water sources for tap water and industrial water, have become increasingly polluted due to the influx of various types of wastewater, and in order to utilize these water sources, advanced treatment is required in addition to conventional water treatment methods. It has become required. In particular, moldiness in drinking water resulting from the proliferation of microorganisms due to eutrophication of lakes and marshes.
In addition, there are problems such as contamination of underground water sources due to the contamination of industrial solvents and dry cleaning detergents, and the latter in particular has odor and health problems such as carcinogenicity, and it is difficult to remove organic halogen compounds. This is an urgent issue in water treatment.

本発明の目的は、通常の浄化処理では除去し得ない、こ
れらの有害物質を効率よく除去し、飲用水として適した
、不快臭がなく、かつ、保健上の問題がない高度処理水
を提供することにある。
The purpose of the present invention is to efficiently remove these harmful substances that cannot be removed by normal purification treatment, and to provide highly treated water that is suitable for drinking water, has no unpleasant odor, and is free from health problems. It's about doing.

〔従来の技術〕[Conventional technology]

このような水の高度処理、特に臭気成分や有機質成分を
含む原水の高度処理には、活性炭による吸着が利用され
ている。用いられる活性炭は粒状または粉末であり、粒
状活性炭は固定床かまたは流動床形式で用いられ、粉末
活性炭は原水中に混合攪拌された後、沈降分離される。
Adsorption using activated carbon is used for such advanced treatment of water, particularly for raw water containing odor components and organic components. The activated carbon used is in the form of granules or powder, and the granular activated carbon is used in a fixed bed or fluidized bed format, and the powdered activated carbon is mixed and stirred in raw water and then sedimented and separated.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

上記の高度処理において、粉末活性炭の利用は処理水中
の粉末活性炭の沈降分離のために特別の設備を必要とし
、微細な粉末を沈降分離するために処理速度が遅く、か
つ、分離した活性炭粉末の再生利用は実際上行われない
ので、能率面からもコスト面からも極めて不利である。
In the above-mentioned advanced processing, the use of powdered activated carbon requires special equipment for sedimentation and separation of the powdered activated carbon in the treatment water, and the processing speed is slow due to the sedimentation and separation of fine powder, and the separated activated carbon powder Since recycling is not actually carried out, it is extremely disadvantageous from both an efficiency and cost perspective.

一方、粒状活性炭の利用は使用ずみ活性炭の再生利用が
行われ、現実に上水の脱臭のための高度処理に実用され
ている。しかしながら、粒状活性炭を用いる方法は、固
定床で用いた場合に流動抵抗が大きく、かつ、活性炭粒
子の崩壊や水中の固形分の沈着等により使用と共に流動
抵抗は増大するので、頻繁に逆洗を行う必要がある。流
動床として用いる方法は流動抵抗の点からは有利である
が、粒子間の摩擦により生ずる微細炭素粒子の除去の問
題がある。史に粒状活性炭を用いる方法は、固定床であ
れ流動床であれ、吸着速度が遅いという根本的な問題が
ある。即ち粒状活性炭における吸着は粒子内部の細孔に
よって行われるため、吸着質の粒子内部への拡散が律速
段階となるからである。このため、例えば原水の脱臭を
目的とした場合、処理水量の空間速度(S V)は、固
定床で5〜lO1流動床で10〜15 (静止層高基準
)程度であり、そのためにかなり大形の処理設備が必要
であり、広い敷地面積を必要とする。
On the other hand, granular activated carbon is used to recycle used activated carbon, and is actually used in advanced treatment for deodorizing tap water. However, the method using granular activated carbon has a large flow resistance when used in a fixed bed, and the flow resistance increases with use due to the disintegration of activated carbon particles and the deposition of solids in the water, so backwashing is required frequently. There is a need to do. Although the method using a fluidized bed is advantageous in terms of flow resistance, there is a problem in removing fine carbon particles caused by friction between particles. The fundamental problem with methods using granular activated carbon, whether fixed bed or fluidized bed, is that the adsorption rate is slow. That is, since adsorption in granular activated carbon is carried out through the pores inside the particles, the rate-determining step is the diffusion of adsorbate into the inside of the particles. For this reason, for example, when the purpose is to deodorize raw water, the space velocity (S V) of the amount of water to be treated is about 5 to 10 in a fixed bed and 10 to 15 in a fluidized bed (based on the height of the static bed), which is quite large. It requires a large amount of processing equipment and a large site area.

また、固定床または流動床で用いられてその吸着能力の
低下した粒状活性炭は、分離して取出し別の再生処理装
置に送られて、そこで700〜800°Cの高温で、水
蒸気や炭酸ガス等の酸化性雰囲気中で処理される。従っ
て再生処理のための特別の高温処理設備を必要とする。
In addition, the granular activated carbon that has been used in a fixed bed or fluidized bed and whose adsorption capacity has decreased is separated and taken out and sent to a separate regeneration processing device, where it is heated at a high temperature of 700 to 800°C to remove water vapor and carbon dioxide. Processed in an oxidizing atmosphere. Therefore, special high temperature treatment equipment is required for regeneration treatment.

また、再生処理では、高温での反応により活性炭の損失
が生じ、この損失による活性炭の重量減少は一般に約5
重量%であり、脱臭力の回復のみを目的とする場合でも
3重量%程度の損失は避けられない。
In addition, in the regeneration process, a loss of activated carbon occurs due to the reaction at high temperature, and the weight loss of activated carbon due to this loss is generally about 5
% by weight, and a loss of about 3% by weight is unavoidable even when the sole purpose is to restore the deodorizing power.

〔問題点を解決するための手段〕[Means for solving problems]

最近、ポリアクリロニトリル、フェノール樹脂、ポリビ
ニルアルコールなどの合成高分子繊維を炭化した繊維状
活性炭が開発され、このものは従来の粒状活性炭と同様
な比表面積、細孔容積をもつのに加え、繊維の直径が5
〜20μmと極めて細く、粉末活性炭の粒径よりも小さ
いために外表面積が極めて大きく、吸着に際しての吸着
質の細孔へのアクセスが直接性われるので、粒状活性炭
におけるような粒子内部への拡散という律速段階がなく
、吸着速度が著しく大である。本発明は、この様な繊維
状活性炭の特性に注目し、水中の有害物質の吸着除去に
利用したところ、粒状活性炭に比して極めて大きなSV
での水処理が可能であり、しかも使用ずみの繊維状活性
炭は粒状活性炭の場合より著しく低い温度で極めて容易
に再生し得ることを見出した。
Recently, fibrous activated carbon has been developed by carbonizing synthetic polymer fibers such as polyacrylonitrile, phenolic resin, and polyvinyl alcohol. diameter is 5
Because it is extremely thin at ~20 μm and smaller than the particle size of powdered activated carbon, its outer surface area is extremely large, and the adsorbate has direct access to the pores during adsorption, so it is difficult to diffuse into the inside of the particles like in granular activated carbon. There is no rate-limiting step and the adsorption rate is extremely high. The present invention focused on the characteristics of fibrous activated carbon and used it to adsorb and remove harmful substances from water.
It has been found that the used fibrous activated carbon can be regenerated very easily at a temperature significantly lower than that of granular activated carbon.

即ち本発明は細孔半径15ス以下の細孔の占める細孔容
積がo、+tc;/ g以上である繊維状活性炭に原水
を接触せしめて原水中の有害物質を吸着除去する工程、
この有害物質を吸着した該繊維状活性炭より繊維間に保
持された水の大部分を排除する工程、および保持水の排
除された繊維状活性炭を加熱ガスにより再生する工程を
含むことを特徴とする水処理方法である。
That is, the present invention includes a step of adsorbing and removing harmful substances in raw water by bringing raw water into contact with fibrous activated carbon in which pores with a pore radius of 15 square meters or less occupy a pore volume of 0,+tc;/g or more;
The method is characterized by including a step of removing most of the water held between the fibers from the fibrous activated carbon that has adsorbed the harmful substances, and a step of regenerating the fibrous activated carbon from which the retained water has been removed using heated gas. It is a water treatment method.

本発明に用いられる繊維状活性炭は、例えばセルローズ
系繊維、フェノール樹脂系繊維、ポリアクリロニトリル
系繊維、ポリビニルアルコール系繊維等を200〜30
0″Cで炭化し、更に高温水蒸気等の賦活ガスによって
賦活化したものである。
The fibrous activated carbon used in the present invention includes, for example, cellulose fibers, phenolic resin fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, etc.
It is carbonized at 0''C and further activated with an activation gas such as high temperature steam.

但し、本発明に用いられる繊維状活性炭は上記の製造法
に限定されず、例えばピッチコークス等より繊維化され
たものでも、必要な吸着能力を有すれば使用し得る。
However, the fibrous activated carbon used in the present invention is not limited to the above-mentioned manufacturing method; for example, fibrous activated carbon made from pitch coke or the like can be used as long as it has the necessary adsorption capacity.

本発明で原水中より吸着除去する有害物質は、例えばか
び臭で代表される臭気物質あるいはトリクロロエチレン
等の溶存有機溶媒で、水中の全有機炭素(TOC)中で
比較的低分子量のものである。従って、これらを吸着除
去する繊維状活性炭の細孔分布も細孔半径の小さい方が
有効であり、半径15ス以下の細孔容積が水蒸気吸着法
による測定でo、3cc/g以上のものが用いられる。
The harmful substances to be adsorbed and removed from raw water in the present invention are, for example, odorous substances typified by musty odor or dissolved organic solvents such as trichlorethylene, which have a relatively low molecular weight in the total organic carbon (TOC) in water. Therefore, it is more effective to have a smaller pore radius for the pore distribution of fibrous activated carbon that adsorbs and removes these substances. used.

また全細孔容積も0.5CC/g以上、好ましくは0.
6cc/g以上のものが用いられる。細孔容積が上記よ
り小さい場合、繊維状活性炭の単位重量当りの処理水量
が小さく、頻繁な再生処理が必要となり実用的でない。
The total pore volume is also 0.5 CC/g or more, preferably 0.5 CC/g or more.
6cc/g or more is used. If the pore volume is smaller than the above, the amount of water treated per unit weight of fibrous activated carbon is small, and frequent regeneration treatments are required, which is not practical.

繊維状活性炭はヤーン状もあるが、通常フェルト状また
は織物に成形されており、原水処理のための吸着層はこ
れらのフェルトまたは織物を重ねた形で用いられ、その
充填密度は圧縮の程度にもよるが大体0.Ig/。。前
後である。
Fibrous activated carbon can be found in the form of yarn, but it is usually formed into felt or woven fabrics, and the adsorption layer for raw water treatment is used in the form of stacking these felts or woven fabrics, and the packing density varies depending on the degree of compression. It depends, but it's usually 0. Ig/. . Before and after.

本発明の水処理方法における吸着層の形式は任意である
。繊維状活性炭のフェルトまたは織布を吸着塔の断面に
合わせて切取り、その切片を所望の層高に重畳して吸着
層とし、−に向流または下向流で原水を通水してもよい
し、あるいは断面角状の吸着塔であれば繊維状活性炭の
フェルトまたは織布を折重ねて充填してもよい。また透
水性シリンダーに繊維状活性炭のフェルトまたは織布を
所填してもよい。
The type of adsorption layer in the water treatment method of the present invention is arbitrary. Cut the fibrous activated carbon felt or woven cloth to match the cross section of the adsorption tower, overlap the cut pieces to the desired layer height to form an adsorption layer, and pass raw water through it in a countercurrent or downward flow. Alternatively, if the adsorption tower has a square cross section, fibrous activated carbon felt or woven cloth may be folded and filled. The water-permeable cylinder may also be filled with felt or woven fabric of fibrous activated carbon.

吸着工程 本発明で処理される原水は、低分子量の有害物質、特に
湖沼等に発生する微生物によるかび臭原因物質(2−メ
チルイソボルネオールやジオスミンで代表される)、お
よび工業用やドライクリーニング用に使用される低分子
有機ハロゲン化合物(トリクロロメタン、トリクロロエ
チレン等)が溶存している水である。本発明の目的は、
通常の浄化処理では除去し得ないこれらの有害物質を除
去する高度処理にあるので、原水としては他の要処理物
質、即ちS S 、 、B OD等が予め処理されてい
るか、あるいはそれらの物質の少ない地下水等を用いる
ことが好ましい。
Adsorption process The raw water treated in the present invention contains low molecular weight harmful substances, especially substances that cause musty odors caused by microorganisms that occur in lakes and marshes (typified by 2-methylisoborneol and diosmin), and substances used for industrial and dry cleaning purposes. This is water in which the low-molecular-weight organic halogen compounds used (trichloromethane, trichloroethylene, etc.) are dissolved. The purpose of the present invention is to
Since this is an advanced treatment that removes these harmful substances that cannot be removed by normal purification treatment, the raw water must have been pretreated with other substances that require treatment, such as SS, , BOD, etc., or be free from these substances. It is preferable to use underground water or the like with a small amount of water.

原水処理のための通水量は、脱臭を目的とする場合、水
質の程度により吸着層容積に対する空間速度(SV)で
40〜200を採用することができ、更に低級有機ハロ
ゲン化合物の除去を目的とする場合、例えばトリクロロ
エチレンの除去の場合には8200以上の高速処理も可
能である。
When the water flow rate for raw water treatment is for the purpose of deodorization, a space velocity (SV) relative to the adsorption layer volume of 40 to 200 can be adopted depending on the degree of water quality, and for the purpose of removing lower organic halogen compounds. For example, in the case of removing trichlorethylene, high-speed processing of 8200 or more is also possible.

脱臭処理の場合、吸着層を通過した処理水より採取した
検水を、例えば日本水道協会上水試験法により臭気濃度
(To)を測定し、TOが一定規準、例えば7を超えた
ら通水を止め、その吸着層は再生処理される。低級有機
ハロゲン化合物除去の場合には、ガスクロマトグラフ、
あるいは分光光度計による吸光度等により濃度測定を行
う。
In the case of deodorizing treatment, the odor concentration (To) of sampled water sampled from the treated water that has passed through the adsorption layer is measured using, for example, the Japan Water Works Association drinking water test method, and if TO exceeds a certain standard, for example 7, the water flow is stopped. The adsorption layer is then regenerated. In the case of removing lower organic halogen compounds, gas chromatograph,
Alternatively, the concentration is measured by absorbance using a spectrophotometer.

原水処理によって吸着能の低下した吸着塔は再生処理さ
れるが、その際、予め吸着層より繊維状活性炭の繊維間
に滞留する保持水の脱水を行う。
An adsorption tower whose adsorption capacity has decreased due to raw water treatment is regenerated, but at that time, the retained water remaining between the fibers of the fibrous activated carbon is dehydrated from the adsorption layer in advance.

脱水工程 再生処理に際しては吸着塔内の水が抜かれるが、水を抜
いた状態でも吸着層の繊維間になお大量の水が保持され
て残り、この水は再生に当っての熱水蒸気のエネルギー
を吸収して、再生に必要なン晶度までの昇流に時間がか
\す、かつ、大量のエネルギーを消費する。エアーブロ
ーすることにより繊維間の水はかなり押出されるが、最
初に空気の通り抜けた部分の流通抵抗が小さくなるため
、エアーチャンネルが形成され、チャンネル以夕)の吸
着層の繊維間保持水は容易に排除されないおそれがあり
、その結果再生むらを生ずることがある。
Dehydration process During the regeneration process, the water in the adsorption tower is removed, but even after the water is removed, a large amount of water is still retained between the fibers of the adsorption layer, and this water is used to absorb the energy of hot steam during regeneration. It takes time to absorb and raise the crystallinity to the level required for regeneration, and a large amount of energy is consumed. By air blowing, the water between the fibers is pushed out to a large extent, but the flow resistance in the part where the air passes through first becomes small, so air channels are formed, and the water retained between the fibers in the adsorption layer (after the channels) is There is a risk that the particles may not be removed easily, resulting in uneven reproduction.

本発明の方法においては、エアーブローも採用し得るが
、好ましくは空気を過飽和に溶解した水により、吸着層
の繊維間の保持水と置換せしめる方法が採用される。空
気過飽和水は、例えば3 kg/ci程度の加圧下に空
気を水に溶解せしめたものを常圧下で用いるか、あるい
は低温で空気の飽和溶解した水を常温または加温下に用
いることにより得られる。空気過飽和水はすでに微細気
泡を含有し、更に繊維間を流通する際に微細な泡を発生
する。これらの泡は繊維間に捕集され、その分だけ保持
水は排除される。微細気泡の滞留により、その部分の流
動抵抗が増すので、空気過飽和水は捕集気泡の少ない部
分に流れ、その部分で気泡捕集が行われる。その結果と
して吸着層全体に均一に気泡が充満し、効果的に保持水
の排除が行われる。空気過飽和水の吸着層での流通抵抗
は、気泡の捕集が進むにつれて増大し、1 kg / 
cJ程度に達する。次いで、空気過飽和水の通水を停止
し、水抜きした後、必要あればエアーブローを行なう。
In the method of the present invention, air blowing may also be employed, but preferably a method is employed in which water in which air is supersaturated is substituted for the water held between the fibers of the adsorption layer. Air supersaturated water can be obtained, for example, by dissolving air in water under a pressure of about 3 kg/ci at normal pressure, or by using water in which air has been saturated dissolved at low temperature at room temperature or under heating. It will be done. Air-supersaturated water already contains fine bubbles, and further generates fine bubbles when flowing between the fibers. These bubbles are trapped between the fibers and the retained water is removed accordingly. Due to the accumulation of microbubbles, the flow resistance in that area increases, so the air-supersaturated water flows to the area where there are fewer trapped air bubbles, and air bubbles are collected in that area. As a result, the entire adsorption layer is uniformly filled with bubbles, and retained water is effectively removed. The flow resistance of air-supersaturated water in the adsorption layer increases as the collection of air bubbles progresses, and reaches 1 kg /
It reaches about cJ. Next, the flow of air-supersaturated water is stopped, the water is drained, and air blowing is performed if necessary.

第1表は各種の脱水方法による残留水量を示すもので、
空気過飽和水(気泡水ともいう)はすぐれた保持水排除
効果を有する。
Table 1 shows the amount of residual water by various dehydration methods.
Air supersaturated water (also called bubble water) has an excellent retained water removal effect.

保持水の排除された繊維状活性炭の吸着層は、熱水蒸気
によって再生処理される。
The fibrous activated carbon adsorption layer from which retained water has been removed is regenerated by hot steam.

再生工程 再生は100〜200°Cの水蒸気を吸着層に通すこと
によって行われる。この水蒸気はボイラーからの低圧蒸
気、中圧蒸気をそのまま用いてもよいが、好ましくは低
圧蒸気を加熱した過熱水蒸気が用いられる。また、窒素
ガスあるいは燃焼ガス等の不活性ガスを再生ガスとして
用いることができ、この場合はガスの熱容量の関係もあ
り、好ましくは300″C近い高温加熱ガスが用いられ
る。
Regeneration Process Regeneration is carried out by passing water vapor at 100-200°C through the adsorption bed. As the steam, low-pressure steam or medium-pressure steam from a boiler may be used as is, but preferably superheated steam obtained by heating low-pressure steam is used. Further, an inert gas such as nitrogen gas or combustion gas can be used as the regeneration gas, and in this case, depending on the heat capacity of the gas, a high temperature heating gas of approximately 300''C is preferably used.

原水処理工程において、吸着層には有害物質のみでなく
原水中のTOCも吸着されており、この吸着されたTO
Cの脱着には100〜200’Cの水蒸気では充分とは
いえないが、前記脱水工程で残存している保持水が、水
蒸気の導入によって蒸発する際に、水蒸気蒸留の効果に
よって脱着T○Cを吸着層から留出せしめるので、吸着
TOCの70〜80%程度は脱着除去される。
In the raw water treatment process, the adsorption layer adsorbs not only harmful substances but also TOC in the raw water, and this adsorbed TO
Although water vapor at 100 to 200'C is not sufficient for desorption of C, when the retained water remaining in the dehydration step is evaporated by the introduction of water vapor, the effect of steam distillation causes the desorption of T○C. Since the TOC is distilled out from the adsorption layer, about 70 to 80% of the adsorbed TOC is removed by desorption.

脱着物質を含む水蒸気は凝縮させて別途排水として処理
される。
Water vapor containing desorbed substances is condensed and treated separately as wastewater.

再生処理された吸着塔は、再び原水処理工程に使用され
る。
The regenerated adsorption tower is used again in the raw water treatment process.

再賦活 本発明の方法に従って、原水処理と再生とを繰返してい
ると、吸着能力の低下がみられる。これは原水中のTO
Cが吸着蓄積したためであり、この場合吸着層の繊維状
活性炭を再賦活することにより吸着能力を回復すること
ができる。
Reactivation When raw water treatment and regeneration are repeated according to the method of the present invention, a decrease in adsorption capacity is observed. This is TO in raw water
This is because C has been adsorbed and accumulated, and in this case, the adsorption capacity can be recovered by reactivating the fibrous activated carbon in the adsorption layer.

一般に、地下水からの有機ハロゲン化合物の吸着除去の
場合には原水中のTOC量が少ないので、再賦活の頻度
も少ないが、かび臭の除去の場合は湖沼水を水源とする
ため、原水中のTOC量が多く、再賦活の頻度は大きく
なる。
In general, when organic halogen compounds are adsorbed and removed from groundwater, the amount of TOC in the raw water is small, so reactivation is infrequent; however, when removing musty odors, the water source is lake water, so TOC in the raw water is The larger the amount, the more frequent the reactivation will be.

再賦活は通常の活性炭の賦活と同様に行うことができ、
例えば800’C以上のLPG燃焼ガスで1〜20分処
理する方法により行われる。
Reactivation can be performed in the same way as normal activated carbon activation,
For example, this is carried out by a method of treating with LPG combustion gas of 800'C or more for 1 to 20 minutes.

〔作用および効果〕[Action and effect]

本発明の水処理方法は、吸着剤として繊維状活性炭を用
いることにより、原水の高度処理とじて臭気物質、低級
有機ハロゲン化合物等の有害物質を、高流速で処理する
ことができるので、従来の粒状活性炭による処理に比し
て、装置が小型化される。吸着層の再生処理も吸着塔に
充填されたまま低圧スチームや燃焼ガスにより簡易に行
われ、かつ、再生の都度吸着塔は加熱ガスによって殺菌
処理が行われる形であるので、衛生上の問題も生じない
By using fibrous activated carbon as an adsorbent, the water treatment method of the present invention can treat harmful substances such as odor substances and lower organic halogen compounds at a high flow rate through advanced treatment of raw water. Compared to treatment using granular activated carbon, the equipment is smaller. Regeneration of the adsorption bed is easily carried out using low-pressure steam or combustion gas while the adsorption tower is still filled, and the adsorption tower is sterilized with heated gas each time it is regenerated, so there are no hygiene issues. Does not occur.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 ポリアクリロニ) IJル系の活性炭素繊維(東邦ベス
ロン社製、ファインガード特殊試料)を用いて、浄水場
の急速濾過池の出口水の脱臭処理を行った。用いた試料
の細孔特性は次のとおりであった。
Example 1 Deodorization treatment of outlet water of a rapid filtration basin in a water purification plant was carried out using activated carbon fibers based on polyacrylon (Fine Guard Special Sample, manufactured by Toho Bethlon Co., Ltd.). The pore characteristics of the sample used were as follows.

(1)BIT表面積     1200m/g(2)細
孔容積(水蒸気吸着法) 半径15%以下   0.3580C/g15〜3oX
     o、344cc/g30X以上   0.0
41cc/g 全細孔容積     J743cc/g活性炭素繊維の
フェルト状シートを、直径100mmの円板状に切抜い
たものを、内径100 mmのステンレス製カラムに積
層充填した。充填量は109gで、充填層の高さは16
5 mmであった。
(1) BIT surface area 1200m/g (2) Pore volume (water vapor adsorption method) Radius 15% or less 0.3580C/g15~3oX
o, 344cc/g30X or more 0.0
41 cc/g Total pore volume J743 cc/g A felt sheet of activated carbon fiber was cut out into a disc shape with a diameter of 100 mm and packed in a stacked state in a stainless steel column with an inner diameter of 100 mm. The filling amount is 109g, and the height of the filling bed is 16
It was 5 mm.

原水を5V58で通水した。原水のTO(臭気濃度)は
30から65の間で変動したが、処理水のTOが7を超
えるまでの処理水量は64001であった。
Raw water was passed through at 5V58. The TO (odor concentration) of the raw water varied between 30 and 65, but the amount of treated water until the TO of the treated water exceeded 7 was 64,001.

次いで3 kg/ cJ aの加圧下に室温で空気を飽
和溶解させた原水を、加圧槽から直接吸着カラムにバル
ブで紋りながら下向流で供給し、吸着層内に気泡が充満
して加圧水が実質上通らなくなったところで加圧水の供
給を止め、水抜き後エアーブローした。
Next, raw water in which air was saturated and dissolved at room temperature under a pressure of 3 kg/cJ a was supplied directly from the pressurized tank to the adsorption column in a downward flow while being controlled by a valve, until the adsorption layer was filled with air bubbles. When the pressurized water substantially stopped flowing, the supply of pressurized water was stopped, and after the water was drained, air was blown.

150°Cの過熱水蒸気を2.5kp/hrの流量で2
時間流して再生処理を行った。
Superheated steam at 150°C at a flow rate of 2.5 kp/hr
Regeneration processing was performed over time.

再生処理終了後、再び原水の脱臭処理を前と同一条件で
行ったところ、Toが7を超えるまでの通水量は650
0jであった。
After the regeneration process was completed, the raw water was deodorized again under the same conditions as before, and the amount of water passed until To exceeded 7 was 650.
It was 0j.

実施例2 トリクロロエチレン500 ppbが溶存する地下水を
フェノール系活性炭素繊維(クラレケミカル社製、FT
15)1.OOgを充填したカラムに通水した。FT1
5の全細孔容積は0.583cc/gで、半径15%以
下の細孔容積はo、573cc/gであった。
Example 2 Groundwater containing 500 ppb of trichlorethylene was treated with phenolic activated carbon fiber (manufactured by Kuraray Chemical Co., Ltd., FT
15)1. Water was passed through a column packed with OOg. FT1
The total pore volume of No. 5 was 0.583 cc/g, and the pore volume of 15% or less of the radius was 573 cc/g.

カラム内の充填層は直径15闘で層高66 mm、充填
密度は0.085g/ccであった。通水速度2.5z
/hr (S V : 210 )で前記地下水を流し
、処理水のサンプルを分光光度計で波長210mμの紫
外吸光度を測定して処理水中のトリクロロエチレン濃度
を算出した。通水時間30時間までは処理水中のトリク
ロロエチレン濃度は50ppb以下のままであり、それ
以後濃度は急激に上昇し、40時間でほぼ原水と同程度
となった。
The packed bed in the column had a diameter of 15 mm, a bed height of 66 mm, and a packing density of 0.085 g/cc. Water flow rate 2.5z
/hr (S V : 210), and the ultraviolet absorbance of a sample of the treated water at a wavelength of 210 mμ was measured using a spectrophotometer to calculate the trichlorethylene concentration in the treated water. The trichlorethylene concentration in the treated water remained below 50 ppb until the water flow time was 30 hours, and after that, the concentration rose rapidly and reached almost the same level as the raw water after 40 hours.

次いで上記カラムに空気過飽和水を上向流で’tmし、
充填カラム中に気泡を発生させ、気泡により大部分の水
を追出した後、下向流でエアーブローして余分の水を除
いた。
Then, air-supersaturated water was applied to the column in an upward flow,
Bubbles were generated in the packed column, and after most of the water was expelled by the bubbles, excess water was removed by air blowing in a downward direction.

カラムの外部をリボンヒーターで140°Cに保温し、
140℃の過熱水蒸気を200 g/hrの流量で1.
5時間通して脱着再生処理を行った。流出水蒸気をコン
デンサーで凝縮し、凝縮水中のトリクロロエチレン量を
測定したところ、留出トリクロロエチレンの合計量は吸
着トリクロロエチレン量の72%であったが、絶対量が
少ないため、蒸発ロス等の存在が考えられる。一方、再
生後の活性炭素繊維を100″Cの空気を流して乾燥し
、秤滑したところトリクロロエチレンの残留は認められ
なかった、 再生後の活性炭素繊維を用いて、同一条件で地下水中の
トリクロロエチレンの吸着除去を行ったところ、前回同
様に、通水量70tまでは処理水のトリクロロエチレン
濃度は50 ppb  以下であり、その後の再生、吸
着の繰返しによっても除去能力に変化は認められなかっ
た。
The outside of the column was kept at 140°C using a ribbon heater.
1. Superheated steam at 140°C at a flow rate of 200 g/hr.
Desorption and regeneration treatment was performed for 5 hours. When the effluent steam was condensed in a condenser and the amount of trichlorethylene in the condensed water was measured, the total amount of distilled trichlorethylene was 72% of the amount of adsorbed trichlorethylene, but since the absolute amount was small, it is thought that there was evaporation loss, etc. . On the other hand, when the recycled activated carbon fibers were dried by blowing air at 100''C and weighed, no residual trichlorethylene was found. As in the previous case, the trichlorethylene concentration in the treated water was below 50 ppb up to a flow rate of 70 tons, and no change in the removal ability was observed even after repeated regeneration and adsorption.

出願人 財団法人造水促進センター 河添邦太朗Applicant: Water Desalination Promotion Center Kunitaro Kawazoe

Claims (6)

【特許請求の範囲】[Claims] (1)細孔半径15Å以下の細孔の占める細孔容積が0
.3cc/g以上である繊維状活性炭に原水を接触せし
めて原水中の有害物質を吸着除去する工程、この有害物
質を吸着した該繊維状活性炭より繊維間に保持された水
の大部分を排除する工程、および保持水の排除された繊
維状活性炭を加熱ガスにより再生する工程を含むことを
特徴とする水処理方法。
(1) The pore volume occupied by pores with a pore radius of 15 Å or less is 0
.. A process of adsorbing and removing harmful substances in the raw water by bringing raw water into contact with fibrous activated carbon having a concentration of 3 cc/g or more, and removing most of the water held between the fibers from the fibrous activated carbon that has adsorbed the harmful substances. and a step of regenerating fibrous activated carbon from which retained water has been removed using heated gas.
(2)有害物質が臭気物質である、特許請求の範囲第(
1)項に記載の方法。
(2) Claim No. 1, in which the harmful substance is an odorous substance (
The method described in section 1).
(3)有害物質が低級有機ハロゲン化合物である、特許
請求の範囲第(1)項に記載の方法。
(3) The method according to claim (1), wherein the harmful substance is a lower organic halogen compound.
(4)保持水の排除が繊維状活性炭層に空気過飽和水を
透過せしめ、保持水を気泡と置換せしめることにより行
われる、特許請求の範囲第(1)項に記載の方法。
(4) The method according to claim (1), wherein the retained water is removed by passing air-supersaturated water through the fibrous activated carbon layer and replacing the retained water with air bubbles.
(5)加熱ガスが100〜200℃の加圧または過熱さ
れた水蒸気である、特許請求の範囲第(1)項から第(
4)項までのいずれかに記載の方法。
(5) The heating gas is pressurized or superheated steam at 100 to 200°C.
4) The method described in any of the above.
(6)加熱ガスが100〜300℃の不活性ガスである
、特許請求の範囲第(1)項から第(4)項までのいず
れかに記載の方法。
(6) The method according to any one of claims (1) to (4), wherein the heating gas is an inert gas at a temperature of 100 to 300°C.
JP16550684A 1984-08-07 1984-08-07 Treatment of water Granted JPS6142394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16550684A JPS6142394A (en) 1984-08-07 1984-08-07 Treatment of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16550684A JPS6142394A (en) 1984-08-07 1984-08-07 Treatment of water

Publications (2)

Publication Number Publication Date
JPS6142394A true JPS6142394A (en) 1986-02-28
JPH0476751B2 JPH0476751B2 (en) 1992-12-04

Family

ID=15813683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16550684A Granted JPS6142394A (en) 1984-08-07 1984-08-07 Treatment of water

Country Status (1)

Country Link
JP (1) JPS6142394A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304095A (en) * 1988-06-01 1989-12-07 Kao Corp Water purifier
JPH0326388A (en) * 1989-06-22 1991-02-04 Nippon Chem Ind Co Ltd Method for removing halogenated hydrocarbon in waste water
JPH04187285A (en) * 1990-11-19 1992-07-03 Takuma Co Ltd Activated carbon filter device
WO1995000442A1 (en) * 1993-03-31 1995-01-05 Toto Ltd. Method and apparatus for purifying water
JP2008188493A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment apparatus
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
CN101792195A (en) * 2010-04-09 2010-08-04 上海交通大学 Organic wastewater activated carbon fiber absorber and desorption device
CN102464373A (en) * 2011-10-20 2012-05-23 常州亚环环保科技有限公司 Method for removing benzopyrene from drinking water
JP2018008212A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment system
JP2018008209A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment device
JP2018143983A (en) * 2017-03-07 2018-09-20 オルガノ株式会社 Method and apparatus for treating water containing odorous substance
JP2019155240A (en) * 2018-03-09 2019-09-19 株式会社オメガ Water treatment mechanism and maintenance system thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970450A (en) * 1972-11-09 1974-07-08
JPS52117881A (en) * 1976-03-31 1977-10-03 Nippon Carbon Co Ltd Method and device for desorbing active carbon
JPS5462175A (en) * 1977-10-27 1979-05-18 Unitika Ltd Gas treating apparatus
JPS54112378A (en) * 1978-02-22 1979-09-03 Toho Rayon Co Ltd Continuous adsorber-desorber for harmful gas
JPS5537475A (en) * 1978-09-11 1980-03-15 Asahi Chem Ind Co Ltd Regenerating method for waste activated carbon
JPS5711629U (en) * 1980-06-24 1982-01-21
JPS58146595U (en) * 1982-03-24 1983-10-01 株式会社エントロピ−エンス water purifier
JPS5970791U (en) * 1982-10-30 1984-05-14 株式会社エントロピ−エンス water purifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970450A (en) * 1972-11-09 1974-07-08
JPS52117881A (en) * 1976-03-31 1977-10-03 Nippon Carbon Co Ltd Method and device for desorbing active carbon
JPS5462175A (en) * 1977-10-27 1979-05-18 Unitika Ltd Gas treating apparatus
JPS54112378A (en) * 1978-02-22 1979-09-03 Toho Rayon Co Ltd Continuous adsorber-desorber for harmful gas
JPS5537475A (en) * 1978-09-11 1980-03-15 Asahi Chem Ind Co Ltd Regenerating method for waste activated carbon
JPS5711629U (en) * 1980-06-24 1982-01-21
JPS58146595U (en) * 1982-03-24 1983-10-01 株式会社エントロピ−エンス water purifier
JPS5970791U (en) * 1982-10-30 1984-05-14 株式会社エントロピ−エンス water purifier

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304095A (en) * 1988-06-01 1989-12-07 Kao Corp Water purifier
JPH0326388A (en) * 1989-06-22 1991-02-04 Nippon Chem Ind Co Ltd Method for removing halogenated hydrocarbon in waste water
JPH04187285A (en) * 1990-11-19 1992-07-03 Takuma Co Ltd Activated carbon filter device
WO1995000442A1 (en) * 1993-03-31 1995-01-05 Toto Ltd. Method and apparatus for purifying water
JP2008188493A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment apparatus
JP2010142729A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
CN101792195A (en) * 2010-04-09 2010-08-04 上海交通大学 Organic wastewater activated carbon fiber absorber and desorption device
CN102464373A (en) * 2011-10-20 2012-05-23 常州亚环环保科技有限公司 Method for removing benzopyrene from drinking water
JP2018008212A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment system
JP2018008209A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment device
JP2018143983A (en) * 2017-03-07 2018-09-20 オルガノ株式会社 Method and apparatus for treating water containing odorous substance
JP2019155240A (en) * 2018-03-09 2019-09-19 株式会社オメガ Water treatment mechanism and maintenance system thereof

Also Published As

Publication number Publication date
JPH0476751B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
Yan et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline
Streat et al. Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons
Kim et al. Adsorption of organic compounds by synthetic resins
JPS6142394A (en) Treatment of water
Zhang et al. Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702
US7641800B2 (en) Use of an adsorbent for the removal of liquid, gaseous and/or dissolved constituents from a process stream
Maldhure et al. Microwave treated activated carbon from industrial waste lignin for denitrification of surface water
Gu et al. Feasibility study of the treatment of aniline hypersaline wastewater with a combined adsorption/bio-regeneration system
Weber Jr et al. Activated carbon adsorption: the state of the art
KR200205816Y1 (en) Apparatus for removing organic odor
Newcombe Removal of natural organic material and algal metabolites using activated carbon
JPS60225641A (en) Regeneration of fibrous activated carbon
JPS6348573B2 (en)
Anisuzzaman et al. Sorption potential of oil palm shell for the removal of chlorinated phenol from aqueous solution: kinetic investigation
JPH08208211A (en) Activated carbon
Labaki Palm wastes reuse for gaseous effluent treatment
US20090178972A1 (en) Use of an Adsorbent for the Removal of Liquid, Gaseous and/or Dissolved Constituents From a Process Stream
Konan et al. Low-cost activated carbon for adsorption and heterogeneous ozonation of phenolic wastewater
JPH0966231A (en) Activated carbon
JP2001162269A (en) Activated carbon filler and water cleaning cartridge using the filler
Jusoh et al. Model studies on granular activated carbon adsorption in fixed bed filtration
Foster et al. Application of weak base ion-exchange resins for removal of proteins
JPS6164316A (en) Treatment of exhaust gas containing organic substance
JP3150514B2 (en) Water purifier and method for regenerating purification material in water purifier
Shindo et al. Water treatment by pitch-based activated carbon fiber