JP2013170955A - Safety evaluation system for base isolated building - Google Patents

Safety evaluation system for base isolated building Download PDF

Info

Publication number
JP2013170955A
JP2013170955A JP2012035755A JP2012035755A JP2013170955A JP 2013170955 A JP2013170955 A JP 2013170955A JP 2012035755 A JP2012035755 A JP 2012035755A JP 2012035755 A JP2012035755 A JP 2012035755A JP 2013170955 A JP2013170955 A JP 2013170955A
Authority
JP
Japan
Prior art keywords
earthquake
displacement
building
seismic isolation
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035755A
Other languages
Japanese (ja)
Other versions
JP5911733B2 (en
Inventor
Kenji Manako
健二 真名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012035755A priority Critical patent/JP5911733B2/en
Publication of JP2013170955A publication Critical patent/JP2013170955A/en
Application granted granted Critical
Publication of JP5911733B2 publication Critical patent/JP5911733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a safety evaluation system for a base isolated building, capable of performing suitable safety evaluation considering changes in a building and ground property characteristics after a seismic disaster in the base isolated building.SOLUTION: Acceleration sensors are attached to ground 4 and a building 2. Usual microvibration values of the ground 4 and the building 2 before and after an earthquake and acceleration values during the earthquake are measured, and a base isolation strength restoration characteristic K' and residual displacement δ' of a base isolation layer are found out. Further, an amplification rate G' of surface ground is found out. These values K', δ', G' are reset and base isolation layer response displacement after the earthquake is calculated. Whether the base isolation response displacement is included within a design limit or not is determined to perform safety determination. A residual energy absorption amount of the base isolation layer is calculated from the residual displacement δ' and whether residual energy absorption capacity for an aftershock exists or not is determined.

Description

この発明は、地震被災後の建物・地盤性状特性の変化を考慮した免震建築物の安全評価システムに関する。   The present invention relates to a safety evaluation system for a base-isolated building that takes into account changes in building / ground properties after an earthquake.

従来、免震建築物用のモニタリングシステムは数が少なく、地震被災後の建築物の安全評価のシステムとしては、加速度低減効果等の提示に止まるものが主である。なお、耐震建築物においては、地震被災後の残余耐震性を解析して安全性を評価するシステムがある(例えば、特許文献1)。免震構造は、免震層を設けることで、地震力を建築物に直接に伝えないようにした構造を言い、耐震構造は建築物の構造(柱や梁等)が、地震で生じる揺れに耐えるように設計された構造を言う。免震装置における応答変位の計算方法としては、等価線形法による方法が提案されている(例えば、特許文献4)。   Conventionally, there are few monitoring systems for base-isolated buildings, and as a system for safety evaluation of buildings after an earthquake disaster, there are mainly systems that can only present acceleration reduction effects and the like. In addition, in an earthquake-resistant building, there exists a system which analyzes the residual earthquake resistance after an earthquake disaster and evaluates safety (for example, patent document 1). Seismic isolation structure refers to a structure in which seismic force is not transmitted directly to the building by providing a seismic isolation layer. Seismic structure is the structure of the building (columns, beams, etc.) A structure designed to withstand. As a method for calculating the response displacement in the seismic isolation device, a method based on an equivalent linear method has been proposed (for example, Patent Document 4).

特開2011−95237号公報JP 2011-95237 A 特開2008−298704号公報JP 2008-298704 A 特許第4728730号公報Japanese Patent No. 4728730 特開2011−214583号公報JP 2011-214583 A

免震建築物において、従来のような加速度低減効果の提示のみの場合、安全性の明確な評価ができない。耐震建築物用の上記提案例のシステムの場合、地盤の変化を考慮していないので、免震構造物において懸念される地盤緩みによる地震動の長周期化や残留歪みが考慮されず、適正な安全性の確認が行えない。   In the case of a base-isolated building, when only the acceleration reduction effect is presented as in the past, the safety cannot be clearly evaluated. In the case of the proposed system for earthquake-resistant buildings, changes in the ground are not taken into account, so long periods of ground motion and residual distortion due to ground loosening, which are a concern in seismic isolation structures, are not taken into account. The sex cannot be confirmed.

この発明の目的は、免震建築物において、地震被災後の建物と地盤性状特性の変化を考慮した適切な安全評価が行える免震建築物の安全評価システムを提供することである。   An object of the present invention is to provide a safety evaluation system for a base-isolated building that can perform an appropriate safety evaluation in consideration of changes in the characteristics of the building and the ground properties after the earthquake.

この発明の免震建築物の安全評価システム(1)は、免震層(3)を有する建築物(2)における地震発生後の安全性を評価する免震建築物の安全評価システムであって、前記建築物(2)が位置する地盤(4)および建築物(2)にそれぞれ設けられた加速度計(8a,8b)と、評価演算部(10)とを備える。
前記評価演算部(10)は、平常時各固有周期算出手段(11)(S1,S2)、地震時加速度記録手段(13)(S4)、地震後各固有周期算出手段(14)(S5,S6)、建物固有周期変化判定手段(15)(S7)、地震時変位履歴・残留変位算出手段(16)(S8)、免震力復元力特性設定手段(19)(S11)、地震後表層地盤増幅率算出手段(20)(S11)、免震層応答変位算出手段(21)(S13)、および応答変位安全判定手段(22)(S14)を備える。
The seismic isolation building safety evaluation system (1) of the present invention is a seismic isolation building safety evaluation system that evaluates safety after an earthquake in a building (2) having a seismic isolation layer (3). , An accelerometer (8a, 8b) provided on the ground (4) where the building (2) is located and the building (2), respectively, and an evaluation calculation unit (10).
The evaluation calculation unit (10) includes normal natural period calculating means (11) (S1, S2), acceleration recording means during earthquake (13) (S4), post natural earthquake natural period calculating means (14) (S5, S5). S6), building natural period change judging means (15) (S7), earthquake displacement history / residual displacement calculating means (16) (S8), base isolation force restoring force characteristic setting means (19) (S11), post-earthquake surface layer Ground amplification factor calculation means (20) (S11), base isolation layer response displacement calculation means (21) (S13), and response displacement safety judgment means (22) (S14).

平常時各固有周期算出手段(11)(S1,S2)は、前記各加速度計により平常時の地盤および建築物の微振動を計測して平常時の地盤固有周期Tgおよび建物固有周期Tを算出する。
地震時加速度記録手段(13)(S4)は、地震の発生により地震時の前記各加速度計(8a,8b)で計測された加速度を記録する。
地震後各固有周期算出手段(14)(S5,S6)は、地震の発生後に前記各加速度計(8a,8b)により地盤および建築物の微振動を計測して地震後の地盤固有周期Tg′および建物固有周期T′を算出する。
Each natural period calculating means (11) (S1, S2) at normal times measures the normal vibrations of the ground and buildings at normal times by the respective accelerometers, and calculates the normal natural period Tg and the natural period T of buildings at normal times. To do.
The earthquake acceleration recording means (13) (S4) records the acceleration measured by the respective accelerometers (8a, 8b) at the time of the earthquake due to the occurrence of the earthquake.
After the earthquake, each natural period calculating means (14) (S5, S6) measures the micro vibrations of the ground and the building by each of the accelerometers (8a, 8b) after the occurrence of the earthquake, and then the natural period Tg ′ after the earthquake. And the building natural period T ′ is calculated.

建物固有周期変化判定手段(15)(S7)は、地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定し、許容範囲内にない場合は危険と判定する。   The building natural period change determining means (15) (S7) determines whether the change of the building natural period T 'after the earthquake with respect to the normal building natural period T is within the allowable range. If not, it is judged as dangerous.

地震時変位履歴・残留変位算出手段(16)(S8)は、前記地震時加速度記録手段(13)(S4)で記録した地震時の前記各加速度から前記免震層の地震時変位履歴および残留変位δ′を算出する。
免震力復元力特性設定手段(19)(S11)は、前記地震時加速度記録手段(13)(S4)で記録した地震時の加速度、および前記地震時変位履歴・残留変位算出手段(16)(S8)で算出された免震層の地震時変位履歴から、免震力復元力特性K′を計算して設定する。
The earthquake displacement history / residual displacement calculating means (16) (S8) is adapted to obtain the earthquake displacement history and residual of the seismic isolation layer from the accelerations recorded during the earthquake recorded by the earthquake acceleration recording means (13) (S4). The displacement δ ′ is calculated.
The seismic isolation force restoring force characteristic setting means (19) (S11) includes the earthquake acceleration recorded by the earthquake acceleration recording means (13) (S4), and the earthquake displacement history / residual displacement calculation means (16). Based on the earthquake displacement history of the base isolation layer calculated in (S8), the base isolation force restoring force characteristic K ′ is calculated and set.

地震後表層地盤増幅率算出手段(20)(S11)は、前記地震後各固有周期算出手段(14)(S5,S6)で算出された地盤固有周期Tg′により工学的基盤(4a)よりの表層地盤(4b)の増幅率G′を算出する。   The post-earthquake surface layer amplification factor calculation means (20) (S11) is supplied from the engineering foundation (4a) by the natural period Tg ′ calculated by the natural period calculation means (14) (S5, S6) after the earthquake. The amplification factor G ′ of the surface ground (4b) is calculated.

免震層応答変位算出手段(21)(S13)は、前記各手段で計算された地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′を基に、定められた計算方法で地震後における免震層(3)の応答変位を算出する。上記の定められた計算方法としては、例えば等価線形化法または時刻歴応答解析を用いて応答変位を算出する方法が採用できる。
応答変位安全判定手段(22)(S14)は、免震層応答変位算出手段(21)(S13)で算出された応答変位が設計限界内であるか否かを判定し、設計限界内ある場合は安全と判定し、設計限界内ある場合は危険と判定する。
The seismic isolation layer response displacement calculating means (21) (S13) is based on the residual displacement δ ′ after the earthquake calculated by the above means, the seismic isolation force restoring force characteristic K ′, and the surface ground amplification factor G ′. The response displacement of the seismic isolation layer (3) after the earthquake is calculated by the prescribed calculation method. As the calculation method defined above, for example, a method of calculating a response displacement using an equivalent linearization method or a time history response analysis can be employed.
The response displacement safety determination means (22) (S14) determines whether or not the response displacement calculated by the seismic isolation layer response displacement calculation means (21) (S13) is within the design limit. Is judged safe, and if it is within the design limits, it is judged dangerous.

この構成の免震建築物の安全評価システムによると、地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′を求め、これらを基に、地震後における免震層(3)の応答変位を算出する。この求めた応答変位を設計限界と比較し、安全か否かの判定を行う。
このように、免震建築物において、建築物(免震層を含む)および、地盤の性状変化を考慮して、建築物・地盤条件を設定し、これに基づき解析を行うことで、実情に応じた安全性の判定を行うことができる。そのため適切な安全評価が行える。
また、建物固有周期変化判定手段(15)(S7)は、地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定し、許容範囲内にない場合は危険と判定する。そのため、建物固有周期の変化を見て、明らかに危険と分かる場合は、地盤についての種々の計算を行うことなく、危険と判定することができる。
According to the safety evaluation system for base-isolated buildings of this configuration, the residual displacement δ ′ after the earthquake, the base-isolation force restoring force characteristic K ′, and the surface ground amplification factor G ′ are obtained, and based on these, the post-earthquake isolation The response displacement of the seismic layer (3) is calculated. The obtained response displacement is compared with the design limit to determine whether it is safe.
In this way, in the base-isolated building, considering the changes in the properties of the building (including the base-isolated layer) and the ground, the building and ground conditions are set, and the analysis is performed based on this. The safety can be determined accordingly. Therefore, appropriate safety evaluation can be performed.
The building natural period change determining means (15) (S7) determines whether the change of the building natural period T 'after the earthquake with respect to the normal building natural period T is within the allowable range. If not, it is judged as dangerous. Therefore, when it is clearly seen as dangerous by looking at the change in the natural period of the building, it can be determined as dangerous without performing various calculations for the ground.

この発明において、前記免震層応答変位算出手段(21)(S13)は、前記建築物(2)の設計上、または平常時における、前記免震層(3)の残留変位δ、前記免震層(3)の免震力復元力特性K、および工学的基盤(4a)よりの表層地盤(4b)の増幅率Gを基に、定められた計算方法で免震層の応答変位を算出する手段であって、前記残留変位δ、免震力復元力特性K、および表層地盤の増幅率Gを、地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′に再設定して再計算を行うようにしても良い。
すなわち、免震層応答変位算出手段(21)(S13)として、設計時等に応答変位を算出する手段を用い、これに、地震後の表層地盤の増幅率G′、残留変位δ′、免震力復元力特性K′を再設定して応答変位による安全判定が行える。そのため、地震後用の専用の免震層応答変位算出手段を設けることなく、応答変位による安全判定が行える。同じ免震層応答変位算出手段(21)によって設計時,平常時と地震後との計算を行うため、統一性のある信頼性の高い安全判定を行うことができる。なお、残留変位δ′は、設計時や平常時は零として計算する。
In the present invention, the seismic isolation layer response displacement calculating means (21) (S13) is configured so that the residual displacement δ of the seismic isolation layer (3) in the design of the building (2) or during normal times, the seismic isolation Based on the seismic isolation force characteristic K of the layer (3) and the amplification factor G of the surface ground (4b) from the engineering base (4a), the response displacement of the seismic isolation layer is calculated by a predetermined calculation method. The residual displacement δ, the seismic isolation force restoring force characteristic K, and the surface ground amplification factor G, and the post-earthquake residual displacement δ ′, the seismic isolation force restoring force property K ′, and the surface layer ground amplification factor G. It may be reset to ′ and recalculated.
That is, as the seismic isolation layer response displacement calculation means (21) (S13), a means for calculating the response displacement at the time of design or the like is used, and this includes the surface layer ground amplification factor G ′, residual displacement δ ′, Safety judgment by response displacement can be performed by resetting the seismic force restoring force characteristic K ′. For this reason, safety determination based on response displacement can be performed without providing a dedicated seismic isolation layer response displacement calculation means for post-earthquake use. Since the same seismic isolation layer response displacement calculation means (21) calculates during normal times and after an earthquake, uniform and reliable safety judgment can be performed. The residual displacement δ ′ is calculated as zero at the time of design and normal times.

この発明において、前記建物固有周期変化判定手段(15)(S7)で許容範囲内であると判定された場合に、前記地震時変位履歴・残留変位算出手段(16)(S8)で計算された残留変位δ′より免震層(3)の吸収可能な残余エネルギー吸収量を算出する免震層エネルギー吸収量算出手段(17)(S9)と、
この手段(17)(S9)で算出された免震層(3)の残余エネルギー吸収量が、想定される余震に対して十分であるか否かを判定し、十分でない場合は危険と判定する余震対応能力判定手段(18)(S10)とを設けてもよい。
このように、免震層(3)の残余エネルギー吸収量を求めることで、余震に対する安全性の判定が行える。
In this invention, when it is determined by the building natural period change determining means (15) (S7) that it is within an allowable range, it is calculated by the earthquake displacement history / residual displacement calculating means (16) (S8). Seismic isolation layer energy absorption amount calculating means (17) (S9) for calculating a residual energy absorption amount that can be absorbed by the base isolation layer (3) from the residual displacement δ ';
It is determined whether or not the residual energy absorption amount of the seismic isolation layer (3) calculated in this means (17) (S9) is sufficient for the assumed aftershock, and if it is not sufficient, it is determined to be dangerous. Aftershock response capability determination means (18) (S10) may be provided.
Thus, the safety | security with respect to an aftershock can be determined by calculating | requiring the residual energy absorption amount of a seismic isolation layer (3).

この発明の免震建築物の安全評価システムは、免震層を有する建築物における地震発生後の安全性を評価する免震建築物の安全評価システムであって、建築物が位置する地盤または地盤相当部分、および建築物にそれぞれ設けられた加速度計と、評価演算部とを備え、前記評価演算部は、前記各加速度計により平常時の地盤および建築物の微振動を計測して平常時の地盤固有周期Tgおよび建物固有周期Tを算出する平常時各固有周期算出手段と、地震の発生により地震時の前記各加速度計で計測された加速度を記録する地震時加速度記録手段と、地震の発生後に前記各加速度計により地盤および建築物の微振動を計測して地震後の地盤固有周期Tg′および建物固有周期T′を算出する地震後各固有周期算出手段と、地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定し、許容範囲内にない場合は危険と判定する建物固有周期変化判定手段と、前記地震時加速度記録手段で記録した地震時の前記各加速度から前記免震層の地震時変位履歴および残留変位δ′を算出する地震時変位履歴・残留変位算出手段と、前記地震時加速度記録手段で記録した地震時の加速度、および前記地震時変位履歴・残留変位算出手段で算出された免震層の地震時変位履歴から、免震力復元力特性K′を計算して設定する免震力復元力特性設定手段と、前記地震後各固有周期算出手段で算出された地盤固有周期Tg′により工学的基盤よりの表層地盤の増幅率G′を算出する地震後表層地盤増幅率算出手段と、前記各手段で計算された地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′を基に、定められた計算方法で地震後における免震層の応答変位を算出する免震層応答変位算出手段と、この手段で算出された応答変位が設計限界内であるか否かを判定し、設計限界内ある場合は安全と判定し、設計限界内ある場合は危険と判定する応答変位安全判定手段とを備えるため、免震建築物において、地震被災後の建物と地盤性状特性の変化を考慮した適切な安全評価を行うことができる。   The seismic isolation building safety evaluation system according to the present invention is a seismic isolation building safety evaluation system for evaluating the safety after an earthquake occurs in a building having a seismic isolation layer, and the ground or ground on which the building is located. An accelerometer provided in each of the corresponding parts and the building, and an evaluation calculation unit, and the evaluation calculation unit measures the normal vibration of the ground and the building with each accelerometer, Each natural period calculating means for calculating the natural period Tg and the natural period T of the building, the earthquake acceleration recording means for recording the acceleration measured by each accelerometer at the time of the earthquake, and the occurrence of the earthquake Each post-earthquake natural period calculating means for calculating the ground natural period Tg ′ and the building natural period T ′ after the earthquake by measuring the ground and building micro-vibration by the respective accelerometers, It is determined whether or not the change of the period T ′ with respect to the natural period T of the building is within an allowable range, and if it is not within the allowable range, the natural period change determining means for determining the danger, and the acceleration during the earthquake Earthquake displacement history / residual displacement calculating means for calculating the displacement history and residual displacement δ ′ of the seismic isolation layer from the accelerations recorded by the recording means and the earthquake recorded by the earthquake acceleration recording means Seismic isolation force restoring force characteristic setting that calculates and sets the seismic isolation force restoring force characteristic K ′ from the earthquake acceleration displacement and the earthquake displacement history of the seismic isolation layer calculated by the earthquake displacement history / residual displacement calculating means. A post-earthquake surface ground amplification factor calculating means for calculating an amplification factor G ′ of the surface ground from the engineering base based on the natural ground period Tg ′ calculated by each natural period calculating unit after the earthquake; Calculated residue after earthquake A base isolation layer response displacement calculating means for calculating a response displacement of the base isolation layer after the earthquake by a predetermined calculation method based on the displacement δ ′, the base isolation force restoring characteristic K ′, and the surface ground amplification factor G ′; Determining whether or not the response displacement calculated by this means is within the design limit; if the response displacement is within the design limit, determine that it is safe; Therefore, it is possible to perform an appropriate safety evaluation in a base-isolated building in consideration of changes in buildings and ground properties after an earthquake.

この発明の一実施形態に係る免震建築物の安全評価システムを適用する免震建築物の説明図である。It is explanatory drawing of the seismic isolation building which applies the safety evaluation system of the seismic isolation building which concerns on one Embodiment of this invention. 同安全評価システムの概略構成のブロック図である。It is a block diagram of a schematic structure of the safety evaluation system. 同安全評価システムの処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process of the safety evaluation system. 同安全評価システムの概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the safety evaluation system. 変位、力、免震力復元力特性の関係を示すグラフである。It is a graph which shows the relationship between a displacement, force, and a seismic isolation force restoring force characteristic. 地盤または建築物の微振動のフーリェ解析結果の説明図である。It is explanatory drawing of the Fourier analysis result of the slight vibration of a ground or a building.

この発明の一実施形態を図面と共に説明する。この安全評価システム1の評価対象となる建築物は、免震建築物、つまり免震層3を有する建築物2である。この建築物2は、地盤4上の基礎5に、免震層3を介して建築物本体6が構築されている。免震層3は、図示の例では、鋼球7を、基礎5および建築物2にそれぞれ設けられた円すい面や球面状等の凹面状の一対の対向する座部材(図示せず)の間に介在させた免震装置を複数箇所(例えば4ヵ所)に設置したものである。免震層3は、この他に、すべり支承、ゴム等の弾性体やダンパ等で構成したものなど、各種の形式のものが適用できる。建築物2は、免震層3を有する建築物であれば良く、一般住宅,集合住宅,事務所ビル,鉄骨造、鉄筋コンクリード造、鉄骨鉄筋コンクリート造、木造など、規模や構造形式を問わずに適用できる。   An embodiment of the present invention will be described with reference to the drawings. The building to be evaluated by the safety evaluation system 1 is a base-isolated building, that is, a building 2 having a base-isolated layer 3. In this building 2, a building body 6 is constructed on a foundation 5 on the ground 4 via a seismic isolation layer 3. In the illustrated example, the seismic isolation layer 3 includes a steel ball 7 between a pair of confronting seat members (not shown) such as conical surfaces and spherical surfaces provided on the foundation 5 and the building 2 respectively. The seismic isolation devices intervened in are installed at multiple locations (for example, 4 locations). In addition to this, the seismic isolation layer 3 can be of various types such as a sliding bearing, an elastic body such as rubber, a damper, and the like. The building 2 only needs to be a building having the seismic isolation layer 3, regardless of the scale or the structure type, such as ordinary houses, apartment houses, office buildings, steel structures, reinforced concrete structures, steel reinforced concrete structures, and wooden structures. Applicable to.

地盤4は、一般的に工学基盤4a上に表層地盤4bが存在した層形式であり、この実施形態でもこのような形式の地盤4を評価に適用する。工学的基盤4aは、一般的に、N値50以上、せん断波速度400m/s以上の地盤で、建築物を支持するのに十分な剛性と強度を持った地層を意味する。表層地盤4bは工学基盤4a上の地層であり、工学的基盤4aに伝わった地震動は、表層地盤4bで増幅されて建築物2に伝わる。   The ground 4 is generally a layer type in which the surface layer ground 4b is present on the engineering base 4a. In this embodiment, the ground 4 of such a type is applied to the evaluation. The engineering base 4a generally means a ground layer having an N value of 50 or more and a shear wave speed of 400 m / s or more and sufficient rigidity and strength to support a building. The surface layer ground 4b is a layer on the engineering base 4a, and the earthquake motion transmitted to the engineering base 4a is amplified by the surface layer ground 4b and transmitted to the building 2.

この免震建築物の安全評価システム1は、建築物2が位置する地盤4または地盤相当部分、および建築物2にそれぞれ設けられた加速度計8a,8bと、評価演算部10(図2)とで構成される。建築物2側の加速度計8bは、建築物本体6の底部となる免震架台6aに設置する。上記「地盤相当部分」は、免震層3よりも地盤4側の部分であり、地盤側の加速度計8aは、基礎5の天端、または土間(図示せず)の天端等の地盤相当部分に設置される。   This seismic isolation building safety evaluation system 1 includes a ground 4 or a ground-equivalent portion where the building 2 is located, and accelerometers 8a and 8b provided in the building 2, respectively, and an evaluation calculation unit 10 (FIG. 2). Consists of. The accelerometer 8b on the building 2 side is installed on the base isolation frame 6a which is the bottom of the building body 6. The “ground equivalent part” is a part closer to the ground 4 than the seismic isolation layer 3, and the ground-side accelerometer 8 a is equivalent to the ground such as the top of the foundation 5 or the top of the soil (not shown). Installed in the part.

図2に示すように、評価演算部10は、建物側の加速度計8b、および通信装置31と共に、評価安全システム本体9を構成する。評価演算部10と通信装置8とは、例えばパーソナルコンピュータにより構成される。通信装置31は、評価演算部10を、インターネット等の広域コンピュータ通信網を介して、建築物のメーカの事業所等にあるサーバ(図示せず)に接続する装置である。通信装置31は、インターネットを使用せずに、評価演算部10を、宅内の表示機器のみに接続するものであっても良い。なお、同図の評価安全システム本体9は一例であり、他に種々の構成とできる。
評価演算部10は、コンピュータにおけるメモリ10aや、CPU(中央処理装置)10b、および前記CPU10bで実行される評価プログラム10cによって構成され、図3に示す各機能達成手段(11〜22)を構成する。
As shown in FIG. 2, the evaluation calculation unit 10 constitutes the evaluation safety system main body 9 together with the building-side accelerometer 8 b and the communication device 31. The evaluation calculation unit 10 and the communication device 8 are configured by, for example, a personal computer. The communication device 31 is a device that connects the evaluation calculation unit 10 to a server (not shown) in a building manufacturer's office or the like via a wide area computer communication network such as the Internet. The communication device 31 may connect the evaluation calculation unit 10 only to a home display device without using the Internet. In addition, the evaluation safety system main body 9 of the figure is an example, and can have various other configurations.
The evaluation calculation unit 10 includes a memory 10a in a computer, a CPU (central processing unit) 10b, and an evaluation program 10c executed by the CPU 10b, and constitutes each function achievement means (11-22) shown in FIG. .

図3は評価プログラム10cの各手順のステップ(S1)〜(S16)を示している。評価演算部10の各機能達成手段(11〜22)は、これらの各手順とコンピュータのハードウェエア(オペレーションプログラムを含む)とで構成される。図3の各ステップS1〜S14に、図4の対応する機能達成手段の符号を付した。   FIG. 3 shows steps (S1) to (S16) of each procedure of the evaluation program 10c. Each function achievement means (11-22) of the evaluation calculation part 10 is comprised by these each procedures and the hardware of a computer (an operation program is included). Steps S1 to S14 in FIG. 3 are denoted by the corresponding function achievement means in FIG.

図3,図4に示すように、前記評価演算部10は、平常時各固有周期算出手段11、地震検出手段12、地震時加速度記録手段13、地震後各固有周期算出手段14、建物固有周期変化判定手段15、地震時変位履歴・残留変位算出手段16、免震層エネルギー吸収量算出手段17、余震対応能力判定手段18、免震力復元力特性設定手段19、地震後表層地盤増幅率算出手段20、免震層応答変位算出手段21、および応答変位安全判定手段22を備える。   As shown in FIG. 3 and FIG. 4, the evaluation calculation unit 10 normally includes each natural period calculating means 11, earthquake detecting means 12, earthquake acceleration recording means 13, each natural period calculating means 14 after an earthquake, building natural period. Change determining means 15, earthquake displacement history / residual displacement calculating means 16, seismic isolation layer energy absorption calculating means 17, aftershock response capability determining means 18, seismic isolation restoring force characteristic setting means 19, post-earthquake surface layer ground gain calculation Means 20, seismic isolation layer response displacement calculation means 21, and response displacement safety judgment means 22 are provided.

上記各手段11〜22の構成,機能を、図3の流れ図と共に説明する。
平常時各固有周期算出手段11:この免震建築物の安全評価システムは、まず、各加速度計8a,8bにより平常時の地盤4および建築物3の微振動を計測する(ステップS1)。この計測結果から、平常時の地盤固有周期Tgおよび建物固有周期Tを算出する(S2)。平常時各固有周期算出手段11は、これらステップS1,S2の処理を行う。ステップS1,S2の処理は、建築物3の設計時や構築時に1回だけ行っても、また構築後に、地震の発生までに繰り返して行っても良い。
なお、地盤の微振動を計測し、フーリェ解析をすることで、図6に示すようにピークを示す振動数fが確認できる。この逆数、1/fが、地盤固有周期Tgとなる。すなわち、Tg=1/fである。建物固有周期Tも、地盤の場合と同様に微振動から求められる。平常時各固有周期算出手段11は、上記のように平常時の各微振動から、地盤固有周期Tgおよび建物固有周期Tを算出する。後述の地震後各固有周期算出手段14も、上記同様にフーリェ解析により各固有周期を算出する。
The configuration and function of each of the means 11 to 22 will be described with reference to the flowchart of FIG.
Normal natural period calculation means 11: This seismic isolated building safety evaluation system first measures the micro vibrations of the ground 4 and the building 3 at normal times by the respective accelerometers 8a and 8b (step S1). From this measurement result, a normal soil natural period Tg and a building natural period T are calculated (S2). Each natural period calculation means 11 normally performs these steps S1 and S2. The processes of steps S1 and S2 may be performed only once at the time of designing or constructing the building 3, or may be repeated after the construction until the occurrence of the earthquake.
In addition, the frequency f which shows a peak can be confirmed as shown in FIG. 6 by measuring the fine vibration of a ground and performing a Fourier analysis. This reciprocal, 1 / f, is the ground natural period Tg. That is, Tg = 1 / f. The building natural period T is also obtained from the slight vibration as in the case of the ground. Each normal period natural period calculation means 11 calculates the natural period Tg and the natural period T of the building from each normal vibration as described above. Each post-earthquake natural period calculation means 14 described later also calculates each natural period by Fourier analysis in the same manner as described above.

地震検出手段12:地震が発生したことを検出する(S3)。地震発生の検出は、加速度計8a,8bの検出値を用いて行っても、これとは別の地震計を用いて行っても良い。地震検出手段12は、このステップS3の処理を行う。   Earthquake detection means 12: Detects that an earthquake has occurred (S3). The detection of the occurrence of an earthquake may be performed using detected values of the accelerometers 8a and 8b, or may be performed using a seismometer different from this. The earthquake detection means 12 performs the process of step S3.

地震時加速度記録手段13:地震検出手段12による地震発生の検出により地震時の前記各加速度計8a,8bで計測された加速度を、メモリ10b(図2)の定められ記憶領域に記録する(S4)。地震時加速度記録手段13は、このステップS4の処理を行う。   Earthquake acceleration recording means 13: The acceleration measured by each of the accelerometers 8a and 8b at the time of an earthquake by detecting the occurrence of an earthquake by the earthquake detection means 12 is recorded in a predetermined storage area of the memory 10b (FIG. 2) (S4). ). The earthquake acceleration recording means 13 performs the process of step S4.

地震後各固有周期算出手段14:地震の発生後に各加速度計8a,8bにより地盤4および建築物3の微振動を計測する(S5)。その計測値から、地震後の地盤固有周期Tg′および建物固有周期T′を算出する(S6)。各固有周期で前記微振動が大きくなるため、上記微振動に含まれる加速度の大きさ,方向の変化から、地盤固有周期Tg′および建物固有周期T′を求めることができる。 地震後各固有周期算出手段14は、このステップS5,S6の処理を行う。   Each natural period calculation means 14 after the earthquake: After the occurrence of the earthquake, the fine vibrations of the ground 4 and the building 3 are measured by the respective accelerometers 8a and 8b (S5). From the measured values, the natural period Tg ′ after the earthquake and the natural period T ′ of the building are calculated (S6). Since the minute vibration increases in each natural period, the ground natural period Tg ′ and the building natural period T ′ can be obtained from the change in the magnitude and direction of the acceleration included in the fine vibration. Each post-earthquake natural period calculating means 14 performs the processes of steps S5 and S6.

建物固有周期変化判定手段15:地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定する(S7)。許容範囲は、任意に設定する。許容範囲内であると判定した場合は、ステップS8に進み、以降の各ステップを経て安全判定を行う。建物固有周期変化判定手段15は、このステップS7,S15,S16の処理を行う。   Building natural period change determining means 15: It is determined whether the change of the building natural period T ′ after the earthquake with respect to the normal building natural period T is within an allowable range (S7). The allowable range is set arbitrarily. If it is determined that the value is within the allowable range, the process proceeds to step S8, and safety determination is performed through the subsequent steps. The building natural period change determining means 15 performs the processes of steps S7, S15, and S16.

地震時変位履歴・残留変位算出手段16:ステップS7で許容範囲内と判定された場合は、前記地震時加速度記録手段13(S4)で記録した地震時の前記各加速度から免震層3の地震時変位履歴および残留変位δ′を算出する(S8)。残留変位δ′は、地震が納まった後に免震層3に残っている水平方向の変位である。地震時変位履歴・残留変位算出手段16は、このステップS8の処理を行う。
なお、地震時変位履歴・残留変位算出手段16は、具体的には、地盤と建物の加速度の差分を時間で2回積分して免震層変位を算出する。地震終了後の変位値が、残留変位δ′である。ただし、残留変位δ′の算出には、上記を基本とするが、精度向上等のために種々の手法を用いても良い。
Seismic displacement history / residual displacement calculating means 16: If it is determined in step S7 that it is within the allowable range, the seismic isolation layer 3 earthquake is determined from the respective accelerations at the time of the earthquake recorded by the earthquake acceleration recording means 13 (S4). A displacement history and a residual displacement δ ′ are calculated (S8). The residual displacement δ ′ is a horizontal displacement remaining in the seismic isolation layer 3 after the earthquake is stopped. The earthquake displacement history / residual displacement calculation means 16 performs the process of step S8.
Specifically, the earthquake displacement history / residual displacement calculating means 16 calculates the seismic isolation layer displacement by integrating the difference between the acceleration of the ground and the building twice in time. The displacement value after the earthquake is the residual displacement δ ′. However, the calculation of the residual displacement δ ′ is based on the above, but various methods may be used to improve accuracy.

免震層エネルギー吸収量算出手段17:ステップS8の後、前記地震時変位履歴・残留変位算出手段16で計算された残留変位δ′より、免震層3の吸収可能な残余エネルギー吸収量を算出する(S9)。免震層エネルギー吸収量算出手段17は、このステップS9の処理を行う。   Seismic isolation layer energy absorption amount calculation means 17: After step S8, the residual energy absorption amount that can be absorbed by the seismic isolation layer 3 is calculated from the residual displacement δ ′ calculated by the displacement history / residual displacement calculation means 16 during the earthquake. (S9). The seismic isolation layer energy absorption amount calculation means 17 performs the process of step S9.

余震対応能力判定手段18:ステップS9の後、算出された免震層3の残余エネルギー吸収量が、想定される余震に対して十分であるか否かを判定する(S10)。想定される余震は、地震時加速度記録手段13(S4)等で記録された本震に応じて定められた割合の最大余震であり、免震層3で負担するエネルギー量に換算する。また、想定される余震に対して十分であるか否かは、十分であるとして設定したエネルギー量の差またはエネルギー量の割合によって判定する。上記の判定(S10)で十分でない場合は、ステップS16に進み、危険と判定する(S16)。十分な場合は、次のステップ(S11)に進み、さらに他の観点からの判定を行った後に、安全か否かを判定する。余震対応能力判定手段18は、このステップS10の処理を行う。   Aftershock response capability determining means 18: After step S9, it is determined whether the calculated residual energy absorption amount of the seismic isolation layer 3 is sufficient for the assumed aftershock (S10). The assumed aftershock is the maximum aftershock of the ratio determined according to the main shock recorded by the earthquake acceleration recording means 13 (S4) or the like, and is converted into the amount of energy borne by the seismic isolation layer 3. Whether or not it is sufficient for the assumed aftershock is determined by the difference in energy amount or the ratio of the energy amount set as sufficient. If the above determination (S10) is not sufficient, the process proceeds to step S16, where it is determined to be dangerous (S16). If it is sufficient, the process proceeds to the next step (S11), and after determining from another viewpoint, it is determined whether or not it is safe. The aftershock response capability determination means 18 performs the process of step S10.

免震層応答変位算出手段21:建築物3の設計上、または平常時における、免震層3の残留変位δ、免震力復元力特性K、および工学的基盤4aよりの表層地盤4bの増幅率Gを基に、定められた計算方法で免震層3の応答変位を算出する。「応答」とは、地震や強風などの外部の刺激を受けて建築物が振動する現象を指す。この算出は、図3のフロー図には示していない。地震後には、ステップS13の手順として、前記残留変位δ、免震力復元力特性K、および表層地盤の増幅率Gを、地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′に再設定して再計算を行う。免震層応答変位算出手段21は、このステップS13の処理、および建築物3の設計上または平常時における前記応答変位の算出を行う。免震層応答変位算出には、等価線形化法または時刻歴応答解析を用いる。残留変位δは、設計時や平常時は零として計算する。   Seismic isolation layer response displacement calculation means 21: Residual displacement δ of base isolation layer 3, base isolation force restoring force characteristic K, and amplification of surface ground 4b from engineering base 4a in the design of building 3 or in normal times Based on the rate G, the response displacement of the seismic isolation layer 3 is calculated by a predetermined calculation method. “Response” refers to a phenomenon in which a building vibrates in response to an external stimulus such as an earthquake or strong wind. This calculation is not shown in the flow diagram of FIG. After the earthquake, as the procedure of step S13, the residual displacement δ, the seismic isolation force restoring force characteristic K, and the amplification factor G of the ground layer are set as the residual displacement δ ′ after the earthquake, the seismic isolation restoring force characteristic K ′, and Recalculate by resetting to the surface layer amplification factor G ′. The seismic isolation layer response displacement calculation means 21 calculates the response displacement in the process of step S13 and in the design of the building 3 or in normal times. The equivalent linearization method or time history response analysis is used to calculate the seismic isolation layer response displacement. The residual displacement δ is calculated as zero during design and normal times.

等価線形化法は、概要を説明すると、建築物の1次固有周期を利用して簡易的に応答変位を求める方法であり、建築物を等価1質点系にモデル化し、極稀地震の設計用応答スペクトルを利用して最大応答加速度を算出し(推定値)、応答変位を求める方法である。
等価線形化法は、ごく簡単に数式で説明すると、
δ=A・G・√(M/K)
である。
ここで、A:係数、
M:建物の質量、 G:地盤の増幅率、
K:免震力復元力特性、
である。
時刻歴応答解析は、概要を説明すると、建築物を質量・ばね・減衰でモデル化した上で、地表面に時間とともに変化する地動加速度を与え、建築物の各階の応答加速度、速度、変位を計算する方法である。
The outline of the equivalent linearization method is a method for obtaining the response displacement simply by using the first natural period of the building. The equivalent linearization method can be used to model the building in an equivalent one-mass system and to design extremely rare earthquakes. This is a method for calculating a response displacement by calculating a maximum response acceleration (estimated value) using a response spectrum.
The equivalent linearization method can be explained with mathematical formulas very simply:
δ = A ・ G ・ √ (M / K)
It is.
Where A: coefficient,
M: building mass, G: ground gain,
K: Seismic isolation resilience characteristics,
It is.
The time history response analysis can be summarized as follows: the building is modeled by mass, spring, and damping, and the ground surface is given a ground acceleration that changes with time, and the response acceleration, speed, and displacement of each floor of the building are expressed. It is a calculation method.

免震力復元力特性設定手段19:前記地震時加速度記録手段13で記録した地震時の加速度、および前記地震時変位履歴・残留変位算出手段16で算出された免震層3の地震時変位履歴から、免震力復元力特性K′を計算し、前記免震層応答変位算出手段21に再設定する(S11)。免震力復元力特性設定手段19は、このステップS3の処理を行う。 前記免震力復元力特性K′の求め方の例を説明すると、地震時のデータ(加速度、変位、建物重量(建物設計時に算出された値))から、図5が得られる。同図より、免震力復元力特性K1,K2とQを読み取る。同図の横軸は変位、縦軸は力である。
ただし、K1:免震層の1次周期
K2:免震層の2次周期
Q :免震層の切片(免震層が動き出すときの荷重)
なお、免震力復元力特性K′とK1,K2との関係を説明すると、
K′=Q/θ+K2
である。K1,K2とついては、基本的にはK2を用いて計算し、時刻歴応答解析のときのみ上記の式(K′=Q/θ+K2)において、K2の代わりにK1を用いる。
Seismic isolation force restoring force characteristic setting means 19: Earthquake acceleration recorded by the earthquake acceleration recording means 13 and earthquake displacement history of the seismic isolation layer 3 calculated by the earthquake displacement history / residual displacement calculation means 16 From this, the base isolation force restoring force characteristic K ′ is calculated and reset in the base isolation layer response displacement calculating means 21 (S11). The seismic isolation force restoring force characteristic setting means 19 performs the process of step S3. Explaining an example of how to obtain the seismic isolation force restoring force characteristic K ′, FIG. 5 is obtained from data (acceleration, displacement, building weight (value calculated at the time of building design)) at the time of the earthquake. From the figure, seismic isolation force restoring force characteristics K1, K2 and Q are read. In the figure, the horizontal axis represents displacement, and the vertical axis represents force.
K1: Primary period of the seismic isolation layer
K2: Secondary period of seismic isolation layer
Q: Section of the base isolation layer (load when the base isolation layer starts moving)
In addition, the relationship between the seismic isolation force restoring force characteristic K ′ and K1, K2 is explained as follows:
K '= Q / θ + K2
It is. K1 and K2 are basically calculated using K2, and K1 is used instead of K2 in the above equation (K ′ = Q / θ + K2) only in the time history response analysis.

地震後表層地盤増幅率算出手段20:ステップS11の後、地震後各固有周期算出手段14で算出された地盤固有周期Tg′により、工学的基盤よりの表層地盤の増幅率G′を算出する(S12)。地震後表層地盤増幅率算出手段20は、このステップS12の処理を行う。
地盤固有周期Tg′により増幅率G′を求める方法を、極めて簡単で例を示すと、式、 G′=aTg′+b
a:係数
b:定数
の関係にから求める。a,bの値は、経験値等によって適宜定める。
ただし、上記関係式に限らず、種々の手法で地盤固有周期Tg′により増幅率G′を求めることができる。
Post-earthquake surface layer amplification factor calculation means 20: After step S11, the amplification factor G 'of the surface layer from the engineering base is calculated from the ground natural period Tg' calculated by each natural period calculation unit 14 after the earthquake ( S12). The post-earthquake surface ground gain calculation means 20 performs the process of step S12.
A method for obtaining the amplification factor G ′ from the ground natural period Tg ′ is very simple and an example is as follows: G ′ = aTg ′ + b
a: Coefficient b: Calculated from the relationship of constants. The values of a and b are appropriately determined based on experience values.
However, the amplification factor G ′ can be obtained by the ground natural period Tg ′ by various methods without being limited to the above relational expression.

応答変位安全判定手段22:ステップS13で算出された応答変位が設計限界内であるか否かを判定する(S14)。設計限界内ある場合はステップS15に進み、安全と判定する。設計限界内ある場合は、ステップS16に進み、危険と判定する。応答変位安全判定手段22は、これらステップS14,S15,S16の処理を行う。   Response displacement safety determination means 22: It is determined whether or not the response displacement calculated in step S13 is within the design limit (S14). If it is within the design limit, the process proceeds to step S15 and is determined to be safe. If it is within the design limit, the process proceeds to step S16 and is determined to be dangerous. The response displacement safety determination means 22 performs the processes of steps S14, S15, and S16.

評価演算部10による安全判定の判定結果は、通信装置31(図2)を介して前記サーバーに送られる。   The determination result of the safety determination by the evaluation calculation unit 10 is sent to the server via the communication device 31 (FIG. 2).

この実施形態の免震建築物の安全評価システム1によると、地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′を求め、これらを基に、地震後における免震層3の応答変位を算出する。このように求めた応答変位を設計限界と比較し、安全か否かの判定を行う。
このように、免震建築物2において、建築物2(免震層3を含む)および、地盤4の性状変化を考慮して、建築物・地盤条件を設定し、これに基づき解析を行うことで、実情に応じた安全性の判定を行うことができる。そのため適切な安全評価が行える。
According to the seismic isolation building safety evaluation system 1 of this embodiment, the post-earthquake residual displacement δ ′, the seismic isolation force restoring force characteristic K ′, and the surface ground amplification factor G ′ are obtained, and based on these, after the earthquake The response displacement of the seismic isolation layer 3 is calculated. The response displacement thus obtained is compared with the design limit to determine whether or not it is safe.
In this way, in the base-isolated building 2, considering the property changes of the building 2 (including the base-isolated layer 3) and the ground 4, set the building and ground conditions and perform analysis based on this. Thus, the safety can be determined according to the actual situation. Therefore, appropriate safety evaluation can be performed.

また、建物固有周期変化判定手段15は、地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定し、許容範囲内にない場合は危険と判定する。そのため、建物固有周期の変化を見て、明らかに危険と分かる場合は、地盤についての種々の計算を行うことなく、危険と判定することができる。
なお、建物固有周期T′は、地震により建物が損傷した場合、例えばブレースに伸びが生じた場合や、柱梁接合部が破損した場合は、平常時に比べて長くなる。
The building natural period change determining means 15 determines whether the change of the building natural period T ′ after the earthquake with respect to the normal building natural period T is within the allowable range. Judged as dangerous. Therefore, when it is clearly seen as dangerous by looking at the change in the natural period of the building, it can be determined as dangerous without performing various calculations for the ground.
It should be noted that the building natural period T ′ becomes longer than usual when the building is damaged by an earthquake, for example, when the brace is stretched or when the column beam joint is damaged.

免震層応答変位算出手段21は、建築物2の設計上、または平常時における、免震層3の残留変位δ、免震力復元力特性K、および表層地盤4bの増幅率Gを基に、免震層3の応答変位を算出する手段であり、この免震層応答変位算出手段21を用い、地震後に、残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′に再設定して再計算を行う。そのため、地震後用の専用の免震層応答変位算出手段を設けることなく、応答変位による安全判定が行える。同じ免震層応答変位算出手段21によって設計時,平常時と地震後との計算を行うため、統一性のある信頼性の高い安全判定を行うことができる。   The base isolation layer response displacement calculating means 21 is based on the residual displacement δ of the base isolation layer 3, the base isolation force restoring force characteristic K, and the amplification factor G of the surface layer ground 4b in the design of the building 2 or in normal times. , A means for calculating the response displacement of the seismic isolation layer 3, and using this seismic isolation layer response displacement calculation means 21, after the earthquake, the residual displacement δ ′, the seismic isolation force restoring force characteristic K ′, and the surface ground gain G Reset to ′ and recalculate. For this reason, safety determination based on response displacement can be performed without providing a dedicated seismic isolation layer response displacement calculation means for post-earthquake use. Since the same seismic isolation layer response displacement calculation means 21 performs calculation at normal time and after the earthquake at the time of design, uniform and reliable safety judgment can be performed.

前記建物固有周期変化判定手段15(S7)で許容範囲内であると判定された場合は、計算された残留変位δ′より免震層3の吸収可能な残余エネルギー吸収量を算出し、残余エネルギー吸収量が想定される余震に対して十分であるか否かを判定し(S10)、安全か否かの判定を行う。そのため、余震に対する安全性の判定が行える。   If it is determined by the building natural period change determining means 15 (S7) that it is within the allowable range, the residual energy absorption amount that can be absorbed by the seismic isolation layer 3 is calculated from the calculated residual displacement δ ', and the residual energy is calculated. It is determined whether or not the amount of absorption is sufficient for an assumed aftershock (S10), and it is determined whether or not it is safe. Therefore, safety against aftershocks can be determined.

1…安全評価システム
2…建築物
3…免震層
4…地盤
4a…工学的基盤
4b…表層地盤
5…基礎
6…建築物本体
8a,8b…加速度計
10…評価演算部
11…平常時各固有周期算出手段
12…地震検出手段
13…地震時加速度記録手段
14…地震後各固有周期算出手段
15…建物固有周期変化判定手段
16…地震時変位履歴・残留変位算出手段
17…免震層エネルギー吸収量算出手段
18…余震対応能力判定手段
19…免震力復元力特性設定手段
20…地震後表層地盤増幅率算出手段
21…免震層応答変位算出手段
22…応答変位安全判定手段
DESCRIPTION OF SYMBOLS 1 ... Safety evaluation system 2 ... Building 3 ... Seismic isolation layer 4 ... Ground 4a ... Engineering base 4b ... Surface layer ground 5 ... Base 6 ... Building body 8a, 8b ... Accelerometer 10 ... Evaluation operation part 11 ... Each normal Natural period calculation means 12 ... Earthquake detection means 13 ... Earthquake acceleration recording means 14 ... Each natural period calculation means 15 after earthquake ... Building natural period change judgment means 16 ... Earthquake displacement history / residual displacement calculation means 17 ... Seismic isolation layer energy Absorption amount calculating means 18 ... aftershock response capability judging means 19 ... base isolation force restoring force characteristic setting means 20 ... post-earthquake surface layer amplification factor calculating means 21 ... base isolation layer response displacement calculating means 22 ... response displacement safety judging means

Claims (3)

免震層を有する建築物における地震発生後の安全性を評価する免震建築物の安全評価システムであって、前記建築物が位置する地盤または地盤相当部分、および建築物にそれぞれ設けられた加速度計と、評価演算部とを備え、
前記評価演算部は、
前記各加速度計により平常時の地盤および建築物の微振動を計測して平常時の地盤固有周期Tgおよび建物固有周期Tを算出する平常時各固有周期算出手段と、
地震の発生により地震時の前記各加速度計で計測された加速度を記録する地震時加速度記録手段と、
地震の発生後に前記各加速度計により地盤および建築物の微振動を計測して地震後の地盤固有周期Tg′および建物固有周期T′を算出する地震後各固有周期算出手段と、
地震後における建物固有周期T′の平常時の建物固有周期Tに対する変化が、許容範囲内にあるか否かを判定し、許容範囲内にない場合は危険と判定する建物固有周期変化判定手段と、
前記地震時加速度記録手段で記録した地震時の前記各加速度から前記免震層の地震時変位履歴および残留変位δ′を算出する地震時変位履歴・残留変位算出手段と、
前記地震時加速度記録手段で記録した地震時の加速度、および前記地震時変位履歴・残留変位算出手段で算出された免震層の地震時変位履歴から、免震力復元力特性K′を計算して設定する免震力復元力特性設定手段と、
前記地震後各固有周期算出手段で算出された地盤固有周期Tg′により工学的基盤よりの表層地盤の増幅率G′を算出する地震後表層地盤増幅率算出手段と、
前記各手段で計算された地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′を基に、定められた計算方法で地震後における免震層の応答変位を算出する免震層応答変位算出手段と、
この手段で算出された応答変位が設計限界内であるか否かを判定し、設計限界内ある場合は安全と判定し、設計限界内ある場合は危険と判定する応答変位安全判定手段、
とを備えた免震建築物の安全評価システム。
A seismic isolation system safety evaluation system for evaluating safety after an earthquake in a building having a seismic isolation layer, the ground on which the building is located or a portion corresponding to the ground, and an acceleration provided for each of the buildings And an evaluation calculation unit,
The evaluation calculation unit includes:
A normal period natural period calculating means for measuring the normal vibration of the ground and the building by each accelerometer and calculating the normal period natural period Tg and the natural period T of the building;
An earthquake acceleration recording means for recording the acceleration measured by each of the accelerometers at the time of the earthquake due to the occurrence of the earthquake;
Each post-earthquake natural period calculating means for calculating the natural period Tg ′ and the natural period T ′ of the building after the earthquake by measuring the micro-vibration of the ground and the building with each accelerometer after the occurrence of the earthquake;
A building natural period change determining means for determining whether or not a change of the natural period T ′ of the building after the earthquake with respect to the normal natural period T of the building is within an allowable range; ,
An earthquake displacement history / residual displacement calculating means for calculating an earthquake displacement history and a residual displacement δ ′ of the seismic isolation layer from the respective accelerations during the earthquake recorded by the earthquake acceleration recording means;
Based on the earthquake acceleration recorded by the earthquake acceleration recording means and the earthquake displacement history of the base isolation layer calculated by the earthquake displacement history / residual displacement calculation means, the base isolation force restoring force characteristic K ′ is calculated. Seismic isolation restoring force characteristic setting means,
A post-earthquake ground surface amplification factor calculating means for calculating the amplification factor G ′ of the surface layer from the engineering base based on the natural ground period Tg ′ calculated by each natural period calculating unit after the earthquake;
Based on the residual displacement δ ′ after the earthquake calculated by the above means, the seismic isolation force restoring force characteristic K ′, and the surface ground amplification factor G ′, the response displacement of the base isolation layer after the earthquake by a predetermined calculation method Seismic isolation layer response displacement calculating means for calculating
It is determined whether or not the response displacement calculated by this means is within the design limit. If it is within the design limit, it is determined to be safe, and if it is within the design limit, response displacement safety determination means is determined to be dangerous.
A safety evaluation system for base-isolated buildings.
請求項1において、前記免震層応答変位算出手段は、前記建築物の設計上、または平常時における、前記免震層の残留変位δ、前記免震層の免震力復元力特性K、および工学的基盤よりの表層地盤の増幅率Gを基に、定められた計算方法で免震層の応答変位を算出する手段であって、前記残留変位δ、免震力復元力特性K、および表層地盤の増幅率Gを、地震後の残留変位δ′、免震力復元力特性K′、および表層地盤増幅率G′に再設定して再計算を行う免震建築物の安全評価システム。   In Claim 1, the said seismic isolation layer response displacement calculation means is the design of the said building, or the normal displacement in the normal time, the residual displacement (delta) of the said seismic isolation layer, the seismic isolation force restoring force characteristic K of the said seismic isolation layer, A means for calculating the response displacement of the base isolation layer by a predetermined calculation method based on the amplification factor G of the surface layer from the engineering base, the residual displacement δ, the base isolation force restoring force characteristic K, and the surface layer A seismic isolation building safety evaluation system that recalculates the ground amplification factor G after resetting it to the residual displacement δ 'after the earthquake, seismic isolation force restoring force characteristics K', and surface ground amplification factor G '. 請求項1または請求項2において、前記建物固有周期変化判定手段で許容範囲内であると判定された場合に、前記地震時変位履歴・残留変位算出手段で計算された残留変位δ′より免震層の吸収可能な残余エネルギー吸収量を算出する免震層エネルギー吸収量算出手段と、
この手段で算出された免震層の残余エネルギー吸収量が想定される余震に対して十分であるか否かを判定し、十分でない場合は危険と判定する余震対応能力判定手段、
とを設けた免震建築物の安全評価システム。
3. The seismic isolation system according to claim 1 or 2, wherein when the building natural period change determining means determines that it is within an allowable range, the residual displacement δ ′ calculated by the earthquake displacement history / residual displacement calculating means is used. Seismic isolation layer energy absorption amount calculating means for calculating the amount of residual energy absorption that can be absorbed by the layer,
Determining whether the residual energy absorption of the seismic isolation layer calculated by this means is sufficient for the assumed aftershock, and, if not sufficient, aftershock response capability determining means for determining as dangerous,
A safety evaluation system for base-isolated buildings.
JP2012035755A 2012-02-22 2012-02-22 Safety evaluation system for base-isolated buildings Expired - Fee Related JP5911733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035755A JP5911733B2 (en) 2012-02-22 2012-02-22 Safety evaluation system for base-isolated buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035755A JP5911733B2 (en) 2012-02-22 2012-02-22 Safety evaluation system for base-isolated buildings

Publications (2)

Publication Number Publication Date
JP2013170955A true JP2013170955A (en) 2013-09-02
JP5911733B2 JP5911733B2 (en) 2016-04-27

Family

ID=49264979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035755A Expired - Fee Related JP5911733B2 (en) 2012-02-22 2012-02-22 Safety evaluation system for base-isolated buildings

Country Status (1)

Country Link
JP (1) JP5911733B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479535B1 (en) * 2013-12-19 2015-01-13 한국원자력연구원 Evaluation Method for the displacement probability distribution of isolation device and Computer readable media using the same
JP2016075583A (en) * 2014-10-07 2016-05-12 清水建設株式会社 System and method for confirming soundness of building
JP2017067606A (en) * 2015-09-30 2017-04-06 清水建設株式会社 Building response estimation method
JP2017203293A (en) * 2016-05-11 2017-11-16 大成建設株式会社 Displacement estimation monitoring system for skeleton
JP2018044775A (en) * 2016-09-12 2018-03-22 戸田建設株式会社 Forecasting method for expansion of damages from aftershocks, and forecasting system for the same
JP2018133029A (en) * 2017-02-17 2018-08-23 清水建設株式会社 Determination device and determination method
WO2019151151A1 (en) * 2018-01-31 2019-08-08 株式会社ブリヂストン Base isolation device, base isolation monitoring system, and base isolation monitoring method
US10429269B2 (en) * 2013-01-09 2019-10-01 Ntt Facilities, Inc. Building safety verification system and building safety verification method
WO2021145284A1 (en) * 2020-01-15 2021-07-22 株式会社サイエンス構造 Building risk level determination server, building risk level determination method and program thereof, information communication terminal, information processing method and program thereof, and building risk level determination system
GB2615191A (en) * 2021-12-17 2023-08-02 Ocado Innovation Ltd Seismic detection system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2009098101A (en) * 2007-10-19 2009-05-07 Kajima Corp Determination method for existence of suffering of building
JP2011095237A (en) * 2009-09-29 2011-05-12 Central Corporation Method, device and system for evaluation of earthquake-proof performance
JP2011214583A (en) * 1998-06-02 2011-10-27 Iau:Kk Base isolation device, sliding bearing, and base isolation structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011214583A (en) * 1998-06-02 2011-10-27 Iau:Kk Base isolation device, sliding bearing, and base isolation structure
JP2008298704A (en) * 2007-06-04 2008-12-11 Sekisui Chem Co Ltd Damage diagnosis system of building
JP2009098101A (en) * 2007-10-19 2009-05-07 Kajima Corp Determination method for existence of suffering of building
JP2011095237A (en) * 2009-09-29 2011-05-12 Central Corporation Method, device and system for evaluation of earthquake-proof performance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10429269B2 (en) * 2013-01-09 2019-10-01 Ntt Facilities, Inc. Building safety verification system and building safety verification method
KR101479535B1 (en) * 2013-12-19 2015-01-13 한국원자력연구원 Evaluation Method for the displacement probability distribution of isolation device and Computer readable media using the same
JP2016075583A (en) * 2014-10-07 2016-05-12 清水建設株式会社 System and method for confirming soundness of building
JP2017067606A (en) * 2015-09-30 2017-04-06 清水建設株式会社 Building response estimation method
JP2017203293A (en) * 2016-05-11 2017-11-16 大成建設株式会社 Displacement estimation monitoring system for skeleton
JP2018044775A (en) * 2016-09-12 2018-03-22 戸田建設株式会社 Forecasting method for expansion of damages from aftershocks, and forecasting system for the same
JP2018133029A (en) * 2017-02-17 2018-08-23 清水建設株式会社 Determination device and determination method
TWI712725B (en) * 2018-01-31 2020-12-11 日商普利司通股份有限公司 Anti-vibration device, anti-vibration detection system and anti-vibration detection method
WO2019151151A1 (en) * 2018-01-31 2019-08-08 株式会社ブリヂストン Base isolation device, base isolation monitoring system, and base isolation monitoring method
JPWO2019151151A1 (en) * 2018-01-31 2021-02-04 株式会社ブリヂストン Seismic isolation device, seismic isolation monitoring system and seismic isolation monitoring method
JP7252907B2 (en) 2018-01-31 2023-04-05 株式会社ブリヂストン Seismic isolation device, seismic isolation monitoring system and seismic isolation monitoring method
WO2021145284A1 (en) * 2020-01-15 2021-07-22 株式会社サイエンス構造 Building risk level determination server, building risk level determination method and program thereof, information communication terminal, information processing method and program thereof, and building risk level determination system
TWI829989B (en) * 2020-01-15 2024-01-21 日商科學構造股份有限公司 Building hazard determination server, building hazard determination method and program, and information communication terminal device, information processing method and program, and building hazard determination system
JP7418798B2 (en) 2020-01-15 2024-01-22 株式会社サイエンス構造 Building risk assessment server, building risk assessment method, and its program, information communication terminal, information processing method, and its program, and building risk assessment system
GB2615191A (en) * 2021-12-17 2023-08-02 Ocado Innovation Ltd Seismic detection system and method
GB2615191B (en) * 2021-12-17 2024-04-10 Ocado Innovation Ltd Seismic detection system and method

Also Published As

Publication number Publication date
JP5911733B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5911733B2 (en) Safety evaluation system for base-isolated buildings
JP5809174B2 (en) Building safety verification system, building safety verification method and program
Vafaei et al. Seismic response of mega buckling‐restrained braces subjected to fling‐step and forward‐directivity near‐fault ground motions
Michel et al. Quantification of fundamental frequency drop for unreinforced masonry buildings from dynamic tests
US10648881B2 (en) Seismic response assessment of man-made structures
Siringoringo et al. Seismic response analyses of an asymmetric base‐isolated building during the 2011 Great East Japan (Tohoku) Earthquake
Casciati et al. Dynamic behavior of a masonry civic belfry under operational conditions
Chen et al. Predominant period and equivalent viscous damping ratio identification for a full‐scale building shake table test
Hernandez et al. Estimation of element‐by‐element demand‐to‐capacity ratios in instrumented SMRF buildings using measured seismic response
Erazo et al. High‐resolution seismic monitoring of instrumented buildings using a model‐based state observer
Wang et al. Dynamic characteristics and seismic behavior of prefabricated steel stairs in a full‐scale five‐story building shake table test program
JP2014102231A (en) Safety evaluation device in seismic isolation architectural structure
Hu et al. Optimal multi‐type sensor placement for monitoring high‐rise buildings under bidirectional long‐period ground motions
Nakamura et al. Effects and dynamic characteristics of the core‐suspended isolation system assessed by long‐term structural health monitoring
Zhou et al. Overall damage identification of flag-shaped hysteresis systems under seismic excitation
JP5799183B2 (en) Building safety verification system, building safety verification method and program
Qi et al. Influence of foundation type on seismic response of low-rise structures in liquefiable soil
JP6672133B2 (en) Building with earthquake damage assessment function
Lignos et al. Estimation of base motion in instrumented steel buildings using output‐only system identification
Benavent-Climent et al. Shaking table tests of structures with hysteretic dampers: experimental results versus prediction using non-linear static methods
Xu et al. Estimation of maximum drift of multi‐degree‐of‐freedom shear structures with unknown parameters using only one accelerometer
JP6499832B2 (en) Structure safety verification system, structure safety verification method and program
JP6363539B2 (en) Estimation method of damaged part of building
Yao et al. Dynamic Characteristics and Time‐History Analysis of Hydraulic Climbing Formwork for Seismic Motions
Luo et al. Research and experiment on optimal separation distance of adjacent buildings based on performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160330

R150 Certificate of patent or registration of utility model

Ref document number: 5911733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees