JP3849229B2 - Behavior prediction method during earth retaining excavation - Google Patents

Behavior prediction method during earth retaining excavation Download PDF

Info

Publication number
JP3849229B2
JP3849229B2 JP14624097A JP14624097A JP3849229B2 JP 3849229 B2 JP3849229 B2 JP 3849229B2 JP 14624097 A JP14624097 A JP 14624097A JP 14624097 A JP14624097 A JP 14624097A JP 3849229 B2 JP3849229 B2 JP 3849229B2
Authority
JP
Japan
Prior art keywords
ground
behavior
value
prediction method
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14624097A
Other languages
Japanese (ja)
Other versions
JPH10331161A (en
Inventor
伸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP14624097A priority Critical patent/JP3849229B2/en
Priority to KR1019970075824A priority patent/KR100502648B1/en
Publication of JPH10331161A publication Critical patent/JPH10331161A/en
Application granted granted Critical
Publication of JP3849229B2 publication Critical patent/JP3849229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Fuzzy Systems (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Algebra (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Physics (AREA)
  • Economics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土留め掘削時の挙動予測方法に関し、特に、ファジー理論を利用した挙動予測方法に関するものである。
【0002】
【従来の技術】
共同溝,立坑および構造物基礎などの地下構造物を構築する場合に行われる掘削工事では、掘削過程の進行に伴う、掘削面の崩落防止や、地盤沈下などによる周辺への影響を最小にし、安全に工事を進める必要性から、通常、土留め工事が実施される。
【0003】
このような工事における各掘削過程では、掘削による地盤の不均衡を土留め壁,切梁,掘削面以深の周辺地盤に分担させて、工事が進められる。ところが、地盤は、その物性値にバラツキが多い不確定なものであり、設計時に物性値に十分配慮をしていても、実際の挙動と異なることがある。
【0004】
このような挙動の異同は、大深度の開削工事などで顕著に現われるため、この種の工事においては、現場計測を行い、得られた現場計測値に基づいて、不確定な地盤の物性値(未知数)を逆解析により推定し、この推定値から地盤の挙動を予測し、施工管理,安全管理に役立てる手法が行われている。
【0005】
このような逆解析の手法には、例えば、試行錯誤的手法や最適化手法(直接定式化法,逆定式化法,カルマンフィルター法など)があり、最適化手法は、数学的処理を用いて、施工時の次段階以降の入力定数の変化を予測するのに手間がかかるので、試行錯誤的手法が良く用いられている。
【0006】
しかしながら、このような試行錯誤的な逆解析手法には、以下に説明する技術的な課題があった。
【0007】
【発明が解決しようとする課題】
すなわち、試行錯誤的な逆解析手法では、地盤の未知数を推定する際には、実務経験,担当者の勘および経験に基づくノウハウなどの要素が支配的になるため、推定値に個人差がでて、推定値がバラツクという問題があった。
【0008】
また、複数の未知数を推定するために、時間がかかるだけでなく、実際の挙動と容易に適合しないなどの問題があった。さらに、限られた実測値の結果から、不確定な土質を対象として、施工区域の全体について、正確な地盤の物性値を算出するのは、非常に難しい作業となっていた。
【0009】
本発明は、このような従来の問題点に鑑みてなされたものであって、推定値にバラツキがなく、短時間に実測値に適合した正確な推定が行える土留め掘削時の挙動予測方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明は、土留め壁の内部を掘削する際に、前記土留め壁の変位,曲げモーメント,せん断力などの挙動を実測し、得られた実測挙動値に基づいて、以後の挙動を予測推定する土留め掘削時の挙動予測方法において、前記実測挙動値と当初設計値とに所定以上の異同があった場合に、前記当初設計値を演算する際に設定した、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksを中心値とするメンバーシップ関数を、地盤の深度方向に沿って存在する土質層毎にそれぞれ設定し、前記地盤物性値および切梁バネ係数ksを前記メンバーシップ関数上で増減させる変化量δを設定し、前記変化量δを複数回増減させた際の計算挙動値をそれぞれ求め、前記計算挙動値と前記実測挙動値とが概略一致した時の前記地盤物性値および切梁バネ係数ksを確定値とするようにした。
このように構成した土留め掘削時の挙動予測方法によれば、当初設計値を演算する際に設定した、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksを中心値とするメンバーシップ関数を、地盤の深度方向に沿って存在する土質層毎にそれぞれ設定するので、当初設計値は、実際の地盤物性値とそれほど大きな相違がなく、計算挙動値を実測挙動値に早期に収束させることができる。この場合、メンバーシップ関数は、二等辺三角関数に設定することができる。
【0011】
【発明の実施の形態】
以下、本発明の好ましい実施の形態について添付図面を参照して詳細に説明する。図1から図7は、本発明にかかる土留め掘削時の挙動予測方法の一実施例を示している。
【0012】
図1は、土留め掘削時における施工管理の全体的な流を示している。土留め掘削時の施工管理では、同図に示すように、まず、ある掘削(施工)ステップにおいて、土留め壁の変位,曲げモーメント,せん断力などの挙動が実測される(スイテップs1)。
【0013】
次に、得られた実測挙動値Aと設計値との比較が行われる(ステップs2,s3)。この場合、実測挙動値Aと設計値とは、一般的にはあまり一致していない。ステップs3で、実測挙動値Aと設計値とが概ね一致している場合には、施工が継続される。
【0014】
一方、ステップs3で、実測挙動値Aと設計値とが概ね一致していないと判断された場合(両者間に所定以上の異同が認められた場合)には、ステップs4で、本実施例の挙動予測方法が実行される。この挙動予測方法の詳細は、図2以下に示している。
【0015】
ステップs4の挙動予測方法で、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksが、確定すると(ステップs5)、次に、次期掘削(施工)ステップにおける土留めの変形予測(順解析)が行われる(ステップs6)。
【0016】
そして、この解析によって得られた変形予測から、土留め壁に発生する応力度照査を行い(ステップs7)、ステップs8で、土留め壁の安全性が確保できると判断された場合には、施工が継続される。
【0017】
一方、ステップs8で、土留め壁の安全性が確保できないと判断された場合には、対策工を実施して(ステップs9)、施工が継続されることになる。
【0018】
ステップs4で実行される挙動予測方法の詳細な手順を図2に示している。同図に示した手順がスタートすると、まず、ステップs40で、未知数である土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksに対して、それぞれファジー理論に基づくメンバーシップ関数が設定される。
【0019】
このメンバーシップ関数は、地盤の深度方向に沿って存在する土質層毎に設定される。図3に、設定されるメンバーシップ関数の一例を示している。同図に示したメンバーシップ関数は、当初設計値を演算する際に設定した、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksを中心値とする二等辺三角形の関数となっている。
【0020】
この二等辺三角形の関数は、設計値に対する確からしさ(あいまいさ)が、半分まで低下した位置で最小および最大になっている。なお、この最大および最小値は、例えば、地盤の粘着力C,地盤の摩擦角φなどでは、絶対的にそれ以上ないしはそれ以下の値にならないことがあるので、これらの絶対的な値を最大ないしは最小値にすることもできる。
【0021】
また、メンバーシップ関数の形状は、図3に示したものに限られることはなく、例えば、正規分布関数などであってもよい。
【0022】
続く、ステップs41では、地盤物性値(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γ)および切梁バネ係数ksを、前述したメンバーシップ関数上で増減させる変化量δの設定が行われる。
【0023】
この場合の変化量δは、例えば、設計値の確からしさに対して、0.1ないしは0.05といった数値に設定される。次に、ステップs42で、計算挙動値Bの演算の繰り返し回数nの設定が行われる。
【0024】
続くステップs43では、当初設計値を演算する際に設定した地盤物性値(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γ)および切梁バネ係数ksに基づいて、土層毎に、計算挙動値B0が求められる。
【0025】
ステップS44では、ステップs1で実測されている実測挙動値Aと、計算挙動値B0の比較が、各層毎に行われる。ステップs44で実測挙動値Aが計算挙動値B0よりも大きいと判断された場合には、ステップs45で、計算挙動値B0が大きくなるように、未知数(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ks)をメンバーシップ関数上で変化量δだけ増加ないしは減少させる。
【0026】
一方、ステップs44で実測挙動値Aが計算挙動値B0よりも小さいと判断された場合には、ステップs46で、計算挙動値B0が小さくなるように、未知数(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ks)をメンバーシップ関数上で変化量δだけ減少ないしは増加させる。
【0027】
次のステップs47では、ステップs45,46で変化量δだけ増減させた未知数(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ks)の演算が行われる。
【0028】
ステップs48では、求められた未知数に基づいて計算挙動値B1が演算される。続くステップs49では、計算挙動値Bが設定された繰り返し回数nだけ行われたか否かが判断され、n回行われていない場合には、ステップs44に戻るとともに、n回実行された場合には、ステップs50に移行する。
【0029】
ステップs50では、実測挙動値Aとn回繰り返し演算された計算挙動値Bnとの比較が各層毎に行われ、これらが概ね一致している場合には、続くステップs51で未知数(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ks)を確定して手順が終了する。
【0030】
ステップs50で、実測挙動値Aと計算挙動値Bnとが概ね一致していないと判断された場合には、ステップs41に戻り、新たに変化量δおよび繰り返し回数を設定して、処理手順が続行される。
【0031】
図4から図7は、上記手順により得られた計算挙動値を実測値とともに表示した演算結果である。図4に示したグラフが繰り返し計算回数nが1、すなわち、当初設計値に基づく場合であり、同図から判るように、土留め壁の変形が、計算挙動値と実測挙動値でかなりずれている。
【0032】
なお、図4ないしは図7において、変形のグラフ中で○で示したものが実測挙動値であり、同図中に実線で示したものが計算挙動値である。図5に示したグラフは、繰り返し計算回数nが2、図6に示したグラフは、繰り返し計算回数nが5、図6に示したグラフは、繰り返し計算回数nが10の場合である。
【0033】
図5に示した繰り返し計算回数nが2では、計算挙動値と実測挙動値との一致の度合いが十分ではないが、図6に示したように、繰り返し回数nが5になると、土留め壁の変形に関する計算挙動値と実測挙動値とが、良く一致していることが判る。
【0034】
計算挙動値と実測挙動値との一致の度合いは、繰り返し回数nが10となっても、これが5の場合と殆ど変わらず、繰り返し回数nが5回程度で、未知数が収束することが判る。
【0035】
さて、以上のように構成した土留め掘削時の挙動予測方法によれば、当初設計値を演算する際に設定した、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksを中心値とするメンバーシップ関数をそれぞれ設定するので、当初設計値は、実際の地盤物性値とそれほど大きな相違がなく、数回程度の繰り返し演算回数で、計算挙動値を実測挙動値に早期に収束させることができる。
【0036】
この場合、未知数(土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ks)の確定は、担当者の勘や経験に支配されることがなく、的確な未知数を短時間にかつ正確に確定することができる。
【0037】
【発明の効果】
以上、実施例で詳細に説明したように、本発明にかかる土留め掘削時の挙動予測方法によれば、不明確な地盤未知数を的確かつ迅速に確定することができるので、解析結果を土留め掘削の施工管理,安全管理に容易に反映させることができる。
【図面の簡単な説明】
【図1】本発明にかかる挙動予測方法が適用される土留め掘削における施工管理の全体的な流を示すフローチャート図である。
【図2】本発明にかかる挙動予測方法の手順の一例を示すフローチャート図である。
【図3】図2示した挙動予測方法で設定するメンバーシップ関数の一例を示す説明図である。
【図4】図2示した挙動予測方法の繰り返し演算回数1回目で得られた結果のグラフである。
【図5】図2示した挙動予測方法の繰り返し演算回数2回目で得られた結果のグラフである。
【図6】図2示した挙動予測方法の繰り返し演算回数5回目で得られた結果のグラフである。
【図7】図2示した挙動予測方法の繰り返し演算回数10回目で得られた結果のグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a behavior prediction method during earth retaining excavation, and more particularly to a behavior prediction method using fuzzy theory.
[0002]
[Prior art]
In excavation work that is performed when building underground structures such as joint grooves, shafts, and structure foundations, the impact of the excavation surface on collapse and ground subsidence due to the progress of the excavation process is minimized, Due to the need to proceed safely, earth retaining work is usually carried out.
[0003]
In each excavation process in such a construction, the construction is proceeded by sharing the imbalance of the ground due to the excavation with the retaining wall, the beam, and the surrounding ground deeper than the excavation surface. However, the ground is uncertain with many variations in its physical property values, and even if sufficient consideration is given to the physical property values during design, it may differ from the actual behavior.
[0004]
Such behavioral differences are prominent in deep excavation work, etc., so in this type of construction, on-site measurements are taken, and based on the obtained on-site measurements, uncertain physical property values ( The unknown) is estimated by inverse analysis, and the behavior of the ground is predicted from this estimated value, which is useful for construction management and safety management.
[0005]
Examples of such inverse analysis methods include trial and error methods and optimization methods (direct formulation method, inverse formulation method, Kalman filter method, etc.), and optimization methods are performed using mathematical processing. A trial and error technique is often used because it takes time and effort to predict changes in the input constant after the next stage of construction.
[0006]
However, such a trial-and-error inverse analysis method has the following technical problems.
[0007]
[Problems to be solved by the invention]
In other words, in trial-and-error inverse analysis methods, factors such as practical experience, intuition of the person in charge and know-how based on experience are dominant when estimating the unknowns of the ground. Thus, there is a problem that the estimated value varies.
[0008]
In addition, in order to estimate a plurality of unknowns, there is a problem that not only does it take time, but the actual behavior is not easily adapted. Furthermore, it has been very difficult to calculate accurate physical property values for the entire construction area for uncertain soils based on the results of limited actual measurements.
[0009]
The present invention has been made in view of such conventional problems, and there is provided a method for predicting behavior during earth retaining excavation, in which there is no variation in estimated values and accurate estimation suitable for measured values can be performed in a short time. It is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention measures the behavior of the retaining wall such as displacement, bending moment, and shear force when excavating the interior of the retaining wall, and based on the measured behavior value obtained. In the behavior prediction method during earth retaining excavation for predicting and estimating the subsequent behavior, when the measured behavior value and the initial design value are more than a predetermined difference, set when calculating the initial design value, soil pressure P, the reaction force coefficient ke of the ground, the adhesive strength of the ground C, friction angle of the ground phi, the membership function centered value soil physical properties and Setsuhari spring constant ks of such volume weight γ of the ground, ground Is set for each soil layer along the depth direction, and a change amount δ is set to increase or decrease the physical property value and the beam spring coefficient ks on the membership function, and the change amount δ is increased or decreased a plurality of times. Each calculated behavior value Because the calculated behavior value and the actual behavior value is set as the determined value of the ground physical properties and Setsuhari spring constant ks of when substantially aligned.
According to the behavior prediction method during earth retaining excavation constructed in this way, the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, which were set when the initial design values were calculated. Since the soil physical property values such as the volume weight γ of the ground and the membership function centered on the beam spring coefficient ks are set for each soil layer existing along the depth direction of the ground , the initial design value is There is no great difference from the actual ground physical property value, and the calculated behavior value can be quickly converged to the actually measured behavior value. In this case, the membership function can be set to an isosceles trigonometric function.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 7 show an embodiment of a behavior prediction method during earth retaining excavation according to the present invention.
[0012]
FIG. 1 shows the overall flow of construction management during earth retaining excavation. In construction management during earth retaining excavation, as shown in the figure, first, in a certain excavation (construction) step, behaviors such as displacement, bending moment, shearing force, etc. of the earth retaining wall are actually measured (step s1).
[0013]
Next, the obtained measured behavior value A is compared with the design value (steps s2 and s3). In this case, the measured behavior value A and the design value generally do not match very much. In step s3, when the measured behavior value A substantially matches the design value, the construction is continued.
[0014]
On the other hand, if it is determined in step s3 that the actually measured behavior value A and the design value do not substantially coincide (when a difference of a predetermined value or more is recognized between the two), in step s4, A behavior prediction method is executed. Details of this behavior prediction method are shown in FIG.
[0015]
In the behavior prediction method in step s4, the soil physical property value such as the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, and the beam spring coefficient ks are determined. Then (step s5), next, earth deformation deformation prediction (forward analysis) in the next excavation (construction) step is performed (step s6).
[0016]
Then, based on the deformation prediction obtained by this analysis, the stress level generated in the retaining wall is checked (step s7). If it is determined in step s8 that the safety of the retaining wall can be secured, Will continue.
[0017]
On the other hand, if it is determined in step s8 that the safety of the retaining wall cannot be ensured, a countermeasure work is performed (step s9), and the construction is continued.
[0018]
A detailed procedure of the behavior prediction method executed in step s4 is shown in FIG. When the procedure shown in the figure starts, first, in step s40, the ground pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, etc. Membership functions based on fuzzy theory are set for the physical property values and the beam spring coefficient ks, respectively.
[0019]
This membership function is set for each soil layer existing along the depth direction of the ground. FIG. 3 shows an example of the membership function to be set. The membership function shown in the figure is the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, etc., which were initially set when calculating the design values. This is a function of an isosceles triangle with the ground property value and the beam spring coefficient ks as the center value.
[0020]
This isosceles triangle function has minimum and maximum certainty (ambiguity) with respect to the design value at a position where it is reduced to half. It should be noted that the maximum and minimum values, for example, may not be more than or less than the absolute value of the ground adhesion C, the ground friction angle φ, etc. Or it can be set to the minimum value.
[0021]
Also, the shape of the membership function is not limited to that shown in FIG. 3, and may be a normal distribution function, for example.
[0022]
In the subsequent step s41, the physical properties of the ground (earth pressure P, ground reaction force coefficient ke, ground adhesive force C, ground friction angle φ, ground volume weight γ) and the beam spring coefficient ks are described above. The amount of change δ to be increased or decreased on the ship function is set.
[0023]
The amount of change δ in this case is set to a numerical value such as 0.1 to 0.05 with respect to the accuracy of the design value. Next, in step s42, the number of repetitions n of the calculation behavior value B is set.
[0024]
In the subsequent step s43, the ground physical property values (earth pressure P, ground reaction force coefficient ke, ground adhesive force C, ground friction angle φ, ground volume weight γ) set at the time of calculating the initial design value and the cut Based on the beam spring coefficient ks, a calculated behavior value B 0 is obtained for each soil layer.
[0025]
In step S44, the measured behavior value A actually measured in step s1 is compared with the calculated behavior value B 0 for each layer. In the case where the measured behavior value A is determined to be larger than the calculated behavior value B 0 step s44, in step s45, as calculated behavior value B 0 is increased, unknown (earth pressure P, the reaction force coefficient of the ground Ke, ground adhesive force C, ground friction angle φ, ground volume weight γ and other ground physical values and beam spring coefficient ks) are increased or decreased by a change amount δ on the membership function.
[0026]
On the other hand, if the actual behavior value A is determined to be smaller than the calculated behavior value B 0 step s44, in step s46, as the calculation behavior value B 0 is reduced, unknown (earth pressure P, subgrade reaction of The physical property value such as the force coefficient ke, the ground adhesive force C, the ground friction angle φ, the volume weight γ of the ground, and the beam spring coefficient ks) are reduced or increased by a change amount δ on the membership function.
[0027]
In the next step s47, the unknowns (the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ, etc.) increased or decreased by the amount of change δ in steps s45 and 46 are displayed. The ground physical property value and the beam spring coefficient ks) are calculated.
[0028]
In step s48, a calculated behavior value B 1 is calculated based on the obtained unknown. In the subsequent step s49, it is determined whether or not the calculation behavior value B has been performed for the set number of repetitions n. If not, the process returns to step s44 and if it has been executed n times. The process proceeds to step s50.
[0029]
In step s50, the comparison of the actual behavior values A and n iterations computed calculated behavior value B n is performed for each layer, in a case where they are substantially matched, unknowns in the following step s51 (earth pressure P Then, the ground reaction force coefficient ke, the ground adhesive force C, the ground friction angle φ, the ground volume weight γ and other ground physical values and the beam spring coefficient ks) are determined, and the procedure ends.
[0030]
If it is determined in step s50 that the actually measured behavior value A and the calculated behavior value Bn do not substantially coincide with each other, the process returns to step s41 to newly set the amount of change δ and the number of repetitions, and the processing procedure is as follows. Continued.
[0031]
FIGS. 4 to 7 show the calculation results in which the calculated behavior values obtained by the above procedure are displayed together with the actual measurement values. The graph shown in FIG. 4 shows the case where the number of repeated calculations n is 1, that is, based on the initial design value. As can be seen from FIG. 4, the deformation of the retaining wall is considerably shifted between the calculated behavior value and the actually measured behavior value. Yes.
[0032]
In FIG. 4 to FIG. 7, the measured behavior values are indicated by ◯ in the deformation graph, and the calculated behavior values are indicated by solid lines in the same figure. The graph shown in FIG. 5 is when the number of iterations n is 2, the graph shown in FIG. 6 is when the number of iterations n is 5, and the graph shown in FIG. 6 is when the number of iterations n is 10.
[0033]
When the number of repeated calculations n shown in FIG. 5 is 2, the degree of coincidence between the calculated behavior value and the measured behavior value is not sufficient, but when the number of iterations n is 5, as shown in FIG. It can be seen that the calculated behavior value and the measured behavior value regarding the deformation of the material agree well.
[0034]
It can be seen that the degree of coincidence between the calculated behavior value and the actually measured behavior value is almost the same as the case where the number of iterations n is 10, and that the unknowns converge when the number of iterations n is about five.
[0035]
Now, according to the behavior prediction method during earth retaining excavation constructed as described above, the earth pressure P, the ground reaction force coefficient ke, the ground adhesive force C, and the ground Membership functions centered on the ground physical value such as the friction angle φ and the volume weight γ of the ground and the beam spring coefficient ks are set, so the initial design value is not so different from the actual ground physical property value. The calculation behavior value can be quickly converged to the actual measurement behavior value by the number of repeated operations of several times.
[0036]
In this case, the determination of unknowns (earth pressure P, ground reaction force coefficient ke, ground adhesion C, ground friction angle φ, ground volume weight γ, etc., and ground beam spring coefficient ks) is in charge. Without being controlled by the intuition and experience of the person, it is possible to accurately determine an unknown quantity in a short time.
[0037]
【The invention's effect】
As described above in detail in the embodiment, according to the behavior prediction method at the time of earth excavation according to the present invention, it is possible to accurately and quickly determine an unknown number of ground unknowns. It can be easily reflected in excavation construction management and safety management.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an overall flow of construction management in retaining excavation to which a behavior prediction method according to the present invention is applied.
FIG. 2 is a flowchart showing an example of a procedure of a behavior prediction method according to the present invention.
FIG. 3 is an explanatory diagram showing an example of a membership function set by the behavior prediction method shown in FIG. 2;
4 is a graph showing the results obtained in the first iteration of the behavior prediction method shown in FIG. 2; FIG.
FIG. 5 is a graph of results obtained in the second iteration of the behavior prediction method shown in FIG.
6 is a graph showing the results obtained when the behavior prediction method shown in FIG. 2 is repeated five times. FIG.
7 is a graph of results obtained when the behavior prediction method shown in FIG. 2 is repeated 10 times. FIG.

Claims (2)

土留め壁の内部を掘削する際に、前記土留め壁の変位,曲げモーメント,せん断力などの挙動を実測し、得られた実測挙動値に基づいて、以後の挙動を予測推定する土留め掘削時の挙動予測方法において、
前記実測挙動値と当初設計値とに所定以上の異同があった場合に、
前記当初設計値を演算する際に設定した、土圧P,地盤の反力係数ke,地盤の粘着力C,地盤の摩擦角φ,地盤の体積重量γなどの地盤物性値および切梁バネ係数ksを中心値とするメンバーシップ関数を、地盤の深度方向に沿って存在する土質層毎にそれぞれ設定し、
前記地盤物性値および切梁バネ係数ksを前記メンバーシップ関数上で増減させる変化量δを設定し、
前記変化量δを複数回増減させた際の計算挙動値をそれぞれ求め、
前記計算挙動値と前記実測挙動値とが概略一致した時の前記地盤物性値および切梁バネ係数ksを確定値とすることを特徴とする土留め掘削時の挙動予測方法。
When excavating the inside of the retaining wall, measure the behavior of the retaining wall such as displacement, bending moment, shear force, etc., and predict and estimate the subsequent behavior based on the measured behavior values obtained. In the time behavior prediction method,
When there is a difference greater than or equal to the measured behavior value and the initial design value,
Ground physical property values such as earth pressure P, ground reaction force ke, ground adhesive force C, ground friction angle φ, ground volume weight γ, etc., and the beam spring coefficient, which were set when calculating the initial design values. A membership function centered on ks is set for each soil layer along the depth direction of the ground ,
A change amount δ for increasing or decreasing the ground property value and the beam spring coefficient ks on the membership function is set,
Each calculated behavior value when the change amount δ is increased or decreased a plurality of times,
A behavior prediction method during earth retaining excavation, wherein the ground physical property value and the beam spring coefficient ks when the calculated behavior value and the actually measured behavior value substantially coincide with each other are determined values.
前記メンバーシップ関数を二等辺三角関数にすることを特徴とする請求項1記載の土留め掘削時の挙動予測方法。The behavior prediction method for earth retaining excavation according to claim 1, wherein the membership function is an isosceles trigonometric function.
JP14624097A 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation Expired - Lifetime JP3849229B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14624097A JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation
KR1019970075824A KR100502648B1 (en) 1997-06-04 1997-12-29 Behavior prediction method in excavation excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14624097A JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation

Publications (2)

Publication Number Publication Date
JPH10331161A JPH10331161A (en) 1998-12-15
JP3849229B2 true JP3849229B2 (en) 2006-11-22

Family

ID=15403279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14624097A Expired - Lifetime JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation

Country Status (2)

Country Link
JP (1) JP3849229B2 (en)
KR (1) KR100502648B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945760A (en) * 2020-08-01 2020-11-17 上海地矿工程勘察有限公司 Deep foundation pit engineering pressure reduction and precipitation control method and device, terminal and storage medium
CN112052497A (en) * 2020-09-01 2020-12-08 浙江勤业建工集团有限公司 BIM-based pre-construction deep foundation pit simulation calculation method
CN112257146B (en) * 2020-10-10 2023-12-26 无锡市市政设施建设工程有限公司 Method for realizing deep foundation pit excavation supporting based on BIM

Also Published As

Publication number Publication date
KR100502648B1 (en) 2005-11-08
KR19990006312A (en) 1999-01-25
JPH10331161A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
EP1337942B1 (en) Method and system for structural stress analysis
Zhang et al. Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation
Gioda et al. Back analysis procedures for the interpretation of field measurements in geomechanics
Goh et al. A simple estimation model for 3D braced excavation wall deflection
Sugimoto et al. Theoretical model of shield behavior during excavation. I: Theory
Yu et al. Analysis of steady cone penetration in clay
Jan et al. Neural network forecast model in deep excavation
Alkasawneh et al. A comparative study of various commercially available programs in slope stability analysis
CN111989456B (en) Model-based parameter estimation for directional drilling in wellbore operations
Tang et al. Application of nonlinear optimization technique to back analyses of deep excavation
Rafiai et al. An approximate ANN-based solution for convergence of lined circular tunnels in elasto-plastic rock masses with anisotropic stresses
He et al. Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating
Wang et al. Practical reliability analysis and design by Monte Carlo Simulation in spreadsheet
Tuhta et al. Dynamic Parameters Determination of Concrete Terrace Wall with System Identification Using ANN
JP3849229B2 (en) Behavior prediction method during earth retaining excavation
Hölter et al. Optimal measurement design for parameter identification in mechanized tunneling
Doherty et al. Scaled boundary finite‐element analysis of a non‐homogeneous elastic half‐space
Weerasekara et al. A new approach for estimating internal stability of reinforced soil structures
JP4389316B2 (en) Measurement management method during earth retaining excavation, measurement management system during earth retaining excavation, and recording medium recording a computer program for realizing the measurement management system during earth retaining excavation
JP3976318B2 (en) Geological prediction method in front of ground excavation
Sabzi et al. The performance of buildings adjacent to excavation supported by inclined struts
Fan et al. Improved robust design of rock wedge slopes with a new robustness measure
Vardakos Back-analysis methods for optimal tunnel design
Seo et al. Evaluation of applicability of 1D-CNN and LSTM to predict horizontal displacement of retaining wall according to excavation work
Vahed et al. Soil estimation based on dissipation energy during autonomous excavation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140908

Year of fee payment: 8

EXPY Cancellation because of completion of term