JP2017203293A - Displacement estimation monitoring system for skeleton - Google Patents

Displacement estimation monitoring system for skeleton Download PDF

Info

Publication number
JP2017203293A
JP2017203293A JP2016095378A JP2016095378A JP2017203293A JP 2017203293 A JP2017203293 A JP 2017203293A JP 2016095378 A JP2016095378 A JP 2016095378A JP 2016095378 A JP2016095378 A JP 2016095378A JP 2017203293 A JP2017203293 A JP 2017203293A
Authority
JP
Japan
Prior art keywords
displacement
representative point
error
analysis model
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095378A
Other languages
Japanese (ja)
Other versions
JP6665023B2 (en
Inventor
佐藤 貢一
Koichi Sato
貢一 佐藤
佐藤 康弘
Yasuhiro Sato
康弘 佐藤
伸幸 内藤
Nobuyuki Naito
伸幸 内藤
享祐 市川
Kyosuke Ichikawa
享祐 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARK JOHO SYSTEMS KK
Ark Joho Systemskk
Taisei Corp
Original Assignee
ARK JOHO SYSTEMS KK
Ark Joho Systemskk
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARK JOHO SYSTEMS KK, Ark Joho Systemskk, Taisei Corp filed Critical ARK JOHO SYSTEMS KK
Priority to JP2016095378A priority Critical patent/JP6665023B2/en
Publication of JP2017203293A publication Critical patent/JP2017203293A/en
Application granted granted Critical
Publication of JP6665023B2 publication Critical patent/JP6665023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a displacement estimation monitoring system for a skeleton that can estimate displacement of the skeleton in a construction state, etc., at respective points easily in a short time with high precision.SOLUTION: A displacement estimation monitoring system for a skeleton comprises: measuring means for measuring the position of a representative point of the skeleton; and arithmetic means for estimating displacement of the skeleton at a point other than the representative point based upon measurement results of the measuring means. The arithmetic means is configured to: repeatedly perform reverse analysis of calculating the position of the representative point by placing on an analytic model for the skeleton in the measurement a movable load for decreasing an error between the position of the representative point of the analytic model and the position of the measurement result while the movable load is gradually changed; and estimate the displacement at the point other than the representative point based upon the analytic model that the movable load is placed on when the error becomes equal to or less than an allowable value.SELECTED DRAWING: Figure 5

Description

本発明は、施工段階や外乱が生じた後における躯体の変位を推定するためのモニタリングシステムに関するものである。   The present invention relates to a monitoring system for estimating displacement of a housing after a construction stage or disturbance has occurred.

建設現場の施工においては、安全確保や工期短縮とともに、施工精度の管理も重要な要請事項となっている。このため、従来から、施工の進捗に伴う複数段階において、また地震や台風などの外的要因が生じた場合には一時的に、躯体の位置(レベル)を計測し、施工や躯体の健全性を確認することにより、施工品質の確保、作業の安全性の確保および次工程への開始判断を行っている。   In construction site construction, ensuring safety and shortening the construction period as well as managing construction accuracy are important requirements. For this reason, traditionally, the position (level) of the chassis is temporarily measured at multiple stages as the construction progresses, and when external factors such as earthquakes and typhoons occur, and the soundness of the construction and chassis By confirming the above, the construction quality, the safety of work, and the start of the next process are determined.

この際に、施工した躯体の全ての位置を測量することが最も好ましいものの、計測やデータ処理に多大の手間と時間を要し、かつ費用も嵩むために現実的ではない。そこで、一般的には、図7に示すように代表点Pのレベルを測量し、測量していない位置Pのレベルを線形補間によって割り出している。 At this time, it is most preferable to survey all the positions of the constructed housing, but it is not practical because it requires a lot of labor and time for measurement and data processing and increases the cost. Therefore, in general, to survey the level of the representative point P as shown in FIG. 7, and indexing the level of position P 1 has not been surveyed by linear interpolation.

また、施工段階によっては、図8(a)に示すように、計測したい位置Pが工事の都合によって設置した足場や防護ネット等の陰に隠れて計測することが出来ない場合がある。このような場合には、上記位置Pの近傍を代表点Pとして計測を行い、同様に測量できない上記位置Pのレベルを線形補間によって割り出している。 Moreover, the construction stage, as shown in FIG. 8 (a), there is a case where the position P 2 to be measured can not be measured it is hidden behind scaffolding or guard net or the like installed by the convenience of construction. In such a case, measurement is performed using the vicinity of the position P 2 as a representative point P, and the level of the position P 2 that cannot be similarly measured is determined by linear interpolation.

しかしながら、上記従来の代表点Pにおける変位測量によっては、測量しなかった躯体の他の位置P、P等における変位を、もっぱら線形補間によって推定しているために、正確な変位を把握することが難しく、この結果施工精度管理が疎かになって、後工程でやり直しが生じる事例が発生していた。 However, depending on the displacement measurement at the conventional representative point P, the displacement at the other positions P 1 , P 2, etc. that were not measured is estimated by linear interpolation, so that the accurate displacement is grasped. As a result, there were cases in which construction accuracy management was neglected and redoing occurred in the subsequent process.

また、計測からデータ処理に経て解析や分析を行い、これに基づいて施工者および設計者が施工品質や安全性を確認したうえで次工程への開始判断を行うのに、数日といった長い時間とを要するため、施工待ち等の無駄時間が生じてしまうという問題点もあった。   In addition, it takes a long time, such as several days, for analysis and analysis after measurement to data processing, and for the installer and designer to confirm the construction quality and safety based on this and make a decision to start the next process. Therefore, there is a problem that a waste time such as waiting for construction occurs.

なお、山止め工事等の地盤掘削時における構造物の変状を確認するためのモニタリング技術としては、例えば下記特許文献1に開示されたものが知られている。   In addition, as a monitoring technique for confirming the deformation of a structure during ground excavation such as a mountain stop work, for example, one disclosed in Patent Document 1 below is known.

特開平8−151633号公報JP-A-8-151633

本発明は、上記事情に鑑みてなされたものであり、施工段階や外乱が生じた後等の躯体の各点における変位を、容易かつ短時間のうちに高い精度で推定することが可能になる躯体の変位推定モニタリングシステムを提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and it is possible to easily and accurately estimate the displacement at each point of the frame after a construction stage or disturbance has occurred. It is an object of the present invention to provide a displacement estimation monitoring system for a frame.

上記課題を解決するため、請求項1に記載の発明は、躯体の代表点の位置を測定する計測手段と、この計測手段による計測結果に基づいて上記躯体の上記代表点以外の点における変位を推定する演算手段とを備えてなり、上記演算手段は、上記測定時の上記躯体の解析モデルにおける上記代表点の位置と、上記計測結果の位置との誤差を小さくさせる積載荷重を上記解析モデルに作用させて上記代表点の位置を算出する逆解析を、漸次当該積載荷重を変化させつつ繰り返し実施して、当該誤差が許容値以下となった時の上記積載荷重が作用する上記解析モデルに基づいて、上記代表点以外の点における上記変位を推定することを特徴とするものである。   In order to solve the above problems, the invention described in claim 1 is directed to measuring means for measuring the position of the representative point of the casing, and displacement at points other than the representative point of the casing based on the measurement result by the measuring means. An arithmetic means for estimating, wherein the arithmetic means uses the analytical model for a loading load that reduces an error between the position of the representative point in the analytical model of the housing at the time of the measurement and the position of the measurement result. Inverse analysis for calculating the position of the representative point by acting is repeatedly performed while gradually changing the load load, and based on the analysis model on which the load load acts when the error falls below an allowable value. Thus, the displacement at a point other than the representative point is estimated.

ここで、上記解析モデルとしては、FEMモデルやDEMモデル等の一般的な構造解析で用いられている解析モデルを使用することが好ましい。   Here, as the analysis model, an analysis model used in general structural analysis such as an FEM model or a DEM model is preferably used.

また、請求項2に記載の発明は、請求項1に記載の発明において、上記計測手段は、上記代表点の加速度を検出する加速度計を備え、かつ上記演算手段は、予め設定した反復回数または演算時間を経過後に上記誤差が上記許容値以下に収束しない場合に、上記測定時の上記躯体の解析モデルにおける固有周期を算出するとともに、上記加速度計の計測結果から上記測定時における固有周期を算出し、これら算出結果の第2の誤差を小さくさせる剛性を設定して上記解析モデルの固有周期を算出する逆解析を、漸次当該剛性を変化させつつ繰り返し実施して、当該第2の誤差が許容値以下となった時の上記剛性に基づいて、上記代表点以外の点における上記変位を推定することを特徴とするものである。   According to a second aspect of the present invention, in the first aspect of the present invention, the measuring means includes an accelerometer that detects the acceleration of the representative point, and the calculating means has a preset number of repetitions or When the error does not converge below the allowable value after the computation time has elapsed, the natural period in the analysis model of the housing at the time of measurement is calculated, and the natural period at the time of measurement is calculated from the measurement result of the accelerometer. Then, the inverse analysis for calculating the natural period of the analysis model by setting the rigidity for reducing the second error of the calculation result is repeatedly performed while gradually changing the rigidity, and the second error is allowed. The displacement at a point other than the representative point is estimated based on the rigidity when the value is equal to or less than the value.

さらに、請求項3に記載の発明は、請求項1または2に記載の発明において、上記解析モデルとして、上記躯体の設計時に作成したものから上記施工段階において未施工の部材を除去したもの、または新に部材を追加したものを用いることを特徴とするものである。   Further, the invention according to claim 3 is the invention according to claim 1 or 2, wherein as the analysis model, an unconstructed member is removed at the construction stage from the one created at the time of designing the casing, or It is characterized by using a newly added member.

請求項1〜3のいずれかに記載の発明においては、想定される荷重に対する変位量を解析することによって得られた躯体の解析モデルを用いて、上記代表点の位置の計測結果を既知量とし、当該計測結果と上記解析モデルにおける代表点の位置との誤差が漸次小さくなるように、積載荷重を変化させつつ上記解析モデルに作用させて代表点の位置を算出する逆解析を繰り返し実施して、上記誤差が許容値以下となった時の積載荷重が作用する上記解析モデルに基づいて、上記代表点以外の点における変位を推定しているために、容易かつ短時間うちに上記躯体の任意の点における変位を高い精度で推定することができる。   In the invention according to any one of claims 1 to 3, the measurement result of the position of the representative point is set to a known amount using an analysis model of the frame obtained by analyzing the displacement amount with respect to the assumed load. In order to gradually reduce the error between the measurement result and the position of the representative point in the analysis model, the inverse analysis is repeatedly performed to calculate the position of the representative point by acting on the analysis model while changing the loading load. Since the displacement at points other than the representative point is estimated based on the analysis model on which the load when the error becomes less than the allowable value is applied, any of the cases can be easily and quickly The displacement at the point can be estimated with high accuracy.

さらに、請求項2に記載の発明によれば、上記載荷荷重による逆解析を繰り返し行って、予め設定した反復回数または演算時間を経過後においても、依然として上記誤差が許容値以下に収束しない場合に、躯体の解析モデルにおける固有周期と躯体に取り付けた加速度計の計測結果から算出された固有周期との間の第2の誤差が小さくなるように、剛性を変化させつつ上記解析モデルの固有周期を算出する逆解析繰り返し実施して、当該第2の誤差が許容値以下となった時の剛性に基づいて上記代表点以外の点における変位を推定することにより、載荷荷重による繰り返しの逆解析によって収束しない演算を継続実施する場合と比較して、より短時間かつ高い精度で躯体の任意の点における変位を推定することが可能になる。   Furthermore, according to the invention described in claim 2, when the above-mentioned error still does not converge below the allowable value even after the inverse analysis based on the load described above is repeatedly performed and the preset number of iterations or calculation time has elapsed. The natural period of the analysis model is changed while changing the rigidity so that the second error between the natural period in the analysis model of the enclosure and the natural period calculated from the measurement result of the accelerometer attached to the enclosure is reduced. By performing repeated inverse analysis to calculate and converging by repeated inverse analysis by loading load by estimating the displacement at a point other than the representative point based on the stiffness when the second error is below the allowable value It is possible to estimate the displacement at an arbitrary point of the housing in a shorter time and with higher accuracy than in the case where the calculation that is not performed is continued.

また、従来FEM等を用いた躯体の解析モデルは、設計段階において構築した構造解析や動的解析および地震応答解析に用いているが、施工開始後においては一般的に用いられていない。そこで、請求項3に記載の発明にように、本発明の上記解析モデルとして、上記躯体の設計時に作成したものから上記施工段階において未施工の部材を除去した解析モデルを用いれば、その資産を有効に活用することができる。   In addition, a conventional analysis model of a frame using FEM or the like is used for structural analysis, dynamic analysis, and seismic response analysis constructed at the design stage, but is not generally used after construction starts. Therefore, as in the invention described in claim 3, if the analysis model of the present invention is an analysis model in which unconstructed members are removed at the construction stage from those created at the time of designing the housing, the assets are It can be used effectively.

また、施工段階における設計変更に伴って部材断面の変更や部材の追加があった場合にも、上記躯体の設計時に作成した解析モデルを用いれば、その資産を有効に活用することが可能になる。   In addition, even when there is a change in member cross-section or addition of a member due to a design change at the construction stage, it is possible to effectively utilize the assets by using the analysis model created at the time of designing the above-mentioned housing .

このように、請求項1〜3のいずれかに記載の発明によれば、施工段階や外乱が生じた後等の躯体の各点における変位を、容易かつ短時間のうちに高い精度で推定することができるとともに、さらに過去に建設されて耐用年数を向かえようとする構造物に対して適用することにより、早期補修や新たな計画にも応用することが可能になる。   In this way, according to the invention according to any one of claims 1 to 3, the displacement at each point of the housing after the construction stage or disturbance has occurred is estimated easily and with high accuracy in a short time. In addition, it can be applied to early repairs and new plans by applying it to structures that have been constructed in the past and are going to have a longer service life.

本発明の一実施形態において変位推定の対象となる躯体の完成時の形状を示す模式図である。It is a schematic diagram which shows the shape at the time of completion of the housing used as the object of displacement estimation in one Embodiment of this invention. 図1の躯体の施工段階における形状を示す模式図である。It is a schematic diagram which shows the shape in the construction stage of the housing of FIG. (a)は図2の躯体の代表点の計測結果を示す模式図であり、(b)は上記計測結果に基づく解析結果を示す模式図である。(A) is a schematic diagram which shows the measurement result of the representative point of the housing of FIG. 2, (b) is a schematic diagram which shows the analysis result based on the said measurement result. (a)は図1の躯体の代表点の計測結果を示す模式図であり、(b)は上記計測結果に基づく解析結果を示す模式図である。(A) is a schematic diagram which shows the measurement result of the representative point of the housing of FIG. 1, (b) is a schematic diagram which shows the analysis result based on the said measurement result. 本発明の一実施形態における演算手段の作用を示すフロー図である。It is a flowchart which shows the effect | action of the calculating means in one Embodiment of this invention. 図5のフロー図のB以降の作用を示すフロー図である。It is a flowchart which shows the effect | action after B of the flowchart of FIG. 従来の変位推定方法を説明するための模式図である。It is a schematic diagram for demonstrating the conventional displacement estimation method. 従来の他の変位推定方法を説明するための模式図である。It is a schematic diagram for demonstrating the other conventional displacement estimation method.

以下、図1〜図6に基づいて、本発明に係る躯体の変位推定モニタリングシステムの一実施形態について説明する。
本実施形態のモニタリングシステムは、完成時に図1に示す構造を有する躯体1を建築するに際し、部材2、3、4が未だ構築されていない図2に示す施工段階の躯体1´の各点の変位を推定するために用いられるものである。
Hereinafter, based on FIGS. 1-6, one Embodiment of the displacement estimation monitoring system of the housing which concerns on this invention is described.
When the monitoring system of the present embodiment constructs the housing 1 having the structure shown in FIG. 1 when completed, each of the points of the construction 1 1 shown in FIG. It is used to estimate the displacement.

このモニタリングシステムは、代表点Pの変位(レベル)を測定するレベル計(計測手段)および加速度を測定するする加速度計(計測手段)と、このレベル計や加速度計からの計測結果に基づいて躯体1´の代表点(計測位置)P以外の点における変位を推定するパーソナルコンピュータ(PC、演算手段)と、このPCの演算結果を表示するモニタとから概略構成されている。   This monitoring system includes a level meter (measuring means) that measures the displacement (level) of the representative point P, an accelerometer (measuring means) that measures acceleration, and a housing based on the measurement results from the level meter and the accelerometer. A personal computer (PC, calculation means) that estimates displacement at a point other than the 1 ′ representative point (measurement position) P and a monitor that displays the calculation result of the PC are schematically configured.

このPCは、全体を統括制御するCPUに、入出力制御部を介して実行プログラムを読み込んで演算処理するRAM、上記実行プログラムおよび図1に示した躯体1のFEM(有限要素法)による解析モデルを格納した記憶装置、キーボードやマウス等の入力装置および上記モニタが接続されたものである。   This PC has a CPU that performs overall control on a CPU that reads an execution program via an input / output control unit and performs arithmetic processing, the execution program, and an analysis model of the housing 1 shown in FIG. 1 by FEM (finite element method). Are connected to an input device such as a keyboard and a mouse and the monitor.

ここで、図5および図6に示すフロー図に基づいて、上記実行プログラムの処理機能を実際の変位推定を行う際の操作と共に説明すると、先ず上記入力装置によって、記憶装置に格納されている解析モデルを表示させ、当該解析モデルから図1に示した部材2、3、4を取り除くことにより、躯体1´の解析モデルを作成させる。   Here, based on the flowcharts shown in FIG. 5 and FIG. 6, the processing function of the execution program will be described together with the operation for performing the actual displacement estimation. First, the analysis stored in the storage device by the input device will be described. The model is displayed, and the analysis model of the housing 1 ′ is created by removing the members 2, 3, and 4 shown in FIG. 1 from the analysis model.

次いで、この解析モデルによって静解析を実施して、代表点Pにおける位置(変位量)を算出させる。他方、レベル計からの計測結果に基づいて、図3(a)に示す実際の代表点Pの位置(変位量)を入力する。そして、上記実行プログラムによって、上記解析モデルにおける代表点Pの位置と計測結果の位置との誤差を小さくさせる積載荷重を解析モデルに作用させて代表点の位置を算出する逆解析を、漸次積載荷重を変化させつつ繰り返し実施させる。   Next, static analysis is performed using this analysis model, and the position (displacement amount) at the representative point P is calculated. On the other hand, based on the measurement result from the level meter, the actual position (displacement amount) of the representative point P shown in FIG. Then, an inverse analysis for calculating the position of the representative point by applying a loaded load that reduces the error between the position of the representative point P in the analysis model and the position of the measurement result to the analysis model by the execution program is performed gradually. Repeatedly while changing.

そして、この誤差が許容値err1以下となった時の上記積載荷重が作用する解析モデルに基づいて、図3(b)に示すように、測定していない任意の位置Pにおける変位を推定する。 Then, based on the analysis model on which the loaded load acts when the error becomes equal to or less than the allowable value err1, the displacement at an arbitrary position Pn not measured is estimated as shown in FIG. 3B. .

これをより具体的に説明すると、先ず、測定した代表点Pの変位(既知変位ベクトル)をX(既知の節点自由度)、測定していない位置における変位(未知変位ベクトル)をX(未知の節点自由度)と定義する。
そして、力と変形の関係を静的な釣合条件により導くと下式(1)のようになる。
More specifically, first, the displacement (known displacement vector) of the measured representative point P is represented by X k (known node degree of freedom), and the displacement (unknown displacement vector) at a position not measured is represented by X u ( Unknown node degrees of freedom).
Then, when the relationship between force and deformation is derived by a static balance condition, the following equation (1) is obtained.

Figure 2017203293
Figure 2017203293

上記解析から算出される測定対象の既知変位ベクトルXは、式(1)の第1項によりXで展開し、これを同式の第2項に代入すると、下式(2)のようになる。 The known displacement vector X k of the measurement object calculated from the above analysis is expanded by X U by the first term of the equation (1), and substituted into the second term of the equation, the following equation (2) become.

Figure 2017203293
Figure 2017203293

Figure 2017203293
Figure 2017203293

そして、本実行プログラムにおける基本的な手法は、既知変位ベクトルX と解析から算出される測定対象の既知変位ベクトルXとの誤差ベクトルEを求め、これを2乗とした評価関数Jを最小にすることで、未知量Xを算出するものである。なお、誤差ベクトルEは、下式(4)で表すことができる。 The basic method of this execution program, known displacement vector X K * and are calculated from the analysis obtains an error vector E K with known displacement vector X K to be measured, the evaluation function J This was the square Is used to calculate the unknown amount XU. Incidentally, the error vector E K can be represented by the following formula (4).

Figure 2017203293
Figure 2017203293

一方、評価関数Jは、誤差関数(離散L2ノルム)から下式(5)のように定義される(Nは、誤差ベクトルの成分数(既知ベクトルの成分数)である)。 On the other hand, the evaluation function J is defined from the error function (discrete L2 norm) as in the following expression (5) (N K is the number of components of the error vector (number of components of the known vector)).

Figure 2017203293
Figure 2017203293

また、式(2)を式(4)に代入すると、下式(6)のようになる。   Further, when Expression (2) is substituted into Expression (4), the following Expression (6) is obtained.

Figure 2017203293
Figure 2017203293

そして、式(5)の評価関数Jをゼロにするには、誤差ベクトルEの全成分をゼロにする必要がある。しかしながら、未知パラメータの数が方程式の数より多いため、一意的に決定できない。そのため、式(5)のパラメータの組み合わせの内、誤差を最小にするための探索を反復法により求める。 Then, the evaluation function J of Equation (5) to zero, it is necessary to make all of the components of the error vector E K to zero. However, since the number of unknown parameters is larger than the number of equations, it cannot be determined uniquely. For this reason, a search for minimizing an error is obtained by an iterative method from among the combinations of the parameters of Expression (5).

本実施形態においては、上記反復法による探索方法として、最急降下法を用いた。すなわち、探索修正未知ベクトルをU、探索方向ベクトルを∇、ステップサイズをθとし、漸化式を下式(7)のように定義した。 In this embodiment, the steepest descent method is used as the search method by the above iterative method. That is, the search correction unknown vector is U, the search direction vector is ∇ U , the step size is θ, and the recurrence formula is defined as the following formula (7).

Figure 2017203293
Figure 2017203293

Figure 2017203293
Figure 2017203293

Jが負の場合は、評価関数Jが小さくなる方向である。このベクトルの方向に未知ベクトルUを修正すれば、評価関数Jが最小になる未知ベクトルUが定まる。
ここで、式(6)のパラメータの内、FEMにより施工ステップ時の剛性マトリックスが組立てられる。しかし荷重ベクトルは未知量となる。したがって式(6)、(7)を使って整理すると、下式(9)、(10)のようになる。
If ∇ U J is negative, a direction in which the evaluation function J becomes smaller. If the unknown vector U is corrected in the direction of this vector, the unknown vector U that minimizes the evaluation function J is determined.
Here, among the parameters of equation (6), the stiffness matrix at the construction step is assembled by FEM. However, the load vector is unknown. Therefore, the following equations (9) and (10) can be obtained by rearranging using equations (6) and (7).

Figure 2017203293
Figure 2017203293

そして、∇FuJ、∇FkJを計算することによりF、Fを繰り返し計算して、代表点Pの変形の誤差が、予め設定した許容誤差値err1以下になった時の上記積載荷重が作用する解析モデルに基づいて、式(1)により測定していない位置における変位ベクトルXを推定する。 Then, F U and F K are repeatedly calculated by calculating ∇ Fu J and ∇ Fk J, and the above load when the deformation error of the representative point P becomes equal to or smaller than the preset allowable error value err1. There based on the analysis model to act, to estimate the displacement vector X U at position not determined by equation (1).

なお、本実施形態においては、予め設定した許容誤差値err1以下になった場合として、下式の条件を満たした時とした。   In the present embodiment, it is assumed that the condition of the following equation is satisfied as a case where the value is equal to or smaller than a preset allowable error value err1.

Figure 2017203293
Figure 2017203293

一方、本実施形態の実行プログラムにおいては、式(10)で示したF、Fを予め設定した反復回数または演算時間繰り返して計算しても、代表点Pの変形の誤差が予め設定した許容誤差値err1以下にならなかった場合には、図6に示す躯体1´の固有値解析に移行する。 On the other hand, in the execution program of this embodiment, even if F U and F K shown in Expression (10) are calculated by repeating the preset number of iterations or calculation time, the deformation error of the representative point P is preset. If it is not less than or equal to the allowable error value err1, the process proceeds to eigenvalue analysis of the casing 1 ′ shown in FIG.

この固有値解析においては、先ず図2に示した躯体1´の解析モデルにより、上記反復回数または演算時間経過時の載荷荷重を用いて固有周期Tを算出する。次いで、躯体1´に設置した加速度計の計測結果Aを入力すると、上記実行プログラムは、固有周期T を算出するとともに、これら固有周期の誤差(第2の誤差B=T−T )を小さくさせる剛性(EI)を設定して上記解析モデルの固有周期を算出する逆解析を、漸次当該剛性を変化させつつ繰り返し実施する。 In the eigenvalue analysis, first, the natural period TK is calculated by using the analysis model of the casing 1 ′ shown in FIG. Then, by entering the measurement result A K accelerometer installed in building frame 1 ', the execution program, calculates the natural period T K *, the error of the natural period (the second error B = T K -T Inverse analysis for setting the stiffness (EI) for reducing K * ) and calculating the natural period of the analysis model is repeatedly performed while gradually changing the stiffness.

そして、上記誤差が予め設定した許容値err2以下となった時の上記積載荷重が作用する解析モデルに基づいて、図3(b)に示すように、測定していない任意の位置Pにおける変位を推定する。 Then, based on the analysis model on which the loaded load acts when the error is equal to or less than the preset allowable value err2, as shown in FIG. 3B, the displacement at an arbitrary position Pn that is not measured. Is estimated.

さらに、図4に示すように、上記躯体1´に対して、部材2、3、4を構築して躯体1を完成させた後に、再び躯体1の変位をモニタリングする場合には、当初記憶装置に格納した設計時の躯体1の解析モデルを用いて、代表点Pにおいて測定された位置(変位量)に基づき、同様の演算操作をすることにより、他の任意の点Pn、Pnにおける変位を推定する。 Further, as shown in FIG. 4, when the members 1, 3, and 4 are constructed for the housing 1 ′ and the housing 1 is completed, when the displacement of the housing 1 is monitored again, the initial storage device is used. Using the analysis model of the housing 1 at the time of design stored in the above, by performing the same calculation operation based on the position (displacement amount) measured at the representative point P, the other arbitrary points Pn 1 and Pn 2 Estimate the displacement.

以上詳述したように、上記構成からなる躯体の変位推定モニタリングシステムによれば、想定される荷重に対する変位量を解析することによって得られた躯体の解析モデルを用いて、代表点Pの位置(変位量)の計測結果を既知量とし、当該計測結果と上記解析モデルにおける代表点Pの位置との誤差が漸次小さくなるように、積載荷重を変化させつつ上記解析モデルに作用させて代表点の位置を算出する逆解析を繰り返し実施して、上記誤差が許容値以下となった時の積載荷重が作用する解析モデルに基づいて、上記代表点以外の点における変位を推定しているために、容易かつ短時間うちに図3(b)、図4(b)に見られるように上記躯体1、1´の任意Pn、Pn、Pnの点における変位を高い精度で推定することができる。 As described in detail above, according to the chassis displacement estimation monitoring system having the above-described configuration, the position of the representative point P (using the analysis model of the chassis obtained by analyzing the displacement amount with respect to the assumed load ( The measurement result of the displacement amount is a known amount, and the load is changed so that the error between the measurement result and the position of the representative point P in the analysis model gradually decreases. In order to estimate the displacement at a point other than the representative point based on the analytical model on which the loaded load acts when the error is less than or equal to the allowable value after repeatedly performing the inverse analysis to calculate the position, As can be seen easily and in a short time, as shown in FIGS. 3 (b) and 4 (b), it is possible to estimate the displacement of the housings 1 , 1 'at arbitrary points Pn, Pn 1 , Pn 2 with high accuracy. .

加えて、上記載荷荷重による逆解析を繰り返し行って、予め設定した反復回数または演算時間を経過後においても、依然として上記誤差が許容値以下に収束しない場合に、躯体1、1´の解析モデルにおける固有周期と躯体に取り付けた加速度計の計測結果から算出された固有周期との間の第2の誤差が小さくなるように、剛性を変化させつつ上記解析モデルの固有周期を算出する逆解析繰り返し実施して、当該第2の誤差が許容値以下となった時の剛性に基づいて上記代表点以外の点における変位を推定することにより、載荷荷重による繰り返しの逆解析によって収束しない演算を継続実施する場合と比較して、より短時間かつ高い精度で躯体の任意の点における変位を推定することが可能になる。   In addition, when the above-mentioned error still does not converge below the allowable value even after a predetermined number of iterations or calculation time has elapsed after repeating the inverse analysis based on the above-described load load, Repeat inverse analysis to calculate the natural period of the analysis model while changing the rigidity so that the second error between the natural period and the natural period calculated from the measurement result of the accelerometer attached to the housing is reduced. Then, by estimating the displacement at a point other than the representative point based on the rigidity when the second error is less than or equal to the allowable value, the calculation that does not converge by the repeated inverse analysis by the loaded load is continuously performed. Compared to the case, it is possible to estimate the displacement at any point of the housing in a shorter time and with higher accuracy.

さらに、上記解析モデルとして、躯体1の設計時に作成したものから上記施工段階において未施工の部材を除去した解析モデルを用いているために、設計時に作成した解析モデルの資産を有効に活用することができる。   Furthermore, since the analysis model is an analysis model in which unconstructed members are removed at the construction stage from the one created at the time of designing the housing 1, the assets of the analysis model created at the time of design should be used effectively. Can do.

1、1´ 躯体
P 代表点(計測位置)
Pn、Pn、Pn 計測されない任意の点
1, 1 'housing P representative point (measurement position)
Pn, Pn 1 , Pn 2 Any point not measured

Claims (3)

躯体の代表点の位置を測定する計測手段と、この計測手段による計測結果に基づいて上記躯体の上記代表点以外の点における変位を推定する演算手段とを備えてなり、
上記演算手段は、上記測定時の上記躯体の解析モデルにおける上記代表点の位置と、上記計測結果の位置との誤差を小さくさせる積載荷重を上記解析モデルに作用させて上記代表点の位置を算出する逆解析を、漸次当該積載荷重を変化させつつ繰り返し実施して、当該誤差が許容値以下となった時の上記積載荷重が作用する上記解析モデルに基づいて、上記代表点以外の点における上記変位を推定することを特徴とする躯体の変位推定モニタリングシステム。
Measuring means for measuring the position of the representative point of the housing, and arithmetic means for estimating the displacement at a point other than the representative point of the housing based on the measurement result by the measuring means,
The calculation means calculates the position of the representative point by applying a loaded load that reduces an error between the position of the representative point in the analysis model of the housing at the time of the measurement and the position of the measurement result to the analysis model. The inverse analysis is repeatedly performed while gradually changing the load, and the above-described points other than the representative points are based on the analysis model on which the load is applied when the error is less than or equal to the allowable value. A displacement estimation monitoring system for a housing characterized by estimating displacement.
上記計測手段は、上記代表点の加速度を検出する加速度計を備え、
かつ上記演算手段は、予め設定した反復回数または演算時間を経過後に上記誤差が上記許容値以下に収束しない場合に、上記測定時の上記躯体の解析モデルにおける固有周期を算出するとともに、上記加速度計の計測結果から上記測定時における固有周期を算出し、これら算出結果の第2の誤差を小さくさせる剛性を設定して上記解析モデルの固有周期を算出する逆解析を、漸次当該剛性を変化させつつ繰り返し実施して、当該第2の誤差が許容値以下となった時の上記剛性に基づいて、上記代表点以外の点における上記変位を推定することを特徴とする請求項1に記載の躯体の変位推定モニタリングシステム。
The measuring means includes an accelerometer that detects the acceleration of the representative point,
The calculation means calculates a natural period in the analysis model of the casing at the time of measurement when the error does not converge below the allowable value after elapse of a preset number of iterations or calculation time, and the accelerometer From the measurement results, the natural period at the time of the above measurement is calculated, and the inverse analysis for calculating the natural period of the analysis model by setting the rigidity that reduces the second error of these calculation results is performed while gradually changing the rigidity. 2. The case according to claim 1, wherein the displacement at a point other than the representative point is estimated based on the rigidity when the second error is less than or equal to an allowable value by being repeatedly performed. Displacement estimation monitoring system.
上記解析モデルとして、上記躯体の設計時に作成したものから上記施工段階において未施工の部材を除去したもの、または新に部材を追加したものを用いることを特徴とする請求項1または2に記載の躯体の変位推定モニタリングシステム。   The analysis model according to claim 1 or 2, wherein the analysis model is prepared by removing an unconstructed member at the construction stage from the one created at the time of designing the casing, or by adding a new member. A displacement estimation monitoring system for the chassis.
JP2016095378A 2016-05-11 2016-05-11 Monitoring system for estimating the displacement of the building. Active JP6665023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095378A JP6665023B2 (en) 2016-05-11 2016-05-11 Monitoring system for estimating the displacement of the building.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095378A JP6665023B2 (en) 2016-05-11 2016-05-11 Monitoring system for estimating the displacement of the building.

Publications (2)

Publication Number Publication Date
JP2017203293A true JP2017203293A (en) 2017-11-16
JP6665023B2 JP6665023B2 (en) 2020-03-13

Family

ID=60322071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095378A Active JP6665023B2 (en) 2016-05-11 2016-05-11 Monitoring system for estimating the displacement of the building.

Country Status (1)

Country Link
JP (1) JP6665023B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077831A1 (en) 2017-10-20 2019-04-25 Necプラットフォームズ株式会社 Module, and server

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151633A (en) * 1994-11-30 1996-06-11 Fujita Corp Execution management system for earth retaining work
JP2000027185A (en) * 1998-07-10 2000-01-25 Shimizu Corp Assuming method of constant of ground
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2008297870A (en) * 2007-06-04 2008-12-11 Shimizu Corp Underground construction management system and underground construction management method
JP2013053490A (en) * 2011-09-06 2013-03-21 Railway Technical Research Institute Method for improving accuracy of planar visualization of measurement data on earth retaining wall
JP2013170955A (en) * 2012-02-22 2013-09-02 Daiwa House Industry Co Ltd Safety evaluation system for base isolated building
JP2014001590A (en) * 2012-06-20 2014-01-09 Railway Technical Research Institute Three-dimensional deformation prediction method used for computerized construction of excavation earth-retaining wall
JP2015200530A (en) * 2014-04-07 2015-11-12 大成建設株式会社 Habitability evaluation system on oscillation of building

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151633A (en) * 1994-11-30 1996-06-11 Fujita Corp Execution management system for earth retaining work
JP2000027185A (en) * 1998-07-10 2000-01-25 Shimizu Corp Assuming method of constant of ground
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2008297870A (en) * 2007-06-04 2008-12-11 Shimizu Corp Underground construction management system and underground construction management method
JP2013053490A (en) * 2011-09-06 2013-03-21 Railway Technical Research Institute Method for improving accuracy of planar visualization of measurement data on earth retaining wall
JP2013170955A (en) * 2012-02-22 2013-09-02 Daiwa House Industry Co Ltd Safety evaluation system for base isolated building
JP2014001590A (en) * 2012-06-20 2014-01-09 Railway Technical Research Institute Three-dimensional deformation prediction method used for computerized construction of excavation earth-retaining wall
JP2015200530A (en) * 2014-04-07 2015-11-12 大成建設株式会社 Habitability evaluation system on oscillation of building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077831A1 (en) 2017-10-20 2019-04-25 Necプラットフォームズ株式会社 Module, and server

Also Published As

Publication number Publication date
JP6665023B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
Roy Review of code and solution verification procedures for computational simulation
Ebrahimian et al. Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method
Papadimitriou et al. Updating robust reliability using structural test data
KR101935558B1 (en) System and method for earthquake damage prediction and analysis of structures, and a recording medium having computer readable program for executing the method
Bobby et al. Data-driven performance-based topology optimization of uncertain wind-excited tall buildings
Dhople et al. A parametric uncertainty analysis method for Markov reliability and reward models
Jia et al. Hierarchical Bayesian modeling framework for model updating and robust predictions in structural dynamics using modal features
JP2017123160A (en) Convergence estimation of non-linear partial differential equation and linear solvers
Ghorbani et al. Hybrid output-only structural system identification using random decrement and Kalman filter
JP2019105927A (en) Failure probability calculation device, failure probability calculation method and program
Wang et al. A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks
Hardyniec et al. A new efficient method for determining the collapse margin ratio using parallel computing
Gottschalk et al. Shape gradients for the failure probability of a mechanic component under cyclic loading: a discrete adjoint approach
JP7001462B2 (en) Seismic evaluation method and equipment for equipment
JP6665023B2 (en) Monitoring system for estimating the displacement of the building.
Audebert et al. SICODYN international benchmark on dynamic analysis of structure assemblies: variability and numerical-experimental correlation on an industrial pump (part 2)
Papadimitriou et al. Bayesian modeling and updating
KR102397107B1 (en) Apparatus for Monitoring Damage of Structure with Unscented Kalman Filter based on Global Optimization
Mehanny Are theoretically calculated periods of vibration for skeletal structures error-free?
Meier et al. Determination of the tangent stiffness tensor in materials modeling in case of large deformations by calculation of a directed strain perturbation
Ure et al. Development and implementation of the ABAQUS subroutines and plug-in for routine structural integrity assessment using the Linear Matching Method
Forster Analytic Sensitivities of Stochastic and Statistical Moments for Uncertainty Quantification
Dwight et al. Reducing uncertainty in aeroelastic flutter boundaries using experimental data
CN113874866A (en) Method and system for generating sensor model and method and system for measuring sensor
Kurent et al. On (Bayesian) Finite Element Model Updating of Civil Engineering Structures by Using Modal Features

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6665023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250