KR100502648B1 - Behavior prediction method in excavation excavation - Google Patents

Behavior prediction method in excavation excavation Download PDF

Info

Publication number
KR100502648B1
KR100502648B1 KR1019970075824A KR19970075824A KR100502648B1 KR 100502648 B1 KR100502648 B1 KR 100502648B1 KR 1019970075824 A KR1019970075824 A KR 1019970075824A KR 19970075824 A KR19970075824 A KR 19970075824A KR 100502648 B1 KR100502648 B1 KR 100502648B1
Authority
KR
South Korea
Prior art keywords
ground
behavior
excavation
value
measured
Prior art date
Application number
KR1019970075824A
Other languages
Korean (ko)
Other versions
KR19990006312A (en
Inventor
노보루 마쯔모토
Original Assignee
가부시기가이샤 오오바야시쿠미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 오오바야시쿠미 filed Critical 가부시기가이샤 오오바야시쿠미
Publication of KR19990006312A publication Critical patent/KR19990006312A/en
Application granted granted Critical
Publication of KR100502648B1 publication Critical patent/KR100502648B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Biomedical Technology (AREA)
  • Computational Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Automation & Control Theory (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

본 발명은 방토굴삭시의 거동예측방법에 관하여, 특히, 퍼지이론을 이용한 거동예측방법에 관한 것으로서, 추정치에 불균일이 없고, 단시간에 실측치에 적합한 정확한 추정을 행하여 지반미지수를 신속하게 확정할 수 있는 방토굴삭시의 거동예측방법을 제공하는 곳을 과제로한 것이며, 그 해결수단으로서, 방토굴삭시의 거동예측방법에 있어서, 실측거동치와 당초설계치에 소정 이상의 다름이 있었을 경우에 당초설계치를 연산할때에 설정한 토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중략γ 등의 지반물성치 및 버팀대스프링계수Ks를 멤버십함수상에서 증감시키는 변화량δ를 설정하고 (s41),변화량δ를 복수회증 감시켰을때의 계산거동치를 각각 구하고(s48), 계산거동치와 상기실측거동치가 개략일치 했을 때의 지반물성치 및 버팀대스프링계수Ks를 확정치로 하는 (s51) 것을 특징으로 한 것이다.The present invention relates to a method for predicting behavior during soil excavation, and more particularly, to a method for predicting behavior using fuzzy theory. The present invention has no non-uniformity in estimates and can quickly determine the ground microindex by performing accurate estimation suitable for the measured values in a short time. The object of the present invention is to provide a method for predicting the behavior during excavation, and to solve the problem, in the method for predicting the behavior during excavation, the initial design value is calculated when there is a difference between the measured behavior value and the original design value. Set the change δ that increases or decreases the ground material properties such as the earth pressure P, ground reaction coefficient Ke, ground adhesion force c, ground friction angle Ø, ground volume γ, and brace spring coefficient Ks on the membership function. s41) and the calculated behavior values when the change amount δ is plurally decreased (s48), and the ground physical properties when the calculated behavior values and the measured behavior values are roughly matched. And a brace to the spring coefficient Ks characterized in that (s51) to a hwakjeongchi.

Description

방토(防土)굴삭시의 거동예측방법Behavior prediction method in soil excavation

본 발명은, 방토굴삭시의 거동예측방법에 관한것으로서의 특히, 퍼지이론을 이용한 거동예측방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting behavior during soil excavation, and more particularly to a method for predicting behavior using fuzzy theory.

공동구(共同溝), 입갱(立坑) 및 구조물기초 등의 지하구조물을 구축하는 경우에 행하여지는 굴삭공사에서는 굴삭과정의 진행에 따른, 굴삭면의 붕락방지나, 지반침하 등에 의한 주변으로의 영향을 최소로 하고, 안전하게 공사를 진행할 필요성 때문에, 통상, 방토공사가 실시된다.Excavation work performed in the case of constructing underground structures such as hollow pit, pit, and foundation of the structure is used to prevent the impact of the excavation surface from collapsing or ground subsidence due to the progress of the excavation process. Because it is necessary to minimize and to carry out construction safely, the earthworks construction is usually performed.

이와 같은 공사에 있어서의 각 굴삭과정에서는, 굴삭에 의한 지반의 불균형을 방토벽, 버팀대(strut), 굴삭면보다 깊은(以深) 주변지반에 분담시켜서, 공사가 진행된다. 그러나, 지반은 그 물성치에 불균일이 많은 불확정한 것이며, 설계시에 물성치에 충분히 고려를 하고 있어도, 실제의 거동과 다른 일이 있다.In each excavation process in such a construction, the construction is progressed by sharing the imbalance of the ground caused by the excavation with the surrounding walls deeper than the excavation wall, the strut, and the excavation surface. However, the ground is indeterminate with many uneven physical properties, and even if the physical properties are sufficiently considered at the time of design, the ground may be different from the actual behavior.

이와 같은 거동의 다름은 큰 심도 (深度)의 개삭(開削)공사 등에서 현저하게 나타나기 때문에, 이런 종류의 공사에 있어서는 현장계측을 행하여, 얻게된 현상계측치에 의거해서, 불확정한 지반의 물성치(미지수)을 역해석(逆解析)에 의해 추정하고, 이 추정치로부터 지반의 거동을 예측하여, 시공관리, 안전관리에 유용하게 쓰는 숫법이 행하여 지고 있다.Since this difference in behavior is remarkable in large depth cutting work, etc., in this kind of construction, field measurement is performed on the basis of the phenomenon measurement value obtained by performing on-site measurement. The numerical method is estimated by inverse analysis, predicts the behavior of the ground from this estimate, and is useful for construction management and safety management.

이와 같은 역해석의 숫법에는 예를 들면, 시행착오적 숫법이나 최적화숫법(직접정식화법, 역정식화법, 칼맨필터법등)이 있으며, 최적화숫법은, 수학적처리를 사용해서, 시공시의 다음단계 이후의 입력정수의 변화를 예측하는데 시간이 걸림으로 시행착오적숫법이 잘 사용되고 있다.The numbers of such inverse analysis are, for example, trial and error or optimization (direct formulating, inverse formulating, Kalman filter method, etc.), and the optimization numbers are mathematically processed after the next stage of construction. The trial and error method is well used because it takes time to predict the change of the input constant.

그러나, 이와 같은 시행착오적인 역해석숫법에는, 이하에 설명하는 기술적인 과제가 있었다.However, such a trial and error inverse analysis has a technical problem described below.

즉, 시행착오적인 역해석숫법에서는, 지반의 미지수를 추정할때에는 실무경험, 담당자의 육감 및 경험에 의거한 노하우등의 요소가 지배적으로 되기 때문에, 추정치에 개인차가 나타나서, 추정치가 불균일해진다고 하는 문제가 있었다.In other words, in the trial and error inverse analysis method, when the unknown of the ground is estimated, factors such as practical experience, the sixth sense of the person in charge, and know-how based on the experience are dominant, so that individual estimates appear in the estimate and the estimate is uneven. There was a problem.

또, 복수의 미지수를 추정하기 위하여, 시간이 걸릴 뿐만 아니라, 실제의 거동과 용이하게 적합하지 않는다고 하는 문제가 있었다. 또, 한정된 실측치의 결과로부터 불확정한 토질을 대상으로 해서, 시공구역의 전체에 대해서, 정확한 지반의 물성치를 산술하는것은 매우 어려운 작업으로 되어 있었다.In addition, in order to estimate a plurality of unknowns, there is a problem that not only takes time, but also does not easily fit with the actual behavior. In addition, it was very difficult to calculate accurate physical property values for the whole construction area for the undefined soil quality from the results of limited measured values.

본 발명은, 이와 같은 종래의 문제점에 비추어 이루어진 것으로서, 추정치에 불균일이 없고, 단시간에 실측치에 적합한 정확한 추정을 행할수 있는 방토굴삭시의 거동예측방법을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and provides a method of predicting the behavior during excavation excavation, which is capable of performing an accurate estimation suitable for the measured value in a short time without any nonuniformity in the estimated value.

상기 목적을 달성하기 위하여, 본 발명은, 방토벽의 내부를 굴삭할때에 상기 방토벽의 변위, 굽힘모멘트, 전단력 등의 거동을 실측하고, 얻게된 실측거동치에 의거해서, 이후의 거동을 예측추정하는 방토굴삭시의 거동예측방법에 있어서, 상기 실측거동치와 당초설계치에 소정이상의 다름이 있었을 경우에, 상기 당초설계치를 연산할때에 설정한 토압P, 지반의 반력계수Ke, 지반의 점착력C, 지반의 마찰각φ, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks를 중심치로 하는 멤버십함수를 각각 설정하고, 상기 지반 물성치 및 버팀대스프링계수 Ks를 상기 멤버십 함수상에서 증감시키는 변화량δ를 설정하고, 상기 변화량δ를 복수회 증감시켰을 때의 계산거동치를 각각 구하고, 상기 계산거동치와 상기 실측거동치가 개략일치했을 때의 상기 지반물성치 및 버팀대스프링계수Ks를 확정치로 하도록 하였다.In order to achieve the above object, the present invention, when excavating the interior of the earthquake wall is measured the behavior of the earthquake wall displacement, bending moment, shear force, and the like, and based on the obtained measured behavior value, In the method of predicting the behavior during excavation of soil excavation, when there is more than a predetermined difference between the measured behavior value and the original design value, the earth pressure P set at the time of calculating the original design value, the ground reaction coefficient Ke, and the ground Changes of the soil properties such as the adhesion force C, the friction angle φ of the ground, the volume weight γ of the ground, and the membership function centered on the prop spring coefficient Ks, respectively, and the increase and decrease of the ground physical properties and the prop spring coefficient Ks on the membership function. And calculate the calculated behavior values when the change amount δ is increased or decreased a plurality of times. The following physical and bracing spring coefficient Ks was to a hwakjeongchi.

이와 같이 구성한 방토굴삭시의 거동예측방법에 의하면, 당초설계치를 연산할때에 설정한 토압P, 지반의 반력계수Ke, 지반의 점착력C, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks를 중심치로하는 멤버십함수를 각각 설정함으로, 당초설계치는 실제의 지반물성치와 그다지 큰 틀림이 없고, 계산거동치를 실측거동치로 조기에 수속시킬수 있다.According to the method for predicting the behavior during excavation, the ground physical properties such as earth pressure P, ground reaction force Ke, ground adhesion force C, ground friction angle Ø, ground volume weight γ By setting the membership function centering on the and spring spring coefficient Ks, respectively, the original design value is not very large with the actual ground property value, and the calculated behavior value can be converged to the measured behavior value early.

이 경우, 멤버십함수는, 2등변삼각함수로 설정할 수 있다.In this case, the membership function can be set to the isosceles triangle function.

이하 본 발명의 바람직한 실시형태에 대해서 첨부도면을 참조해서 상세히 설명한다. 도 1~도 7은 본 발명에 관한 방토굴삭시의 거동예측방법의 일실시예를 표시하고 있다.Best Mode for Carrying Out the Invention Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. 1 to 7 show one embodiment of the behavior prediction method in excavation excavation according to the present invention.

도 1은 방토굴삭시에 있어서의 시공관리의 전체적인 흐름을 표시하고 있다, 방토굴삭시의 시공관리에서는 동도면에 표시한 바와 같이 먼저, 어떤 굴삭(시공)스텝에 있어서, 방토벽의 변위, 굽힘모멘트, 전단력 등의 거동이 실측된다(스텝s1).Fig. 1 shows the overall flow of construction management in excavation excavation. In construction management in excavation excavation, as shown in the same drawing, first, in a certain excavation (construction) step, displacement and bending of the excavation wall Behaviors such as moment and shear force are measured (step s1).

다음에, 얻게된 실측거동치A와 설계치와의 비교가 행하여 진다(스텝s2, s3). 이 경우 실측거동치 A와 설계치는 일반적으로 그다지 일치해 있지 않다. 스텝S3에서 실측거동치 A와 설계치가 대략 일치해 있을 경우에는 시공이 계속된다.Next, a comparison between the obtained measured behavior value A and the designed value is performed (steps S2 and S3). In this case, measured behavior A and design values are generally not very consistent. If the measured behavior A and the design value substantially coincide in step S3, construction continues.

한편, 스텝 s3에서, 실측거동치A와 설계치가 대략 일치해 있지 않다고 판단되었을 경우(양자간에 소정이상의 다름이 인정되었을 경우)에는 스텝 s4에서 본 실시예의 거동예측방법이 실행된다. 이 거동예측방법의 상세한 것은 도 2이하에 표시되어 있다.On the other hand, when it is determined in step s3 that the measured behavior value A and the design value do not substantially coincide (when a predetermined difference is recognized between both members), the behavior prediction method of the present embodiment is executed in step s4. Details of this behavior prediction method are shown below in FIG. 2.

스텝 s4의 거동예측방법에서 토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks가 확정되면(스텝s5) 다음에, 차기굴삭(시공)스텝에 있어서의 방토의 변형예측(순해석(順解析))이 행하여 진다(스텝s6).In the behavior prediction method of step s4, when the soil physical properties such as earth pressure P, ground reaction coefficient Ke, ground adhesion force c, ground friction angle Ø, ground volume weight γ, and brace spring coefficient Ks are determined (step s5), The deformation prediction (pure analysis) of the soil in the next excavation step is performed (step s6).

그리고, 이 해석에 의해서 얻게된 변형예측으로부터 방토벽에 발생하는 응력도 조사(照査)를 행하고(스텝s7), 스텝 s8에서, 방토벽의 안전성을 확보할 수 있다고 판단되었을 경우에는, 시공이 계속된다.In addition, when the stress degree which generate | occur | produces in the soil wall is investigated from the deformation | transformation prediction obtained by this analysis (step s7), and it is determined in step s8 that safety of the soil wall can be ensured, construction continues. .

한편, 스텝 s8에서 방토벽의 안전성을 확보할 수 없다고 판단되었을 경우에는 대책공(對策工)을 실시해서 (스텝s9), 시공이 계속되게 된다.On the other hand, when it is determined in step s8 that the safety of the antifouling wall cannot be secured, a countermeasure is performed (step s9), and construction continues.

스텝 s4에서 실행되는 거동예측방법의 상세한 수순을 도 2에 표시하고 있다. 동도면에 표시한 수순이 개시되면, 먼저, 스텝 s40에서 미지수인 토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ등의 지반물성치 및 버팀대스프링계수Ks에 대해서 각각 퍼지이론에 의거한 멤버십함수가 설정된다.The detailed procedure of the behavior prediction method performed in step s4 is shown in FIG. When the procedure shown in the drawing is started, first, at step s40, the ground physical properties such as earth pressure P, ground reaction force Ke, ground adhesion force c, ground friction angle Ø, ground volume weight γ, and brace spring coefficient Ks For each, the membership function based on fuzzy theory is set.

이 멤버십함수는 지반의 심도방향을 따라서 존재하는 토질층마다 설정된다. 도 3(a)에 설정되는 멤버십함수의 일예를 표시하고 있다. 동도면에 표시한 멤버십함수는, 당초설계치를 연산할때에 설정한 토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks를 중심치로 하는 2등변삼각형의 함수로 되어 있다.This membership function is set for each existing soil layer along the depth direction of the ground. An example of the membership function set in Fig. 3A is shown. The membership function shown in the drawing shows the soil physical properties and brace spring coefficients such as earth pressure P, ground reaction force Ke, ground adhesive force c, ground friction angle Ø, ground volume weight γ, etc. It is a function of an isosceles triangle centered on Ks.

이 2등변삼각형의 함수는 설계치에 대한 정확정도(애매정도)가 절반까지 저하된 위치에서 최소 및 최대로 되어 있다. 또한, 이 최대 및 최소치는 예를들면, 지반의 점착성C 지반의 마찰각Ø에서는, 절대적으로 그 이상 내지는 그 이하의 값으로 되지 않는 일이 있으므로, 이들의 절대적인 값을 최대 내지는 최소치로 할 수도 있다.The function of this isosceles triangle is the minimum and maximum at the position where the accuracy (ambiguity) of the design value is reduced by half. In addition, since the maximum and minimum values may not be absolutely higher or lower than the friction angle Ø of the cohesive C ground of the ground, for example, these absolute values may be set to the maximum or minimum.

보다 구체적으로, 도 3(b)를 참조해서 설명하면, 예를 들면, 토압 P에 대한 맴버십함수(Gn)는 이하에 나타내는 식에 의해 토층마다 설정한다. 토압 P이외의 미지수도 같은 방법으로 설정한다.More specifically, with reference to FIG. 3 (b), for example, the membership function Gn for the earth pressure P is set for each soil layer by the equation shown below. Unknown values other than earth pressure P are set in the same manner.

<멤버십함수의 예(P에 대해서)><Example of membership function (for P)>

Gn={(Pn-Pmin)/(Po-Pmin)}×0.5+0.5 (Pmin≤Pm<Po)Gn = {(Pn-P min ) / (P o -P min )} × 0.5 + 0.5 (P min ≤P m <P o )

Gn={(Pn-Po)/(Pmax-Po)}×0.5+0.5 (Po≤Pn<Pmax)Gn = {(Pn-P o ) / (P max -P o )} × 0.5 + 0.5 (P o ≤P n <P max )

여기서 Po, Pmin, Pmax는 각각 토압의 당초설계치, 최소치 및 최대치이다(최소치, 최대치는 공학적 판단에 의거하여 설계자가 설정함).Where P o , P min , and P max are the original design values, minimum and maximum values of the earth pressure, respectively (minimum and maximum values are set by the designer based on engineering judgment).

또, 멤버십함수의 형상은, 도 3(a)에 표시한 것에 한정되는 것은 아니고, 예를들면, 정규분포함수 등 이어도 된다.The shape of the membership function is not limited to that shown in Fig. 3A, and may be, for example, a normal distribution function.

이어지는, 스텝 s41에서는 지반물성치(토압P, 지반의 반력계수Ke, 지반의 점착력c,지반의 마찰각Ø, 지반의 체적중량γ)및 버팀대스프링계수Ks를, 상기한 멤버십함수상에서 증감시는 변화량δ의 설정이 행하여 진다.Subsequently, in step s41, the ground physical property values (soil pressure P, ground reaction coefficient Ke, ground adhesion force c, ground friction angle Ø, ground volume weight γ) and brace spring coefficient Ks are increased and decreased on the membership function described above. Is set.

이 경우의 변화량δ는, 맴버십함수의 설계에 대한 정확정도(그레이드)(G)의 변화량δ를 설정하는 것으로서 예를들면, 설계치의 정확정도에 대해서, 0.1 내지는 0.05라는 수치로 설정된다. 다음에, 스텝s42에서 계산거동치B의 연산의 반복회수n의 설정이 행하여 진다.The change amount δ in this case sets the change amount δ of the accuracy (grade) G for the design of the membership function. For example, the change amount δ is set to a value of 0.1 to 0.05 for the accuracy of the design value. Next, in step s42, the repetition number n of the calculation of the calculation behavior value B is set.

이어지는 스텝s43에서는, 당초설계치를 연산할때에 설정한 지반물성치 (토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ) 및 버팀대스프링계수Ks에 의거해서, 토층마다 계산거동치Bo가 구해진다.In the following step s43, the ground physical properties set at the time of calculating the original design value (soil pressure P, ground reaction coefficient Ke, ground adhesion force c, ground friction angle Ø, ground volume weight γ) and the support spring coefficient Ks For each soil level, the calculated behavior value Bo is obtained.

스텝 S44에서는 스텝 S1에서 실측되어 있는 실측거동치A와, 계산거동치Bo의 비교가, 각층마다 행하여 진다. 스텝S44에서 실측거동치A가 계산거동치Bo보다도 크다고 판단되었을 경우에는, 스텝S45에서, 계산거동치Bo가 크게 되도록, 미지수(토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버텀대스프링계수Ks)를 멤버십함수상에서 변화량δ만큼 증가내지는 감소시킨다.In step S44, the measured action value A measured in step S1 and the calculation behavior value Bo are compared for each floor. If it is determined in step S44 that the measured behavior value A is larger than the calculated behavior value Bo, the unknown value (earth pressure P, the reaction force coefficient of the ground, the adhesive force c of the ground, the friction angle of the ground is increased so that the calculated behavior value Bo becomes large in the step S45. Ø, ground material properties such as ground weight γ and bottom-to-spring coefficient Ks) are increased or decreased by the change amount δ on the membership function.

구체적으로는 도3(b)에서 토압 P의 경우는 Pmax를 향하는 방향으로 δ만큼 변화시킨다.Specifically, in the case of earth pressure P in Fig. 3 (b), it is changed by δ in the direction toward P max .

한편, 스텝S44에서 실측거동치A가 계산거동치Bo보다도 작다고 판단되었을 경우에는, 스텝S46에서, 계산거동치Bo가 작게 되도록 미지수(토압P, 지반의 반력계수Ke,지반의 마찰각Ø, 지반의 체적중량r등의 지반물성치 및 버팀대스프링계수Ks)를 멤버십함수상에서 변화량δ만큼 감소내지는 증가시킨다.On the other hand, if it is determined in step S44 that the measured behavior value A is smaller than the calculated behavior value Bo, the unknown value (earth pressure P, the reaction coefficient Ke of the ground, the friction angle of the ground Ø, the ground of the ground so that the calculated behavior value Bo becomes small in step S46). The ground physical properties such as the volume weight r and the brace spring coefficient Ks) are increased or decreased by the change amount δ on the membership function.

예를들면 도 3(b)에서 토압 P의 경우는 Pmin을 향하는 방향으로 δ만큼 변화시킨다.For example, in the case of earth pressure P in Fig. 3 (b), it is changed by δ in the direction toward P min .

다음의 스텝 s47에서는, 스텝s45 , s46에서 변화량 δ만큼 증감시킨 미지수(토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks)의 연산이 행하여 진다.In the next step s47, the unknown properties (the earth pressure P, the ground reaction coefficient Ke, the ground adhesion force c, the ground friction angle Ø, the ground volume weight γ, etc.) increased or decreased by the amount of change δ in steps s45 and s46, and the brace spring coefficient Ks) is calculated.

예를 들면 토압 P에 대해서는 스텝 S45 또는 스텝 S46에서의 결정에 따라 아래식으로 계산한다.For example, the earth pressure P is calculated by the following equation in accordance with the determination in step S45 or step S46.

Pn+1={(Gn±δ-0.5)/0.5}×(Po-Pmin)+Pmin (Pmin≤Pn<PO)P n + 1 = {(G n ± δ-0.5) /0.5} × (P o -P min ) + P min (P min ≤P n <P O )

Pn+1={(Gn

Figure pat00009
δ-0.5)/0.5}×(Pmax-Po)+Po (Po≤Pn<Pmax)P n + 1 = {(G n
Figure pat00009
δ-0.5) /0.5} × (P max -P o ) + P o (P o ≤P n <P max )

상기 식은 (n+1)회째의 연산의 경우를 표시한다.The above expression indicates the case of the (n + 1) th operation.

스텝 s48에서는 구하여진 미지수에 의거해서 계산거동치B1가 연산된다. 이어지는 스텝s49에서는 계산거동치B가 설정된 반복회수n만큼 행하여졌는지 여부가 판단되고, n회 행하여져 있지 않는 경우에는 스텝s44로 복귀하는 동시에, n회 실행되었을 경우에는 스텝 s50으로 이행한다.In step s48, the calculation behavior value B1 is calculated based on the obtained unknown value. In subsequent step s49, it is determined whether or not the calculated behavior value B has been performed by the set number of repetitions n. If not, the process returns to step s44 if no n times has been performed, and if it is executed n times, the process proceeds to step s50.

스텝 s50에서는 실측거동치 A와 n회 반복 연산된 계산거동치Bn과의 비교가 각 층마다 행하여지고, 이들이 대략 일치해 있을 경우에는, 이어지는 스텝s51에서는 스텝 S47에서 계산된 미지수(토압P,지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks)를 확정해서 수순이 종료된다.In step s50, the measured behavior value A is compared with the calculated behavior value Bn repeatedly calculated n times, and if they are approximately identical, the unknown value calculated in step S47 in the following step s51 (earth pressure P, ground). The procedure is concluded by determining the ground property values and the brace spring coefficient Ks such as the reaction force Ke of the ground, the adhesion force of the ground, the friction angle Ø of the ground, and the volume weight γ of the ground.

스텝 s50에서 실측거동치A와 계산거동치Bn이 대략 일치해 있지 않다고 판단되었을 경우에는 스텝 s41로 복귀하여 새로이 변화량δ 및 반복회수를 설정해서, 처리수순이 속행된다.If it is determined in step s50 that the actual behavior value A and the calculated behavior value Bn do not substantially coincide, the process returns to step s41 to set a new change amount δ and the number of repetitions, and the processing procedure is continued.

도 4~도 7은, 상기 수순에 의해 얻게된 계산거동치를 실측치와 함께 표시한 연산결과이다. 도 4에 표시한 그래프가 반복계산회수n이 1, 즉, 당초설계치에 의거한 경우이며, 동도면으로부터 알 수 있는 바와 같이, 방토벽의 변형이 계산거동치와 실측거동치에서 상당히 어긋나있다.4-7 are calculation results which displayed the calculated behavior value obtained by the said procedure with an actual value. In the graph shown in Fig. 4, the repetition count n is 1, i.e., based on the original design value. As can be seen from the figure, the deformation of the soil wall deviates significantly from the calculated behavior value and the measured behavior value.

또한, 도 4내지 도 7에 있어서, 변형의 그래프중에서 0으로 표시한 것이 실측거동치이고, 동도면중에 실선으로 표시한 것이 계산거동치이다. 도 5에 표시한 그래프는 반복계산회수n이 2, 도 6에 표시한 그래프는 반복계산회수n이 10의 경우이다.4 to 7, in the graph of deformation, 0 is the measured behavior value, and in the same figure, the calculated behavior value is indicated by the solid line. In the graph shown in FIG. 5, the iteration count n is 2, and in the graph shown in FIG. 6, the iteration count n is 10.

도 5에 표시한 반복계산회수n이 2에서는 계산거동치와 실측거동치와의 일치의 정도가 충분하지는 않으나, 도 6에 표시한 바와 같이 반복회수n이 5가 되면, 방토벽의 변형에 관한 계산거동치와 실측거동치가 잘 일치해 있는 것을 알 수 있다.When the repeat count n shown in FIG. 5 is 2, the degree of agreement between the calculated behavior value and the measured behavior value is not sufficient. However, when the repeat count n becomes 5 as shown in FIG. It can be seen that the calculated behavior and the measured behavior agree well.

계산거동치와 실측거동치와의 일치정도는 반복회수n이 10으로 되어도, 이것이 5의 경우와 거의 다르지 않으며, 반복회수n이 5회정도에서 미지수가 수속되는 것을 알 수 있다.The degree of agreement between the calculated behavior value and the measured behavior value is almost different from the case of 5 even if the repetition number n is 10, and it can be seen that the unknown procedure is set at about 5 repetition times n.

그런데, 이상과 같이 구성한 방토굴삭시의 거동예측방법에 의하면, 당초계산치를 연산할때에 설정한 토압P, 지반의 잔력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks를 중심치로 하는 멤버십함수를 각각 설정함으로 당초 설계치는 실제의 지반물성치와 그다지 큰 다름 이 없고, 수회정도의 반복연산회수에 의해 계산거동치를 실측거동치로 조기 수속시킬 수 있다.However, according to the above-described behavior prediction method for soil excavation, earth pressure P, ground residual coefficient Ke, ground adhesive force c, ground friction angle Ø, ground volume weight γ, etc. set at the time of initial calculation are calculated. By setting up the membership function centered on the ground property value and the brace spring coefficient of Ks, respectively, the initial design value is not much different from the actual ground property value, and it is possible to settle the calculated behavior value to the actual behavior value by the repeated operation number of several times. have.

이 경우, 미지수(토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks)의 확정은, 담당지의 육감이나 경험에 지배되는 일이 없으며, 정확한 미지수를 단시간에 또한 정확하게 확정할 수 있다.In this case, the determination of the soil properties such as earth pressure P, soil reaction coefficient Ke, soil adhesion c, soil friction angle Ø, ground volume weight γ, and support spring coefficient Ks is governed by the sixth sense and experience of the site concerned. It is not possible to determine the exact unknowns in a short time and accurately.

이상 실시예에서 상세히 설명한 바와 같이, 본 발명에 관한 방토굴삭시의 거동예측방법에 의하면, 불명확한 지반미지수를 정확하게 또한 신속하게 확정할 수 있으므로, 해석결과를 방토굴삭의 시공관리, 안전관리에 용이하게 반영시킬 수 있다.As described in detail in the above embodiments, according to the method for predicting the behavior of soil excavation in accordance with the present invention, it is possible to accurately and quickly determine the unclear ground microindex, so that the analysis result is easy for construction management and safety management of soil excavation. Can be reflected.

도 1은 본 발명에 관한 거동예측방법이 적용되는 방토굴삭에 있어서의 시공관리의 전체적인 흐름을 표시한 순서도1 is a flow chart showing the overall flow of construction management in excavation excavation to which the behavior prediction method according to the present invention is applied

도 2는 본 발명에 관한 거동예측방법의 수순의 일예를 표시한 순서도2 is a flowchart showing an example of the procedure of the behavior prediction method according to the present invention.

도 3(a)은 도 2에 표시한 거동예측방법에 의해 설정하는 멤버십함수의 일예를 표시한 설명도FIG. 3A is an explanatory diagram showing an example of a membership function set by the behavior prediction method shown in FIG.

도 3(b)는 도 3(a)의 구체적인 예를 표시한 설명도3 (b) is an explanatory diagram showing a specific example of FIG. 3 (a).

도 4는 도 2에 표시한 거동예측방법의 반복연산회수 1회째에서 얻게된 결과의 그래프FIG. 4 is a graph of the results obtained in the first iteration count of the behavior prediction method shown in FIG.

도 5는 도 2에 표시한 거동예측방법의 반복연산회수 2회째에서 얻게된 결과의 그래프FIG. 5 is a graph of the results obtained in the second iteration operation count of the behavior prediction method shown in FIG.

도 6은 도 2에 표시한 거동예측방법의 반복연산회수 5회째에서 얻게된 결과의 그래프6 is a graph of the results obtained in the fifth iteration of the operation prediction method of FIG.

도 7은 도 2에 표시한 거동예측방법의 반복연산회수 10회째에서 얻게된 결과의 그래프FIG. 7 is a graph of the results obtained in the 10th iteration operation count of the behavior prediction method shown in FIG.

Claims (2)

방토벽의 내부를 굴삭할때에, 상기 방토벽의 변위, 굽힘모멘트, 전단력 등의 거동을 실측하고, 얻게된 실측거동치에 의거해서, 이후의 거동을 예측추정하는 방토굴삭시의 거동 예측방법에 있어서,When excavating the inside of the excavation wall, the behavior of the excavation excavation method that predicts the future behavior based on the measured behavior value obtained by measuring the displacement of the excavation wall, the bending moment, the shear force, and the like. To 상기 실측거동치와 당초설계치에 소정이상의 차이가 있는 경우에,If there is more than a predetermined difference between the measured behavior value and the original design value, 상기 당초설계치를 연산할 때에 설정한, 토압P, 지반의 반력계수Ke, 지반의 점착력c, 지반의 마찰각Ø, 지반의 체적중량γ 등의 지반물성치 및 버팀대스프링계수Ks를 중심치로 하는 멤버십함수를 각각 설정하는 단계와,The membership function centered on the soil physical properties such as earth pressure P, ground reaction coefficient Ke, ground adhesion force c, ground friction angle Ø, ground volume weight γ, and brace spring coefficient Ks set at the time of calculating the original design value, Setting each one, 상기 지반물성치 및 버팀대스프링계수Ks를 상기 멤버십함수상에서 증감시키는 변화량δ를 설정하는 단계와,Setting a change amount δ which increases and decreases the ground property value and the brace spring coefficient Ks on the membership function; 상기 변화량δ를 복수회 증김시켰을 때의 계산거동치를 각각 구하는 단계와,Calculating a calculated behavior value when the change amount δ is increased by a plurality of times; 상기 계산거동치와 상기 실측거동치가 개략 일치했을 때의 상기 지반물성치 및 버팀대스프링계수Ks를 확정치로 하는 단계Setting the ground property value and the brace spring coefficient Ks when the calculated behavior value and the measured behavior value approximately coincide with each other; 로 이루어진 것을 특징으로 하는 방토굴삭시의 거동예측방법.Behavior prediction method during excavation, characterized in that consisting of. 제 1 항에 있어서, 멤버십함수를 2등변삼각함수로 하는 것을 특징으로 하는 방토굴삭시의거동예측방법.The method for predicting behavior during excavation of earth excavation according to claim 1, wherein the membership function is an isosceles triangle function.
KR1019970075824A 1997-06-04 1997-12-29 Behavior prediction method in excavation excavation KR100502648B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP97-146240 1997-06-04
JP14624097A JP3849229B2 (en) 1997-06-04 1997-06-04 Behavior prediction method during earth retaining excavation

Publications (2)

Publication Number Publication Date
KR19990006312A KR19990006312A (en) 1999-01-25
KR100502648B1 true KR100502648B1 (en) 2005-11-08

Family

ID=15403279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075824A KR100502648B1 (en) 1997-06-04 1997-12-29 Behavior prediction method in excavation excavation

Country Status (2)

Country Link
JP (1) JP3849229B2 (en)
KR (1) KR100502648B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111945760A (en) * 2020-08-01 2020-11-17 上海地矿工程勘察有限公司 Deep foundation pit engineering pressure reduction and precipitation control method and device, terminal and storage medium
CN112052497A (en) * 2020-09-01 2020-12-08 浙江勤业建工集团有限公司 BIM-based pre-construction deep foundation pit simulation calculation method
CN112257146B (en) * 2020-10-10 2023-12-26 无锡市市政设施建设工程有限公司 Method for realizing deep foundation pit excavation supporting based on BIM

Also Published As

Publication number Publication date
JP3849229B2 (en) 2006-11-22
JPH10331161A (en) 1998-12-15
KR19990006312A (en) 1999-01-25

Similar Documents

Publication Publication Date Title
Zhang et al. Multivariate adaptive regression splines for inverse analysis of soil and wall properties in braced excavation
Jan et al. Neural network forecast model in deep excavation
Tang et al. Application of nonlinear optimization technique to back analyses of deep excavation
Kay Probabilistic design of foundations and earth structures
Wang et al. Direct probability-based design methods
Tarawneh et al. Load testing and settlement of shallow foundation on desert sands
KR100502648B1 (en) Behavior prediction method in excavation excavation
Nakanishi et al. Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm
Harandizadeh Developing a new hybrid soft computing technique in predicting ultimate pile bearing capacity using cone penetration test data
Akbas et al. Reliability-based design approach for differential settlement of footings on cohesionless soils
CN109711063B (en) Station underground excavation footage adjusting method and device suitable for soft upper and hard lower strata
Zangeneh et al. Application of response surface methodology in numerical geotechnical analysis
Dhakal et al. System identification and seismic performance assessment of representative RC buildings in Kathmandu Valley
CN109297576A (en) A kind of train wheel rail force load acquisition methods
Sabzi et al. The performance of buildings adjacent to excavation supported by inclined struts
JP7246272B2 (en) Ground subsidence prediction system
Green et al. Modeling the dynamic response of cantilever earth-retaining walls using FLAC
Lastiasih et al. Reliability of Estimation Pile Load Capacity Methods.
Tang Probability-based serviceability evaluation of buildings adjacent to an excavation using random finite element method
Tang Probability-based method using RFEM for predicting wall deflection caused by excavation
Minini et al. Prediction of diaphragm wall displacements using Bayesian model calibration
Li et al. Analyzing the deformation of multilayered saturated sandy soils under large Building Foundation
Huang et al. Settlement predictions of a trial embankment on Ballina Clay
Ghorbani et al. Performance-based design for top-down system in the geotechnical conditions of Qom, Iran
Hsiao Wall and ground movements in a braced excavation in clays and serviceability reliability of adjacent buildings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee