JPH08151633A - Execution management system for earth retaining work - Google Patents

Execution management system for earth retaining work

Info

Publication number
JPH08151633A
JPH08151633A JP32127394A JP32127394A JPH08151633A JP H08151633 A JPH08151633 A JP H08151633A JP 32127394 A JP32127394 A JP 32127394A JP 32127394 A JP32127394 A JP 32127394A JP H08151633 A JPH08151633 A JP H08151633A
Authority
JP
Japan
Prior art keywords
value
mountain retaining
analysis
estimated
ground reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32127394A
Other languages
Japanese (ja)
Inventor
Etsuro Saito
悦郎 斉藤
Noriyuki Kobayashi
範之 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP32127394A priority Critical patent/JPH08151633A/en
Publication of JPH08151633A publication Critical patent/JPH08151633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To safely and reasonably conduct the earth retaining work. CONSTITUTION: The first processing means 42 performs the repetitive extended Kalman filter process based on the measured data including the displacement of a wall body and the axial force of a strut and the prescribed assumed value including the back face side pressure of a wall to be estimated and the initial value of the ground reaction coefficient. A weighting means 44 weights the error covariance value of the obtained estimated value. The second processing means 45 performs the repetitive extended Kalman filter process based on the estimated value obtained by the first processing means 42 and the weighted covariance value as the initial values. A convergence judging means 46 judges the convergence of the estimated value to obtain the optimum estimated value. A prediction analysis section 6 predicts the deformation and stress state of an earth retaining frame based on the optimum estimated value or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は山留め掘削工事を管理す
る方法に関し、特に山留め架構の計測値をもとに逆解析
を行って取得した情報を工事の管理に用いる山留め工事
の施工管理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for managing excavation work for a mountain retaining structure, and more particularly to a method for managing a construction work for a mountain retaining structure using information obtained by performing an inverse analysis based on a measured value of the mountain retaining frame for managing the construction. It is a thing.

【0002】[0002]

【従来の技術】近年実施される山留め掘削工事は、大断
面・大深度の工事や、超軟弱地盤での工事、さらに都市
密集地での工事が多くなっている。このような山留め工
事では、安全性および経済性を確保するため、工事現場
で種々の計測を行い、計測値によって山留め架構の現状
を確認し、さらに今後の掘削段階あるいは山留め解体時
の状態を予測して工事を管理することが特に重要であ
る。このような管理にもとづく山留め施工は、一般に山
留め情報化施工と呼ばれている。
2. Description of the Related Art The excavation work carried out in recent years has been large in construction with large cross section and large depth, construction on ultra-soft ground, and construction on dense urban areas. In order to ensure safety and economy in such mountain retaining work, various measurements are performed at the construction site, the current state of the mountain retaining frame is confirmed from the measured values, and the state of the future excavation stage or demolition of the mountain retaining structure is predicted. It is especially important to manage the construction work. Mountain retaining construction based on such management is generally called mountain retaining information processing construction.

【0003】山留め情報化施工では、山留め架構の計測
値に対して、コンピュータを用いて各種の処理を行い、
工事の管理に必要な情報を得ている。この処理は通常、
大きく3つに分けることができ、それらは現状解析、逆
解析、ならびに予測解析である。
[0003] In the construction of computerized mountain retaining, various processes are performed on the measured values of the frame retaining frame by using a computer,
You have the information you need to manage your construction. This process is usually
It can be broadly divided into three categories: current situation analysis, reverse analysis, and predictive analysis.

【0004】現状解析では、山留め架構の計測値として
山留め壁体の傾斜角および切梁の軸力を用い、数学的手
法により壁体の変位、壁体の曲げモーメントなどを求め
る。また、逆解析では、計測値にもとづいて現状解析で
求めた壁体の変位、および切梁の軸力を用い、例えば弾
塑性法に基づいて非線形の最適化手法による逆解析を行
って、設計パラメータである壁体の背面側圧および山留
め架構における地盤反力係数を推定する。また、予測解
析では、逆解析によって得られた上記背面側圧および地
盤反力係数を用いて、今後の各掘削段階および山留め解
体時の山留めの挙動を予測し、予想される壁体の変位、
壁体の曲げモーメント、切梁の軸力などを算出する。
In the current analysis, the inclination angle of the mountain retaining wall and the axial force of the truss are used as the measured values of the mountain retaining frame, and the displacement of the wall, the bending moment of the wall, etc. are obtained by a mathematical method. In addition, in the inverse analysis, the displacement of the wall body and the axial force of the girder obtained in the current analysis based on the measured values are used to perform the inverse analysis by the nonlinear optimization method based on, for example, the elasto-plastic method, and the design is performed. The parameters are the backside pressure of the wall and the ground reaction force coefficient of the earth retaining frame. Further, in the prediction analysis, using the back side pressure and the ground reaction force coefficient obtained by the inverse analysis, predict the behavior of the mountain retaining at each future excavation stage and the mountain retaining dismantling, the expected displacement of the wall body,
The bending moment of the wall and the axial force of the beam are calculated.

【0005】これらの処理の内、現状解析と予測解析
は、その解析手法はほぼ確立されており、また処理に要
する時間も短いため、その実施は比較的容易である。し
かし、逆解析は、処理内容が複雑で、規模も大きく、処
理に長い時間を要するものとなっている。さらに逆解析
のもとになる計測値は、工事現場で計測を行って取得す
るものであるため、一般にバラツキが大きく、良好な解
析結果が得られない場合が多い。このような問題を解決
するため、逆解析に制御理論を応用することが考えられ
る。
Among these processes, the current condition analysis and the predictive analysis are relatively easy to carry out because the analysis methods are almost established and the time required for the process is short. However, the inverse analysis requires complicated processing, a large scale, and a long processing time. Further, since the measurement values that are the basis of the inverse analysis are obtained by performing measurements at the construction site, there are many variations in general, and good analysis results are often not obtained. In order to solve such a problem, it is possible to apply control theory to inverse analysis.

【0006】ウイナー(Wiener)による定常信号を用い
た周波数領域の解析は古典制御理論といわれる。これに
対してカルマン(Kalman)( Kalman, R. E. : A new a
pproach to linear filtering and prediction problem
s, Trans. ASME, J. Basic Eng., Vol. 82, pp. 35-45,
1960.、および Kalman, R. E. and R. S. Bucy: Newre
sult in linear filtering and prediction theory, Tr
nas, ASME, J. BasicEng., Vol. 83, pp. 95-108, 196
1. )による時系列解析と状態空間表示をもとにした線
形システム理論は現代制御理論とよばれ、さまざまな分
野で幅広く活用されている。この制御理論にもとづくカ
ルマンフィルタは、入出力データのバラツキや誤差が大
きい場合に、それらのデータをもとに、線形ダイナミッ
ク・システムのパラメータを逆解析して推定しようとす
るとき、特に有効である。そして、カルマンフィルタを
適用すると、処理はデータを逐次入力しながらのシーケ
ンシャル処理となるため、変動に対して追従性よく結果
を得ることができ、かつ計算規模も小さいため、パーソ
ナル・コンピュータ程度の計算機でも短時間で処理を完
了できる。
The analysis of the frequency domain using the stationary signal by Wiener is called classical control theory. On the other hand, Kalman (Kalman, RE: A new a
pproach to linear filtering and prediction problem
s, Trans. ASME, J. Basic Eng., Vol. 82, pp. 35-45,
1960., and Kalman, RE and RS Bucy: Newre
sult in linear filtering and prediction theory, Tr
nas, ASME, J. BasicEng., Vol. 83, pp. 95-108, 196
Linear system theory based on time series analysis and state space display by 1.) is called modern control theory, and is widely used in various fields. The Kalman filter based on this control theory is particularly effective when the parameters and parameters of the linear dynamic system are to be inversely analyzed and estimated based on the data and the input / output data when the variations and errors are large. Then, when the Kalman filter is applied, the process is a sequential process while sequentially inputting data, so that it is possible to obtain results with good followability to fluctuations and the calculation scale is small, so even a computer such as a personal computer Processing can be completed in a short time.

【0007】拡張カルマンフィルタは、カルマンフィル
タをより一般的に非線型システムに適用できるように拡
張したものである。従って、応用範囲はより広く、種々
の場面で利用されている。例えば、D. G. Carmichael
( Carmichael, D. G. : The state estimation proble
m in experimental structural mechanics, Applicatio
n of statistics & probability soil and strctural e
ngineering, 3rd Inter.Conf. pp. 802-815, 1979-2.
)は、この拡張カルマンフィルタをコンクリートのク
リープ問題、および線形1自由度系動的問題に応用して
いる。また、C-B. Yun( Yun, C-B. and M. Shinozuka:
Identification of nonlinear structuraldynamic sys
tems, J. Struct. Mech. 8(2), pp. 182-203, 1980.)
らは、多自由度系に対して、各質点の観測データが得ら
れることを前提として、沖合の構造物の解析に応用して
いる。
The extended Kalman filter is an extension of the Kalman filter so that it can be more generally applied to nonlinear systems. Therefore, it has a wider range of applications and is used in various situations. For example, DG Carmichael
(Carmichael, DG: The state estimation problem
m in experimental structural mechanics, Applicatio
n of statistics & probability soil and strctural e
ngineering, 3rd Inter.Conf. pp. 802-815, 1979-2.
) Has applied the extended Kalman filter to concrete creep problems and linear one-degree-of-freedom dynamic problems. Also, CB. Yun (Yun, CB. And M. Shinozuka:
Identification of nonlinear structuraldynamic sys
tems, J. Struct. Mech. 8 (2), pp. 182-203, 1980.)
Et al. Have applied it to the analysis of offshore structures, assuming that observation data of each mass point can be obtained for a multi-degree-of-freedom system.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、これら
の応用例は、計測値の数が限られている場合でも正確な
推定結果が得られること、および初期値の設定範囲が広
いときでも良好な推定結果が得られることに関して保証
を与えるものではない。従って、拡張カルマンフィルタ
は優れた特徴を備えているが、山留め情報化施工におけ
る逆解析にこのフィルタを単純に応用しても常に良好な
結果が得られるとは限らない。
However, in these application examples, accurate estimation results can be obtained even when the number of measurement values is limited, and good estimation is possible even when the initial value setting range is wide. It does not guarantee that results will be obtained. Therefore, although the extended Kalman filter has excellent characteristics, even if this filter is simply applied to the back analysis in the mountain retaining information construction, good results are not always obtained.

【0009】本発明の目的は、このような問題を解決
し、パーソナルコンピュータ等の小型計算機で短時間に
処理を完了でき、しかも常に高い精度で効率良く逆解析
を行えるようにした山留め工事の施工管理システムを提
供することにある。
It is an object of the present invention to solve the above problems and to carry out mountain retaining work so that a small computer such as a personal computer can complete the processing in a short time and always perform an inverse analysis with high accuracy. To provide a management system.

【0010】[0010]

【課題を解決するための手段】前記した課題を解決する
ため、第1の発明は、山留め架構の挙動を計測してその
計測値を基にして逆解析を行って山留め壁体に作用する
背面側圧と地盤反力係数を推定し、得られた解析結果い
基づいて次段階の山留め架構の変位、応力状態を予測し
て山留め掘削工事を管理する山留め工事の施工管理シス
テムにおいて、山留め壁体の傾斜角、および前記山留め
壁体間に入れる切梁の軸力を少なくとも含む現状の山留
め架構の挙動を計測する計測装置と、前記計測装置から
入力されるこれらの計測データに基づいて山留め架構の
現状の応力状態を解析する現状解析手段と、前記現状解
析手段で得られた解析値と、推定したい前記山留め壁体
に作用する背面側圧と地盤反力係数の仮定値と、前記仮
定値に対する誤差の共分散値と、前記解析値に含まれる
雑音の共散値とを入力データとして取り込み、拡張カル
マンフィルタを所定回数繰り返して前記山留め壁体に作
用する背面側圧と地盤反力係数の推定値とその誤差の共
分散値とを解析する第1の解析手段と、前記現状解析手
段で得られた解析値と、前記第1の解析手段で解析した
前記推定値と、所定の重みを乗じた前記誤差共分散値と
を初期値として取り込んで再度拡張カルマンフィルタを
所定回数繰り返して前記山留め壁体に作用する背面側圧
と地盤反力係数の推定値とその誤差の共分散値とを解析
する第2の解析手段と、最初に設定した前記山留め壁体
に作用する背面側圧と地盤反力係数の前記仮定値と、前
記第2の解析手段で解析した前記推定値とを比較し、両
者が所定の誤差水準内で一致していないときは、前記誤
差共分散値に所定の重みを乗じて再度第2の解析手段を
実行させ、両者が所定の誤差水準内で一致したときは、
前記第2の解析手段で解析した前記推定値を最適推定値
とする判定手段と、前記判定手段で得られた前記山留め
壁体に作用する背面側圧と地盤反力係数の前記最適推定
値を少なくとも含む入力データを取り込み、弾塑性解析
して次段階の前記山留め架構の変形、応力状態を予測す
る予測解析手段と、前記現状解析手段、判定手段、予測
解析手段で得られる解析結果を出力する出力装置とを具
備したことを特徴とする。
In order to solve the above-mentioned problems, a first aspect of the present invention is to measure a behavior of a mountain retaining frame, perform an inverse analysis based on the measured value, and operate a mountain retaining wall on a back surface. In the construction management system of the mountain retaining work, which estimates the lateral pressure and the ground reaction force coefficient and predicts the displacement and stress state of the next mountain retaining frame based on the obtained analysis results to manage the mountain retaining excavation work, A measuring device that measures the behavior of the current mountain retaining frame including at least the inclination angle and the axial force of the truss to be inserted between the mountain retaining walls, and the current state of the mountain retaining frame based on these measurement data input from the measuring device. Current state analysis means for analyzing the stress state of, the analysis value obtained by the current state analysis means, the assumed value of the backside pressure and the ground reaction force coefficient acting on the mountain retaining wall to be estimated, and the error with respect to the assumed value The covariance value and the covariance value of the noise included in the analysis value are taken as input data, the extended side Kalman filter is repeated a predetermined number of times and the estimated value of the backside pressure and the ground reaction force coefficient acting on the mountain retaining wall and its error First analysis means for analyzing the covariance value of, the analysis value obtained by the current status analysis means, the estimated value analyzed by the first analysis means, and the error co-multiplied by a predetermined weight. Second analyzing means for taking the variance value as an initial value and repeating the extended Kalman filter a predetermined number of times again to analyze the backside pressure acting on the mountain retaining wall, the estimated value of the ground reaction force coefficient, and the covariance value of its error. And the initially set backside pressure acting on the mountain retaining wall and the hypothetical value of the ground reaction force coefficient, and the estimated value analyzed by the second analyzing means, and both are within a predetermined error level. Are matched by Itoki is to execute the second analysis unit again multiplied by a predetermined weight to the error covariance value, when they match within a predetermined error level,
At least the determination means that uses the estimated value analyzed by the second analysis means as the optimal estimated value, and the optimal estimated value of the backside pressure acting on the mountain retaining wall body and the ground reaction force coefficient that are obtained by the determination means. Output that outputs the analysis results obtained by the input analysis data including the input data including the prediction analysis means for predicting the deformation and stress state of the mountain retaining frame in the next step by elasto-plastic analysis And a device.

【0011】また、第2の発明は、山留め架構の挙動を
計測してその計測値を基にして逆解析を行って山留め壁
体に作用する背面側圧と地盤反力係数を推定し、得られ
た解析結果い基づいて次段階の山留め架構の変位、応力
状態を予測して山留め掘削工事を管理する山留め工事の
施工管理システムにおいて、山留め壁体の傾斜角、およ
び前記山留め壁体間に入れる切梁の軸力を少なくとも含
む現状の山留め架構の挙動を計測する計測装置と、前記
計測装置から入力されるこれらの計測データに基づいて
山留め架構の現状の応力状態を解析する現状解析手段
と、前記現状解析手段で得られた解析値と、推定したい
前記山留め壁体に作用する背面側圧と地盤反力係数の仮
定値と、前記仮定値に対する誤差の共分散値と、前記解
析値に含まれる雑音の共分散値の仮定値とを入力データ
として取り込み、拡張カルマンフィルタを所定回数繰り
返して前記山留め壁体に作用する背面側圧と地盤反力係
数の推定値とその誤差の共分散値とを解析する第1の解
析手段と、前記現状解析手段で得られた解析値と、前記
第1の解析手段で解析した前記推定値と、所定の重みを
乗じた前記誤差共分散値とを初期値として取り込んで再
度拡張カルマンフィルタを所定回数繰り返して前記山留
め壁体に作用する背面側圧と地盤反力係数の推定値とそ
の誤差の共分散値とを解析する第2の解析手段と、前記
第2の解析手段で解析した前記山留め壁体に作用する背
面側圧と地盤反力係数の推定値に対して所定の評価関数
の値を算出する評価手段と、前記評価手段で算出した前
記評価関数の値が所定の基準を満たしていないときは、
前記誤差共分値に所定の重みを乗じて再度前記第2の解
析手段を実行させ、前記評価関数の値が所定の基準を満
たしたときは、前記第2の解析手段で解析した前記推定
値を最適推定値とする判定手段と、前記判定手段で得ら
れた前記山留め壁体に作用する背面側圧と地盤反力係数
の前記最適推定値を少なくとも含む入力データを取り込
み、弾塑性解析して次段階の前記山留め架構の変形、応
力状態を予測する予測手段と、前記現状解析手段、判定
手段、予測解析手段で得られる解析結果を出力する出力
装置とを具備したことを特徴とする。
The second aspect of the invention is obtained by measuring the behavior of the earth retaining frame and performing an inverse analysis based on the measured values to estimate the back side pressure acting on the mountain retaining wall and the ground reaction force coefficient. In the construction management system of the mountain retaining work that predicts the displacement and stress state of the next mountain retaining frame based on the analysis results and manages the mountain excavation work, the inclination angle of the mountain retaining wall and the cut between the mountain retaining walls. A measuring device for measuring the current behavior of the mountain retaining frame including at least the axial force of the beam, and a current state analyzing means for analyzing the current stress state of the mountain retaining frame based on these measurement data input from the measuring device, The analysis value obtained by the present analysis means, the assumed value of the backside pressure and the ground reaction force coefficient acting on the mountain retaining wall to be estimated, the covariance value of the error with respect to the assumed value, and the noise included in the analyzed value First, the hypothetical value of the covariance value is taken as input data, and the extended Kalman filter is repeated a predetermined number of times to analyze the backside pressure acting on the mountain retaining wall, the estimated value of the ground reaction force coefficient, and the covariance value of its error. Of the analysis means, the analysis value obtained by the current status analysis means, the estimated value analyzed by the first analysis means, and the error covariance value multiplied by a predetermined weight are taken in as initial values and re-acquired. Second analysis means for repeating the extended Kalman filter a predetermined number of times to analyze the backside pressure acting on the mountain retaining wall, the estimated value of the ground reaction force coefficient, and the covariance value of the error, and the second analysis means. Evaluating means for calculating a value of a predetermined evaluation function with respect to the estimated value of the backside pressure acting on the mountain retaining wall and the ground reaction force coefficient, and the value of the evaluation function calculated by the evaluating means is a predetermined reference. Meet When no is,
When the value of the evaluation function satisfies a predetermined criterion by multiplying the error co-division value by a predetermined weight and the second analysis means is executed again, the estimated value analyzed by the second analysis means And an input value including at least the optimum estimated value of the backside pressure acting on the mountain retaining wall body obtained by the determination means and the ground reaction force coefficient obtained by the determination means, and the elasto-plastic analysis is performed next. The present invention is characterized by comprising a predicting means for predicting a deformation and a stress state of the mountain retaining frame at a stage, and an output device for outputting an analysis result obtained by the present condition analyzing means, the judging means, and the predictive analyzing means.

【0012】第1、第2の発明の山留め工事施工の管理
システムでは、第2の解析手段の繰り返し拡張カルマン
フィルタ処理によって求めた山留め壁体に作用する背面
側圧と地盤反力係数の推定値と、誤差共分散値に重みを
乗じたものとを初期値として、繰り返し拡張カルマンフ
ィルタ処理を繰り返して実行することにより、非常に安
定した推定値を得ることが可能となり、計測値の数が限
定され、また計測値に含まれる雑音成分が大きい場合で
も、さらに与えるべき初期値を狭い範囲に限定しなくて
も、高い精度で効率よく推定値を得ることができる。
In the mountain retaining work construction management system according to the first and second aspects of the present invention, the back side pressure acting on the mountain retaining wall and the estimated values of the ground reaction force coefficient obtained by the repeated extended Kalman filter process of the second analyzing means, It is possible to obtain a very stable estimated value by repeatedly executing the extended Kalman filter processing with the error covariance value multiplied by the weight as the initial value, and the number of measurement values is limited. Even if the noise component included in the measured value is large, the estimated value can be efficiently obtained with high accuracy without limiting the initial value to be given to a narrow range.

【0013】そして、繰り返し拡張カルマンフィルタ処
理を基本とした逆解析であるから、処理はデータを逐次
入力しながらのシーケンシャル処理となり、変動に対す
る高い追従性が得られ、かつ計算時間が短くてすみ、計
算規模も小さい。従って、山留め掘削工事の現場で、パ
ーソナルコンピュータ等の小型計算機に山留め架構の計
測値を入力して素早く逆解析を行うことができ、この解
析結果に基づいて次段階の山留め架構の変形、応力状態
を精度よく予測することができる。また、小型計算機で
十分であるため、コスト的にも有利である。
Since it is the inverse analysis based on the iterative extended Kalman filter processing, the processing is a sequential processing while successively inputting data, high followability to fluctuations is obtained, and the calculation time is short, The scale is also small. Therefore, at the site of excavation work for earth retaining works, it is possible to input the measured values of the earth retaining structure to a small computer such as a personal computer and quickly carry out an inverse analysis. Can be accurately predicted. Further, a small computer is sufficient, which is advantageous in terms of cost.

【0014】[0014]

【実施例】次に本発明の第1の実施例について図面を参
照して詳しく説明する。図1は、第1の発明に係る山留
め工事の施工管理システムの概略構成を示す機能ブロッ
ク図である。このシステムは山留め掘削工事を管理する
ためのものであり、キーボードなどの入力装置1、現状
解析部2、逆解析部4、予測解析部6を有する解析装置
8、およびCRTディスプレイなどの表示装置10から
成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing a schematic configuration of a construction management system for mountain retaining work according to the first invention. This system is for managing a mountain excavation work, and includes an input device 1 such as a keyboard, an analysis device 8 having a current state analysis unit 2, an inverse analysis unit 4, a prediction analysis unit 6, and a display device 10 such as a CRT display. Consists of.

【0015】現状解析部2は、カーブフィッティング手
段22と、スムージング処理手段24と、現状解析値算
出手段26とによって構成されている。逆解析部4は第
1の繰り返し拡張カルマンフィルタ処理手段42(以
下、第1の処理手段という)と、重みづけ手段44と、
第2の繰り返し拡張カルマンフィルタ処理手段45(以
下、第2の処理手段という)と、収束判定手段46と、
確認値算出手段49とによって構成されている。そし
て、予測解析部6は、山留め弾塑性解析手段62によっ
て構成されている。
The current state analysis section 2 is composed of a curve fitting means 22, a smoothing processing means 24, and a current state analysis value calculation means 26. The inverse analysis unit 4 includes first iterative extended Kalman filter processing means 42 (hereinafter referred to as first processing means), weighting means 44, and
Second iterative extended Kalman filter processing means 45 (hereinafter referred to as second processing means), convergence determination means 46,
It is constituted by the confirmation value calculation means 49. The prediction analysis unit 6 is composed of the mountain retaining elasto-plasticity analysis means 62.

【0016】現状解析部2、逆解析部4、予測解析部6
は、パーソナル・コンピュータ(パソコン)などの計算
機を構成する解析装置8内に、ハードウエアあるいはソ
フトウエアとして設けられている。
Current state analysis section 2, inverse analysis section 4, prediction analysis section 6
Is provided as hardware or software in the analysis device 8 which constitutes a computer such as a personal computer (personal computer).

【0017】ここで山留め掘削工事において形成される
山留め架構について、その断面を模式的に示す図2を参
照して説明する。図2において、102は地表であり、
108が掘削面である。掘削面108の両側には山留め
壁体(以下、壁体という)104a,104bが打ち込
まれ、土石などが崩れることを防止している。両壁体1
04a,104bの間には切梁106が渡され、土圧に
抗するかたちで壁体106を補強している。壁体104
a,104bは、鋼矢板を用いたり、あるいはRC連続
地中壁によって形成する。山留め掘削工事は、まず壁体
104a,104bを地中に打ち込むことから始まり、
その後、壁体間において掘削を進める。そして掘削の進
行に伴って、切梁106を浅い方から順次適切な間隔で
架設していく。
The mountain retaining frame formed in the mountain excavating work will be described with reference to FIG. 2 which schematically shows a cross section thereof. In FIG. 2, 102 is the ground surface,
108 is an excavation surface. Mountain retaining wall bodies (hereinafter referred to as wall bodies) 104a and 104b are driven into both sides of the excavation surface 108 to prevent debris and the like from collapsing. Both walls 1
A crossbeam 106 is passed between 04a and 104b to reinforce the wall body 106 against earth pressure. Wall 104
A and 104b are made of steel sheet pile or formed by RC continuous underground wall. The excavation work for mountain retaining begins with driving the walls 104a and 104b into the ground.
After that, excavation proceeds between the walls. Then, as the excavation progresses, the girders 106 are sequentially installed from the shallow one at appropriate intervals.

【0018】本実施例の山留め工事の施工管理システム
は、壁体104a,104bの傾斜角および切梁106
の軸力を入力計測値として入力装置1から入力する。壁
体104a,104bの傾斜角の計測は、傾斜計110
a,110bを用い、壁体に沿って深さ方向で例えば1
〜2mの間隔でその傾斜を計測する。また、切梁の軸力
の計測は、各切梁106で測定器112を用いて計測す
る。尚、傾斜計110a,110bは、壁体104a,
104b内に複数設置されている。
The construction management system for the earth retaining work according to the present embodiment has the inclination angles of the walls 104a and 104b and the girder 106.
Is input from the input device 1 as an input measurement value. The inclinometer 110 measures the inclination angle of the wall bodies 104a and 104b.
a, 110b, along the wall in the depth direction, for example, 1
The inclination is measured at intervals of ~ 2m. Further, the axial force of the cutting beam is measured by using the measuring device 112 for each cutting beam 106. The inclinometers 110a and 110b are the wall bodies 104a,
Plural are installed in 104b.

【0019】カーブフィッティング手段22は、地表1
02からの深さの関数である傾斜角および軸力の計測値
を入力装置1から取り込むと、それぞれに対して3次の
スプライン関数を用いたカーブフィッティングを行う。
スムージング手段24はこのカーブフィッティングの結
果に対してさらに、ハニングのウインドウを用いてスム
ージングを行う。このようなカーブフィッティングおよ
びスムージングによって、計測データにバラツキがあっ
たり雑音が含まれている場合でも、その影響を緩和する
ことができる。また、計測データ数が少ない場合でも補
間してデータ数を増やすことができる。そのため、山留
め架構の現状解析のためのデータとして適切なデータが
得られ、さらに後に行う逆解析において良好な結果が得
られる。
The curve fitting means 22 is provided on the ground surface 1.
When the measured values of the tilt angle and the axial force, which are functions of the depth from 02, are taken in from the input device 1, curve fitting using a cubic spline function is performed for each.
The smoothing means 24 further smooths the result of this curve fitting using the Hanning window. By such curve fitting and smoothing, even if the measurement data includes variations or noise, its influence can be mitigated. Further, even if the number of measurement data is small, the number of data can be increased by interpolation. Therefore, appropriate data can be obtained as the data for the current analysis of the mountain retaining frame, and a good result can be obtained in the inverse analysis performed later.

【0020】現状解析値算出手段26には、壁体104
a,104bの材質、壁体104a,104bの厚さ、
ならびに掘削面108の深さを含むデータが、現状解析
に必要な基礎データとして与えられる。現状解析値算出
手段26はこれらのデータと、スムージング手段24か
ら受け取った壁体104a,104bの傾斜角データお
よび切梁106の軸力データとを用い、既知の数学的手
法によって壁体104a,104bの変位、曲げモーメ
ント、ならびに曲げ剛性を求める。例えば、壁体104
a,104bの変位は、壁体104a,104bの傾斜
角を関数積分することによって求める。また、壁体10
4a,104bの曲げモーメントは、壁体の曲げ剛性の
仮定のもとに、壁体104a,104bの傾斜角を関数
微分することによって求める。
The present analysis value calculation means 26 includes a wall 104.
a, 104b material, wall 104a, 104b thickness,
In addition, data including the depth of the excavated surface 108 is provided as basic data necessary for the current state analysis. The current state analysis value calculation means 26 uses these data, the inclination angle data of the walls 104a and 104b received from the smoothing means 24, and the axial force data of the truss 106, and the wall bodies 104a and 104b by a known mathematical method. Calculate the displacement, bending moment, and bending rigidity. For example, the wall 104
The displacements of a and 104b are obtained by function integration of the inclination angles of the wall bodies 104a and 104b. Also, the wall 10
The bending moments of 4a and 104b are obtained by functionally differentiating the inclination angles of the walls 104a and 104b under the assumption of the bending rigidity of the walls.

【0021】現状解析値算出手段26は、このようにし
て取得した物理量を、壁体104a,104bの傾斜角
データおよび切梁の軸力データと共に、山留め架構の現
状解析のためのデータとして出力し、CRTディスプレ
イなどの表示装置10に所定の形式で表示させる。山留
め工事の施工者はその表示によって山留め工事の現状を
認識し、工事の効率的な実施および安全の確保に役立て
ることができる。
The present state analysis value calculation means 26 outputs the physical quantity thus obtained together with the inclination angle data of the wall bodies 104a and 104b and the axial force data of the truss as data for the present state analysis of the mountain retaining frame. , CRT display or the like to display in a predetermined format. The display of the mountain retaining work enables the builder to recognize the current state of the mountain retaining work, and can be useful for efficient implementation of work and ensuring safety.

【0022】また、現状解析値算出手段26は同時に、
求めた壁体104a,104bの変位、曲げ剛性、なら
びに曲げモーメントと、切梁106の軸力の各データと
を逆解析部4に出力する。
At the same time, the current state analysis value calculating means 26
The calculated displacements, bending stiffnesses, and bending moments of the wall bodies 104a and 104b, and each data of the axial force of the cutting beam 106 are output to the inverse analysis unit 4.

【0023】逆解析部4では、第1の繰り返し拡張カル
マンフィルタ処理手段42がまず、現状解析値算出手段
26からの壁体104a,104bの変位、曲げ剛性、
ならびに曲げモーメントと、切梁106の軸力の各デー
タとを、状態を推定すべきシステムの計測値として受け
取る。第1の処理手段42には、これらの計測値の他
に、壁体104a,104bの背面側圧の設計値が計測
値として入力され、さらに山留め架構の構造寸法、切梁
ばね定数、切梁位置の先行変位、切梁の先行荷重、なら
びに壁体両端の境界条件などのデータが逆解析に必要な
基礎データとして入力される。これらの逆解析に必要な
データは入力装置1を介して入力される。
In the inverse analysis unit 4, the first iterative extended Kalman filter processing means 42 firstly displaces the wall bodies 104a and 104b from the current analysis value calculation means 26, bends rigidity,
In addition, the bending moment and each data of the axial force of the girder 106 are received as the measured values of the system whose state is to be estimated. In addition to these measured values, the design values of the backside pressures of the walls 104a and 104b are input to the first processing means 42 as measured values, and further, the structural dimensions of the mountain retaining frame, the cut beam spring constant, and the cut beam position. The data such as the pre-displacement, the pre-load of the beam, and the boundary conditions at both ends of the wall are input as the basic data required for the inverse analysis. Data necessary for these inverse analyzes are input via the input device 1.

【0024】そして、第1のフィルタ処理手段42は、
図3に模式的に示すように、壁体104a,104bの
背面に加わる圧力、すなわち背面側圧aの、深さ方向の
分布Aと、地盤反力係数Bの同じく深さ方向の分布を繰
り返し拡張カルマンフィルタ処理、すなわち拡張カルマ
ンフィルタにローカル・イテレーションを組み込んだ処
理によって推定する。この拡張カルマンフィルタによる
解析は、例えば“ Jazwinski,A. H. :Stochastic proce
sses and filtering theory, Academic Press,1970.”
によって行うことができる。拡張カルマンフィルタによ
る解析では、背面側圧aおよび地盤反力係数Bの推定値
の初期値と、それらの誤差の共分散値と、計測値である
山留め壁体104a,104bの変位、および切梁10
6の軸力に含まれる雑音の共分散値の初期値とを取り込
み、第1の処理手段42は、これらの初期値および上記
計測値を用いて繰り返し拡張カルマンフィルタ処理を行
って、背面側圧aおよび地盤反力係数Bの最適推定値
と、それらの誤差の共分散値とを求める。なお、上記初
期値の具体的数値として、本例では、背面側圧aおよび
地盤反力Bには仮定値(設計値)を用い、誤差共分散値
は30%、雑音の共分散値は50%とする。
Then, the first filter processing means 42 is
As schematically shown in FIG. 3, the depth direction distribution A of the pressure applied to the back surface of the wall bodies 104a and 104b, that is, the back surface side pressure a, and the ground reaction force coefficient B distribution in the same depth direction are repeatedly expanded. The estimation is performed by the Kalman filter processing, that is, the processing in which the local iteration is incorporated in the extended Kalman filter. Analysis by this extended Kalman filter can be performed using, for example, “Jazwinski, AH: Stochastic proce
sses and filtering theory, Academic Press, 1970. ”
Can be done by In the analysis using the extended Kalman filter, the initial values of the back side pressure a and the estimated value of the ground reaction force coefficient B, the covariance values of those errors, the displacements of the mountain retaining wall bodies 104a and 104b, which are the measured values, and the girder 10
The initial value of the covariance value of the noise included in the axial force of 6 is taken in, and the first processing means 42 repeatedly performs extended Kalman filter processing using these initial value and the measured value, and the back side pressure a and The optimum estimated value of the ground reaction force coefficient B and the covariance value of those errors are obtained. As specific values of the initial values, in this example, assumed values (design values) are used for the back side pressure a and the ground reaction force B, the error covariance value is 30%, and the noise covariance value is 50%. And

【0025】第1の処理手段42は次式にもとづいて解
析処理を実行する。
The first processing means 42 executes the analysis processing based on the following equation.

【0026】[0026]

【数1】 [Equation 1]

【0027】また、各変換行列は次式によって表され
る。
Further, each conversion matrix is represented by the following equation.

【0028】[0028]

【数2】 [Equation 2]

【0029】重みづけ手段44は、第1の処理手段42
の拡張カルマンフィルタによる解析によって得られた背
面側圧aおよび地盤反力係数Bの推定値および誤差共分
散値を第1の処理手段42から受け取り、この推定値と
所定の重みを乗じた誤差共分散値とを第2の処理手段4
5に出力する。
The weighting means 44 is the first processing means 42.
The estimated value and the error covariance value of the back side pressure a and the ground reaction force coefficient B obtained by the analysis by the extended Kalman filter are received from the first processing means 42, and the estimated value and the error covariance value are multiplied by a predetermined weight. And the second processing means 4
5 is output.

【0030】第2の処理手段45も、第1の処理手段4
2と同様に繰り返し拡張カルマンフィルタ処理を行う。
第2の処理手段45は、上記した計測データと、第1の
処理手段42で得られた背面側圧aおよび地盤反力係数
Bの推定値と、所定の重みを乗じた誤差共分数値を取り
込んで、繰り返し拡張カルマンフィルタ処理を行って、
背面側圧aおよび地盤反力係数Bの推定値と、それらの
誤差の共分散値とを算出し、収束判定手段46に出力す
る。なお、重みづけ手段44と第2の処理手段45とが
本発明の第2のフィルタ処理ステップにおける処理を実
施している。
The second processing means 45 is also the first processing means 4
The extended Kalman filter process is repeated as in the case of 2.
The second processing means 45 takes in the measurement data described above, the estimated values of the backside pressure a and the ground reaction force coefficient B obtained by the first processing means 42, and the error co-fractional value obtained by multiplying a predetermined weight. Then, iteratively extended Kalman filtering is performed,
The estimated values of the back surface side pressure a and the ground reaction force coefficient B and the covariance values of those errors are calculated and output to the convergence determination means 46. The weighting means 44 and the second processing means 45 carry out the processing in the second filter processing step of the present invention.

【0031】 収束判定手段46は、
第2の処理手段45で得られた推定値(背面側圧aと地
盤反力係数B)と、第1の処理手段42で得られた推定
値(背面側圧aと地盤反力係数B)とを比較する。そし
て、その比較により一定水準の許容誤差の範囲内で一致
していない場合には、グローバル・イテレーションとし
て再び繰り返し拡張カルマンフィルタ処理を行うため、
重みづけ手段44で再度誤差共分散値に対して所定の重
みづけを行う。そして、第2の処理手段45は、前記同
様に繰り返し拡張カルマンフィルタ処理を再び実行し、
結果を収束判定手段46に出力する。
The convergence determination means 46 is
The estimated value (back side pressure a and ground reaction force coefficient B) obtained by the second processing means 45 and the estimated value (back side pressure a and ground reaction force coefficient B) obtained by the first processing means 42 are Compare. Then, if the comparison does not match within a certain level of the allowable error range, the extended Kalman filter process is repeatedly performed as a global iteration.
The weighting means 44 again weights the error covariance values in a predetermined manner. Then, the second processing means 45 repeatedly executes the extended Kalman filter processing again as described above,
The result is output to the convergence determination means 46.

【0032】収束判定手段46は、再び、第2の処理手
段45で得られた推定値(背面側圧aと地盤反力係数
B)と、第1の処理手段42で得られた推定値(背面側
圧aと地盤反力係数Bと)とを比較して、両者が一定水
準の許容誤差の範囲内で一致していない場合には、前記
両者が一定水準の許容誤差の範囲内で一致するまで同様
の処理を実行する。そして、第1の処理手段42と第2
の処理手段45で得られたそれぞれの推定値が、一定水
準の許容誤差の範囲で一致している場合には、第2の処
理手段45で得られた推定値は収束したとして、第2の
処理手段45で得られた背面側圧aと地盤反力係数Bの
推定値を最適推定値として出力され、CRTディスプレ
イなどの表示装置10に表示し、同時に確認値算出手段
49にも出力する。図5は、第2の処理手段45で得ら
れた未知パラメータである背面側圧aと地盤反力係数B
の推定値(点線)と実測値(実線)とを示す図であり、
本発明に係る繰り返し拡張カルマンフィルタを用いれ
ば、数回(例えば4回以上)の繰り返しにより、推定値
(背面側圧aと地盤反力係数B背面)は実測値に非常に
近い値を得ることができた。
The convergence determining means 46 again calculates the estimated values (rear surface side pressure a and ground reaction force coefficient B) obtained by the second processing means 45 and the estimated values (rear surface) by the first processing means 42. Lateral pressure a and ground reaction force coefficient B) are compared, and if the two do not match within a certain level of allowable error, until the two match within a certain level of allowable error. Perform similar processing. Then, the first processing means 42 and the second
When the respective estimated values obtained by the processing means 45 of No. 2 match with each other within a certain level of the allowable error range, it is considered that the estimated values obtained by the second processing means 45 have converged. The estimated values of the back surface side pressure a and the ground reaction force coefficient B obtained by the processing means 45 are output as optimum estimated values, displayed on the display device 10 such as a CRT display, and at the same time output to the confirmation value calculation means 49. FIG. 5 shows the back side pressure a and the ground reaction force coefficient B which are unknown parameters obtained by the second processing means 45.
It is a figure showing an estimated value (dotted line) and an actual measurement value (solid line) of
If the iterative extended Kalman filter according to the present invention is used, the estimated values (rear surface side pressure a and ground reaction force coefficient B rear surface) can be obtained very close to the measured values by repeating several times (for example, four times or more). It was

【0033】確認値算出手段49は、これらの推定結果
を受け取ると、それをもとに既知の数学的手法を用いて
壁体104a,104bの変位、曲げモーメント、なら
びに切梁106の軸力を算出し、確認値として出力して
表示装置10に表示する。このシステムのオペレータは
これらの確認値を見て推定結果の妥当性を判断する。
Upon receipt of these estimation results, the confirmation value calculating means 49 uses the known mathematical method based on the estimation results to calculate the displacements of the walls 104a and 104b, the bending moments, and the axial force of the cutting beam 106. The calculated value is output as a confirmation value and displayed on the display device 10. The operator of this system judges the validity of the estimation result by looking at these confirmation values.

【0034】そして、予測解析部6の山留め弾塑性解析
手段62は、逆解析部4の収束判定手段46から受け取
った背面側圧aおよび地盤反力係数Bの推定結果と、山
留め壁体104a,104bの曲げ剛性、変位、曲げモ
ーメントや切梁106のばね定数、切梁の先行荷重、切
梁位置の壁体先行変位の各データを取り込んで、既知の
数学的手法によって弾塑性解析して、次期施工段階の壁
体104a,104bの変位および曲げモーメント、切
梁の軸力、ならびに塑性域等のデータを算出し、また山
留め架構解体時の山留め挙動としてこれらのデータを求
めて出力し、表示装置10に表示する。山留め工事の施
工者はその表示を見ることによって今後の工事の安全性
を予測して工事を安全に合理的に進めることができる。
図6は、予測解析部6で得られた次期施工段階における
山留め壁体104a,104bの変位と曲げモーメント
の予測値(実線)と実測値(○印)とを示す図であり、
実測値に非常によく対応した予測値を得ることができ
た。
Then, the mountain retaining elasto-plastic analyzing means 62 of the prediction analyzing section 6 estimates the back side pressure a and the ground reaction force coefficient B received from the convergence determining means 46 of the inverse analyzing section 4, and the mountain retaining wall bodies 104a and 104b. Bending rigidity, displacement, bending moment, spring constant of the cutting beam 106, preceding load of the cutting beam, and pre-displacement of the wall at the cutting beam position are acquired, and elasto-plastic analysis is performed by a known mathematical method, and the next period is calculated. Display device for calculating data such as displacement and bending moment of wall bodies 104a and 104b at the construction stage, axial force of beam and plastic region, and obtaining and outputting these data as mountain retaining behavior at the time of disassembling mountain retaining frame Display on 10. By looking at the display, the builder of the mountain retaining work can predict the safety of the future work and proceed with the work safely and rationally.
FIG. 6 is a diagram showing the displacements of the mountain retaining wall bodies 104a and 104b and the predicted values (solid lines) and the measured values (circle marks) of the bending retaining walls 104a and 104b in the next construction stage, which are obtained by the predictive analysis unit 6.
It was possible to obtain a predicted value that corresponds very well to the measured value.

【0035】次に本発明の第2の実施例について説明す
る。図4は、第2の発明に係る逆解析方法を適用した山
留め情報化施工管理システムの概略構成を示す機能ブロ
ック図である。なお、図1に示した実施例と同一部分に
は同一符号を付して、その説明は省略する。本実施例で
は、逆解析部5は、第1の処理手段42、重みづけ手段
44、第2の処理手段45、評価関数計算手段47、収
束判定手段48で構成されている。従って、ここでは評
価関数計算手段47と収束判定手段48およびそれに関
連する部分についてのみ説明し、その他の部分について
は説明を省略する。本実施例は、第2の処理手段45ま
での解析処理は、図1に示した第1の実施例と同様であ
る。
Next, a second embodiment of the present invention will be described. FIG. 4 is a functional block diagram showing a schematic configuration of a mountain retaining information computerized construction management system to which an inverse analysis method according to the second invention is applied. The same parts as those in the embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In this embodiment, the inverse analysis unit 5 is composed of a first processing means 42, a weighting means 44, a second processing means 45, an evaluation function calculation means 47, and a convergence determination means 48. Therefore, here, only the evaluation function calculation means 47, the convergence determination means 48, and the parts related thereto will be described, and the description of the other parts will be omitted. In this embodiment, the analysis processing up to the second processing means 45 is the same as that of the first embodiment shown in FIG.

【0036】評価関数計算手段47は、第2の処理手段
45から図3に示した背面側圧aおよび地盤反力係数B
の推定値および誤差共分散値を第2の処理手段45から
受け取ると、背面側圧aおよび地盤反力係数Bの推定値
を用い、次式によって表される評価関数の値を算出し
て、その結果を推定値および誤差共分散値と共に収束判
定部48に出力する。この評価関数の値は、前記計測値
と推定値の差の正規化2乗平均の関数である。
The evaluation function calculating means 47 includes the back side pressure a and the ground reaction force coefficient B shown in FIG. 3 from the second processing means 45.
When the estimated value and the error covariance value are received from the second processing means 45, the estimated value of the back side pressure a and the ground reaction force coefficient B is used to calculate the value of the evaluation function represented by the following equation, The result is output to the convergence determination unit 48 together with the estimated value and the error covariance value. The value of this evaluation function is a function of the normalized mean square of the difference between the measured value and the estimated value.

【0037】[0037]

【数3】 (Equation 3)

【0038】収束判定手段48は、評価関数の値を評価
関数計算手段47から受け取ると、それが最小値である
か否かを判定し、最小値でない場合には、グローバル・
イテレーションを行うため、重みづけ手段44で再度誤
差共散値に対して所定の重みづけを行う。
Upon receiving the value of the evaluation function from the evaluation function calculation means 47, the convergence judgment means 48 judges whether or not it is the minimum value.
In order to perform the iteration, the weighting means 44 again weights the error covariance value with a predetermined weight.

【0039】そして、第2の処理手段45は、前記同様
に繰り返し拡張カルマンフィルタ処理を再び実行し、結
果を評価関数計算手段47に出力する。
Then, the second processing means 45 repeatedly executes the extended Kalman filter processing in the same manner as described above, and outputs the result to the evaluation function calculation means 47.

【0040】評価関数計算手段47はここで再び評価関
数の値を算出し、その結果を推定値および誤差共分散値
と共に収束判定部48に出力する。そして、収束判定部
48は、この評価関数の値を受け取ると、それが最小値
であるか否かを判定し、最小値でない場合には、再度、
重みづけ手段445に指示して重みづけを行わせ、一
方、最小値であった場合には、その推定結果は収束した
として、評価関数計算手段47で得られた背面側圧aと
地盤反力係数Bの推定値を最適推定値として出力され、
表示装置10に表示し、同時に確認値算出手段49にも
出力する。以下の処理は、図1に示した実施例と同様で
ある。
The evaluation function calculation means 47 again calculates the value of the evaluation function, and outputs the result to the convergence determination unit 48 together with the estimated value and the error covariance value. Then, when the convergence determination unit 48 receives the value of this evaluation function, the convergence determination unit 48 determines whether or not it is the minimum value.
When the weighting means 445 is instructed to perform weighting, and when the value is the minimum value, it is considered that the estimation result has converged, and the back surface side pressure a and the ground reaction force coefficient obtained by the evaluation function calculating means 47 are obtained. The estimated value of B is output as the optimal estimated value,
It is displayed on the display device 10 and is also output to the confirmation value calculation means 49 at the same time. The subsequent processing is similar to that of the embodiment shown in FIG.

【0041】本実施例では、このように評価関数を用い
て推定結果が収束したか否かを判定するので、上記図1
に示した第1の実施例では収束しないような場合にも、
推定結果を収束させることができ、真の値に近い推定値
を得ることができる。尚、前記各実施例は、山留め掘削
工事の場合であったが、これ以外にも例えば軟弱地盤上
の盛土工事等にも適用可能である。
In this embodiment, since it is determined whether or not the estimation result has converged by using the evaluation function as described above, the above-mentioned FIG.
Even if the first embodiment shown in FIG.
The estimation result can be converged, and the estimated value close to the true value can be obtained. Although each of the above-described embodiments was applied to excavation work for mountain retaining, it is also applicable to embankment work on soft ground, for example.

【0042】[0042]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明に係る山留め工事施工管理システムで
は、第2の解析手段の繰り返し拡張カルマンフィルタ処
理によって求めた山留め壁体に作用する背面側圧と地盤
反力係数の推定値と、誤差共分散値に重みを乗じたもの
とを初期値として繰り返し拡張カルマンフィルタ処理を
繰り返して実行することにより、非常に安定した推定値
を得ることが可能となり、計測値の数が限定され、また
計測値に含まれる雑音成分が大きい場合でも、さらに与
えるべき初期値を狭い範囲に限定しなくても、高い精度
で効率よく推定値を得ることができる。
As described above in detail based on the embodiments, the mountain retaining work construction management system according to the present invention acts on the mountain retaining wall body obtained by the repeated extended Kalman filter process of the second analyzing means. It is possible to obtain a very stable estimated value by repeatedly executing extended Kalman filtering with the estimated values of the backside pressure and the ground reaction force coefficient and the error covariance value multiplied by the weight as initial values. Therefore, even if the number of measured values is limited and the noise component included in the measured values is large, the estimated value can be efficiently obtained with high accuracy without limiting the initial value to be given to a narrow range. .

【0043】そして、繰り返し拡張カルマンフィルタ処
理を基本とした逆解析であるから、処理はデータを逐次
入力しながらのシーケンシャル処理となり、変動に対す
る高い追従性が得られ、かつ計算時間が短くてすみ、計
算規模も小さい。従って、山留め工事の現場で、パーソ
ナルコンピュータ等の小型計算機に山留め架構の計測値
を入力して素早く逆解析を行うことができ、この解析結
果に基づいて次段階の山留め架構の変形、応力状態を精
度よく予測することができるので、山留め工事を安定に
合理的に進めることができる。
Since the inverse analysis is based on the iterative extended Kalman filter process, the process is a sequential process while sequentially inputting data, high followability for fluctuations is obtained, and the calculation time is short, The scale is also small. Therefore, it is possible to input the measured values of the mountain retaining frame to a small computer such as a personal computer at the site of the mountain retaining structure and quickly perform an inverse analysis.Based on this analysis result, the deformation and stress state of the mountain retaining frame at the next stage can be calculated. Since it is possible to accurately predict, it is possible to carry out the mountain retaining work stably and rationally.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明に係る山留め工事の施工管理システ
ムの一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of a construction management system for mountain retaining work according to a first invention.

【図2】山留め架構を説明するための断面図である。FIG. 2 is a cross-sectional view for explaining a mountain retaining frame.

【図3】図2の山留め架構において推定すべき物理量を
説明するための模式断面図である。
FIG. 3 is a schematic cross-sectional view for explaining a physical quantity to be estimated in the mountain retaining frame of FIG.

【図4】第2の発明に係る山留め工事の施工管理システ
ムの一例を示すブロック図である。
FIG. 4 is a block diagram showing an example of a construction management system for mountain retaining work according to a second invention.

【図5】本発明に係る山留め工事の施工管理システムで
得られた背面側圧と地盤反力係数の推定値と実測値との
比較を示す図である。
FIG. 5 is a diagram showing a comparison between an estimated value and an actually measured value of the backside pressure and the ground reaction force coefficient obtained by the construction management system for mountain retaining work according to the present invention.

【図6】本発明に係る山留め工事の施工管理システムで
得られた山留め壁体の変位と曲げモーメントの予測値と
実測値との比較を示す図である。
FIG. 6 is a diagram showing a comparison between the predicted value and the measured value of the displacement and bending moment of the mountain retaining wall body obtained by the construction management system for mountain retaining work according to the present invention.

【符号の説明】[Explanation of symbols]

1 入力装置 2 現状解析部 4、5 逆解析部 6 予測解析部 8 解析装置 10 表示装置 22 カーブフィッティング手段 24 スムージング手段 26 現状解析値算出手段 42 第1の繰り返し拡張カルマンフィルタ処理手段 44 重みづけ手段 45 第2の繰り返し拡張カルマンフィルタ処理手段 46、48 収束判定手段 47 評価関数計算手段 49 確認値算出手段 62 山留め弾塑性解析手段 102 地表 104 壁体 106 切梁 108 掘削面 DESCRIPTION OF SYMBOLS 1 Input device 2 Current condition analysis part 4, 5 Inverse analysis part 6 Prediction analysis part 8 Analysis device 10 Display device 22 Curve fitting means 24 Smoothing means 26 Current condition analysis value calculation means 42 First iterative extended Kalman filter processing means 44 Weighting means 45 Second iterative extended Kalman filter processing means 46, 48 Convergence determination means 47 Evaluation function calculation means 49 Confirmation value calculation means 62 Earth retaining elasto-plastic analysis means 102 Ground surface 104 Wall body 106 Cutting beam 108 Excavation surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 山留め架構の挙動を計測してその計測値
を基にして逆解析を行って山留め壁体に作用する背面側
圧と地盤反力係数を推定し、得られた解析結果に基づい
て次段階の山留め架構の変位、応力状態を予測して山留
め掘削工事を管理する山留め工事の施工管理システムに
おいて、 山留め壁体の傾斜角、および前記山留め壁体間に入れる
切梁の軸力を少なくとも含む現状の山留め架構の挙動を
計測する計測装置と、 前記計測装置から入力されるこれらの計測データに基づ
いて山留め架構の現状の応力状態を解析する現状解析手
段と、 前記現状解析手段で得られた解析値と、推定したい前記
山留め壁体に作用する背面側圧と地盤反力係数の仮定値
と、 前記仮定値に対する誤差の共分散値と、前記解析値に含
まれる雑音の共分散値を入力データとして取り込み、拡
張カルマンフィルタを所定回数繰り返して前記山留め壁
体に作用する背面側圧と地盤反力係数の推定値とその誤
差の共分散値とを解析する第1の解析手段と、 前記現状解析手段で得られた解析値と、前記第1の解析
手段で解析した前記推定値と、所定の重みを乗じた前記
誤差共分散値とを初期値として取り込んで再度拡張カル
マンフィルタを所定回数繰り返して前記山留め壁体に作
用する背面側圧と地盤反力係数の推定値とその誤差の共
分散値とを解析する第2の解析手段と、 最初に設定した前記山留め壁体に作用する背面側圧と地
盤反力係数の前記仮定値と、前記第2の解析手段で解析
した前記推定値とを比較し、両者が所定の誤差水準内で
一致していないときは、前記誤差共分散値に所定の重み
を乗じて再度第2の解析手段を実行させ、両者が所定の
誤差水準内で一致したときは、前記第2の解析手段で解
析した前記推定値を最適推定値とする判定手段と、 前記判定手段で得られた前記山留め壁体に作用する背面
側圧と地盤反力係数の前記最適推定値を少なくとも含む
入力データを取り込み、弾塑性解析して次段階の前記山
留め架構の変形、応力状態を予測する予測解析手段と、 前記現状解析手段、判定手段、予測解析手段で得られる
解析結果を出力する出力装置と、 を具備したことを特徴とする山留め工事の施工管理シス
テム。
1. The behavior of a mountain retaining frame is measured, and an inverse analysis is performed based on the measured value to estimate the backside pressure acting on the mountain retaining wall and the ground reaction force coefficient, and based on the obtained analysis results. In the construction management system of the mountain retaining work that predicts the displacement and stress state of the mountain retaining frame at the next stage and manages the mountain retaining excavation work, at least the inclination angle of the mountain retaining wall and the axial force of the girder to be inserted between the mountain retaining walls should be at least A measuring device for measuring the behavior of the current mountain retaining frame, including a current state analyzing means for analyzing the current stress state of the mountain retaining frame based on these measurement data input from the measuring device, and the current state analyzing means. Analysis value, hypothetical value of backside pressure acting on the retaining wall and the ground reaction force coefficient to be estimated, covariance value of error with respect to the hypothetical value, and covariance value of noise included in the analysis value are input. First analyzing means for analyzing the back side pressure acting on the mountain retaining wall and the estimated value of the ground reaction force coefficient and the covariance value of the error by repeating the extended Kalman filter a predetermined number of times, and the present condition analysis. The analysis value obtained by the means, the estimated value analyzed by the first analysis means, and the error covariance value multiplied by a predetermined weight are taken in as initial values, and the extended Kalman filter is repeated a predetermined number of times to repeat the above. Second analysis means for analyzing the back side pressure acting on the mountain retaining wall body, the estimated value of the ground reaction force coefficient and the covariance value of the error thereof, and the back side pressure acting on the mountain retaining wall body set first and the ground reaction The assumed value of the force coefficient is compared with the estimated value analyzed by the second analyzing means, and when the two do not match within a predetermined error level, a predetermined weight is given to the error covariance value. Multiply again When the two are matched within a predetermined error level, the determination means that makes the estimated value analyzed by the second analysis means an optimum estimated value, and the determination means obtained by the determination means The input data including at least the optimum estimated value of the back side pressure acting on the mountain retaining wall and the ground reaction force coefficient is taken in, and the deformation of the mountain retaining frame in the next stage by elasto-plastic analysis, a prediction analysis means for predicting a stress state, A construction management system for mountain retaining work, comprising: an output device that outputs the analysis results obtained by the current state analysis means, the determination means, and the prediction analysis means.
【請求項2】 山留め架構の挙動を計測してその計測値
を基にして逆解析を行って山留め壁体に作用する背面側
圧と地盤反力係数を推定し、得られた解析結果い基づい
て次段階の山留め架構の変位、応力状態を予測して山留
め掘削工事を管理する山留め工事の施工管理システムに
おいて、 山留め壁体の傾斜角、および前記山留め壁体間に入れる
切梁の軸力を少なくとも含む現状の山留め架構の挙動を
計測する計測装置と、 前記計測装置から入力されるこれらの計測データに基づ
いて山留め架構の現状の応力状態を解析する現状解析手
段と、 前記現状解析手段で得られた解析値と、推定したい前記
山留め壁体に作用する背面側圧と地盤反力係数の仮定値
と、 前記仮定値に対する誤差の共分散値と、前記解析値に含
まれる雑音の共分散値を入力データとして取り込み、拡
張カルマンフィルタを所定回数繰り返して前記山留め壁
体に作用する背面側圧と地盤反力係数の推定値とその誤
差の共分散値とを解析する第1の解析手段と、 前記現状解析手段で得られた解析値と、前記第1の解析
手段で解析した前記推定値と、所定の重みを乗じた前記
誤差共分散値とを初期値として取り込んで再度拡張カル
マンフィルタを所定回数繰り返して前記山留め壁体に作
用する背面側圧と地盤反力係数の推定値とその誤差の共
分散値とを解析する第2の解析手段と、 前記第2の解析手段で解析した前記山留め壁体に作用す
る背面側圧と地盤反力係数の推定値に対して所定の評価
関数の値を算出する評価手段と、 前記評価手段で算出した前記評価関数の値が所定の基準
を満たしていないときは、前記誤差共分値に所定の重み
を乗じて再度前記第2の解析手段を実行させ、前記評価
関数の値が所定の基準を満たしたときは、前記第2の解
析手段で解析した前記推定値を最適推定値とする判定手
段と、 前記判定手段で得られた前記山留め壁体に作用する背面
側圧と地盤反力係数の前記最適推定値を少なくとも含む
入力データを取り込み、弾塑性解析して次段階の前記山
留め架構の変形、応力状態を予測する予測手段と、 前記現状解析手段、判定手段、予測解析手段で得られる
解析結果を出力する出力装置と、 を具備したことを特徴とする山留め工事の施工管理シス
テム。
2. The behavior of the earth retaining frame is measured, and the back side pressure acting on the mountain retaining wall and the ground reaction force coefficient are estimated by performing an inverse analysis based on the measured value, and based on the obtained analysis result. In the construction management system of the mountain retaining work that predicts the displacement and stress state of the mountain retaining frame at the next stage and manages the mountain retaining excavation work, at least the inclination angle of the mountain retaining wall and the axial force of the girder to be inserted between the mountain retaining walls should be at least A measuring device for measuring the behavior of the current mountain retaining frame, including a current state analyzing means for analyzing the current stress state of the mountain retaining frame based on these measurement data input from the measuring device, and the current state analyzing means. Analysis value, hypothetical value of backside pressure acting on the retaining wall and the ground reaction force coefficient to be estimated, covariance value of error with respect to the hypothetical value, and covariance value of noise included in the analysis value are input. First analyzing means for analyzing the back side pressure acting on the mountain retaining wall and the estimated value of the ground reaction force coefficient and the covariance value of the error by repeating the extended Kalman filter a predetermined number of times, and the present condition analysis. The analysis value obtained by the means, the estimated value analyzed by the first analysis means, and the error covariance value multiplied by a predetermined weight are taken in as initial values, and the extended Kalman filter is repeated a predetermined number of times to repeat the above. Second analysis means for analyzing the back side pressure acting on the mountain retaining wall body, the estimated value of the ground reaction force coefficient and the covariance value of its error, and the second retaining means acting on the mountain retaining wall body analyzed by the second analyzing means. Evaluation means for calculating a value of a predetermined evaluation function for the estimated value of the back side pressure and the ground reaction force coefficient, when the value of the evaluation function calculated by the evaluation means does not satisfy a predetermined reference, the error Both When the value of the evaluation function satisfies a predetermined criterion by multiplying the minute value by a predetermined weight and executing the second analysis means again, the estimated value analyzed by the second analysis means is optimally estimated. The determination means to be a value, and the input data including at least the optimum estimated value of the back side pressure acting on the mountain retaining wall body and the ground reaction force coefficient obtained by the determination means is taken in, and the elasto-plastic analysis is performed to the next step. Construction management for mountain retaining work, comprising: a predicting means for predicting the deformation and stress state of the mountain retaining frame, and an output device for outputting the analysis result obtained by the present condition analyzing means, the determining means, and the predictive analyzing means. system.
【請求項3】 前記現状解析手段で得られた解析値に
は、前記山留め壁体の変位、前記山留め壁体の曲げ剛
性、前記山留め壁体の曲げモーメント、ならびに前記切
梁の軸力が含まれることを特徴とする請求項1または2
記載の山留め工事の施工管理システム。
3. The analysis value obtained by the current state analysis means includes the displacement of the mountain retaining wall body, the bending rigidity of the mountain retaining wall body, the bending moment of the mountain retaining wall body, and the axial force of the cutting beam. Claim 1 or 2 characterized by the following.
Construction management system for mountain retaining work described.
【請求項4】 前記評価関数は、前記計測値と前記推定
値との差の正規化2乗平均の関数であることを特徴とす
る請求項2記載の山留め施工管理システム。
4. The earth retaining work management system according to claim 2, wherein the evaluation function is a function of a normalized mean square of a difference between the measured value and the estimated value.
JP32127394A 1994-11-30 1994-11-30 Execution management system for earth retaining work Pending JPH08151633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32127394A JPH08151633A (en) 1994-11-30 1994-11-30 Execution management system for earth retaining work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32127394A JPH08151633A (en) 1994-11-30 1994-11-30 Execution management system for earth retaining work

Publications (1)

Publication Number Publication Date
JPH08151633A true JPH08151633A (en) 1996-06-11

Family

ID=18130736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32127394A Pending JPH08151633A (en) 1994-11-30 1994-11-30 Execution management system for earth retaining work

Country Status (1)

Country Link
JP (1) JPH08151633A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2008297870A (en) * 2007-06-04 2008-12-11 Shimizu Corp Underground construction management system and underground construction management method
JP2014001590A (en) * 2012-06-20 2014-01-09 Railway Technical Research Institute Three-dimensional deformation prediction method used for computerized construction of excavation earth-retaining wall
JP2017203293A (en) * 2016-05-11 2017-11-16 大成建設株式会社 Displacement estimation monitoring system for skeleton

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002675A (en) * 2003-06-12 2005-01-06 Shimizu Corp Method of evaluating timbering performance of composite earth retaining wall
JP2008297870A (en) * 2007-06-04 2008-12-11 Shimizu Corp Underground construction management system and underground construction management method
JP2014001590A (en) * 2012-06-20 2014-01-09 Railway Technical Research Institute Three-dimensional deformation prediction method used for computerized construction of excavation earth-retaining wall
JP2017203293A (en) * 2016-05-11 2017-11-16 大成建設株式会社 Displacement estimation monitoring system for skeleton

Similar Documents

Publication Publication Date Title
Zeng et al. Dynamic characteristic analysis of cracked cantilever beams under different crack types
Langford et al. Reliability based approach to tunnel lining design using a modified point estimate method
Shi Reducing prediction error by transforming input data for neural networks
KR101935558B1 (en) System and method for earthquake damage prediction and analysis of structures, and a recording medium having computer readable program for executing the method
Jan et al. Neural network forecast model in deep excavation
Tang et al. Application of nonlinear optimization technique to back analyses of deep excavation
Gordan et al. Data mining-based damage identification of a slab-on-girder bridge using inverse analysis
JPH08151633A (en) Execution management system for earth retaining work
Saed et al. Fragility framework for corroded steel moment-resisting frame buildings subjected to mainshock-aftershock sequences
Xiao et al. Parameter identification of frame structures by considering shear deformation
JPH08158369A (en) Reverse analysis method
Kirk et al. An approximate technique for predicting size effects on cleavage fracture toughness (Jc) using the elastic T stress
CN113139228B (en) Monitoring point arrangement optimization method for large-span foundation pit complex support system structure
JPH08184046A (en) Reverse analyzation method of earth retaining work by extended karman filter support
Kourehli Damage diagnosis of structures using modal data and static response
Cividini et al. Deterministic and probabilistic back analysis in rock mechanics
Kožar et al. Derivation matrix in mechanics–data approach
Gupta et al. Dynamic programming approach to load estimation using optimal sensor placement and model reduction
JP2003106931A (en) Soundness degree diagnosis device
Hyde et al. Prediction of elastic—plastic displacements of tubular joints under combined loading using an energy-based approach
Li et al. Prediction error method‐based second‐order structural identification algorithm in stochastic state space formulation
JP3849229B2 (en) Behavior prediction method during earth retaining excavation
Salciarini et al. Macroelements for Soil–Structure Interaction
Ganguly et al. Performance assessment of time-domain damage indicators based on output-only measurement and Poincaré map: A comparative review on nonlinear structures
JPH07197785A (en) Prediction method for displacement of tunnel internal space

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040301

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050330