JP2017204618A - 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。 - Google Patents

面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。 Download PDF

Info

Publication number
JP2017204618A
JP2017204618A JP2016097359A JP2016097359A JP2017204618A JP 2017204618 A JP2017204618 A JP 2017204618A JP 2016097359 A JP2016097359 A JP 2016097359A JP 2016097359 A JP2016097359 A JP 2016097359A JP 2017204618 A JP2017204618 A JP 2017204618A
Authority
JP
Japan
Prior art keywords
emitting laser
surface emitting
mesa
wiring
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016097359A
Other languages
English (en)
Inventor
入野田 貢
Mitsugi Irinoda
貢 入野田
布施 晃広
Akihiro Fuse
晃広 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016097359A priority Critical patent/JP2017204618A/ja
Publication of JP2017204618A publication Critical patent/JP2017204618A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instrument Panels (AREA)
  • Laser Beam Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】 信頼性を向上できる面発光レーザ素子を提供すること。【解決手段】 面発光レーザ素子は、基板上に下部半導体DBR(第1の反射鏡)と、活性層と、上部半導体DBR(第2の反射鏡)とがこの順に積層された積層体に、少なくとも活性層及び第2の反射鏡を含むメサが形成された面発光レーザ素子において、活性層105に電流を注入するためのp側電極配線110がメサ上及びその周辺部上に設けられ、p側電極配線110は、第1の配線層110−1と、該第1の配線層110−1の構成粒子間の空隙に一部の構成粒子が入り込んでいる第2の配線層110−2と、を含む。【選択図】図9

Description

本発明は、面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法に関する。
近年、活性層を含むメサを備える面発光レーザ素子の開発が盛んに行われている。
例えば、特許文献1〜6には、活性層に電流を注入するための配線がメサとその周辺部に設けられた面発光レーザ素子が開示されている。
しかしながら、特許文献1〜6に開示されている面発光レーザでは、信頼性に関して向上の余地があった。
本発明は、基板上に第1の反射鏡と、活性層と、第2の反射鏡とがこの順に積層された積層体がエッチングされてメサが形成された面発光レーザ素子において、前記活性層に電流を注入するための配線が前記メサ上及びその周辺部上に設けられ、前記配線は、第1の配線層と、該第1の配線層の構成粒子間の空隙に一部の構成粒子が入り込んでいる第2の配線層と、を含むことを特徴とする面発光レーザ素子である。
本発明によれば、信頼性を向上できる。
本発明の一実施形態の光源装置の構成を概略的に示す図である。 図1の面発光レーザアレイにおける面発光レーザ素子のXZ断面図である。 複数の層が積層された積層体のXZ断面図である。 図4(A)及び図4(B)は、それぞれメサ及び電極パッド領域が形成された積層体の上面図及びXZ断面図である。 図5(A)及び図5(B)は、それぞれメサに電流狭窄層が形成され層間絶縁膜が設けられた積層体の上面図及びXZ断面図である。 図6(A)及び図6(B)は、それぞれメサの上面上の誘電体膜及び層間絶縁膜にコンタクトホールが形成された積層体の上面図及びXZ断面図である。 図7(A)及び図7(B)は、それぞれコンタクトホール及びその周辺部にp側電極配線が設けられた積層体の上面図及びXZ断面図である。 メサ及びその周辺部に設けられた、p側電極配線の第1の配線層を示す図である。 メサ及びその周辺部に設けられたp側電極配線の第1及び第2の配線層を示す図である。 変形例1の面発光レーザ素子の上面図である。 変形例1の面発光レーザ素子のXZ断面図である。 変形例2の面発光レーザ素子の上面図である。 変形例2の面発光レーザ素子のXZ断面図である。 レーザプリンタを説明するための図である。 図14のレーザプリンタの内部構成を概略的に示す図である。 図15の光源ユニットが有する面発光レーザアレイにおける素子配列を説明するための図である。 図15の光源ユニットの全体構成を説明するための図である。 図18(A)及び図18(B)は、それぞれレーザアニール装置を説明するための図(その1及びその2)である。 レーザ切断機を説明するための図である。 画像表示装置を説明するための図である。 エンジンの概略構成を説明するための図である。 図21のエンジンに設けられる点火装置を説明するための図である。 レーザ装置のレーザ共振器を説明するための図である。
《一実施形態》
以下、本発明の一実施形態を図面を用いて説明する。図1には、一実施形態に係る光源装置100が概略的に示されている。
光源装置100は、例えばレーザ加工機等の光源として用いられる。光源装置100は、一例として、図1に示されるように、面発光レーザアレイ10、ヒートシンク12、マイクロレンズアレイ14、集光レンズ16、光ファイバ18などを備えている。
なお、本明細書では、面発光レーザアレイ10の発振方向をZ軸方向、該Z軸方向に直交する平面内で互いに直交する方向をX軸方向及びY軸方向として説明する。ここでは、面発光レーザアレイ10の射出方向は、+Z方向である。
面発光レーザアレイ10は、一例として、図2に示されるように、XY平面に平行な基板101上にアレイ状に形成された複数の発光部10a、該複数の発光部10a上に共通に設けられたp側電極配線110などを有する。ここでは、複数の発光部10aは、XY平面に沿って2次元配列されている。なお、p側電極配線は、発光部毎に分離して設けられても良い。図2には、便宜上、面発光レーザアレイ10における1つの発光部10aのみが図示されている。
面発光レーザアレイ10は、図1に示されるように、接合材15(例えばペースト状のはんだ)を介してヒートシンク12の+Z側の面に実装されている。以下では、面発光レーザアレイ10、接合材15及びヒートシンク12を含んで構成されるユニットを光源モジュール60と称する。
各発光部10aは、一例として、発振波長が808nm帯の垂直共振器型の面発光レーザ(Vertical Cavity Surface Emitting Laser:VCSEL)である。そこで、以下では、発光部10aを「面発光レーザ素子10a」とも呼ぶ。
ヒートシンク12は、一例として、XY平面に平行な板状部材である。ヒートシンクの材料としては、例えばCVD(化学気相成長)ダイヤモンド、高熱伝導率のセラミック(例えばSiCやAu薄膜パターンが形成されたAlN)を用いても良い。また、ヒートシンク12としては、中空構造を有する部材であって、内部に水冷又は空冷などの冷却機能を有する部材であっても良い。また、ヒートシンクの代わりにヒートスプレッダを用いても良い。
マイクロレンズアレイ14は、一例として、面発光レーザアレイ10の+Z側に配置され、XY平面に平行に2次元配列された複数のマイクロレンズ14aを含む。複数のマイクロレンズ14aは、複数の発光部10aからの複数のレーザ光の光路上に個別に配置され、対応するレーザ光を略平行光にする。
集光レンズ16は、一例として、光軸がZ軸に略平行になるようにマイクロレンズアレイ14の+Z側に配置され、該マイクロレンズアレイ14からの複数のレーザ光を集光(合成)する。
光ファイバ18は、入射端が集光レンズ16の焦点位置近傍に配置され、集光レンズ16で合成された複数のレーザ光を導波させる。光ファイバ18内を導波したレーザ光(合成光)は、光ファイバ18の射出端で取り出されて、例えばレーザ加工等に用いられる。
以上の説明から分かるように、マイクロレンズアレイ14、集光レンズ16及び光ファイバ18を含んで、面発光レーザアレイ10からの複数のレーザ光を導光する光学系を構成している。
図2には、面発光レーザ素子10aのYZ断面が示されている。
面発光レーザ素子10aは、一例として、図2に示されるように、基板101、n側電極配線112、下部半導体DBR103、下部スペーサ層104、活性層105、上部スペーサ層106、上部半導体DBR107、コンタクト層109、保護層111、p側電極配線110などを有している。
基板101は、一例として、表面が鏡面研磨面であるn−GaAs単結晶基板である。
n側電極配線112は、一例として、基板101の−Z側の面上に形成された金膜である。
下部半導体DBR103は、一例として、基板101の+Z側に積層され、n−Al0.9Ga0.1Asからなる低屈折率層と、n−Al0.3Ga0.7Asからなる高屈折率層のペアを40.5ペア有している。各屈折率層の間には、電気抵抗を低減するため、一方の組成から他方の組成へ向かって組成を徐々に変化させた厚さ20nmの組成傾斜層が設けられている。そして、各屈折率層はいずれも、隣接する組成傾斜層の1/2を含んで、λ/4(λは発振波長)の光学的厚さとなるように設定されている。なお、光学的厚さがλ/4のとき、その層の実際の厚さLは、L=λ/4n(但し、nはその層の媒質の屈折率)である。
下部スペーサ層104は、一例として、下部半導体DBR103の+Z側に積層され、ノンドープのAl0.6Ga0.4Asからなる層である。
活性層105は、一例として、下部スペーサ層104の+Z側に積層され、Al0.12Ga0.88As量子井戸層/Al0.3Ga0.7As障壁層からなる3重量子井戸構造の活性層である。活性層105は、射出されるレーザ光の波長λ(発振波長)が808nmとなる厚さに設定されている。
上部スペーサ層106は、一例として、活性層105の+Z側に積層され、ノンドープのAl0.6Ga0.4Asからなる層である。
下部スペーサ層104と活性層105と上部スペーサ層106とからなる部分は、共振器構造体とも呼ばれており、隣接する組成傾斜層の1/2を含んで、その厚さが1波長(λ)の光学的厚さとなるように設定されている。なお、活性層105は、高い誘導放出確率が得られるように、電界の定在波分布における腹に対応する位置である共振器構造体の中央に設けられている。なお、各発光部10aは、共振器構造体を1つずつ有している。
上部半導体DBR107は、一例として、上部スペーサ層106の+Z側に積層され、p−Al0.9Ga0.1Asからなる低屈折率層とp−Al0.3Ga0.7Asからなる高屈折率層のペアを24ペア有している。
上部半導体DBR107における各屈折率層の間には、電気抵抗を低減するため、一方の組成から他方の組成へ向かって組成を徐々に変化させた組成傾斜層が設けられている。そして、各屈折率層はいずれも、隣接する組成傾斜層の1/2を含んで、λ/4の光学的厚さとなるように設定されている。
上部半導体DBR107には、一例として、共振器構造体からλ/4離れた位置にp−Al0.98Ga0.02Asからなる電流狭窄層108が厚さ30nmで挿入されている。電流狭窄層108は、上部半導体DBR107の一の低屈折率層である被選択酸化層115(図3参照)が側面からAlが選択的に酸化されて生成されている。
コンタクト層109は、一例として、上部半導体DBR107の+Z側に積層され、p−GaAsからなる層である。
コンタクト層109には、p−SiN(プラズマCVDにより成膜されたSiN)からなる光学的に透明な誘電体から成る保護層111(「層間絶縁膜」とも呼ぶ)によって絶縁されたp側電極配線110の一部が接触している(接続されている)。ここでは、p側電極配線110の材料には、Au(金)が用いられている。
また、p側電極配線110は、複数の発光部10aが配置された領域の周辺領域に配置された電極パッドに接続され、該電極パッドには、Auからなる通電用のワイヤが接続されている。
以下に、面発光レーザアレイ10を含む光源モジュール60の製造方法について説明する。面発光レーザアレイ10は、半導体製造工程によって、同時に複数個が一体的に形成された後、複数のチップ状の面発光レーザアレイ10に分割される。なお、図3に示される基板101上に複数の半導体層が積層されたものを、以下では、「積層体」ともいう。また、面発光レーザアレイ10を「チップ」とも呼ぶ。
(1)積層体を有機金属気相成長法(MOCVD法)あるいは分子線エピタキシャル成長法(MBE法)による結晶成長によって作成する。この結晶成長は、不図示の結晶成長装置の反応管内において行われる。
ここでは、MOCVD法を例に説明する。MOCVD法では、III族の原料に、トリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)を用い、V族の原料に、フォスフィン(PH)、アルシン(AsH)を用いている。また、p型ドーパントの原料には四臭化炭素(CBr)、ジメチルジンク(DMZn)を用い、n型ドーパントの原料にはセレン化水素(HSe)を用いている。
具体的には、基板101上に、下部半導体DBR103、下部スペーサ層104、活性層105、上部スペーサ層106、被選択酸化層115を含む上部半導体DBR107、コンタクト層109をこの順にエピタキシャル成長させた後、プラズマCVD法によりコンタクト層109上に誘電体膜113を形成して積層体を作成する(図3参照)。
誘電体膜113としては、例えば窒化シリコン膜(SiN膜)、二酸化シリコン膜(SiO膜)、酸窒化シリコン膜(SiON膜)等が挙げられるが、特に窒化シリコン膜(SiN膜)が好適である。
(2)複数のメサと電極パッド領域を形成する。先ず、複数のメサと電極パッド領域のレジストパターンを通常のフォトリソグラフィ法により形成する。
具体的には、フォリソグラフィにより積層体の表面に一辺が例えば25μmの正方形状のレジストパターンをアレイ状に複数形成する。ここでは、後の工程で形成されるp側電極配線110の電極領域に対応する範囲以上の範囲に亘ってレジストパターンを形成する。
次に、上記レジストパターンをフォトマスクとして誘電体膜113をウェットエッチングした後、該レジストパターンをエッチングマスクとして積層体に対してエッチング条件を適切に設定して異方性ドライエッチングを行うことによりテーパ形状のメサを形成する(図4(A)、図4(A)のA−A断面図である図4(B)参照)。ここでは、エッチング底面が下部半導体DBR103内に達するまでドライエッチングを行う。なお、ドライエッチングを下部半導体DBR103内に達する前に(例えば下部スペーサ層104内で)終了させても良い。
(3)レジストを除去する。すなわち、メサ形成のために用いたレジストを除去し、メサ上部にレーザ光の射出領域となる平坦部を露出させる。
(4)電流狭窄層を形成する。具体的には、メサを形成する工程で側面が露出した被選択酸化層115を、水蒸気中で熱処理することにより、被選択酸化層115中のAl(アルミニウム)をメサの外周部から選択的に酸化し、メサの中央部に、Alの酸化層によって囲まれた酸化されていない領域を形成する(図5(A)、図5(A)のB−B断面図である図5(B)参照)。このようにして、電流狭窄層108が生成される。電流狭窄層108では、酸化層108a(絶縁層)により発光部の駆動電流の経路がメサの中央部だけに制限される。領域108bは、電流通過領域(電流注入領域)とも呼ばれる。ここでは、例えば幅4μmから6μm程度の略正方形状の電流通過領域が形成される。
(5)酸化処理が完了した積層体に対して、チップ分離溝を形成する領域のみを露出させるようリソグラフィによりレジストパターンを形成し、ICPドライエッチング法を用いてチップ分離溝を形成した後、レジストパターンを除去する。
(6)メサ及びチップ分離溝が形成された積層体を加熱チャンバーに入れ、窒素雰囲気中に380〜400℃の温度で3分間保持する。これにより、大気中で表面に付着した酸素や水、もしくは加熱処理用のチャンバー内の微量な酸素や水による自然酸化膜が、窒素雰囲気中での加熱処理により安定した不動態皮膜になる。なお、この工程(6)は、必須ではなく、省略しても良い。
(7)気相化学堆積法(CVD法)を用いて、SiO、SiN、SiON等の誘電体からなる保護層111(「層間絶縁膜」とも呼ぶ)を形成する(図5(A)、図5(B)参照)。
層間絶縁膜の厚さは、100nm〜400nmの範囲が望ましい。層間絶縁膜が100nmより薄い場合、配線容量が増大するため動作速度が低下する不具合があり、層間絶縁膜が400nmより厚い場合、層間絶縁膜の内部応力により結晶欠陥を誘発する不具合がある。層間絶縁膜の厚さの更に望ましい範囲は150nm〜300nmであり、ここではp−SiN膜をプラズマCVD法により200nmの厚さで形成している。
(8)メサ上部にp側電極コンタクトの窓開けを行う。すなわち、コンタクト層109(p−GaAs層)を露出させるために、上部半導体DBR107上に形成された誘電体膜113と該誘電体膜113上に形成された保護層111をエッチングにより除去し、コンタクトホールを形成する(図6(A)、図6(A)のC−C断面図である図6(B)参照)。
ここでは、フォトレジストによるエッチングマスクを施した後、メサ上部を露光してその部分のフォトレジストを除去し、BHF(バッファードフッ酸)にて保護層111及び誘電体膜113をウェットエッチングして開口(コンタクトホール)を形成する。また、このとき同時に(6)工程で形成したチップ分離溝の底面にあるスクライブする領域の保護層111も除去する。
(9)エッチングマスクを除去する。
(10)フォトリソグラフィによりフォトレジスト(リフトオフレジスト)をパターンニングし、p側の電極材料の蒸着を行う。具体的には、メサ上部にp側電極で囲まれた射出領域(射出口)を形成するための一辺10μmの正方形状のレジストパターンと、複数の電極パッドを形成するためのレジストパターンとを形成した後、電極材料であるAu薄膜を2段階に分けて成膜する。
より具体的には、真空蒸着法によって第1の配線層110−1として全面にAu薄膜を700nm〜2000nmの厚さに成膜(蒸着)した後、電解メッキ法(電気メッキ法)により第2の配線層110−2としてAu薄膜を100nm〜2000nmの厚さに成膜(メッキ)する。
実施例1として、第1の配線層110−1としてのAu配線を真空蒸着法により0.7μmの膜厚で形成し、第2の配線層110−2としてのAu配線を電界メッキ法によりメッキ液としてミクロファブ(商品名)を用いメッキ条件が電流密度0.2A/dm2、液温45℃、メッキ時間16分でメッキ厚さ2250nmで形成した。
ところで、メサ領域及び電極パッド領域には通常3μm〜5μmの段差があり、この段差をステップしてメサ側面及び電極パッド領域側面に電極材料を形成するときの断線防止のために、メサや電極パッド領域をテーパ形状としてステップカバレージを確保している。
しかしながら、真空蒸着法によるAu粒子のメサ側面に対する飛翔入射角はメサ上面に対する飛翔入射角よりも小さいため、メサ側面に蒸着するAuの密度がメサ上面に蒸着するAuの密度よりも小さくなり、配線中に空隙(粒子間ボイド)が生じ、信頼性が低下することが懸念される。
そこで、本実施形態では、上述の如く、第1の配線層110−1を真空蒸着法により蒸着した後に、第2の配線層110−2を電解メッキ法によりメッキしている。このような二重配線構造とすることでメサ側面や電極パッド領域側面に形成された配線の内部において空隙の少ない、もしくは存在しない密度の高いp側電極配線110を形成することができる。すなわち、Auメッキ液がAu蒸着粒子間の空隙中に入り込み該空隙がAuメッキ液で満たされAuが成長することにより空隙を充填する。
(11)射出領域となる領域の電極材料(第1及び第2の配線層)をリフトオフしてP側電極配線110を形成するとともに、複数の電極パッドが形成される領域の電極材料(第1及び第2の配線層)もリフトオフして複数の電極パッドを形成する(図7(A)、図7(A)のD−D断面図である図7(B)参照)。具体的には、フォトレジストをNMPなどの有機溶剤で溶解除去すると同時にリフトオフすることにより、フォトレジストが無かった部分のAuを残存させ、p側電極配線110及び電極パッドを形成する。
(12)基板101の裏側を所定の厚さ(例えば100μm程度)まで研磨した後、n側電極配線112を形成する(図2参照)。
(13)アニールによって、p側電極配線110とn側電極配線112のオーミック導通をとる。
(14)スクライブ・ブレーキングにより、チップ毎に切断する。
結果として、上記(1)〜(14)の工程により、複数の発光部10aをそれぞれが含む複数のチップ状の面発光レーザアレイ10が製造される。
(15)200〜250℃に加熱したホットプレート上で、厚さ1μmのNi/Pt/Auによりパターンが形成されたAlN材料からなるヒートシンク12と面発光レーザアレイ10とを接合材15(例えばペースト状のはんだ)により接合する。なお、ヒートシンク12にはAuが成膜されていない領域が設けられており、これにより、p側電極配線110とn側電極配線112の短絡が防止される。
(16)Auからなる通電用のワイヤを、電極パッドに対して接続する。
結果として、上記(1)〜(16)の工程により、面発光レーザアレイ10を含む光源モジュール60が製造される(図1参照)。
以下に、p側電極配線110の構造について更に詳細に説明する。
図8には、メサ上面、メサ側面、メサ周辺部に蒸着した第1の配線層110−1の粒子構成が示されている。図8では、省略されているが、電極パッド領域上面、電極パッド領域側面に形成された第1の配線層110−1も同様の粒子構成である。
図8から分かるように、メサ上面とメサ周辺部と電極パッド領域上面には第1の配線層110−1の第1粒径部110−1−aが形成され、メサ側面及び電極パッド領域側面には第1の配線層110−1の第2粒径部110−1−bが形成されている。すなわち、第1の配線層110−1では、部分的に構成粒子(Au粒子)の粒径、密度が異なる。ここでは、粒径は第1粒径部110−1−aの構成粒子が第2の粒径部110−1−bの構成粒子よりも小さく、密度は第1の粒径部110−1−aが第2の粒径部110−1−bよりも大きい。図8から、第2の粒径部110−1−bの構成粒子間には空隙が存在することが分かる。また、第2の配線層110−2の構成粒子は第2の粒径部110−1−bの構成粒子よりも粒径が小さく、密度が大きい。
そこで、真空蒸着法により形成された第1の配線層110−1をシード層として電解メッキ法により第2の配線層110−2をAuメッキすることにより、第1粒径部110−1−aと第2粒径部110−1−b上にAuが成長する(図9参照)。このとき、メサ側面や電極パッド領域側面に形成された第2粒径部110−1−bにおけるAu粒子間の空隙にAuメッキ液が浸透しAu粒子間を充填するようにAuが成長する。この結果、メサ側面や電極パッド領域側面に空隙の少ない、もしくは存在しないp側電極配線が形成される。一方、Au粒子の密度の高いメサ上面や電極パッド領域上面には空隙のほとんどないAuが成長する。このようにして、全域において内部に空隙の少ない、もしくは空隙の存在しないp側電極配線110を形成することが可能となる。
以上説明した一実施形態の面発光レーザ素子10aは、基板101上に下部半導体DBR103(第1の反射鏡)と、活性層105と、上部半導体DBR107(第2の反射鏡)とがこの順に積層された積層体がエッチングされてメサが形成された面発光レーザ素子において、活性層105に電流を注入するためのp側電極配線110がメサ上及びその周辺部上に設けられ、p側電極配線110は、第1の配線層110−1と、該第1の配線層110−1の構成粒子間の空隙に一部の構成粒子が入り込んでいる第2の配線層110−2と、を含む。
この場合、p側電極配線110のステップカバレージを向上でき、ひいては断線や配線抵抗の上昇を抑制することができる。
この結果、信頼性を向上できる。
なお、例えば、VCSELを大規模にアレイ化して、10000個以上のVCSELを集積して100W以上の出力とする場合には、50Aを超える大電流で駆動する必要がある。このような場合、電極配線の厚さが薄いと、駆動時に電極配線の抵抗が大きくなり、その発熱によりレーザ出力が飽和するため、電極配線のステップカバレージ不足はVCSELの高出力化の妨げになっていた。
また、第2の配線層110−2の構成粒子は、第1の配線層110−1の構成粒子間の空隙に充填されることが好ましい。
この場合、p側電極配線110のステップカバレージをより確実に向上できる。
なお、第1の配線層110−1の構成粒子間の空隙に第2の配線層110−2の構成粒子が充填されていなくても、ある程度入り込んでいれば信頼性を向上することができる。
また、第1の配線層110−1の構成粒子間の空隙は、第1の配線層110−1の互いに接触する構成粒子間の空隙を含む。
この場合、電気的に接続された構成粒子間の抵抗の上昇を抑制できる。
無論、第1の配線層110−1の構成粒子間の空隙は、第1の配線層110−1の互いに接触しない構成粒子間の空隙も含む。仮に第1の配線層110−1の隣り合う構成粒子が接触していない場合でも、構成粒子間の空隙に入り込んだ第2の配線層110−2の構成粒子を介して導通させることができる。
また、第1の配線層110−1は真空蒸着法により形成され、第2の配線層110−2は電界メッキ法により形成されることが好ましい。
この場合、第1及び第2の配線層が異なる手法で形成されるので、それぞれの特徴を活かした配線形成が可能となる。すなわち、真空蒸着法により配線の膜厚の大部分を形成した後、電界メッキ法により配線内部の空隙を埋めるようにメッキ液を流し込むことができる。
この結果、メサ側面に十分な膜厚と密度の高い配線を形成することが可能となり、信頼性が向上する。しかも、信頼性の高い配線を大幅なコストアップなしに形成することができる。
そして、メサ側面に設けられた第1の配線層110−1(第2の粒径部110−1−b)の構成粒子は、メサ側面以外に設けられた第1の配線層110−1(第1の粒径部110−1−a)の構成粒子よりも大きい。換言すると、メサ側面に設けられた第1の配線層110−1(第2の粒径部110−1−b)の密度は、メサ側面以外に設けられた第1の配線層(第1の粒径部110−1−a)の構成粒子の密度よりも小さい。
この場合、第2の粒径部110−1−bにおける構成粒子間の空隙が大きくなるが、この空隙に第2の配線層110−2の構成粒子が入り込むため、断線や配線抵抗の上昇を抑制できる。なお、第1の粒径部110−1−aにおける構成粒子間の空隙は小さいが、この空隙にも第2の配線層110−2の構成粒子が入り込むため、断線や配線抵抗の上昇を抑制することができる。
また、第2の配線層110−2の構成粒子は、メサの側面に設けられた第1の配線層110−1(第2粒径部110−1−b)の構成粒子よりも粒径が小さいことが好ましい。
この場合、第2粒径部110−1−bの構成粒子間の空隙における第2の配線層110−2の構成粒子の占有率を高くすることができる。
さらに、第2の配線層110−2の構成粒子は、メサの側面以外に設けられた第1の配線層110−1(第1粒径部110−1−a)の構成粒子よりも粒径が小さいことが好ましい。
この場合、第1粒径部110−1−aの構成粒子間の空隙における第2の配線層110−2の構成粒子の占有率を高くすることができる。
また、メサは、上面から底面に向かうほど幅が広くなるテーパ形状(順テーパ形状)であるため、ステップカバレージを更に向上することができる。なお、メサは、順テーパ形状以外の形状であっても良い。
また、上部半導体DBR107は、電流狭窄層108を含むことが好ましい。この場合、活性層105へ電流を効率良く注入することができ、ひいては素子の応答性や出力の向上を図ることができる。なお、電流狭窄層108は必須ではない。
また、第1及び第2の配線層110−1、110−2は、Auを含むことが好ましい。この場合、Auの展性、延性の良さによって配線をスムーズに行うことができる。なお、第1及び第2の配線層110−1、110−2は、Au以外の導電材料(例えば金属や合金)を含んでも良いが、同一もしくは同種の導電材料を含むことが好ましい。蒸着用、メッキ用のAu以外の導電材料としては、例えばCu(銅)、Ag(銀)、Pt(白金)、Al(アルミニウム)等が好適である。また、メッキ用の導電材料として、Ni(ニッケル)、Zn(亜鉛)、Sn(すず)等を用いても良い。
また、面発光レーザアレイ10によれば、面発光レーザ素子10aを複数備えるため、高出力化を実現でき、かつチップ単位で高信頼性、高歩留まりを実現できる。
本実施形態の面発光レーザ素子10aの製造方法は、基板101上に下部半導体DBR103(第1反射鏡)と、活性層105と、上部半導体DBR107(第2反射鏡)とをこの順に積層し、積層体を作製する工程と、該積層体をエッチングしてメサを形成する工程と、該メサが形成された積層体上に保護層111(絶縁膜)を形成する工程と、メサの上面上に形成された保護層111にコンタクトホールを形成する工程と、保護層111上及びコンタクトホールに真空蒸着法により第1の配線層110−1を形成する工程と、第1の配線層110−1に電界メッキ法により第2の配線層110−2を形成する工程と、コンタクトホールに形成された第1及び第2の配線層110−1、110−2の一部を除去する工程と、を含む。
この場合、ステップカバレージを向上でき、ひいては断線や配線抵抗の上昇を抑制することができる。
この結果、信頼性を向上できる。
[変形例1]
変形例1の面発光レーザ素子10bについて、上面図である図10、図10のE−E断面図である図11を用いて説明する。
変形例1の面発光レーザ素子10bのメサ上面上の射出領域では、保護層111(例えばSiN)のみの単層誘電体領域が、誘電体膜113(例えばSiN)と保護層111(例えばSiN)から成る2層誘電体領域で囲まれ、該2層誘電体領域がコンタクトホールに配置されたp側電極配線110の一部で囲まれている。
変形例1の面発光レーザ素子10bは、上記実施形態の面発光レーザ素子10aと同様の工程に従って、保護層111や誘電体膜113のエッチングに用いられるマスクパターンを変更することで上記実施例1と同じ条件で作製することができる。なお、変形例1では、誘電体膜113の枠状の中央部を残留させるために誘電体膜113をエッチングする工程を行った後、コンタクトホールを形成するために保護層111をエッチングする工程を行う必要がある。
変形例1でも、メサ領域及び電極パッド領域には3μm〜5μmの段差があるが、メサ上面、メサ側面、メサ周辺部、電極パッド領域上面、電極パッド領域側面に第1の配線層110−1を真空蒸着法により形成し、第2の配線層110−2を電界メッキ法により形成しているので空隙の少ない、もしくは存在しない高密度のp側電極配線110を形成することができる。
[変形例2]
変形例2の面発光レーザ素子10cについて、上面図である図12、図12のF−F断面図である図13を用いて説明する。
変形例2の面発光レーザ素子10cのメサ上面上の射出領域では、誘電体膜113(例えばSiN)と保護層111(例えばSiO)から成る2層誘電体領域が、保護層111(例えばSiO)のみの単層誘電体領域で囲まれ、該単層誘電体領域がコンタクトホールに配置されたp側電極配線110の一部で囲まれている。
変形例2の面発光レーザ素子10cは、上記実施形態の面発光レーザ素子10aと同様の工程に従って、保護層111や誘電体膜113のエッチングに用いられるマスクパターンを変更することで上記実施例1と同じ条件で作製することができる。なお、変形例2では、誘電体膜113の円形の中央部を残留させるために誘電体膜113をエッチングする工程を行った後、コンタクトホールを形成するために保護層111をエッチングする工程を行う必要がある。
変形例2でも、メサ領域及び電極パッド領域には3μm〜5μmの段差があるが、メサ上面、メサ側面、メサ周辺部、電極パッド領域上面、電極パッド領域側面に第1の配線層110−1を真空蒸着法により形成し、第2の配線層110−2を電界メッキ法により形成しているので空隙の少ない、もしくは存在しない高密度のp側電極配線110を形成することができる。
以上説明した変形例1、2の面発光レーザ素子の製造方法は、基板101上に下部半導体DBR103(第1反射鏡)と、活性層105と、上部半導体DBR107(第2反射鏡)とをこの順に積層し、積層体を作製する工程と、該積層体をエッチングしてメサを形成する工程と、該メサが形成された積層体上に保護層111(絶縁膜)を形成する工程と、メサの上面上に形成された保護層111にコンタクトホールを形成する工程と、保護層111上及びコンタクトホールに真空蒸着法により第1の配線層110−1を形成する工程と、第1の配線層110−1に電界メッキ法により第2の配線層110−2を形成する工程と、コンタクトホールに形成された第1及び第2の配線層110−1、110−2の一部を除去する工程と、を含む。
この場合、ステップカバレージを向上でき、ひいては断線や配線抵抗の上昇を抑制することができる。
この結果、信頼性を向上できる面発光レーザ素子を製造可能である。
また、上記積層体を作製する工程では、上部半導体DBR107上に誘電体膜113を更に積層し、上記コンタクトホールを形成する工程では、メサの上面の中央部又は該中央部付近に誘電体膜の一部を残留させる。
更に、コンタクトホールを形成する工程では、メサ上面の中央領域に保護層111の一部を残留させる。
この場合、射出領域における中央部と周囲部の反射率を制御できるため、結果として、信頼性を向上でき、かつ単一横モードの発振を抑制することなく高次横モードの発振を抑制できる面発光レーザ素子を製造可能である。
なお、射出領域において保護層111及び誘電体膜113の一方を残留させなくても良い。すなわち、射出領域に誘電体膜113のみを残留させても良いし、保護層111のみを残留させても良い。
また、上記実施形態及び各変形例では、p側電極配線は、第1及び第2の配線層から成る2層構造であるが、これに限らず、要は、2層以上の積層構造であれば良い。p側電極配線を2層以上の積層構造とする場合、各層は、同一の材料であっても良いし、異なる材料であっても良い。例えば、配線材料を蒸着後、該配線材料と同一もしくは異なる配線材料で少なくとも1回メッキしても良い。また、配線材料を蒸着後、該配線材料と同一もしくは異なる配線材料でメッキする一連の工程(サイクル)を複数回行っても良い。
また、上記実施形態及び各変形例では、第1の配線層を真空蒸着法により形成した後、第2の配線層を電界メッキ法により形成しているが、これに限られない。例えば第1の配線層を化学蒸着法やスパッタリングにより形成しても良い。例えば第2の配線層を無電界メッキ法や溶融メッキ法により形成しても良い。
また、上記実施形態及び各変形例では、AlGaAs系の半導体DBR、AlGaInP系のスペーサ層、GaInAsP系の活性層の例を示したが、この材料系に限定されるものではない。
また、上記実施形態及び各変形例では、光学系は、集光レンズ16及び光ファイバ18を含んで構成されているが、これに限られず、要は、集光レンズ16及び光ファイバ18のうち少なくとも1つを含んで構成されることが好ましい。また、マイクロレンズアレイ14は、必ずしも設けなくても良い。
また、上記各実施形態及び各変形例では、発光部の発振波長が808nm帯の場合について説明したが、これに限定されるものではない。材料を適切に選択する事により、例えば650nm帯、780nm帯、850nm帯、980nm帯、1.3um帯、1.5um帯の波長帯の面発光レーザアレイを同様に作製することができる。
以上は、n型基板上の素子について説明したものであるが、n型基板上の素子に対して限定されるものではなく、p型基板上の素子に対しても同様のことが言える。p型基板を用いた場合には、上記の説明において、各層の導電型とキャリアの極性を入れ換えれば同様の効果が得られる。また、波長も808nm帯に限定されるものではなく、650nm帯、780nm帯、850nm帯、980nm帯、1.3μm及び1.5μm帯など、異なる活性層材料を用いた他の波長帯であっても良い。また、基板もGaAs以外の基板を用いても良い。
また、上記実施形態及び各変形例の面発光レーザアレイは、レーザ加工以外の用途(例えば画像形成、画像表示、点火プラグ等)にも用いることができる。その場合には、発振波長は、その用途に応じて、650nm帯、780nm帯、850nm帯、980nm帯、1.3μm帯、1.5μm帯等の波長帯であっても良い。この場合に、活性層を構成する半導体材料は、発振波長に応じた混晶半導体材料を用いることができる。例えば、650nm帯ではAlGaInP系混晶半導体材料、980nm帯ではInGaAs系混晶半導体材料、1.3μm帯及び1.5μm帯ではGaInNAs(Sb)系混晶半導体材料を用いることができる。
《レーザプリンタ》
図14には、本発明の一実施形態に係る画像形成装置としてのレーザプリンタ500の概略構成が示されている。
このレーザプリンタ500は、光走査装置900、感光体ドラム901、帯電チャージャ902、現像ローラ903、トナーカートリッジ904、クリーニングブレード905、給紙トレイ906、給紙コロ907、レジストローラ対908、転写チャージャ911、除電ユニット914、定着ローラ909、排紙ローラ912、及び排紙トレイ910などを備えている。
帯電チャージャ902、現像ローラ903、転写チャージャ911、除電ユニット914及びクリーニングブレード905は、それぞれ感光体ドラム901の表面近傍に配置されている。そして、感光体ドラム901の回転方向に関して、帯電チャージャ902→現像ローラ903→転写チャージャ911→除電ユニット914→クリーニングブレード905の順に配置されている。
感光体ドラム901の表面には、感光層が形成されている。ここでは、感光体ドラム901は、図18における面内で時計回り(矢印方向)に回転するようになっている。
帯電チャージャ902は、感光体ドラム901の表面を均一に帯電させる。
光走査装置900は、帯電チャージャ902で帯電された感光体ドラム901の表面に、上位装置(例えばパソコン)からの画像情報に基づいて変調された光を照射する。これにより、感光体ドラム901の表面では、画像情報に対応した潜像が感光体ドラム901の表面に形成される。ここで形成された潜像は、感光体ドラム901の回転に伴って現像ローラ903の方向に移動する。なお、この光走査装置900の構成については後述する。
トナーカートリッジ904にはトナーが格納されており、該トナーは現像ローラ903に供給される。
現像ローラ903は、感光体ドラム901の表面に形成された潜像にトナーカートリッジ904から供給されたトナーを付着させて画像情報を顕像化させる。ここでトナーが付着された潜像は、感光体ドラム901の回転に伴って転写チャージャ911の方向に移動する。
給紙トレイ906には記録紙913が格納されている。この給紙トレイ906の近傍には給紙コロ907が配置されており、該給紙コロ907は、記録紙913を給紙トレイ906から1枚づつ取り出し、レジストローラ対908に搬送する。該レジストローラ対908は、転写ローラ911の近傍に配置され、給紙コロ907によって取り出された記録紙913を一旦保持するとともに、該記録紙913を感光体ドラム901の回転に合わせて感光体ドラム901と転写チャージャ911との間隙に向けて送り出す。
転写チャージャ911には、感光体ドラム901の表面上のトナーを電気的に記録紙913に引きつけるために、トナーとは逆極性の電圧が印加されている。この電圧により、感光体ドラム901の表面の潜像が記録紙913に転写される。ここで転写された記録紙913は、定着ローラ909に送られる。
この定着ローラ909では、熱と圧力とが記録紙913に加えられ、これによってトナーが記録紙913上に定着される。ここで定着された記録紙913は、排紙ローラ912を介して排紙トレイ910に送られ、排紙トレイ910上に順次スタックされる。
除電ユニット914は、感光体ドラム901の表面を除電する。
クリーニングブレード905は、感光体ドラム901の表面に残ったトナー(残留トナー)を除去する。なお、除去された残留トナーは、再度利用されるようになっている。残留トナーが除去された感光体ドラム901の表面は、再度帯電チャージャ902の位置に戻る。
《光走査装置》
次に、前記光走査装置900の構成及び作用について図15を用いて説明する。
この光走査装置900は、上記実施形態及び変形例1、2の面発光レーザ素子10a、10b、10cのいずれかがアレイ状に複数配置された面発光レーザアレイLAを含む光源ユニット950、カップリングレンズ951、アパーチャ952、シリンドリカルレンズ953、ポリゴンミラー954、fθレンズ955、トロイダルレンズ956、2つのミラー(957、958)、及び上記各部を統括的に制御する不図示の主制御装置を備えている。
前記カップリングレンズ951は、光源ユニット950から射出された光ビームを略平行光に整形する。
前記アパーチャ952は、カップリングレンズ951を介した光ビームのビーム径を規定する。
前記シリンドリカルレンズ953は、アパーチャ952を通過した光ビームをミラー957を介してポリゴンミラー954の反射面に集光する。
前記ポリゴンミラー954は、高さの低い正六角柱状部材からなり、側面には6面の偏向面が形成されている。そして、不図示の回転機構により、図15に示される矢印の方向に一定の角速度で回転されている。したがって、光源ユニット950から射出され、シリンドリカルレンズ953によってポリゴンミラー954の偏向面に集光された光ビームは、ポリゴンミラー954の回転により一定の角速度で偏向される。
前記fθレンズ955は、ポリゴンミラー954からの光ビームの入射角に比例した像高をもち、ポリゴンミラー954により一定の角速度で偏向される光ビームの像面を、主走査方向に対して等速移動させる。
前記トロイダルレンズ956は、fθレンズ955からの光ビームをミラー958を介して、感光体ドラム901の表面上に結像する。
この場合に、面発光レーザアレイLAにおいて各面発光レーザ素子(VCSEL)が図16に示されるように配置されていると、VCSELの中心から副走査方向に対応する方向に垂線を下ろした時の副走査方向に対応する方向における各VCSELの位置関係が等間隔(間隔d2とする)となるので、点灯のタイミングを調整することで感光体ドラム901上では副走査方向に等間隔で光源が並んでいる場合と同様な構成と捉えることができる。例えば、副走査方向に対応した方向に関する面発光レーザ素子のピッチd1が26.5μmであれば、前記間隔d2は2.65μmとなる。そして、光学系の倍率を2倍とすれば、感光体ドラム901上では副走査方向に5.3μm間隔で書き込みドットを形成することができる。これは、4800dpi(ドット/インチ)に対応している。すなわち、4800dpi(ドット/インチ)の高密度書込みができる。もちろん、主走査方向に対応する方向の面発光レーザ数を増加したり、前記ピッチd1を狭くして間隔d2を更に小さくするアレイ配置としたり、光学系の倍率を下げる等を行えばより高密度化でき、より高品質の印刷が可能となる。なお、主走査方向の書き込み間隔は、光源の点灯のタイミングで容易に制御できる。
また、この場合には、レーザプリンタ500では書きこみドット密度が上昇しても印刷速度を落とすことなく印刷することができる。また、同じ書きこみドット密度の場合には印刷速度を更に速くすることができる。
また、面発光レーザアレイLAを含む光源ユニット950が図17に示される構成を有する場合に、VCSELのメサ側面、ダミーメサ(VCSELと同じ構成を有し発光させないメサ)のメサ側面、電極パッド領域の側面における何れの段差ステップにおいても電極配線のカバレージ不足による配線不良は発生しない。このため、高精細な画像を形成するためにアレイ数が増加、高密度化しても高歩留り高信頼性の電極配線を有するVCSELアレイが実現できるので、レーザプリンタ500に適用した例でも高精細な画像を高速で安定して形成することが可能となる。
以上説明したように、本実施形態に係る光走査装置900によると、光源ユニット950は前記面発光レーザアレイLAを含んでいるため、感光体ドラム901の表面上を高速かつ高密度に走査することが可能な信頼性の高い光走査装置を提供できる。
また、本実施形態に係るレーザプリンタ500によると、前記面発光レーザアレイLAを含む光走査装置900を備えているため、高精細な画像を高速に形成できる信頼性の高い画像形成装置を提供できる。
なお、面発光レーザアレイLAに代えて、単一の面発光レーザ素子(例えば面発光レーザ素子10a、10b、10cのいずれか)を光源に用いてレーザプリンタを構成しても良い。
また、画像形成装置として、カラー画像に対応し、例えばブラック(K)用の感光体ドラム、シアン(C)用の感光体ドラム、マゼンダ(M)用の感光体ドラム、イエロー(Y)用の感光体ドラムのように複数の感光体ドラムを備えるタンデムカラー機であっても良い。
《レーザアニール装置》
一例として図18(A)及び図18(B)にレーザ加工機としてのレーザアニール装置1500の概略構成が示されている。このレーザアニール装置1500は、光源1010、光学系1020、テーブル装置1030、及び不図示の制御装置などを備えている。
光源1010は、上記面発光レーザアレイLAを含む光源ユニット950を複数有し、複数のレーザ光を射出することができる。光学系1020は、光源1010から射出された複数のレーザ光を対象物Pの表面に導光する。テーブル装置1030は、対象物Pが載置されるテーブルを有している。該テーブルは、少なくともY軸方向に沿って移動することができる。
例えば、対象物Pがアモルファスシリコン(a−Si)の場合、レーザ光が照射されると、アモルファスシリコン(a−Si)は、温度が上昇し、その後、徐々に冷却されることによって結晶化し、ポリシリコン(p−Si)になる。
この場合、レーザアニール装置1500は、光源1010が上記面発光レーザアレイLAを含む光源ユニット950を有しているため、アニール処理を効率的に行うことができる。
なお、面発光レーザアレイLAに代えて、単一の面発光レーザ素子(例えば面発光レーザ素子10a、10b、10cのいずれか)を光源に用いてレーザアニール装置を構成しても良い。
《レーザ切断機》
一例として図19にレーザ加工機としてのレーザ切断機2000の概略構成が示されている。このレーザ切断機2000は、光源2010、光学系2100、対象物Pが載置されるテーブル2150、テーブル駆動装置2160、操作パネル2180及び制御装置2200などを備えている。
光源2010は、上記面発光レーザアレイLAを含む光源ユニット950を有し、制御装置2200の指示に基づいてレーザ光を射出する。光学系2100は、光源2010から射出されたレーザ光を対象物Pの表面近傍で集光させる。テーブル駆動装置2160は、制御装置2200の指示に基づいて、テーブル2150をX軸方向、Y軸方向、及びZ軸方向に移動させる。
操作パネル2180は、作業者が各種設定を行うための複数のキー、及び各種情報を表示するための表示器を有している。制御装置2200は、操作パネル2180からの各種設定情報に基づいて、光源2010及びテーブル駆動装置2160を制御する。
この場合、レーザ切断機2000は、光源2010が上記面発光レーザアレイLAを含む光源ユニット950を有しているため、切断処理を効率的に行うことができる。
なお、レーザ切断機2000は、複数の光源2010を有しても良い。
また、面発光レーザアレイLAに代えて、単一の面発光レーザ素子(例えば面発光レーザ素子10a、10b、10cのいずれか)を光源に用いてレーザ切断器を構成しても良い。
また、上記面発光レーザアレイLAや上記面発光レーザ素子10a、10b、10cは、レーザアニール装置及びレーザ切断機以外のレーザ光を利用する装置にも好適である。例えば、画像表示装置の光源に用いても良い。
《レーザ・ディスプレイ装置》
図20には、画像表示装置としてのレーザ・ディスプレイ装置3000の概略構成が示されている。
このレーザ・ディスプレイ装置3000は、上記面発光レーザアレイLA及び上記面発光レーザ素子10a、10b、10cのいずれかを含む光源ユニット3001と、該光源ユニット3001からのレーザ光により画像を形成する画像形成素子及び画像を形成したレーザ光をスクリーン3010に向けて投光する投光部を含む光学系3003と、光源ユニット3001及び光学系3003を制御する制御装置3005とを備えている。なお、画像形成素子としては、例えばMEMSスキャナ、ガルバノスキャナ等が挙げられる。投光部は、例えば凹面鏡や凸面鏡や自由曲面ミラーを含む。
このレーザ・ディスプレイ装置3000は、光源ユニット3001を有しているため、表示される画像品質を向上させることができる。
なお、空間を貫くレーザ光によって映像表現を行うレーザ・ディスプレイ装置であっても、前記光源ユニット3001を備えるレーザ・ディスプレイ装置であれば、表示される画像品質を向上させることができる。
また、光学系3003から出力された光を透過スクリーンもしくは反射スクリーンを介して透過反射部材(例えば車両、航空機、船舶等の移動体のウインドシールドやコンバイナ)に導く投光光学系(例えば凹面鏡や凸面鏡)を設けて、透過反射部材を介して虚像を視認させる画像表示装置としてのヘッドアップディスプレイを構成することも可能である。
また、以下に説明するように、上記面発光レーザアレイLAを備えるエンジン用の点火装置を提供することもできる。
上記面発光レーザアレイLAは、マイクロチップレーザとして高出力、高発振速度、高信頼性が得られ、車両、船舶、航空機、宇宙船等のエンジンに組み込みな寸法に収めることができる。
また、上記面発光レーザアレイLAは、複数のレーザビームを射出可能なため着火位置(点火ポイント)の自由度が高く、また混合ガス(燃焼ガス)に着火し易い極短パルスのナノ秒領域でも高出力を出すことが可能である。また、レーザ光の集光位置を調節することで、燃焼室の自由な場所に点火ポイントを設定することができる
なお、従来の点火装置では放電電極位置からの着火に限られていたが、上記面発光レーザアレイLAであれば、最適な空間位置へ着火することが可能である。これは、燃費向上目的の希薄燃焼法などにおいて最適着火位置を設定できるため、大いなるメリットである。
《点火装置》
図21には、内燃機関としてのエンジン300の主要部が模式図的に示されている。
このエンジン300は、点火装置301、燃料噴出機構302、排気機構303、燃焼室304、及びピストン305などを備えている。
エンジン300の動作について簡単に説明する。
(1)燃料噴出機構302が、燃料と空気の可燃性混合気を燃焼室304内に噴出させる(吸気)。
(2)ピストン305が上昇し、可燃性混合気を圧縮する(圧縮)。
(3)点火装置301が、燃焼室304内にレーザ光を出射する。これにより、燃料に点火される(着火)。
(4)燃焼ガスが発生し、ピストン305が降下する(燃焼)。
(5)排気機構303が、燃焼ガスを燃焼室304外へ排気する(排気)。
このように、吸気、圧縮、着火、燃焼、排気からなる一連の過程が繰り返される。そして、燃焼室304内の気体の体積変化に対応してピストン305が運動し、運動エネルギーを生じさせる。燃料には例えば天然ガスやガソリン等が用いられる。
なお、エンジン300は、外部に設けられ、該エンジン300と電気的に接続されているエンジン制御装置の指示に基づいて、上記動作を行う。
点火装置301は、一例として図22に示されるように、レーザ装置200、及び駆動装置210を有している。
レーザ装置200は、上記面発光レーザアレイLA、第1集光光学系203、光ファイバ204、第2集光光学系205、レーザ共振器206、第3集光光学系207、これらを収容する筐体250、該筐体250に設けられた光学窓部材208などを備えている。なお、本明細書では、面発光レーザアレイLAからの光の出射方向を+Z方向として説明する。
面発光レーザアレイLAでは、垂直共振器型の面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)がアレイ状に配置されている。ここでは、面発光レーザアレイLAは、励起用光源であり、複数の発光部を有している。そして、面発光レーザアレイLAから光を出射する際には、複数の発光部は、同時に発光される。また、面発光レーザアレイLAから出射される光の波長は808nmである。面発光レーザアレイLAは、駆動装置210により駆動される。
なお、面発光レーザは、温度による波長ずれが非常に少ないため、波長ずれによって特性が大きく変化するQスイッチレーザを励起するのに有利な光源である。そこで、面発光レーザを励起用光源に用いると、環境の温度制御を簡易なものにできるという利点がある。
Qスイッチレーザは、予め励起用光源からの光を照射することで反転分布を増加させ、Qスイッチ素子を解除することによりエネルギーを取り出すものであり、高いピークエネルギーを得ることができるという特徴がある。そのような特徴から、Qスイッチレーザは、内燃機関における燃焼室内の可燃性混合気の点火装置に応用されている。
第1集光光学系203は、集光レンズであり、面発光レーザアレイLAから出射された光を集光する。なお、第1集光光学系203は、複数の光学素子から構成されていても良い。
光ファイバ204は、第1集光光学系203によって光が集光される位置にコアの−Z側端面の中心が位置するように配置されている。ここでは、光ファイバ204として、コア径が1.5mmの光ファイバを用いている。
光ファイバ204を設けることによって、面発光レーザアレイLAをレーザ共振器206から離れた位置に置くことができる。これにより配置設計の自由度を増大させることができる。また、レーザ装置200を点火装置に用いる際に、熱源から面発光レーザアレイLAを遠ざけることができるため、エンジン300を冷却する方法の幅を広げることが可能である。さらに振動源であるエンジン300から面発光レーザアレイLAを遠ざけることができるため、面発光レーザアレイLAの信頼性を高めることが可能である。
光ファイバ204に入射した光はコア内を伝播し、コアの+Z側端面から出射される。
第2集光光学系205は、集光レンズであり、光ファイバ204から出射された光の光路上に配置され、該光を集光する。なお、光の品質等により、第2集光光学系205として、複数の光学素子を用いる場合もある。第2集光光学系205で集光された光は、レーザ共振器206に入射する。
レーザ共振器206は、Qスイッチレーザであり、一例として図23に示されるように、レーザ媒質206a、及び可飽和吸収体206bを有している。
レーザ媒質206aは、Nd:YAGセラミック結晶であり、Ndが1.1%ドープされている。可飽和吸収体206bは、Cr:YAGセラミック結晶であり、初期透過率が30%のものである。
なお、ここでは、Nd:YAG結晶及びCr:YAG結晶は、いずれもセラミックスである。そして、レーザ共振器206は、レーザ媒質206aと可飽和吸収体206bとが接合されている、いわゆるコンポジット結晶である。
第2集光光学系205からの光は、レーザ媒質206aに入射される。すなわち、第2集光光学系205からの光によってレーザ媒質206aが励起される。なお、面発光レーザアレイLAから出射される光の波長(ここでは、808nm)は、YAG結晶において最も吸収効率の高い波長である。そして、可飽和吸収体206bは、Qスイッチの動作を行う。
レーザ媒質206aの入射側(−Z側)の面、及び可飽和吸収体206bの出射側(+Z側)の面は光学研磨処理がなされ、ミラーの役割を果たしている。なお、以下では、便宜上、レーザ媒質206aの入射側の面を「第1の面」ともいい、可飽和吸収体206bの出射側の面を「第2の面」ともいう(図3参照)。
そして、第1の面及び第2の面には、面発光レーザアレイLAから出射される光の波長(ここでは808nm)、及びレーザ共振器206から出射される光の波長(ここでは1064nm)に応じた誘電体多層膜がコーティングされている。
具体的には、第1の面には、波長が808nmの光に対して高い透過率を示し、波長が1064nmの光に対して高い反射率を示すコーティングがなされている。また、第2の面には、波長が1064nmの光に対して約50%の反射率を示すコーティングがなされている。
これにより、レーザ共振器206内で光が共振し増幅される。ここでは、レーザ共振器206の共振器長は10mmである。
第3集光光学系207は、レーザ共振器206から出射される光の光路上に配置され、例えば少なくとも1つのレンズで構成されている。この場合に、レンズの光軸方向の位置やレンズの組み合わせによって、点火装置301から出射される光の集光位置の調整を行うことができる。
光学窓部材208は、第3集光光学系207から出射される光の光路上に配置された、透明もしくは半透明の平面視矩形の部材から成る。
また、光学窓部材208は、筐体250の燃焼室304に臨む面に形成された開口の周囲部に該開口を覆うように取り付けられている。第3集光光学系207から出射され光学窓部材208を透過したレーザ光が、レーザ装置200から出射されたレーザ光である。
光学窓部材の材料として、高温高圧環境下での耐久性に優れたサファイアガラスが用いられている。
以上説明した点火装置301によれば、面発光レーザアレイLAを有しているため、動作信頼性が高い点火装置を実現できる。
なお、面発光レーザアレイLAに代えて、単一の面発光レーザ素子(例えば面発光レーザ素子10a、10b、10cのいずれか)を光源に用いて点火装置を構成しても良い。
また、上記光源ユニット3001を含む投光部と、該投光部から投光され、物体で反射された光を受光する受光部と、を含んで物体検出装置を構成することもできる。この物体検出装置は、タイム・オブ・フライト方式を用いて、物体の有無、物体までの距離、物体の形状や大きさ等の物体に関する情報を検出することができる。
また、面発光レーザアレイLA、面発光レーザ素子10a、10b、10cは、例えば固体レーザ等のレーザ媒質の励起用光源として用いることもできる。
以下に、発明者らが上記実施形態及び各変形例を発案するに至った思考プロセスを説明する。
面発光レーザ素子(VCSEL素子)の作製工程の一つである配線を形成する工程においてVCSELのメサ上部から電流を注入するためのp側上部電極は大きな段差を越えて配線しなければならず、配線のステップカバレージ不足による断線や信頼性不良の原因となっていた。
このステップカバレージ不足を解消する構成として、特許文献1(特開2008−34637号公報)には、p側電極配線でメサ側壁全体を被覆する構成が開示されている。
しかしながら、特許文献1では、メサ全体をカバーするようにメサ側壁全面にp側電極配線を形成した場合、電極自身が有する配線の内部応力によってVCSEL素子に歪が作用し結晶欠陥を誘発し信頼性不良の原因となっていた。
また、特許文献2(特開2006−013366号公報)には、メサをテーパ形状にすることで配線のステップカバレージを改善する例が開示されている。
しかしながら、特許文献2では、メサのテーパ角を順テーパとしテーパ角を小さくすることで配線のカバレージ性を向上しているため、メサ形成時のエッチング工程のばらつきによって順テーパメサの側壁稜線が弓状に仕上がる場合があり、その場合メサの上端部の形状が垂直に近い形状となる。このような形状のメサにおいて配線を形成した場合、このメサ上端部で配線カバレージ不足による段切れが発生し導通不良の原因となっていた。更に、メサをテーパ形状とすることは、垂直形状のメサに比べてデバイス設計的にメサの間隔を狭く配置することが困難となり高集積化には不利であった。
また、特許文献3(特開2004−200211号公報)には、垂直形状のメサに形成された金属配線の例が開示されている。
しかしながら、特許文献3では、配線が垂直形状のメサ上端部に形成されているのでこの部分で配線の段切れによる導通不良が発生していた。
また、特許文献4(特開2009−302113号公報)には、VCSEL素子に電流を注入するための配線であって、凸部であるVCSEL素子のメサ上部からメサ底部を接続するメサ側壁部配線幅W2は凹部であるメサ底部に形成された配線幅W3よりも広くした例が開示されている。
しかしながら、VCSEL素子に電流を注入するための配線であって、凸部であるVCSEL素子のメサ上部からメサ底部を接続するメサ側壁部配線幅W2は凹部であるメサ底部に形成された配線幅W3よりも広くしているが、メサ上端部の形状が垂直なので配線幅を広げたのみでは、十分な配線カバレージを確保することは困難であり電極配線の断線等の不良が発生していた。
また、特許文献5(特開2012−227499号公報)には、メサの上面における辺縁部は、最外周部に向かって厚さが小さくなるテーパ面を有する誘電体層で被覆され、該テーパ面の基板面に対するテーパ角は、メサにおける側面の基板面に対する傾斜角よりも小さく形成した例が開示されている。
しかしながら、特許文献5では、メサの上面における辺縁部は、最外周部に向かって厚さが小さくなるテーパ面を有する誘電体層で被覆され、該テーパ面の基板面に対するテーパ角が、メサにおける側面の基板面に対する傾斜角よりも小さく形成することでメサ辺縁での断線を防止しているが、メサ上面の辺縁部に形成したテーパ角の形成方法として誘電体層をウェットエッチングすることにより形成しているため制御性が悪くウェハ面内やウェハ間でばらつき断線不良のばらつきの原因となっていた。
また、特許文献6(特開2000−049414号公報)には、VCSELアレイ領域から外に電極パッドを引き出す様に配線パターンが形成されている。蒸着によるCr/Auを電極として用いたが、配線の長さによっては抵抗低減のためにAuメッキによる厚膜にしている。
しかしながら、特許文献6では、VCSELアレイ領域から外に電極パッドを引き出す様に配線パターンが形成されている。蒸着によるCr/Auを電極として用いたが、配線の長さによっては抵抗低減のためにAuメッキによる厚膜にしているがメッキ法は形成する膜厚がパターンに大きく依存するため配線全体にわたり膜厚を均一に形成することは困難であり信頼性の低下を引き起こしていた。
結果として、特許文献1〜6の何れの方法によってもメサ側壁部のカバレージはある程度確保できるものの、真空蒸着法やスパッタ法により配線を形成した場合はメサ側壁部の配線内部に空隙が発生し十分な密度の配線を形成することは困難であり、信頼性の低下を引き起こしていた。
そこで、発明者らは、このような問題を解決すべく、上記実施形態及び各変形例を発案した。
10…面発光レーザアレイ、10a、10b、10c…発光部(面発光レーザ素子)、101…基板、103…下部DBR反射鏡(第1の反射鏡)、105…活性層、107…上部DBR反射鏡(第2の反射鏡)、108…電流狭窄層、110…p側電極配線、110−1…第1の配線層、110−2…第2の配線層、301…点火装置、500…レーザプリンタ(画像形成装置)1500…レーザアニール装置(レーザ加工機)、2000…レーザ切断機(レーザ加工機)、3000…レーザ・ディスプレイ装置(画像表示装置)、LA…面発光レーザアレイ。
特開2008−34637号公報 特開2006−013366号公報 特開2004−200211号公報 特開2009−302113号公報 特開2012−227499号公報 特開2000−049414号公報

Claims (19)

  1. 基板上に第1の反射鏡と、活性層と、第2の反射鏡とがこの順に積層された積層体がエッチングされてメサが形成された面発光レーザ素子において、
    前記活性層に電流を注入するための配線が前記メサ上及びその周辺部上に設けられ、
    前記配線は、第1の配線層と、該第1の配線層の構成粒子間の空隙に一部の構成粒子が入り込んでいる第2の配線層と、を含むことを特徴とする面発光レーザ素子。
  2. 前記第2の配線層の構成粒子は、前記空隙に充填されていることを特徴とする請求項1に記載の面発光レーザ素子。
  3. 前記空隙は、前記第1の配線層の互いに接触する構成粒子間の空隙を含むことを特徴とする請求項1又は2に記載の面発光レーザ素子。
  4. 前記メサの側面に設けられた前記第1の配線層の構成粒子は、前記側面以外に設けられた前記第1の配線層の構成粒子よりも粒径が大きいことを特徴とする請求項1〜3のいずれか一項に記載の面発光レーザ素子。
  5. 前記第2の配線層の構成粒子は、前記メサの側面に設けられた前記第1の配線層の構成粒子よりも粒径が小さいことを特徴とする請求項1〜4のいずれか一項に記載の面発光レーザ素子。
  6. 前記第1の配線層は蒸着により形成され、前記第2の配線層はメッキにより形成されていることを特徴とする請求項1〜5のいずれか一項に記載の面発光レーザ素子。
  7. 前記第1の配線層は真空蒸着により形成され、前記第2の配線層は電気メッキにより形成されていることを特徴とする請求項6に記載の面発光レーザ素子。
  8. 前記メサは、上面から底面に向かうほど幅が広くなるテーパ形状であることを特徴とする請求項1〜7のいずれか一項に記載の面発光レーザ素子。
  9. 前記第2の反射鏡は、電流狭窄層を含むことを特徴とする請求項1〜8のいずれか一項に記載の面発光レーザ素子。
  10. 前記第1及び第2の配線層は、Auを含むことを特徴とする請求項1〜9のいずれか一項に記載に面発光レーザ素子。
  11. 請求項1〜10のいずれか一項に記載の面発光レーザ素子がアレイ状に複数配置された面発光レーザアレイ。
  12. 光により被走査面を走査して画像を形成する画像形成装置であって、
    請求項1〜10のいずれか一項に記載の面発光レーザ素子又は請求項11に記載の面発光レーザアレイを含む光源と、
    前記光源からの光を偏向する偏向器と、
    前記偏向器で偏向された光を前記被走査面に導く走査光学系と;を備える画像形成装置。
  13. 請求項1〜10のいずれか一項に記載の面発光レーザ素子又は請求項11に記載の面発光レーザアレイを含む光源と、
    前記光源からの光により画像を形成する画像形成素子と、を備える画像表示装置。
  14. 画像を形成した光が照射されるスクリーンと、
    前記スクリーンを介した光を透過反射部材に導く投光光学系と、を備えることを特徴とする請求項13に記載の画像表示装置。
  15. 請求項1〜10のいずれか一項に記載の面発光レーザ素子又は請求項11に記載の面発光レーザアレイを備えるレーザ加工機。
  16. 請求項1〜10のいずれか一項に記載の面発光レーザ素子又は請求項11に記載の面発光レーザアレイを備えるレーザアニール装置。
  17. 請求項1〜10のいずれか一項に記載の面発光レーザ素子又は請求項11に記載の面発光レーザアレイを備える点火装置。
  18. 基板上に第1の反射鏡と、活性層と、第2の反射鏡とをこの順に積層し、積層体を作製する工程と、
    前記積層体をエッチングしてメサを形成する工程と、
    前記メサが形成された前記積層体上に絶縁膜を形成する工程と、
    前記メサの上面上に形成された前記絶縁膜にコンタクトホールを形成する工程と、
    前記絶縁膜上及び前記コンタクトホールに蒸着により第1の配線層を形成する工程と、
    前記第1の配線層にメッキにより第2の配線層を形成する工程と、
    前記コンタクトホールに形成された第1及び第2の配線層の一部を除去する工程と、を含む面発光レーザ素子の製造方法。
  19. 前記作製する工程では、前記第2の反射鏡上に誘電体膜を更に積層し、
    前記コンタクトホールを形成する工程では、前記メサの上面の中央部又は該中央部付近に前記誘電体膜の一部を残留させることを特徴とする請求項18に記載の面発光レーザ素子の製造方法。
JP2016097359A 2016-05-13 2016-05-13 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。 Pending JP2017204618A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016097359A JP2017204618A (ja) 2016-05-13 2016-05-13 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016097359A JP2017204618A (ja) 2016-05-13 2016-05-13 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。

Publications (1)

Publication Number Publication Date
JP2017204618A true JP2017204618A (ja) 2017-11-16

Family

ID=60322471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097359A Pending JP2017204618A (ja) 2016-05-13 2016-05-13 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。

Country Status (1)

Country Link
JP (1) JP2017204618A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082426A1 (ja) 2017-10-23 2019-05-02 住友電気工業株式会社 エネルギー管理装置、エネルギー管理システム、及び、エネルギー管理方法
CN111146691A (zh) * 2020-01-19 2020-05-12 长春理工大学 一种面发射激光器阵列
JP7367484B2 (ja) 2019-11-22 2023-10-24 株式会社リコー 面発光レーザ素子、面発光レーザ、面発光レーザ装置、光源装置及び検出装置
WO2023233850A1 (ja) * 2022-05-30 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 面発光素子
WO2023248779A1 (ja) * 2022-06-24 2023-12-28 ソニーセミコンダクタソリューションズ株式会社 照明装置、測距装置及び車載装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082426A1 (ja) 2017-10-23 2019-05-02 住友電気工業株式会社 エネルギー管理装置、エネルギー管理システム、及び、エネルギー管理方法
JP7367484B2 (ja) 2019-11-22 2023-10-24 株式会社リコー 面発光レーザ素子、面発光レーザ、面発光レーザ装置、光源装置及び検出装置
CN111146691A (zh) * 2020-01-19 2020-05-12 长春理工大学 一种面发射激光器阵列
WO2023233850A1 (ja) * 2022-05-30 2023-12-07 ソニーセミコンダクタソリューションズ株式会社 面発光素子
WO2023248779A1 (ja) * 2022-06-24 2023-12-28 ソニーセミコンダクタソリューションズ株式会社 照明装置、測距装置及び車載装置

Similar Documents

Publication Publication Date Title
EP2351171B1 (en) Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
JP2017204618A (ja) 面発光レーザ素子、面発光レーザアレイ、画像形成装置、画像表示装置、レーザ加工機、レーザアニール装置、点火装置及び面発光レーザ素子の製造方法。
US8502852B2 (en) Surface emitting laser device, surface emitting laser array, optical scanning device, image forming apparatus, and method of manufacturing the surface emitting laser device
EP3220493B1 (en) Surface-emitting laser array and laser device
US8736652B2 (en) Surface-emitting laser device, surface-emitting laser array, optical scanner, image forming apparatus, and method for manufacturing surface-emitting laser device
JP6662013B2 (ja) 面発光レーザ、面発光レーザアレイ、レーザ装置、点火装置、内燃機関、光走査装置、画像形成装置、光伝送モジュール、及び光伝送システム
JP4890358B2 (ja) 面発光レーザアレイ、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
JP5601014B2 (ja) 光デバイス、光走査装置及び画像形成装置
JP2009049324A (ja) 半導体レーザアレイおよびその製造方法、ならびに印刷装置および光通信装置
TW200929759A (en) Surface emitting laser, surface emitting laser array, optical scanning device, image forming apparatus, optical transmission module and optical transmission system
JP2011216856A (ja) 面発光レーザモジュール、光走査装置及び画像形成装置
WO2021117411A1 (ja) 面発光レーザ、面発光レーザアレイ、電子機器及び面発光レーザの製造方法
US8416821B2 (en) Surface emitting laser element, surface emitting laser array, optical scanning unit, image forming apparatus and method of manufacturing surface emitting laser element
JP2008028139A (ja) 半導体チップの製造方法、面発光型半導体レーザ、面発光型半導体レーザアレイ、光走査装置及び画像形成装置
JP2017216285A (ja) 面発光レーザアレイ素子、光源ユニット及びレーザ装置
JP2014132692A (ja) 製造方法
JP5950114B2 (ja) 光源装置、光走査装置、及び画像形成装置
JP2008135596A (ja) 半導体レーザアレイ製造方法、面発光型半導体レーザアレイ、光源ユニット、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
JP2016021516A (ja) 半導体装置、面発光レーザ、面発光レーザアレイ、光走査装置及び画像形成装置。
JP2014096515A (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置、及び面発光レーザ素子の製造方法
JP2012015364A (ja) 面発光レーザ素子の製造方法、面発光レーザ素子、面発光レーザアレイ素子、光走査装置及び画像形成装置
JP2013187516A (ja) 製造方法、面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5054622B2 (ja) 面発光レーザアレイ、光走査装置及び画像形成装置
JP2017011175A (ja) 面発光レーザアレイ、レーザ装置、点火装置、及び内燃機関
JP6137555B2 (ja) 面発光レーザ、光走査装置及び画像形成装置