JP2017200366A - Vibration wave motor and electronic apparatus loading the same - Google Patents
Vibration wave motor and electronic apparatus loading the same Download PDFInfo
- Publication number
- JP2017200366A JP2017200366A JP2016090765A JP2016090765A JP2017200366A JP 2017200366 A JP2017200366 A JP 2017200366A JP 2016090765 A JP2016090765 A JP 2016090765A JP 2016090765 A JP2016090765 A JP 2016090765A JP 2017200366 A JP2017200366 A JP 2017200366A
- Authority
- JP
- Japan
- Prior art keywords
- vibrator
- flexible substrate
- wave motor
- vibration wave
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
本発明は、振動波モータに関する。 The present invention relates to a vibration wave motor.
従来、高周波電圧を印加することで周期的に振動する振動子を摺動部材に圧接させ、摺動部材を相対的に駆動する振動波モータ(超音波モータ)が知られている。特許文献1では、振動子を円滑に直進駆動させるために、振動子に給電するフレキシブル基板を折り返して配置する超音波モータが開示されている。 2. Description of the Related Art Conventionally, a vibration wave motor (ultrasonic motor) is known in which a vibrator that periodically vibrates by applying a high-frequency voltage is pressed against a sliding member and the sliding member is relatively driven. Patent Document 1 discloses an ultrasonic motor in which a flexible substrate that feeds power to a vibrator is folded and arranged to smoothly drive the vibrator straightly.
特許第4331531号公報 Japanese Patent No. 4333131
しかしながら、特許文献1の超音波モータは、フレキシブル基板を配置するための専用の部材やスペースを設ける必要があり、大型化してしまう。そのため、超音波モータを小型化することは困難である。 However, the ultrasonic motor of Patent Document 1 needs to be provided with a dedicated member or space for disposing a flexible substrate, which increases the size. Therefore, it is difficult to reduce the size of the ultrasonic motor.
このような課題に鑑みて、本発明は、振動子に給電するフレキシブル基板を折り返して配置する構成を設けた上で、小型化可能な振動波モータを提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a vibration wave motor that can be reduced in size while providing a configuration in which a flexible substrate that feeds power to a vibrator is folded.
本発明の一側面としての振動波モータは、振動子と、前記振動子と接触する摺動部材と、前記振動子に接続されるフレキシブル基板と、前記摺動部材の前記振動子と接触する接触面の反対側の面側に配置され、前記振動子とともに移動する移動部材と、を有し、前記振動子に発生する振動により前記振動子と前記摺動部材が相対的に移動する振動波モータであって、前記フレキシブル基板は、折り返すことで形成され、前記振動子の移動に応じて前記振動子の移動方向に沿って形成される位置が変化する屈曲部を備え、前記屈曲部は、前記摺動部材と前記移動部材の間に形成されることを特徴とする。 The vibration wave motor according to one aspect of the present invention includes a vibrator, a sliding member that contacts the vibrator, a flexible substrate connected to the vibrator, and a contact of the sliding member that contacts the vibrator. A vibration member that is disposed on a surface opposite to the surface and moves together with the vibrator, wherein the vibrator and the sliding member move relatively by vibration generated in the vibrator. The flexible substrate includes a bent portion that is formed by folding and changes a position formed along a moving direction of the vibrator according to the movement of the vibrator. It is formed between the sliding member and the moving member.
本発明によれば、振動子に給電するフレキシブル基板を折り返して配置する構成を設けた上で、小型化可能な振動波モータを提供することができる。 According to the present invention, it is possible to provide a vibration wave motor that can be reduced in size while providing a configuration in which a flexible substrate that feeds power to a vibrator is folded.
以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same members are denoted by the same reference numerals, and redundant description is omitted.
図1は、本発明の実施形態に係る振動波モータである超音波モータ1を備える電子機器の一例であるレンズ鏡筒の要部断面図である。なお、レンズ鏡筒は略回転対称形であるため、図1では上側半分のみを図示している。また、図1には、本発明の実施形態に係る振動波モータである超音波モータ1を備えた電子機器の例として撮像装置に着脱可能なレンジ鏡筒を示しているが、別の電子機器の例としてレンズ鏡筒が一体化された撮像装置が挙げられる。 FIG. 1 is a cross-sectional view of a main part of a lens barrel that is an example of an electronic apparatus including an ultrasonic motor 1 that is a vibration wave motor according to an embodiment of the present invention. Since the lens barrel is substantially rotationally symmetric, only the upper half is shown in FIG. FIG. 1 shows a range barrel that can be attached to and detached from an imaging apparatus as an example of an electronic apparatus that includes an ultrasonic motor 1 that is a vibration wave motor according to an embodiment of the present invention. As an example, there is an imaging device in which a lens barrel is integrated.
カメラ本体(撮像装置)2にはマウント5を介してレンズ鏡筒3が着脱可能に取り付けられ、カメラ本体2の内部には撮像素子4が設けられる。レンズ鏡筒3の固定筒6には、レンズG1を保持する前鏡筒7とレンズG3を保持する後鏡筒8が固定される。レンズ保持枠9は、レンズG2を保持し、前鏡筒7と後鏡筒8に保持されるガイドバー10によって直進移動可能に保持される。超音波モータ1の地板115には、後鏡筒8にビス等で固定されるフランジ部(不図示)が形成されている。 A lens barrel 3 is detachably attached to the camera body (imaging device) 2 via a mount 5, and an imaging element 4 is provided inside the camera body 2. A front barrel 7 holding the lens G1 and a rear barrel 8 holding the lens G3 are fixed to the fixed barrel 6 of the lens barrel 3. The lens holding frame 9 holds the lens G2 and is held by a guide bar 10 held by the front lens barrel 7 and the rear lens barrel 8 so as to be able to move straightly. The ground plate 115 of the ultrasonic motor 1 is formed with a flange portion (not shown) that is fixed to the rear barrel 8 with screws or the like.
超音波モータ1の振動子保持部材102を含む可動部が駆動すると、超音波モータ1の駆動力は振動子保持部材102を介してレンズ保持枠9に伝達され、レンズ保持枠9はガイドバー10により光軸O(x軸)と平行に直進移動する。 When the movable part including the vibrator holding member 102 of the ultrasonic motor 1 is driven, the driving force of the ultrasonic motor 1 is transmitted to the lens holding frame 9 via the vibrator holding member 102, and the lens holding frame 9 is moved to the guide bar 10. As a result, it moves straight in parallel with the optical axis O (x-axis).
なお、本実施形態では超音波モータ1は電子機器であるレンズ鏡筒3に搭載されているが、本発明はこれに限定されない。超音波モータ1は、レンズ鏡筒や撮像装置とは異なる電子機器に搭載されてもよい。 In the present embodiment, the ultrasonic motor 1 is mounted on the lens barrel 3 which is an electronic device, but the present invention is not limited to this. The ultrasonic motor 1 may be mounted on an electronic device different from the lens barrel or the imaging device.
図2〜図5はそれぞれ、本実施例の超音波モータ1Aの斜視図、分解斜視図、要部断面図および上面図である。 2 to 5 are a perspective view, an exploded perspective view, a cross-sectional view of a main part, and a top view, respectively, of the ultrasonic motor 1A of the present embodiment.
加圧バネ(加圧手段)111は、4つの位置で加圧力伝達部材(伝達部材)110と駆動力伝達部材である移動部材112をそれぞれが備える連結保持部を介して連結する。加圧力伝達部材110と移動部材112の間には引っ張りバネ力が生じ、加圧力伝達部材110は引っ張りバネ力により矢印A方向へ引き込まれる。加圧力伝達部材110は略半球状の突起で形成される加圧部110aを備え、弾性部材109は圧電素子103と加圧部110aが直接接触して圧電素子103が損傷することを防止するためにこれらの部材の間に配置される。加圧バネ111は、これらの部材を介して矢印A方向へ振動子100を加圧する。加圧バネ111が振動子100を加圧することで、振動子100の加圧力伝達部材110側の面と反対側の面に設けられた突出部である圧接部100aは摩擦部材(摺動部材)104に摩擦接触する。なお、本実施例では加圧バネ111は4つの位置で振動子100に対して加圧するが、複数の加圧部材が異なる位置で振動子100に対して加圧可能であれば、本発明はこれに限定されない。また、本実施例では加圧手段としてバネを使用しているが、振動子100を摩擦部材104に対して加圧する手段であれば、本発明はこれに限定されない。 The pressurizing spring (pressurizing means) 111 is connected to the pressurizing force transmitting member (transmitting member) 110 and the moving member 112 serving as a driving force transmitting member at four positions via connecting holding portions. A tension spring force is generated between the pressure transmission member 110 and the moving member 112, and the pressure transmission member 110 is pulled in the direction of arrow A by the tension spring force. The pressure transmission member 110 includes a pressurizing part 110a formed by a substantially hemispherical protrusion, and the elastic member 109 prevents the piezoelectric element 103 from being damaged by direct contact between the piezoelectric element 103 and the pressurizing part 110a. Between these members. The pressurizing spring 111 pressurizes the vibrator 100 in the direction of arrow A through these members. When the pressurizing spring 111 pressurizes the vibrator 100, the press contact portion 100a which is a protrusion provided on the surface of the vibrator 100 opposite to the surface on the pressure transmission member 110 side is a friction member (sliding member). 104 makes frictional contact. In this embodiment, the pressure spring 111 pressurizes the vibrator 100 at four positions. However, if a plurality of pressurizing members can pressurize the vibrator 100 at different positions, the present invention It is not limited to this. In this embodiment, a spring is used as the pressing means. However, the present invention is not limited to this as long as the vibrator 100 is pressed against the friction member 104.
振動子100は、振動板101と圧電素子103を備える。振動板101は、溶接や接着剤などにより振動子保持部材102に固定される。圧電素子103は、接着剤などにより振動板101に固着する。圧電素子103には、電力を供給するためにフレキシブル基板150が固着されている。圧電素子103は、フレキシブル基板150を介して高周波電圧を印加されることで超音波振動を励振する。振動板101と圧電素子103が接着された状態で圧電素子103に超音波振動を励振させることで、振動板101が共振する。すなわち、振動子100は、フレキシブル基板150を介して高周波電圧を印加されることで超音波振動を起こす。その結果、振動子100の圧接部100aの先端に楕円振動が発生する。 The vibrator 100 includes a diaphragm 101 and a piezoelectric element 103. The diaphragm 101 is fixed to the vibrator holding member 102 by welding or an adhesive. The piezoelectric element 103 is fixed to the diaphragm 101 with an adhesive or the like. A flexible substrate 150 is fixed to the piezoelectric element 103 to supply power. The piezoelectric element 103 excites ultrasonic vibration when a high frequency voltage is applied through the flexible substrate 150. The vibration plate 101 resonates by exciting the piezoelectric element 103 with ultrasonic vibration while the vibration plate 101 and the piezoelectric element 103 are bonded. That is, the vibrator 100 generates ultrasonic vibration when a high frequency voltage is applied through the flexible substrate 150. As a result, elliptical vibration is generated at the tip of the pressure contact portion 100 a of the vibrator 100.
圧電素子103に印加する高周波電圧の周波数や位相を変えることで、回転方向や楕円比を適宜変化させて所望の振動を発生させることができる。よって、振動子100の圧接部100aを摩擦部材104の摩擦接触面104aに圧接することで相対的に移動させる駆動力を発生させ、振動子100を摩擦部材104に対してx軸(光軸O)に沿って移動させることが可能となる。なお、振動子100の相対移動方向は、加圧バネ111による加圧方向と直交する。 By changing the frequency and phase of the high-frequency voltage applied to the piezoelectric element 103, it is possible to appropriately change the rotation direction and the ellipticity ratio to generate a desired vibration. Therefore, a driving force for moving the pressure contact portion 100a of the vibrator 100 relative to the friction contact surface 104a of the friction member 104 is generated, thereby generating a driving force to move the vibrator 100 with respect to the friction member 104 in the x-axis (optical axis O). ) Can be moved along. The relative movement direction of the vibrator 100 is orthogonal to the pressing direction by the pressing spring 111.
振動子保持部材102と、加圧力伝達部材110を保持する保持筐体105の間には、ローラー(転動部材)106a、106bおよび所定の弾性を有する板バネ(付勢部材)107から構成される連結手段116が組み込まれる。ローラー106aは、矢印A方向(加圧バネ111の加圧方向)へ移動可能に板バネ107と振動子保持部材102との間に挟持される。板バネ107は、保持筐体105とローラー106aの間に配置され、x軸に平行な付勢力を有する。すなわち、板バネ107は、ローラー106aを介して振動子保持部材102を矢印B方向へ付勢し、保持筐体105を矢印C方向へ付勢する。そのため、ローラー106bは、振動子保持部材102と保持筐体105の間で挟持される。 Between the vibrator holding member 102 and the holding housing 105 holding the pressure transmission member 110, rollers (rolling members) 106a and 106b and a plate spring (biasing member) 107 having a predetermined elasticity are formed. The connecting means 116 is incorporated. The roller 106a is sandwiched between the leaf spring 107 and the vibrator holding member 102 so as to be movable in the arrow A direction (the pressing direction of the pressing spring 111). The leaf spring 107 is disposed between the holding housing 105 and the roller 106a and has a biasing force parallel to the x axis. That is, the leaf spring 107 biases the vibrator holding member 102 in the arrow B direction via the roller 106a, and biases the holding housing 105 in the arrow C direction. Therefore, the roller 106 b is sandwiched between the vibrator holding member 102 and the holding housing 105.
以上のように構成することで、連結手段116は、x軸に平行な方向(振動子100の移動方向)にはガタを発生させず、矢印A方向(加圧バネ111の加圧方向)にはローラー106a、106bの作用により摺動抵抗をほとんど発生させない。 By configuring as described above, the connecting means 116 does not generate backlash in the direction parallel to the x axis (the moving direction of the vibrator 100), but in the direction of the arrow A (the pressing direction of the pressing spring 111). Hardly generates sliding resistance by the action of the rollers 106a and 106b.
また、板バネ107の付勢力は、保持筐体105および被駆動部の駆動開始および駆動停止時に発生する加減速による慣性力より大きくなるように設定されている。このように設定することで、振動子100、振動子保持部材102および保持筐体105には駆動時の慣性力による振動子100の移動方向に沿った相対変位が発生しないため、安定した駆動制御を実現することができる。 Further, the urging force of the leaf spring 107 is set to be larger than the inertial force due to acceleration / deceleration generated when the holding housing 105 and the driven part are started and stopped. By setting in this way, the vibrator 100, the vibrator holding member 102, and the holding housing 105 do not generate relative displacement along the moving direction of the vibrator 100 due to the inertial force during driving. Can be realized.
なお、本実施例では連結手段116を構成する転動部材としてローラー106a、106bを使用しているが、矢印A方向へ移動可能であれば本発明はこれに限定されない。例えば、ローラーの代わりにボールなどを使用してもよい。また、本実施例では連結手段116を構成する付勢部材として板バネ107を使用しているが、振動子保持部材102と保持筐体105の間のガタをなくすことができる付勢部材であれば本発明はこれに限定されない。 In this embodiment, the rollers 106a and 106b are used as rolling members constituting the connecting means 116, but the present invention is not limited to this as long as it can move in the direction of arrow A. For example, a ball or the like may be used instead of the roller. In this embodiment, the leaf spring 107 is used as the urging member constituting the connecting means 116. However, the urging member can eliminate the play between the vibrator holding member 102 and the holding housing 105. The present invention is not limited to this.
移動部材112は、保持筐体105に接着やねじ止めなどで固定され、振動子100で生じた駆動力を伝達する。すなわち、移動部材112は、振動子保持部材102および保持筺体105を介して振動子100に連結されている。移動部材112には、フレキシブル基板150をガイドするガイド部112aが形成されている。また、移動部材112には、それぞれ転動ボール(ガイド部材)114a〜114cが嵌入し、保持筐体105をx軸(光軸O)に沿ってガイドする3つのV溝(移動側案内部)が形成される。プレート部材(ガイド部材)113は、摩擦部材104の下部(摩擦部材104の摩擦接触面104aとは反対側の面側)に配置される。摩擦部材104およびプレート部材113は、ネジ等により地板115に固定される。プレート部材113には、3つの溝状の固定側案内部が形成される。転動ボール114a〜114cは、移動部材112に形成される移動側案内部と、プレート部材113に形成される固定側案内部により挟持される。これらの部材によって、保持筐体105は、振動子100の移動に応じてx軸(光軸O)に沿って進退可能に支持される。このとき、移動部材112もx軸(光軸O)に沿って移動する。すなわち、移動部材112は、プレート部材113および転動ボール114a〜114cにより構成されるガイド部材により移動可能に保持される。なお、プレート部材113に形成される3つの固定側案内部は、本実施例では2つはV溝、1つは有底の平面溝であるが、転動ボール114が転動可能な溝であればよい。 The moving member 112 is fixed to the holding housing 105 by bonding or screwing, and transmits the driving force generated by the vibrator 100. That is, the moving member 112 is connected to the vibrator 100 via the vibrator holding member 102 and the holding housing 105. The moving member 112 is formed with a guide portion 112 a for guiding the flexible substrate 150. In addition, rolling balls (guide members) 114a to 114c are fitted in the moving member 112, respectively, and three V grooves (moving side guide portions) for guiding the holding housing 105 along the x axis (optical axis O). Is formed. The plate member (guide member) 113 is disposed below the friction member 104 (the surface side opposite to the friction contact surface 104a of the friction member 104). The friction member 104 and the plate member 113 are fixed to the main plate 115 with screws or the like. The plate member 113 is formed with three groove-shaped fixed side guide portions. The rolling balls 114 a to 114 c are sandwiched between a moving side guide portion formed on the moving member 112 and a fixed side guide portion formed on the plate member 113. By these members, the holding housing 105 is supported so as to advance and retreat along the x axis (optical axis O) according to the movement of the vibrator 100. At this time, the moving member 112 also moves along the x-axis (optical axis O). That is, the moving member 112 is movably held by a guide member configured by the plate member 113 and the rolling balls 114a to 114c. In this embodiment, the three fixed guide portions formed on the plate member 113 are two V-grooves and one is a bottomed flat groove, but the rolling balls 114 are rollable grooves. I just need it.
本実施例では、超音波モータ1Aをz軸方向において薄型化するために、加圧バネ111を振動子100の上部に積み重ねるのではなく、振動子100を囲うように4つの位置に配置している。本実施例では、複数の加圧バネ111により加圧力を発生させることで、加圧バネ111を小さくすることができる。また、振動子100は、摩擦部材104に対して均一に加圧されることが好ましい。そこで、本実施例では、超音波モータ1AをXY平面に対して平面視した場合、加圧バネ111を振動子100の圧接部100aを囲むように離間して配置している。 In this embodiment, in order to reduce the thickness of the ultrasonic motor 1A in the z-axis direction, the pressure spring 111 is not stacked on the top of the vibrator 100, but is arranged at four positions so as to surround the vibrator 100. Yes. In the present embodiment, the pressurizing spring 111 can be made smaller by generating the pressurizing force by the plurality of pressurizing springs 111. Further, the vibrator 100 is preferably pressed uniformly against the friction member 104. Therefore, in this embodiment, when the ultrasonic motor 1 </ b> A is viewed in plan with respect to the XY plane, the pressure spring 111 is disposed so as to surround the pressure contact portion 100 a of the vibrator 100.
連結手段(ローラー106a、106bおよび板バネ107)116は、x軸に平行な方向(振動子100の移動方向)およびy軸に平行な方向において、加圧バネ111の間(加圧バネ111よりも圧接部100aに近い位置)に配置される。すなわち、加圧バネ111は、x軸に平行な方向およびy軸に平行な方向において、振動子100を中心に連結手段116より外側に配置される。ここで、y軸に平行な方向とは、振動子100の移動方向および加圧バネ111の加圧方向に直交する方向である。なお、厳密に直交である必要はなく、数度程度ずれていても実質的に直交(略直交)しているとみなされる。 The coupling means (rollers 106a and 106b and leaf spring 107) 116 are arranged between the pressure springs 111 (from the pressure spring 111) in a direction parallel to the x axis (moving direction of the vibrator 100) and a direction parallel to the y axis. Is also located at a position close to the press contact part 100a. That is, the pressurizing spring 111 is disposed outside the coupling means 116 around the vibrator 100 in the direction parallel to the x-axis and the direction parallel to the y-axis. Here, the direction parallel to the y-axis is a direction orthogonal to the moving direction of the vibrator 100 and the pressing direction of the pressing spring 111. Note that it is not necessary to be strictly orthogonal, and even if it is shifted by several degrees, it is regarded as being substantially orthogonal (substantially orthogonal).
フレキシブル基板150は、振動子100の摩擦部材104に対する相対的な移動を阻害しないように配置される必要がある。本実施例では、図4に示されるように、フレキシブル基板150は、折り返されて配置される。フレキシブル基板150は、折り返すことで形成される屈曲部150aと、圧電素子103に接続される接続部150bを備える。また、フレキシブル基板150は、摩擦部材104と移動部材112の間にプレート部材113を挟むように配置されている。摩擦部材104と移動部材112の距離が近い場合、屈曲部150aの半径が小さくなり、屈曲部150aにダメージが加わることがある。屈曲部150aにダメージが加わった場合、フレキシブル基板150が断線等を引き起こすおそれがある。そのため、屈曲部150aの半径は、なるべく大きく設定することが好ましい。しかしながら、単純に摩擦部材104と移動部材112の距離を広げて配置すると、超音波モータ1Aの大型化につながってしまう。そこで、本実施例では、図5に示されるように、摩擦部材104には、振動子100の圧接部100aに摩擦接触する摩擦接触面104aとは反対側の面に、フレキシブル基板150を配置可能な凹形状104bが形成されている。摩擦部材104に凹形状104bを形成することで、屈曲部150aにかかる屈曲の力を低減させることができる。なお、本実施形態では摩擦部材104に凹形状104bを形成しているが、フレキシブル基板150を配置可能であれば本発明はこれに限定されない。 The flexible substrate 150 needs to be arranged so as not to hinder the relative movement of the vibrator 100 with respect to the friction member 104. In the present embodiment, as shown in FIG. 4, the flexible substrate 150 is folded and disposed. The flexible substrate 150 includes a bent portion 150 a formed by folding back and a connecting portion 150 b connected to the piezoelectric element 103. Further, the flexible substrate 150 is arranged so that the plate member 113 is sandwiched between the friction member 104 and the moving member 112. When the distance between the friction member 104 and the moving member 112 is short, the radius of the bent portion 150a becomes small, and the bent portion 150a may be damaged. When damage is applied to the bent portion 150a, the flexible substrate 150 may cause disconnection or the like. Therefore, it is preferable to set the radius of the bent portion 150a as large as possible. However, if the distance between the friction member 104 and the moving member 112 is simply increased, the ultrasonic motor 1A is increased in size. Therefore, in this embodiment, as shown in FIG. 5, the flexible substrate 150 can be arranged on the friction member 104 on the surface opposite to the friction contact surface 104 a that frictionally contacts the pressure contact portion 100 a of the vibrator 100. A concave shape 104b is formed. By forming the concave shape 104b in the friction member 104, the bending force applied to the bent portion 150a can be reduced. In this embodiment, the concave shape 104b is formed in the friction member 104. However, the present invention is not limited to this as long as the flexible substrate 150 can be disposed.
以下、図6を参照して、フレキシブル基板150の配置方法について説明する。図6は、フレキシブル基板150の配置方法の説明図である。なお、図6では、説明を明瞭にするために代表的な部材のみを図示している。 Hereinafter, a method for arranging the flexible substrate 150 will be described with reference to FIG. FIG. 6 is an explanatory diagram of a method for arranging the flexible substrate 150. In FIG. 6, only representative members are shown for the sake of clarity.
まず、フレキシブル基板150は、図6(a)に示されるように、接続部150bが圧電素子103に接続され、振動子100の相対移動方向に直交する方向(y軸に平行な方向)へ引き出される。次に、フレキシブル基板150は、図6(a)の破線Dで折り曲げられ、図6(b)に示される状態になる。このとき、フレキシブル基板150は、転動ボール114a、114bの間を通るように配置される。なお、転動ボール114aと114bは、振動子100が移動する場合、x軸(光軸O)に沿って移動するが、移動範囲においてフレキシブル基板150とは干渉しないように配置される。 First, as shown in FIG. 6A, the flexible substrate 150 is pulled out in a direction orthogonal to the relative movement direction of the vibrator 100 (a direction parallel to the y-axis) with the connection portion 150 b connected to the piezoelectric element 103. It is. Next, the flexible substrate 150 is bent along the broken line D in FIG. 6A to be in the state shown in FIG. At this time, the flexible substrate 150 is disposed so as to pass between the rolling balls 114a and 114b. When the vibrator 100 moves, the rolling balls 114a and 114b move along the x axis (optical axis O), but are arranged so as not to interfere with the flexible substrate 150 in the moving range.
次に、フレキシブル基板150は、図6(b)の破線Eで折り曲げられ、図6(c)に示される状態になる。このとき、フレキシブル基板150は、移動部材112に形成されたガイド部112aに沿って配置される。また、フレキシブル基板150の第1端である接続部150bとは異なる第2端は、矢印F方向へ伸びている。 Next, the flexible substrate 150 is bent along the broken line E in FIG. 6B and is in the state shown in FIG. At this time, the flexible substrate 150 is disposed along the guide portion 112 a formed on the moving member 112. In addition, a second end different from the connection portion 150 b which is the first end of the flexible substrate 150 extends in the direction of arrow F.
次に、フレキシブル基板150は、図6(c)の破線Gで屈曲部150aが形成されるように折り返され、図6(d)および図6(e)に示されるUターン形状になる。図6(e)は、図6(d)の状態の超音波モータ1Aの正面図である。フレキシブル基板150の第2端は、矢印H方向へ伸びている。振動子100が摩擦部材104に対して相対的に移動すると、屈曲部150aが形成される位置も移動する。また、フレキシブル基板150は、転動ボール114b、114cの間を通るように配置される。なお、転動ボール114bと114cは、振動子100が移動する場合、x軸(光軸O)に沿って移動するため、フレキシブル基板150とは干渉しない。 Next, the flexible substrate 150 is folded back so that a bent portion 150a is formed by a broken line G in FIG. 6C, and becomes a U-turn shape shown in FIGS. 6D and 6E. FIG. 6E is a front view of the ultrasonic motor 1A in the state of FIG. The second end of the flexible substrate 150 extends in the arrow H direction. When the vibrator 100 moves relative to the friction member 104, the position where the bent portion 150a is formed also moves. Further, the flexible substrate 150 is disposed so as to pass between the rolling balls 114b and 114c. When the vibrator 100 moves, the rolling balls 114b and 114c move along the x-axis (optical axis O) and do not interfere with the flexible substrate 150.
以上説明したように、フレキシブル基板150は、z軸方向において摩擦部材104から移動部材112までの間に折り返して配置されることで、振動子100の摩擦部材104に対する相対的な移動を阻害しない。また、このように既存のスペースにフレキシブル基板150を配置することで、超音波モータ1Aを小型化することが可能となる。 As described above, the flexible substrate 150 is folded back and disposed between the friction member 104 and the moving member 112 in the z-axis direction, so that the relative movement of the vibrator 100 with respect to the friction member 104 is not hindered. In addition, by arranging the flexible substrate 150 in the existing space in this way, the ultrasonic motor 1A can be reduced in size.
図7および図8はそれぞれ、本実施例の超音波モータ1Bの要部断面図および正面断面図である。本実施例の超音波モータ1Bでは、摩擦部材(摺動部材)204とプレート部材(ガイド部材)213以外の部品については実施例1の超音波モータ1Aと配置や形状など構成の変更はないため説明を省略する。各部品の参照番号についても、摩擦部材204とプレート部材213以外の部品については実施例1と同様としている。 7 and 8 are a cross-sectional view and a front cross-sectional view of the main part of the ultrasonic motor 1B of the present embodiment, respectively. In the ultrasonic motor 1B of the present embodiment, the components other than the friction member (sliding member) 204 and the plate member (guide member) 213 are not changed in configuration and configuration such as the ultrasonic motor 1A of the first embodiment. Description is omitted. Regarding the reference numbers of the respective parts, the parts other than the friction member 204 and the plate member 213 are the same as those in the first embodiment.
図7に示されるように、本実施例では、摩擦部材204には凹形状は設けられていない。また、摩擦部材204とプレート部材213は、近接して配置されている。そのため、実施例1ではフレキシブル基板150は移動部材112と摩擦部材104の間にプレート部材113を挟むように配置されているが、本実施例ではフレキシブル基板150はプレート部材213と移動部材112の間に配置されている。すなわち、本実施例では、フレキシブル基板150の屈曲部150aは、プレート部材213と移動部材112の間に配置される。このように、摩擦部材204と移動部材112の間に別の部材であるプレート部材213を配置した上で、フレキシブル基板150の屈曲部150aをプレート部材213と移動部材112の間に配置することも可能である。 As shown in FIG. 7, in this embodiment, the friction member 204 is not provided with a concave shape. Further, the friction member 204 and the plate member 213 are disposed close to each other. Therefore, in the first embodiment, the flexible substrate 150 is arranged so that the plate member 113 is sandwiched between the moving member 112 and the friction member 104, but in this embodiment, the flexible substrate 150 is disposed between the plate member 213 and the moving member 112. Is arranged. That is, in this embodiment, the bent portion 150 a of the flexible substrate 150 is disposed between the plate member 213 and the moving member 112. As described above, after the plate member 213, which is another member, is disposed between the friction member 204 and the moving member 112, the bent portion 150 a of the flexible substrate 150 may be disposed between the plate member 213 and the moving member 112. Is possible.
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.
1、1A、1B 超音波モータ(振動波モータ)
100 振動子
104 摩擦部材(摺動部材)
112 移動部材
150 フレキシブル基板
150a 屈曲部
1, 1A, 1B Ultrasonic motor (vibration wave motor)
100 vibrator 104 friction member (sliding member)
112 Moving member 150 Flexible substrate 150a Bent part
Claims (8)
前記振動子と接触する摺動部材と、
前記振動子に接続されるフレキシブル基板と、
前記摺動部材の前記振動子と接触する接触面の反対側の面側に配置され、前記振動子とともに移動する移動部材と、を有し、
前記振動子に発生する振動により前記振動子と前記摺動部材が相対的に移動する振動波モータであって、
前記フレキシブル基板は、折り返すことで形成され、前記振動子の移動に応じて前記振動子の移動方向に沿って形成される位置が変化する屈曲部を備え、
前記屈曲部は、前記摺動部材と前記移動部材の間に形成されることを特徴とする振動波モータ。 A vibrator,
A sliding member in contact with the vibrator;
A flexible substrate connected to the vibrator;
A sliding member that is disposed on the surface of the sliding member that is opposite to the contact surface that contacts the vibrator, and that moves together with the vibrator;
A vibration wave motor in which the vibrator and the sliding member move relatively by vibration generated in the vibrator;
The flexible substrate is formed by folding back, and includes a bent portion whose position is changed along the moving direction of the vibrator according to the movement of the vibrator,
The bending wave portion is formed between the sliding member and the moving member.
前記フレキシブル基板は、前記ガイド部材を挟むように配置されることを特徴とする請求項1に記載の振動波モータ。 A guide member that is disposed between the sliding member and the moving member and holds the moving member movably along the moving direction of the vibrator;
The vibration wave motor according to claim 1, wherein the flexible substrate is disposed so as to sandwich the guide member.
前記屈曲部は、前記ガイド部材と前記移動部材の間に形成されることを特徴とする請求項1に記載の振動波モータ。 A guide member that is disposed between the sliding member and the moving member and holds the moving member movably along the moving direction of the vibrator;
The vibration wave motor according to claim 1, wherein the bent portion is formed between the guide member and the moving member.
前記フレキシブル基板は、前記複数の転動部材の間に配置されることを特徴とする請求項2から4のいずれか1項に記載の振動波モータ。 The guide member includes a plurality of rolling members,
5. The vibration wave motor according to claim 2, wherein the flexible substrate is disposed between the plurality of rolling members. 6.
An electronic apparatus comprising the vibration wave motor according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016090765A JP2017200366A (en) | 2016-04-28 | 2016-04-28 | Vibration wave motor and electronic apparatus loading the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016090765A JP2017200366A (en) | 2016-04-28 | 2016-04-28 | Vibration wave motor and electronic apparatus loading the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017200366A true JP2017200366A (en) | 2017-11-02 |
Family
ID=60238410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016090765A Pending JP2017200366A (en) | 2016-04-28 | 2016-04-28 | Vibration wave motor and electronic apparatus loading the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017200366A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109036495A (en) * | 2018-08-23 | 2018-12-18 | 三英精控(天津)科技有限公司 | A kind of Z-direction nanometer displacement locating platform based on flexible hinge |
JP2019146434A (en) * | 2018-02-23 | 2019-08-29 | キヤノン株式会社 | Vibration wave driven motor and lens driving device |
JP2019205281A (en) * | 2018-05-24 | 2019-11-28 | キヤノン株式会社 | Vibration wave motor and drive device |
JP2019221073A (en) * | 2018-06-20 | 2019-12-26 | キヤノン株式会社 | Vibration wave motor and drive unit |
JP2020058159A (en) * | 2018-10-03 | 2020-04-09 | キヤノン株式会社 | Vibration wave motor and lens drive device |
JP2020078142A (en) * | 2018-11-07 | 2020-05-21 | キヤノン株式会社 | Vibration wave motor and lens device using the vibration wave motor |
-
2016
- 2016-04-28 JP JP2016090765A patent/JP2017200366A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019146434A (en) * | 2018-02-23 | 2019-08-29 | キヤノン株式会社 | Vibration wave driven motor and lens driving device |
JP2019205281A (en) * | 2018-05-24 | 2019-11-28 | キヤノン株式会社 | Vibration wave motor and drive device |
US11381177B2 (en) | 2018-05-24 | 2022-07-05 | Canon Kabushiki Kaisha | Vibration wave motor and drive device |
JP7112250B2 (en) | 2018-05-24 | 2022-08-03 | キヤノン株式会社 | Oscillating wave motor and drive |
JP2019221073A (en) * | 2018-06-20 | 2019-12-26 | キヤノン株式会社 | Vibration wave motor and drive unit |
JP7094792B2 (en) | 2018-06-20 | 2022-07-04 | キヤノン株式会社 | Vibration wave motor and drive |
CN109036495A (en) * | 2018-08-23 | 2018-12-18 | 三英精控(天津)科技有限公司 | A kind of Z-direction nanometer displacement locating platform based on flexible hinge |
JP2020058159A (en) * | 2018-10-03 | 2020-04-09 | キヤノン株式会社 | Vibration wave motor and lens drive device |
JP7134817B2 (en) | 2018-10-03 | 2022-09-12 | キヤノン株式会社 | Oscillating wave motor and lens driving device |
JP2020078142A (en) * | 2018-11-07 | 2020-05-21 | キヤノン株式会社 | Vibration wave motor and lens device using the vibration wave motor |
JP7169851B2 (en) | 2018-11-07 | 2022-11-11 | キヤノン株式会社 | Vibration wave motor and lens device using vibration wave motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017200366A (en) | Vibration wave motor and electronic apparatus loading the same | |
JP6808345B2 (en) | Electronic devices equipped with vibration wave motors and vibration wave motors, lens barrels, imaging devices | |
JP6188366B2 (en) | Actuator and optical equipment | |
JP6366674B2 (en) | Vibration wave motor | |
JP5683643B2 (en) | Linear ultrasonic motor and optical apparatus having the same | |
JP6806472B2 (en) | Vibration wave motor and optical equipment to which the vibration wave motor is applied | |
JP2015065809A (en) | Linear ultrasonic motor and optical device having the same | |
JP2016140127A (en) | Linear vibration wave motor and imaging apparatus with the same | |
US9933593B2 (en) | Driving apparatus and optical device | |
US11101749B2 (en) | Vibration wave motor and imaging device having vibration wave motor | |
JP6708472B2 (en) | Vibration wave motor and optical device equipped with the vibration wave motor | |
JP2019039997A (en) | Vibration wave motor and driving device | |
JP7207949B2 (en) | Vibration wave motor and drive device with vibration wave motor | |
JP6602037B2 (en) | DRIVE DEVICE AND OPTICAL DEVICE HAVING THE SAME | |
JP2020005374A (en) | Vibration type motor and drive device | |
JP6869727B2 (en) | Vibration wave motor | |
US11502625B2 (en) | Vibration wave motor, and driving apparatus having the same | |
JP6537482B2 (en) | Vibration wave motor and electronic equipment | |
JP2017200355A (en) | Vibration wave motor and electronic apparatus mounting vibration wave motor | |
JP2018148683A (en) | Vibration wave motor | |
JP2016101023A (en) | Vibration wave motor and optical device including the same | |
JP2019083664A (en) | Vibration wave motor, lens device, and imaging apparatus | |
JP2017195712A (en) | Vibration wave motor and optical equipment equipped with the same | |
JP2019201465A (en) | Vibration wave motor and drive device | |
JP2019140865A (en) | Vibration wave motor and optical device using the same |