JP2017197825A - Electroformed structure and structure - Google Patents

Electroformed structure and structure Download PDF

Info

Publication number
JP2017197825A
JP2017197825A JP2016090191A JP2016090191A JP2017197825A JP 2017197825 A JP2017197825 A JP 2017197825A JP 2016090191 A JP2016090191 A JP 2016090191A JP 2016090191 A JP2016090191 A JP 2016090191A JP 2017197825 A JP2017197825 A JP 2017197825A
Authority
JP
Japan
Prior art keywords
electroformed
mass
cobalt
nickel
electroformed material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016090191A
Other languages
Japanese (ja)
Other versions
JP6484586B2 (en
Inventor
康彦 坪田
Yasuhiko Tsubota
康彦 坪田
耕治 富永
Koji Tominaga
耕治 富永
正彦 倉岡
Masahiko Kuraoka
正彦 倉岡
浩郁 森園
Hiroi Morizono
浩郁 森園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2016090191A priority Critical patent/JP6484586B2/en
Publication of JP2017197825A publication Critical patent/JP2017197825A/en
Application granted granted Critical
Publication of JP6484586B2 publication Critical patent/JP6484586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electroformed structure having an electroformed material excellent in tensile strength by controlling a ratio of nickel and cobalt and conducting a heat treatment if needed, and a structure using the electroformed material.SOLUTION: An electroformed structure has an electroformed material with Co content of over 40 mass% and 55 mass% or less, the balance Ni with inevitable impurities, and tensile strength of at least 1200 N/mm, the structure is constituted by arranging the electroformed material on a substrate surface or a part of substrate or forming with only the electroformed material. The electroformed structure also may have an electroformed material with Co content of over 30 mass% and 60 mass% or less, the balance Ni with inevitable impurities and heat treated at 200 to 300°C.SELECTED DRAWING: None

Description

本発明は、一般構造物、機械及びその部品に使用されるニッケル(Ni)とコバルト(Co)を含む電鋳材(電鋳合金)を有する電鋳構造体(電鋳材自身及び電鋳材を一部に使用する場合もある)及び構造物に関する。 The present invention relates to an electroformed structure (electroformed material itself and electroformed material) having an electroformed material (electroformed alloy) containing nickel (Ni) and cobalt (Co) used in general structures, machines and parts thereof. ) And a structure.

ニッケル−コバルトめっき層では、コバルト含有量が高いほど耐磨耗性が向上するので、特許文献1に記載のように、連続鋳造用鋳型のモールド銅板の下部又は全面に、Niを10〜30wt%含有するCo系めっきをすることが提案されている。 In the nickel-cobalt plating layer, the higher the cobalt content, the better the wear resistance. It has been proposed to contain Co-based plating.

また、特許文献2には、ニッケルの多い層と少ない層とが交互に積層したコバルト−ニッケル合金材料が提案され、この合金は耐熱性、耐蝕性、耐磨耗性に優れるだけでなく、伸びが著しく改善された物品となることが開示され、鉄鋼連続鋳造鋳型に最適に応用できることが開示されている。 Further, Patent Document 2 proposes a cobalt-nickel alloy material in which layers with a high amount of nickel and layers with a low amount of nickel are alternately stacked. This alloy not only has excellent heat resistance, corrosion resistance, and wear resistance, but also exhibits elongation. Has been disclosed to be a significantly improved article and can be optimally applied to steel continuous casting molds.

特開2000−263190号公報JP 2000-263190 A 特開2015−166483号公報Japanese Patent Laying-Open No. 2015-166383

しかしながら、特許文献1は連続鋳造用鋳型に関するものであり、Coを70wt%以上含むので、耐磨耗性や耐腐食性に対しては強いが、引張強度が400〜600MPaと小さいという問題があった。
また、特許文献2記載の物品は、ニッケル比率の小さい層と大きい層の厚さが、それぞれ1〜500μm、ニッケル比率の小さい層と大きい層との比率の差が1〜20wt%であるが、引張強度が600〜700MPaと小さく、用途が制限されると共に、施工が煩雑でコストが掛かるという問題があった。
However, Patent Document 1 relates to a casting mold for continuous casting, and contains 70 wt% or more of Co. Therefore, although it is strong against wear resistance and corrosion resistance, there is a problem that tensile strength is as small as 400 to 600 MPa. It was.
In addition, the article described in Patent Document 2 has a small nickel ratio layer and a large layer thickness of 1 to 500 μm, respectively, and the difference in ratio between the small nickel ratio layer and the large layer is 1 to 20 wt%. There was a problem that the tensile strength was as small as 600 to 700 MPa, the use was limited, and the construction was complicated and costly.

本発明はかかる事情に鑑みてなされたもので、ニッケルとコバルトの割合を制御し、必要であれば熱処理を行って、引張強度に優れた電鋳材を有する電鋳構造体、及びこの電鋳材を用いた構造物を提供することを目的とする。 The present invention has been made in view of such circumstances, and an electroformed structure having an electroformed material excellent in tensile strength by controlling the ratio of nickel and cobalt and performing heat treatment if necessary, and the electroformed An object is to provide a structure using a material.

前記目的に沿う第1の発明に係る電鋳構造体は、Co含有量が40質量%を超え55質量%以下で、残部がNi及び不可避的不純物からなり、引張強度が少なくとも1200N/mm(1200MPa)である電鋳材を有する。
なお、電鋳材の組成を説明する場合、Coの含有量を明記し、残部(Ni及び不可避的不純物)の組成は、Niの含有量として記載することにする。
The electroformed structure according to the first invention that meets the above object has a Co content of more than 40% by mass and 55% by mass or less, the balance being made of Ni and inevitable impurities, and a tensile strength of at least 1200 N / mm 2 ( The electroformed material is 1200 MPa.
When describing the composition of the electroformed material, the Co content is specified, and the composition of the balance (Ni and inevitable impurities) is described as the Ni content.

また、前記目的に沿う第2の発明に係る電鋳構造体は、Co含有量が30質量%を超え60質量%以下で、残部がNi及び不可避的不純物からなり、200〜400℃で熱処理された電鋳材を有する。
ここで、熱処理の時間は少なくとも0.5時間、例えば、0.5〜48時間であることが好ましい。
In addition, the electroformed structure according to the second invention that meets the above object has a Co content of more than 30% by mass and 60% by mass or less, and the balance is made of Ni and inevitable impurities, and is heat-treated at 200 to 400 ° C. Have electroformed material.
Here, the heat treatment time is preferably at least 0.5 hour, for example, 0.5 to 48 hours.

更に、第3の発明に係る構造物は、第1の発明の前記電鋳材が基材表面又は基材の一部に、例えば、めっき処理等で設けられている、あるいは、前記電鋳材のみから形成されている。
なお、電鋳材の厚みは、用途に応じて設定する。
Furthermore, in the structure according to the third invention, the electroformed material according to the first invention is provided on the surface of the substrate or a part of the substrate, for example, by plating or the like, or the electroformed material Is formed only from.
The thickness of the electroformed material is set according to the application.

第1の発明に係る電鋳構造体においては、電鋳材に含まれるニッケルとコバルトの割合を制御することにより、電鋳材の引張強度を少なくとも1200N/mmとすることができ、電鋳材を種々の用途に適用することが可能になる。 In the electroformed structure according to the first invention, the tensile strength of the electroformed material can be at least 1200 N / mm 2 by controlling the ratio of nickel and cobalt contained in the electroformed material. The material can be applied to various uses.

前記目的に沿う第2の発明に係る電鋳構造体においては、ニッケルとコバルトの割合を制御し、かつ200〜400℃で熱処理することにより、電鋳材の組織状態を維持して機械的性質を向上させることができ、電鋳材の適用範囲を更に拡大することが可能になる。 In the electroformed structure according to the second aspect of the present invention, the mechanical properties of the electroformed material are maintained by controlling the ratio of nickel and cobalt and heat-treating at 200 to 400 ° C. The range of application of the electroformed material can be further expanded.

前記目的に沿う第3の発明に係る構造体は、第1の発明の電鋳材が基材表面又は基材の一部に設けられているので、基材を予め加工しておくことで複雑な形状の構造体を、表面に電鋳材が設けられた複数の基材を組み合わせることで大型の構造物をそれぞれ容易に作製することができる。また、電鋳材が形成された後に基材を除去することで、電鋳材のみから形成されている構造物を容易に作製することができる。 In the structure according to the third aspect of the invention that meets the above-mentioned purpose, the electroformed material of the first aspect is provided on the surface of the base material or a part of the base material. A large-sized structure can be easily produced by combining a plurality of base materials each having an electroformed material on the surface with a structure having a simple shape. Further, by removing the base material after the electroformed material is formed, a structure formed only from the electroformed material can be easily produced.

本発明の一実施の形態に係る電鋳構造体における電鋳材を製造するめっき装置の説明図である。It is explanatory drawing of the plating apparatus which manufactures the electroformed material in the electroformed structure which concerns on one embodiment of this invention. ニッケル−コバルト合金めっき液中のコバルト濃度と、ニッケル−コバルト合金めっき皮膜中のコバルト含有量の定量的関係を示すグラフである。It is a graph which shows the quantitative relationship between the cobalt concentration in a nickel-cobalt alloy plating solution, and the cobalt content in a nickel-cobalt alloy plating film. ニッケルめっき液を用いてチタン板上に形成した純ニッケルの電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and the mechanical property of the electroforming material of the pure nickel formed on the titanium plate using the nickel plating liquid. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo10質量%−Ni90質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electrocast material of Co10 mass%-Ni90 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo20質量%−Ni80質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electroforming material of Co20 mass% -Ni80 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo30質量%−Ni70質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electroforming material of Co30 mass% -Ni70 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo40質量%−Ni60質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of the electroformed material of Co40 mass% -Ni60 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution, and mechanical properties. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo50質量%−Ni50質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electrocast material of Co50 mass%-Ni50 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo60質量%−Ni40質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electrocast material of Co60 mass%-Ni40 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo70質量%−Ni30質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of electrocast material of Co70 mass% -Ni30 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo80質量%−Ni20質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electrocast material of Co80 mass%-Ni20 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution. ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo90質量%−Ni10質量%の電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature of the electroforming material of Co90 mass% -Ni10 mass% formed on the titanium plate using the nickel-cobalt alloy plating solution, and mechanical properties. コバルトめっき液を用いてチタン板上に形成した純コバルトの電鋳材の熱処理温度と機械的性質の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and mechanical property of the electrocast material of pure cobalt formed on the titanium plate using the cobalt plating solution. 電鋳材中の引張強度が1200N/mm以上、0.2%耐力が800N/mm以上、及びビッカース硬度が400以上となるときのコバルト含有量の範囲を示す説明図である。It is explanatory drawing which shows the range of cobalt content when the tensile strength in an electrocast material is 1200 N / mm < 2 > or more, 0.2% yield strength is 800 N / mm < 2 > or more, and Vickers hardness becomes 400 or more. 電鋳材中のコバルト含有量と、電鋳材を200〜450℃の温度範囲で熱処理した後の引張強度との関係を示すグラフである。It is a graph which shows the relationship between the cobalt content in an electroformed material, and the tensile strength after heat-processing an electroformed material in the temperature range of 200-450 degreeC.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の第1の実施の形態に係る電鋳構造体における電鋳材の作製方法について説明する。なお、電鋳構造体は、Co含有量が40質量%を超え55質量%以下、好ましくはCo含有量が40質量%を超え45質量%以下で、残部がNi及び不可避的不純物からなり、引張強度が少なくとも1200N/mm(1200MPa)である電鋳材10を有している。
図1に示すように、電鋳材10の作製では、めっき槽11内に、ニッケルと各種添加剤が溶解したニッケルめっき液を入れ、陰極としてチタン板12を配置し、陽極としてコバルト板13、ニッケル板14をそれぞれ配置する。また、チタン板12とコバルト板13との間に第1の電源15を接続し、チタン板12とニッケル板14との間に第2の電源16を接続する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, a method for producing an electroformed material in the electroformed structure according to the first embodiment of the present invention will be described. The electroformed structure has a Co content of more than 40% by mass and 55% by mass or less, preferably a Co content of more than 40% by mass and 45% by mass, with the balance being Ni and inevitable impurities. The electroformed material 10 has a strength of at least 1200 N / mm 2 (1200 MPa).
As shown in FIG. 1, in the production of the electroformed material 10, a nickel plating solution in which nickel and various additives are dissolved is placed in a plating tank 11, a titanium plate 12 is disposed as a cathode, a cobalt plate 13 is disposed as an anode, Nickel plates 14 are respectively disposed. A first power supply 15 is connected between the titanium plate 12 and the cobalt plate 13, and a second power supply 16 is connected between the titanium plate 12 and the nickel plate 14.

ニッケルめっき液中にはコバルトが含まれていないので、コバルト板13の周囲に、例えば、ステンレス(SUS)製のコバルト溶出用電極(図示せず)を配置し、第1の電源15のチタン板12側の接続端子をコバルト溶出用電極に繋ぎ替えて、第1の電源15によりコバルト溶出用電極とコバルト板13との間に電流を流し、コバルト板13からコバルトをニッケルめっき液中に溶出させてニッケル−コバルト合金めっき液17を作製する。このとき、コバルト板13からニッケルめっき液中に溶解させるコバルト量は、ニッケル−コバルト合金めっき液中のコバルト濃度と、ニッケル−コバルト合金めっき皮膜中のコバルト含有量との間の定量的関係(図2参照)に基づいて、製造する電鋳材10のニッケルとコバルトの割合から決定する。ここで、上記の定量的関係は、ニッケルとコバルトが種々の濃度で溶解しているニッケル−コバルト合金めっき液を用いてニッケル−コバルト合金めっき皮膜を作製し、作製されたニッケル−コバルト合金めっき皮膜を化学分析することにより作成する。
なお、ニッケル−コバルト合金めっき液17は、上記の定量的関係に基づいて、ニッケルとコバルトの濃度をそれぞれ調整しためっき液に、各種添加材を溶解させることにより作製することもできる。
Since cobalt is not contained in the nickel plating solution, for example, a cobalt elution electrode (not shown) made of stainless steel (SUS) is arranged around the cobalt plate 13, and the titanium plate of the first power supply 15. The connection terminal on the 12 side is connected to the cobalt elution electrode, and a current is passed between the cobalt elution electrode and the cobalt plate 13 by the first power supply 15, and cobalt is eluted from the cobalt plate 13 into the nickel plating solution. Thus, a nickel-cobalt alloy plating solution 17 is produced. At this time, the amount of cobalt dissolved from the cobalt plate 13 into the nickel plating solution is a quantitative relationship between the cobalt concentration in the nickel-cobalt alloy plating solution and the cobalt content in the nickel-cobalt alloy plating film (see FIG. 2), the ratio is determined from the ratio of nickel and cobalt of the electroformed material 10 to be manufactured. Here, the above quantitative relationship is that a nickel-cobalt alloy plating film is prepared using a nickel-cobalt alloy plating solution in which nickel and cobalt are dissolved at various concentrations, and the produced nickel-cobalt alloy plating film It is created by chemical analysis.
The nickel-cobalt alloy plating solution 17 can also be produced by dissolving various additives in a plating solution in which the concentrations of nickel and cobalt are adjusted based on the above quantitative relationship.

ニッケル−コバルト合金めっき液17の調製が終了すると、第1、第2の電源15、16を操作して、チタン板12とコバルト板13との間、チタン板12とニッケル板14との間にそれぞれ電流を流す。なお、チタン板12とコバルト板13との間に流れる電流と、チタン板12とニッケル板14との間に流れる電流の比率は、電鋳材10を構成するニッケルとコバルトの割合に応じて設定する。これにより、チタン板12の表面にはニッケルとコバルトが一定割合で混合した状態のニッケル−コバルト合金めっき層(いか、単に合金めっき層という)が形成される。そして、合金めっき層を所定の形状となるまで形成させることにより電鋳材10が作製される。
なお、ニッケル−コバルト合金めっき液17中には、コバルト板13とニッケル板14からそれぞれ、チタン板12に析出したコバルトとニッケルの重量に相当するコバルトとニッケルが溶解するので、ニッケル−コバルト合金めっき液17中のコバルトとニッケルのそれぞれの含有量は、めっき開始時の含有量に維持される。
When the preparation of the nickel-cobalt alloy plating solution 17 is completed, the first and second power sources 15 and 16 are operated to place the titanium plate 12 and the cobalt plate 13 between the titanium plate 12 and the nickel plate 14. Current flows through each. Note that the ratio of the current flowing between the titanium plate 12 and the cobalt plate 13 and the current flowing between the titanium plate 12 and the nickel plate 14 is set according to the ratio of nickel and cobalt constituting the electroformed material 10. To do. Thus, a nickel-cobalt alloy plating layer (or simply called an alloy plating layer) in which nickel and cobalt are mixed at a constant ratio is formed on the surface of the titanium plate 12. And the electrocast material 10 is produced by forming an alloy plating layer until it becomes a predetermined shape.
In the nickel-cobalt alloy plating solution 17, cobalt and nickel corresponding to the weight of cobalt and nickel deposited on the titanium plate 12 are dissolved from the cobalt plate 13 and the nickel plate 14, respectively. The contents of cobalt and nickel in the liquid 17 are maintained at the contents at the start of plating.

チタン板12上における電鋳材10の作製が完了すると、第1、第2の電源15、16を操作して、チタン板12とコバルト板13との間、チタン板12とニッケル板14との間にそれぞれ流す電流を停止する。そして、電鋳材10をチタン板12と共にニッケル−コバルト合金めっき液17から引き上げる。そして、電鋳材10とチタン板12を洗浄した後に電鋳材10をチタン板12から分離する。分離した電鋳材10から、あるいは必要に応じて加工を施した複数の電鋳材10を組合せることにより、電鋳構造体が構成される。 When the production of the electroformed material 10 on the titanium plate 12 is completed, the first and second power sources 15 and 16 are operated to connect the titanium plate 12 and the cobalt plate 13 between the titanium plate 12 and the nickel plate 14. The current flowing between them is stopped. Then, the electroformed material 10 is pulled up from the nickel-cobalt alloy plating solution 17 together with the titanium plate 12. Then, after the electroformed material 10 and the titanium plate 12 are washed, the electroformed material 10 is separated from the titanium plate 12. An electroformed structure is formed from the separated electroformed material 10 or by combining a plurality of electroformed materials 10 processed as required.

続いて、本発明の第2の実施の形態に係る電鋳構造体における電鋳材の作製方法について説明する。なお、電鋳構造体は、Co含有量が30質量%を超え60質量%以下、好ましくはCo含有量が50質量%以上60質量%以下で、残部がNi及び不可避的不純物からなり、200〜400℃で熱処理された電鋳材を有している。ここで、電鋳材の作製方法は、電鋳材の作製工程と、電鋳材の200〜400℃での熱処理工程とを有し、電鋳材の作製方法は、第1の実施の形態の電鋳構造体における電鋳材10の作製方法と同様に行うことができるので、詳細な説明は省略する。 Next, a method for producing an electroformed material in the electroformed structure according to the second embodiment of the present invention will be described. The electroformed structure has a Co content of more than 30% by mass and 60% by mass or less, preferably a Co content of 50% by mass or more and 60% by mass or less, with the balance being Ni and inevitable impurities, It has an electroformed material heat-treated at 400 ° C. Here, the method for producing the electroformed material has a process for producing the electroformed material and a heat treatment step for the electroformed material at 200 to 400 ° C., and the method for producing the electroformed material is the first embodiment. Since it can carry out similarly to the preparation methods of the electroformed material 10 in the electroformed structure of this, detailed description is abbreviate | omitted.

電鋳材の熱処理工程では、チタン板12から分離した電鋳材を熱処理炉内にセットし、真空中又は不活性ガス雰囲気中(例えば、アルゴンガス雰囲気中)において200〜400℃まで加熱し、0.5〜48時間の範囲で保持した後に徐冷する。そして、徐冷された電鋳材から、あるいは必要に応じて加工を施した複数の電鋳材を組合せることにより、電鋳構造体が構成される。
電鋳材を200〜400℃で熱処理することにより、電鋳材の組織を変化させないで、電鋳材の内部応力(合金めっき層が形成される際に導入された電着応力)に伴うひずみを除去することができ、電鋳材の機械的性質が改善される。これにより、電鋳材の適用範囲を更に拡大することが可能になる。
In the heat treatment step of the electroformed material, the electroformed material separated from the titanium plate 12 is set in a heat treatment furnace and heated to 200 to 400 ° C. in a vacuum or in an inert gas atmosphere (for example, in an argon gas atmosphere), Hold for 0.5 to 48 hours and then slowly cool. And an electroformed structure is comprised from the electroformed material annealed or combining the several electroformed material which processed as needed.
By heat-treating the electroformed material at 200 to 400 ° C., the strain accompanying the internal stress of the electroformed material (the electrodeposition stress introduced when the alloy plating layer is formed) without changing the structure of the electroformed material. The mechanical properties of the electroformed material are improved. Thereby, it becomes possible to further expand the application range of the electroformed material.

本発明の第3の実施の形態に係る構造物の作製方法では、チタン板12に基材を取付け、第1、第2の電源15、16を操作して、基材を介してチタン板12とコバルト板13及びニッケル板14との間にそれぞれ電流を流している。
なお、電鋳材の作製方法は、第1の実施の形態の電鋳構造体における電鋳材10の作製方法と同様なので、詳細な説明は省略する。これにより、基材表面に合金めっき層を形成することができ、基材表面と一体状態で電鋳材(厚みは用途に応じて設定する)を設けることができる。
In the method for manufacturing a structure according to the third embodiment of the present invention, a base material is attached to the titanium plate 12, the first and second power sources 15 and 16 are operated, and the titanium plate 12 is interposed via the base material. A current is passed between the cobalt plate 13 and the nickel plate 14.
The method for producing the electroformed material is the same as the method for producing the electroformed material 10 in the electroformed structure according to the first embodiment, and thus detailed description thereof is omitted. Thereby, an alloy plating layer can be formed on the base material surface, and an electroformed material (thickness is set according to the application) can be provided integrally with the base material surface.

ここで、基材の材質は、構造物の目的に応じて、例えば、鉄鋼材、ステンレス材、銅、又は銅合金材等の導電材料の中から選択され、基材の形状は、構造物の形状に応じて所定の形状に加工しておく。基材を予め加工しておくことで、複雑な形状の構造体を容易に作製することができる。また、表面に電鋳材が設けられた複数の基材を組合わせることで、大型の構造物を容易に作製することができる。
なお、基材の表面(電鋳材が設けられる面)には、例えば、ブラスト加工を行って凹凸面を形成するのが好ましい。これにより、基材と電鋳材との間の接合強度を向上させることができる。
また、チタン板12上に、所定材質、所定形状の電着層を形成し、基材として用いることもできる。
また、基材に、例えば、アルミニウム(アルミニウム合金を含む)を使用した場合、基材上に電鋳材を形成した後、基材をニッケル−コバルト合金めっき液から引き上げ洗浄した後に、アルミニウムの融点まで加熱することにより基材を溶融させて電鋳材より除去することができ、あるいは酸溶液又はアルカリ溶液に浸漬することにより基材を溶解させて電鋳材より除去することができ、電鋳材のみから形成されている構造物を容易に作製することができる。
更に、チタン板の代わりに基材を陰極として用い、基材とコバルト板、基材とニッケル板との間にそれぞれ電流を流し、基材上に電鋳材を形成することもできる。
なお、電鋳材を基材の一部に設けた構造物を作製することもできる。
Here, the material of the base material is selected from conductive materials such as steel, stainless steel, copper, or copper alloy material according to the purpose of the structure, and the shape of the base material is the structure of the structure. It is processed into a predetermined shape according to the shape. By processing the base material in advance, a structure having a complicated shape can be easily produced. Moreover, a large-sized structure can be easily produced by combining a plurality of base materials provided with an electroformed material on the surface.
In addition, it is preferable to form an uneven surface on the surface of the base material (surface on which the electroformed material is provided) by, for example, blasting. Thereby, the joint strength between a base material and an electroformed material can be improved.
Further, an electrodeposition layer having a predetermined material and a predetermined shape can be formed on the titanium plate 12 and used as a base material.
For example, when aluminum (including an aluminum alloy) is used as the base material, after forming an electroformed material on the base material, the base material is pulled up from the nickel-cobalt alloy plating solution and washed, and then the melting point of aluminum The base material can be melted and removed from the electroformed material by heating to 1, or the base material can be dissolved and removed from the electroformed material by immersing in an acid solution or an alkaline solution. A structure formed of only the material can be easily manufactured.
Further, instead of the titanium plate, a base material can be used as a cathode, and an electric current can be passed between the base material and the cobalt plate, or between the base material and the nickel plate to form an electroformed material on the base material.
It is also possible to produce a structure in which an electroformed material is provided on a part of the base material.

続いて、本発明の作用及び効果を確認するために行った実施例について説明する。
ニッケルめっき液を用いてチタン板上に形成した純ニッケルの電鋳材の熱処理温度と機械的性質(引張強度(N/mm2)、0.2%耐力(N/mm2)、ビッカース硬度(以下、硬度(Hv)という)、及び伸度(%))との関係を図3に示す。
また、ニッケルめっき液をベースにコバルト含有量を10質量%ピッチで90質量%まで調整した各ニッケル−コバルト合金めっき液を用いてチタン板上に形成したCo10質量%−Ni90質量%〜Co90質量%−Ni10質量%の各電鋳材における、熱処理温度と機械的性質との関係を図4〜図12に示す。
更に、コバルトめっき液を用いてチタン板上に形成した純コバルトの電鋳材の熱処理温度と機械的性質との関係を図13に示す。
Next, examples performed to confirm the operation and effect of the present invention will be described.
Heat treatment temperature and mechanical properties of pure nickel electroformed material formed on a titanium plate using a nickel plating solution (tensile strength (N / mm2), 0.2% proof stress (N / mm2), Vickers hardness (hereinafter, The relationship between the hardness (referred to as Hv) and the elongation (%)) is shown in FIG.
Further, Co 10 mass% -Ni 90 mass% to Co 90 mass% formed on a titanium plate using each nickel-cobalt alloy plating liquid whose cobalt content was adjusted to 90 mass% at a pitch of 10 mass% based on the nickel plating liquid. The relationship between the heat treatment temperature and the mechanical properties in each of the electroformed materials of Ni of 10 mass% is shown in FIGS.
Further, FIG. 13 shows the relationship between the heat treatment temperature and mechanical properties of a pure cobalt electroformed material formed on a titanium plate using a cobalt plating solution.

図3〜図13から熱処理を行わない電鋳材の引張強度、0.2%耐力、及び硬度(Hv)をそれぞれ読み取り、電鋳材のコバルト含有量に対して、引張強度が1200N/mm以上、0.2%耐力が800N/mm以上、硬度(Hv)が400以上となる場合をそれぞれ○印、引張強度が1200N/mm未満、0.2%耐力が800N/mm未満、硬度(Hv)が400未満となる場合をそれぞれ×印として示すと、図14のようになる。 3 to 13, the tensile strength, 0.2% proof stress, and hardness (Hv) of the electroformed material that is not heat-treated are read, and the tensile strength is 1200 N / mm 2 with respect to the cobalt content of the electroformed material. or 0.2% proof stress 800 N / mm 2 or more, when the respective ○ mark hardness (Hv) is 400 or more, a tensile strength of less than 1200 N / mm 2, less than 0.2% yield strength 800 N / mm 2, The case where the hardness (Hv) is less than 400 is indicated as x, as shown in FIG.

図14から、電鋳材の引張強度が1200N/mm以上となるときのコバルト含有量の下限値は10〜20質量%の範囲に、上限値は50〜60質量%の範囲にそれぞれ存在することが分かる。また、0.2%耐力が800N/mm以上となるときのコバルト含有量の下限値は20〜30質量%の範囲に、上限値は50〜60質量%の範囲にそれぞれ存在することが分かる。更に、硬度(Hv)が400以上となるときのコバルト含有量の下限値は30〜40質量%の範囲に、上限値は60〜70質量%の範囲にそれぞれ存在することが分かる。
特に、電鋳材のコバルト含有量を40質量%を超え45質量%以下では、電鋳材の引張強度、0.2%耐力、及び硬度(Hv)を共に高位にすることができる。
From FIG. 14, the lower limit value of the cobalt content when the tensile strength of the electroformed material is 1200 N / mm 2 or more exists in the range of 10 to 20% by mass, and the upper limit value exists in the range of 50 to 60% by mass. I understand that. Further, it can be seen that the lower limit value of the cobalt content when the 0.2% proof stress is 800 N / mm 2 or more exists in the range of 20 to 30% by mass, and the upper limit value exists in the range of 50 to 60% by mass. . Furthermore, it can be seen that when the hardness (Hv) is 400 or more, the lower limit of the cobalt content is in the range of 30 to 40% by mass, and the upper limit is in the range of 60 to 70% by mass.
In particular, when the cobalt content of the electroformed material exceeds 40% by mass and is equal to or less than 45% by mass, both the tensile strength, 0.2% proof stress, and hardness (Hv) of the electroformed material can be increased.

図3〜図13から、200℃、240℃、300℃、350℃、及び450℃でそれぞれ熱処理した電鋳材の引張強度を読み取り、コバルト含有量と引張強度の関係を示すと、図15のようになる。
図15から、ニッケル電鋳材(コバルト含有量が0%)及びコバルト電鋳材(コバルト含有量が100%)に対して、コバルト含有量が30質量%を超え60質量%以下の範囲では、200〜400℃で熱処理を行うことにより、引張強度の向上が認められる。そして、Co含有量が40質量%以上60質量%以下の電鋳材では、特に200〜300℃で熱処理を行うことにより、電鋳材の引張強度を1200MPaを超えるレベルまで向上させることが可能であることが分かる。
From FIG. 3 to FIG. 13, the tensile strength of the electroformed material heat treated at 200 ° C., 240 ° C., 300 ° C., 350 ° C., and 450 ° C. is read, and the relationship between the cobalt content and the tensile strength is shown in FIG. It becomes like this.
From FIG. 15, with respect to the nickel electroformed material (cobalt content is 0%) and the cobalt electroformed material (cobalt content is 100%), the cobalt content is in the range of more than 30% by mass and 60% by mass or less. By performing heat treatment at 200 to 400 ° C., an improvement in tensile strength is observed. And in the electroformed material whose Co content is 40% by mass or more and 60% by mass or less, it is possible to improve the tensile strength of the electroformed material to a level exceeding 1200 MPa, particularly by performing a heat treatment at 200 to 300 ° C. I understand that there is.

本発明は前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。
また、本発明は具体的数字を用いて説明したが、要旨を変更しない範囲で数値限定を外すことができる。
例えば、電鋳構造体を、Co含有量が40質量%を超え55質量%以下、タングステン及びモリブデンをそれぞれ0.1質量%以上5質量%以下で、残部がNi及び不可避的不純物からなる電鋳材を有する構成とすることができる。また、電鋳構造体を、Co含有量が30質量%を超え60質量%以下、タングステン及びモリブデンをそれぞれ0.1質量%以上5質量%以下で、残部がNi及び不可避的不純物からなり、200〜400℃で熱処理された電鋳材を有する構成とすることができる。タングステン及びモリブデンをそれぞれ加えることにより、電鋳構造体の硬度及び耐食性を高めることができる。
The present invention is not limited to the above-described embodiment, and the configuration thereof can be changed without changing the gist of the present invention.
Moreover, although this invention was demonstrated using the specific number, numerical limitation can be removed in the range which does not change a summary.
For example, an electroformed structure is made of an electroformed structure in which the Co content is more than 40% by mass and 55% by mass or less, tungsten and molybdenum are each 0.1% by mass to 5% by mass, and the balance is Ni and inevitable impurities. It can be set as the structure which has material. Further, the electroformed structure has a Co content of more than 30% by mass and 60% by mass or less, tungsten and molybdenum of 0.1% by mass or more and 5% by mass or less, with the balance being Ni and inevitable impurities, It can be set as the structure which has the electroformed material heat-processed at -400 degreeC. By adding tungsten and molybdenum, respectively, the hardness and corrosion resistance of the electroformed structure can be increased.

10:電鋳材、11:めっき槽、12:チタン板、13:コバルト板、14:ニッケル板、15:第1の電源、16:第2の電源、17:ニッケル−コバルト合金めっき液 10: Electroformed material, 11: Plating tank, 12: Titanium plate, 13: Cobalt plate, 14: Nickel plate, 15: First power source, 16: Second power source, 17: Nickel-cobalt alloy plating solution

Claims (4)

Co含有量が40質量%を超え55質量%以下で、残部がNi及び不可避的不純物からなり、引張強度が少なくとも1200N/mmである電鋳材を有することを特徴とする電鋳構造体。 An electroformed structure comprising an electroformed material having a Co content of more than 40% by mass and 55% by mass or less, the balance being Ni and inevitable impurities, and a tensile strength of at least 1200 N / mm 2 . Co含有量が30質量%を超え60質量%以下で、残部がNi及び不可避的不純物からなり、200〜400℃で熱処理された電鋳材を有することを特徴とする電鋳構造体。 An electroformed structure comprising an electroformed material having a Co content of more than 30% by mass and not more than 60% by mass, the balance being made of Ni and inevitable impurities and heat-treated at 200 to 400 ° C. 請求項2記載の電鋳構造体において、前記熱処理の時間は少なくとも0.5時間であることを特徴とする電鋳構造体。 3. The electroformed structure according to claim 2, wherein the heat treatment time is at least 0.5 hour. 請求項1記載の前記電鋳材が基材表面又は基材の一部に設けられている、あるいは、前記電鋳材のみから形成されていることを特徴とする構造物。 2. The structure according to claim 1, wherein the electroformed material according to claim 1 is provided on a surface of a base material or a part of the base material, or is formed only from the electroformed material.
JP2016090191A 2016-04-28 2016-04-28 Method for producing electroformed material and method for producing structure Active JP6484586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090191A JP6484586B2 (en) 2016-04-28 2016-04-28 Method for producing electroformed material and method for producing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090191A JP6484586B2 (en) 2016-04-28 2016-04-28 Method for producing electroformed material and method for producing structure

Publications (2)

Publication Number Publication Date
JP2017197825A true JP2017197825A (en) 2017-11-02
JP6484586B2 JP6484586B2 (en) 2019-03-13

Family

ID=60238988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090191A Active JP6484586B2 (en) 2016-04-28 2016-04-28 Method for producing electroformed material and method for producing structure

Country Status (1)

Country Link
JP (1) JP6484586B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147847A (en) * 2019-03-14 2020-09-17 ユニゾン・インダストリーズ,エルエルシー Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505111B1 (en) * 1968-07-08 1975-02-28
JPS5446131A (en) * 1977-09-20 1979-04-11 Mishima Kosan Co Ltd Method of making mold for continuous casting process
JPS5729599A (en) * 1980-06-17 1982-02-17 Rockwell International Corp Composition control of electrodeposited nickel . cobalt
JP2003127143A (en) * 2001-10-26 2003-05-08 Matsushita Electric Works Ltd Method for manufacturing fine mold
US20060269770A1 (en) * 2005-05-31 2006-11-30 International Business Machines Corporation Nickel alloy plated structure
JP2015166483A (en) * 2014-03-04 2015-09-24 株式会社野村鍍金 Cobalt-nickel alloy material, and article coated with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505111B1 (en) * 1968-07-08 1975-02-28
JPS5446131A (en) * 1977-09-20 1979-04-11 Mishima Kosan Co Ltd Method of making mold for continuous casting process
JPS5729599A (en) * 1980-06-17 1982-02-17 Rockwell International Corp Composition control of electrodeposited nickel . cobalt
JP2003127143A (en) * 2001-10-26 2003-05-08 Matsushita Electric Works Ltd Method for manufacturing fine mold
US20060269770A1 (en) * 2005-05-31 2006-11-30 International Business Machines Corporation Nickel alloy plated structure
JP2015166483A (en) * 2014-03-04 2015-09-24 株式会社野村鍍金 Cobalt-nickel alloy material, and article coated with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147847A (en) * 2019-03-14 2020-09-17 ユニゾン・インダストリーズ,エルエルシー Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same
JP2022062114A (en) * 2019-03-14 2022-04-19 ユニゾン・インダストリーズ,エルエルシー Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same
US11807929B2 (en) 2019-03-14 2023-11-07 Unison Industries, Llc Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same

Also Published As

Publication number Publication date
JP6484586B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
CN100577833C (en) Copper alloy, copper alloy plate, and process for producing the same
CN101541987B (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
EP2957646B1 (en) High-strength cu-ni-co-si base copper alloy sheet, process for producing same, and current-carrying component
JP5840235B2 (en) Copper alloy wire and method for producing the same
FI87804C (en) Copper alloy treatment
JP6501889B2 (en) Method of manufacturing Fe-Ni alloy metal foil excellent in heat recovery
JP5426936B2 (en) Copper alloy manufacturing method and copper alloy
CN101693960A (en) Copper alloy, copper alloy plate, and process for producing the same
JP6156600B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
CN112831710B (en) Superhard wear-resistant high-entropy alloy and preparation method thereof
JP2016156059A (en) Aluminum alloy foil excellent in elongation property and method for producing aluminum foil
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
CN102822364A (en) Cu-Ni-Si alloy for electronic material
JP4642119B2 (en) Copper alloy and method for producing the same
JP6484586B2 (en) Method for producing electroformed material and method for producing structure
JP2019136753A (en) Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same
TW200837203A (en) Cu-Ni-Si-based copper alloy for electronic material
JP2017193765A (en) Copper-iron alloy material and method for producing the same
JP4708497B1 (en) Cu-Co-Si alloy plate and method for producing the same
JP2012136746A (en) Copper alloy for electric and electronic parts, and method for manufacturing the same
JP2016176105A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
CN101469384B (en) Brass alloy material and preparation thereof
JP5761400B1 (en) Wire for connector pin, method for manufacturing the same, and connector
JP2012153961A (en) Copper-zinc alloy linear sheet and method for manufacturing the copper-zinc alloy linear sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6484586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250