JP2019136753A - Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same - Google Patents

Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same Download PDF

Info

Publication number
JP2019136753A
JP2019136753A JP2018023757A JP2018023757A JP2019136753A JP 2019136753 A JP2019136753 A JP 2019136753A JP 2018023757 A JP2018023757 A JP 2018023757A JP 2018023757 A JP2018023757 A JP 2018023757A JP 2019136753 A JP2019136753 A JP 2019136753A
Authority
JP
Japan
Prior art keywords
layer
nickel
cobalt
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018023757A
Other languages
Japanese (ja)
Other versions
JP7022266B2 (en
Inventor
幸平 石田
Kohei Ishida
幸平 石田
利幸 中嶋
Toshiyuki Nakajima
利幸 中嶋
卓男 中出
Takao Nakade
卓男 中出
敬行 長瀧
Takayuki Nagataki
敬行 長瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Plating Co Ltd
Original Assignee
Nomura Plating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Plating Co Ltd filed Critical Nomura Plating Co Ltd
Priority to JP2018023757A priority Critical patent/JP7022266B2/en
Publication of JP2019136753A publication Critical patent/JP2019136753A/en
Application granted granted Critical
Publication of JP7022266B2 publication Critical patent/JP7022266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a cobalt-nickel alloy material adapted to form a protection layer having both of high strength and thermal shock resistance in addition to excellent heat resistance, corrosion resistance and wear resistance on a surface of a base substance of a continuous casting mold.SOLUTION: A cobalt-nickel alloy material is provided for forming on a surface of a mold base substance a Co-Ni alloy plating layer with a total film thickness of 30-500 μm by alternately laying two types of crystallized electric plating layers of hexagonal crystal and face-centered cubic crystal different in crystal structures with each film thickness of 0.1-50 μm. The two types of electric plating layers, which are a plating layer having a hexagonal crystal structure consisting of 10-20 wt.% of Ni and a balance of Co and a plating layer having a face-centered cubic crystal structure consisting of 21-60 wt.% of Ni and a balance of Co, are alternately layered, and these layers are respectively crystallized into hexagonal and face-centered cubic crystals by a heat treatment at 200-500°C. Further, while supplying a Ni-based heat-resistant alloy powder to the surface, a laser is radiated to fuse and solidify the powder so as to form a 0.1-10 mm thick Ni-based alloy coat layer formed with a rise.SELECTED DRAWING: Figure 2

Description

本発明は、コバルト−ニッケル合金材料と、それを用いた耐熱、耐摩耗性に優れかつ高強度な連続鋳造用鋳型およびその製造方法に関するものである。   The present invention relates to a cobalt-nickel alloy material, a continuous casting mold having high heat resistance and wear resistance, and a method for producing the same.

溶鋼を冷却しながら固化・成型する製鋼工程で使用される連続鋳造用鋳型用材料には、冷却効果の観点から熱伝導性に優れる銅や銅合金が使用されることが多い。しかし、銅や銅合金は硬度が低く耐摩耗性に劣ることから、鋳型の長寿命化を目的に、銅や銅合金よりなる鋳型基体の表面に、より高耐摩耗で耐熱性に優れるニッケルやコバルトのめっき層や、溶射による金属層やセラミック層を形成した連続鋳造用鋳型が知られている。   Copper and copper alloys that are excellent in thermal conductivity are often used from the viewpoint of the cooling effect as continuous casting mold materials used in the steel making process in which the molten steel is solidified and molded while cooling. However, since copper and copper alloys are low in hardness and inferior in wear resistance, for the purpose of extending the life of the mold, the surface of the mold base made of copper or copper alloy has higher wear resistance and excellent heat resistance. A continuous casting mold in which a cobalt plating layer, a metal layer by spraying, or a ceramic layer is formed is known.

凝固・成型時の特に連続鋳造用鋳型上部においては、高熱の溶鋼と冷却された鋳型との温度差により、鋳型表面は厳しい熱衝撃にさらされる。一方、鋳型下部においては冷却され凝固した鋳片に強く擦られ鋳型の摩耗が激しくなる。そこで、耐熱疲労性、耐摩耗性、耐食性などの特性に優れるニッケルと鉄、マンガン、コバルト、クロム、タングステンなどとの合金層をめっき法や溶射法により銅または銅合金製の連続鋳造用鋳型表面に形成させることにより、鋳型を長寿命化させる方法は一般に知られている。   The mold surface is exposed to severe thermal shock due to the temperature difference between the hot molten steel and the cooled mold, especially at the upper part of the continuous casting mold during solidification and molding. On the other hand, at the lower part of the mold, the mold is rubbed strongly by the cooled and solidified slab, and the mold wears heavily. Therefore, a continuous casting mold surface made of copper or copper alloy by plating or spraying an alloy layer of nickel and iron, manganese, cobalt, chromium, tungsten, etc., which has excellent characteristics such as heat fatigue resistance, wear resistance, and corrosion resistance. A method for extending the life of a mold by forming the film is generally known.

特許文献1では、コバルト−ニッケル系合金でニッケル含有量の異なる2層を交互に積層した層を連続鋳造用鋳型表面に被覆することにより、引張り強さおよび耐摩耗性を向上させた例が報告されている。   Patent Document 1 reports an example in which tensile strength and wear resistance are improved by coating the surface of a continuous casting mold with a layer in which two layers having different nickel contents are alternately laminated with a cobalt-nickel alloy. Has been.

特許文献2では、銅または銅合金の表面にNiめっきを施し、その表面に板形状のNi基合金を仮付けした後、レーザーまたは電子ビームを用いて肉盛りし、密着強度が高くかつ耐摩耗性と耐腐食性に優れた皮膜を形成する方法が示されている。また、肉盛り用Ni基合金の板形状材には、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(23Co20Cr8.5Al0.6Y残部Ni)、NiCr(50Ni50Cr)を用いている。また、レーザーまたは電子ビームを用いて板形状材を肉盛りする際に、板形状材とNiめっき層の境界が溶融し、かつ隣接する板形状材の溶融部が重ね部を形成する方法も示している。   In Patent Document 2, Ni is plated on the surface of copper or a copper alloy, a plate-shaped Ni-based alloy is temporarily attached to the surface, and then is built up using a laser or an electron beam to provide high adhesion strength and wear resistance. A method for forming a film excellent in corrosion resistance and corrosion resistance is shown. Further, for the plate-shaped material of the Ni-based alloy for overlaying, Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (23Co20Cr8.5Al0.6Y remaining Ni), NiCr (50Ni50Cr) Used. Also shown is a method of melting the boundary between the plate-shaped material and the Ni plating layer when the plate-shaped material is built up using a laser or an electron beam, and the molten portion of the adjacent plate-shaped material forms an overlapped portion. ing.

特開2015−166483号公報Japanese Patent Laying-Open No. 2015-166383 特開平10−85972号公報Japanese Patent Laid-Open No. 10-85972

特許文献2の技術では、レーザーを用いて板形状材を肉盛りする際に、板形状材を溶かすのに十分な熱量の供給を必要とし、また、その供給された熱量の多くは板形状材を伝わって逃げるので、銅あるいは銅合金基体の被熱量が大きくなり、熱変形が少なくないという問題があった。また、下地となるNiめっきの強度、耐熱性が十分ではなかった。   In the technique of Patent Document 2, when a plate-shaped material is built up using a laser, it is necessary to supply a sufficient amount of heat to melt the plate-shaped material, and much of the supplied heat is a plate-shaped material. Therefore, there is a problem that the amount of heat to be applied to the copper or copper alloy substrate is increased and thermal deformation is not small. Further, the strength and heat resistance of the Ni plating as the base were not sufficient.

本発明は、このような点に鑑みてなされたものであり、連続鋳造用鋳型のさらなる長寿命化を達成するために、銅または銅合金鋳型基体の表面に、耐摩耗性、耐食性が優れ、さらに引張り強さ、耐熱衝撃性が一段と向上した、結晶構造が異なる2種類のコバルト−ニッケル合金めっき層を交互に重積することにより、連続鋳造用鋳型の長寿命化を実現する。さらに、異なる結晶構造を交互重積したコバルト−ニッケル合金めっき層表面に、金属粉末を使ったレーザー肉盛り法で耐熱、耐蝕性に優れるニッケル基合金肉盛り層を、熱効率良く、かつ熱ひずみを抑制して積層することにより、高強度であり、かつ耐熱、耐摩耗性にすぐれる連続鋳造用鋳型を実現する。   The present invention has been made in view of such points, and in order to achieve a longer life of the continuous casting mold, the surface of the copper or copper alloy mold base has excellent wear resistance and corrosion resistance. Furthermore, by extending two types of cobalt-nickel alloy plating layers with different crystal structures and improved tensile strength and thermal shock resistance, the life of the continuous casting mold can be extended. In addition, a nickel-based alloy overlay layer with excellent heat resistance and corrosion resistance by a laser overlay method using metal powder on the surface of the cobalt-nickel alloy plating layer on which different crystal structures are alternately stacked. By suppressing and laminating, a continuous casting mold having high strength and excellent heat resistance and wear resistance is realized.

請求項1の発明は、10〜20重量%のニッケルと残部コバルト及び不可避不純物からなり六方晶の結晶構造を持つめっき層と、21〜60重量%のニッケルと残部コバルト及び不可避不純物からなり面心立方晶の結晶構造を持つめっき層が交互に積層した構造を有することを特徴とするコバルト−ニッケル合金材料である。   The invention of claim 1 is a plating layer composed of 10 to 20% by weight of nickel, the remaining cobalt and unavoidable impurities and having a hexagonal crystal structure, and 21 to 60% by weight of nickel, the remaining cobalt and unavoidable impurities. It is a cobalt-nickel alloy material characterized by having a structure in which plating layers having a cubic crystal structure are alternately laminated.

請求項2の発明は、銅または銅合金基体表面に、電気めっき法により、10〜20重量%のニッケルと残部コバルト及び不可避不純物からなる層と、21〜60重量%のニッケルと残部コバルト及び不可避不純物からなる層とを交互に積層し、各一層の膜厚が0.1〜50μmであり、全膜厚の合計が50〜2000μmである交互重積めっき層を形成し、200〜500℃で熱処理することにより、それぞれの層を、六方晶と面心立方晶に結晶化させた連続鋳造用鋳型である。   According to the second aspect of the present invention, a layer of 10 to 20% by weight of nickel, the remaining cobalt and unavoidable impurities, 21 to 60% by weight of nickel, the remaining cobalt and unavoidable are formed on the surface of the copper or copper alloy substrate by electroplating. Layers made of impurities are alternately stacked, and each layer has a thickness of 0.1 to 50 μm, and an alternate stacked plating layer having a total thickness of 50 to 2000 μm is formed at 200 to 500 ° C. It is a continuous casting mold in which each layer is crystallized into hexagonal crystals and face-centered cubic crystals by heat treatment.

請求項3の発明は、銅または銅合金基体表面に、ニッケルとコバルトとからなり結晶構造が六方晶と面心立方晶と異なる2種類の結晶化した電気めっき層で各膜厚が0.1〜50μmを交互に重積した合計膜厚30〜500μmのめっき層を形成し、その表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末を溶融・固化して形成した一層または多層を肉盛りすることにより厚み0.1〜10mmのニッケル基合金被覆層を形成した連続鋳造用鋳型である。   The invention according to claim 3 is an electroplated layer of two types which is made of nickel and cobalt and has a crystal structure different from hexagonal crystal and face centered cubic crystal on the surface of a copper or copper alloy substrate. A single layer or multiple layers formed by forming a plating layer with a total film thickness of 30 to 500 μm by alternately stacking ˜50 μm, and irradiating a laser while supplying nickel-base heat-resistant alloy powder to the surface to melt and solidify the powder Is a continuous casting mold in which a nickel-based alloy coating layer having a thickness of 0.1 to 10 mm is formed.

請求項4の発明は、請求項3の連続鋳造用鋳型において、レーザー肉盛り層を形成するニッケル基耐熱合金粉末が、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(80Ni20Cr)、ワスパロイ(58Ni19Cr14Co4.5Mo3Ti)の一種からなることを特徴とする。   The invention of claim 4 is the continuous casting mold according to claim 3, wherein the nickel-base heat-resistant alloy powder forming the laser build-up layer is Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), It is characterized by comprising one kind of NiCoCrAlY (47.9Ni23Co20Cr8.5Al0.6Y), NiCr (80Ni20Cr), Waspaloy (58Ni19Cr14Co4.5Mo3Ti).

請求項5の発明は、請求項3または4に記載の連続鋳造用鋳型の製造方法であって、レーザー肉盛り層形成を2回以上の多数回繰り返すことにより、電気めっき層からのニッケルとコバルトの拡散を内部から表面に傾斜的に減少させた多層レーザー肉盛り層とすることを特徴とする。   The invention of claim 5 is the method for producing a casting mold for continuous casting according to claim 3 or 4, wherein nickel and cobalt from the electroplated layer are formed by repeating the laser build-up layer formation two or more times. It is characterized by making it the multilayer laser build-up layer which decreased the diffusion of this from the inside to the surface.

請求項1または2の発明によれば、10〜20重量%のニッケルと残部コバルト及び不可避不純物からなり六方晶の結晶構造を持つめっき層と、21〜60重量%のニッケルと残部コバルト及び不可避不純物からなり面心立方晶の結晶構造を持つめっき層が交互に積層した構造を有しているので、熱衝撃に対する耐クラック性が優れている。特に、請求項2の発明によれば、銅または銅合金基体表面に、各一層の膜厚が0.1〜50μmであり、全膜厚の合計が50〜2000μmである交互重積めっき層を形成し、200〜500℃で熱処理することにより、それぞれの層を、六方晶と面心立方晶に結晶化させた連続鋳造用鋳型であるから、熱衝撃に対する耐クラック性が改善され、ヒートクラックが生じにくい連続鋳造用鋳型とすることができる。   According to invention of Claim 1 or 2, the plating layer which consists of 10-20 weight% nickel, remainder cobalt, and an unavoidable impurity and has a hexagonal crystal structure, 21-60 weight% nickel, remainder cobalt, and an unavoidable impurity And has a structure in which plating layers having a face-centered cubic crystal structure are alternately laminated, and therefore has excellent crack resistance against thermal shock. In particular, according to the second aspect of the present invention, the alternately stacked plating layers having a thickness of each layer of 0.1 to 50 μm and a total thickness of 50 to 2000 μm are formed on the surface of the copper or copper alloy substrate. Since it is a continuous casting mold in which each layer is crystallized into hexagonal crystals and face-centered cubic crystals by heat treatment at 200 to 500 ° C., the crack resistance against thermal shock is improved, and heat cracks It can be set as a casting mold for continuous casting.

請求項3の発明によれば、銅または銅合金よりもレーザーエネルギーの吸収が良いニッケルとコバルトとからなる電気めっき層の表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射して肉盛り層を形成しているから、板形状のニッケル基合金を仮付けした後、レーザーを用いて肉盛り溶接する従来例に比べると、供給した粉末を効率よく溶融することができ、したがって、銅あるいは銅合金基体および被覆層全体の熱ひずみを抑制することができる。また、めっき層は、各層の膜厚が0.1〜50μmで結晶構造が異なる2種類の電気めっき層を交互に重積した構造を有しているので、単層のめっき層に比べると、熱衝撃に対する耐クラック性が改善される。さらに、電気めっき層は膜厚が30〜500μmであるので、銅または銅合金基体からレーザー肉盛り層への銅の溶け出しを抑制でき、ニッケル基耐熱合金の本来の耐熱性、耐蝕性、耐摩耗性を発揮できる。   According to the invention of claim 3, a build-up layer is formed by irradiating a laser while supplying nickel-base heat-resistant alloy powder to the surface of an electroplating layer made of nickel and cobalt, which absorbs laser energy better than copper or a copper alloy. Compared to the conventional example in which build-up welding is performed using a laser after temporarily attaching a plate-shaped nickel-base alloy, the supplied powder can be efficiently melted. The heat distortion of the alloy base and the entire coating layer can be suppressed. In addition, since the plating layer has a structure in which two types of electroplating layers having different crystal structures with a thickness of each layer of 0.1 to 50 μm are alternately stacked, compared to a single-layer plating layer, Crack resistance against thermal shock is improved. Furthermore, since the electroplating layer has a thickness of 30 to 500 μm, it is possible to suppress the dissolution of copper from the copper or copper alloy substrate to the laser build-up layer, and the original heat resistance, corrosion resistance, Abrasion can be demonstrated.

請求項4の発明によれば、耐熱性、耐蝕性、耐摩耗性に優れていることが既知の合金を、その組成をほとんど変化させることなく、且つ密着性良く、銅あるいは銅合金基体表面に被覆することができるから、合金めっき法や溶射法により表面保護皮膜を形成した連続鋳造用鋳型に比べると、優れた耐熱性、耐蝕性、耐摩耗性を発揮することができる。   According to the invention of claim 4, an alloy that is known to be excellent in heat resistance, corrosion resistance, and wear resistance can be applied to the surface of a copper or copper alloy substrate with almost no change in composition and good adhesion. Since it can be coated, superior heat resistance, corrosion resistance, and wear resistance can be exhibited as compared with a continuous casting mold in which a surface protective film is formed by an alloy plating method or a thermal spraying method.

請求項5の発明によれば、レーザー肉盛り層形成を2回以上の多数回繰り返すことにより、めっき層からのコバルトおよびニッケルの拡散を内部から表面に傾斜的に減少させた多層レーザー肉盛り層を形成できるから、溶鋼に接する肉盛り層の表面は、粉末で供給されたニッケル基合金の組成に近似した組成を持たせることができるという効果がある。   According to the invention of claim 5, the multilayer laser build-up layer in which the diffusion of cobalt and nickel from the plating layer is gradually decreased from the inside to the surface by repeating the laser build-up layer formation two or more times. Therefore, the surface of the build-up layer in contact with the molten steel has an effect that it can have a composition that approximates the composition of the nickel-based alloy supplied in powder form.

本発明の実施例2の断面構造を示す写真である。It is a photograph which shows the cross-section of Example 2 of this invention. 本発明の実施例2の断面の拡大構造を示す写真である。It is a photograph which shows the expanded structure of the cross section of Example 2 of this invention.

連続鋳造用鋳型では、鋳型に溶鋼を流し込むと同時に、背面を冷却水で冷やした鋳型表面で、溶鋼を抜熱し凝固させることにより連続的に鋼を鋳込み成型していく。鋳型上部のメニスカス部付近は、溶鋼と鋳型が直接接触する部分であり高い耐熱性と耐蝕性が求められる。同時に、冷却水との温度差から最も強い熱応力を受け、熱クラックも発生しやすく耐熱衝撃性と高強度が求められる。また、銅や銅合金鋳型基体表面に、耐熱性や耐蝕性に優れる被覆層を有する表面被覆鋳型では、基体と被覆層間に強い密着強度が求められる。   In a continuous casting mold, molten steel is poured into the mold, and at the same time, the molten steel is removed and solidified on the mold surface whose back surface is cooled with cooling water to continuously cast and mold the steel. The vicinity of the meniscus portion at the top of the mold is a portion where the molten steel and the mold are in direct contact, and high heat resistance and corrosion resistance are required. At the same time, it is subjected to the strongest thermal stress due to the temperature difference from the cooling water, and thermal cracking is likely to occur, and thermal shock resistance and high strength are required. Further, in a surface-coated mold having a coating layer having excellent heat resistance and corrosion resistance on the surface of a copper or copper alloy mold substrate, strong adhesion strength is required between the substrate and the coating layer.

一方、溶鋼が冷却され凝固した状態の鋳型下部では、モールドパウダーに含まれるガラス質のセラミックパウダーの擦り摩耗や、溶鋼が凝固し体積収縮した後の密度上昇した鋼自身の重量増により鋳型面を強く擦ることによる鋳型摩耗から寿命に至ることもある。さらに、溶鋼中の硫黄成分による化学的腐食や鋳型通過後の鋼冷却用吹付け水の蒸気による鋳型下部の腐食摩耗にも対策が必要である。   On the other hand, at the lower part of the mold where the molten steel is cooled and solidified, the mold surface is removed due to frictional wear of the vitreous ceramic powder contained in the mold powder and weight increase of the steel itself whose density has increased after the molten steel has solidified and volume contracted. Mold life due to strong rubbing can lead to life. Furthermore, it is necessary to take measures against chemical corrosion due to sulfur components in the molten steel and corrosive wear at the bottom of the mold due to the steam of water for cooling the steel after passing through the mold.

連続鋳造用鋳型の寿命要因である熱負荷による熱クラック、擦り摩耗と化学的腐食のすべてに対応できる保護層として、2種類の組成を持つコバルト−ニッケル合金を交互に重積し、これをさらに異なる結晶構造に構造変化させた交互重積結晶層を本発明者らは見出した。   Cobalt-nickel alloys with two types of compositions are alternately stacked as a protective layer that can handle all of the thermal cracks caused by the thermal load, which is the life factor of continuous casting molds, rubbing wear and chemical corrosion. The present inventors have found an alternately stacked crystal layer whose structure has been changed to a different crystal structure.

コバルト−ニッケル合金を異なる交互重積の結晶構造とすることにより、それが交互重積されていない非晶質の場合より化学的に安定になり、耐蝕性が向上した。また、成分比率が異なるが近似した組成でお互いに六方晶と面心立方晶に構造変化させ多数の界面を有する交互重積層では、強い結合力を維持しながら強い皮膜応力と柔軟な伸び特性を示し、特に伸び特性は非晶質よりも5倍以上向上した。さらに、膜厚が小さな交互重積層であるが故に、結晶粒サイズが小さく維持され、非晶質の場合に対して硬さが約130%向上した。交互重積層の各層一層の膜厚は、結晶粒サイズや結晶性に影響することから、各一層の膜厚が0.1〜50μmが好ましく、より好ましくは0.5〜20μmが良い。膜厚が0.1μm以下では、めっき時の膜厚制御が困難であり、50μm以上では交互積層数を増やすことが困難になり、結果として高強度の皮膜が得られない。   By making the cobalt-nickel alloy have a different alternately stacked crystal structure, it becomes chemically more stable than the amorphous structure in which the alternately stacked layers are not stacked, and the corrosion resistance is improved. In addition, alternating layers with multiple components that have different compositional ratios but have similar compositions with hexagonal crystals and face-centered cubic crystals, and have many interfaces maintain strong film stress and flexible elongation characteristics. In particular, the elongation property was improved by 5 times or more than amorphous. Furthermore, because of the alternately stacked layers having a small film thickness, the crystal grain size was kept small, and the hardness was improved by about 130% as compared with the amorphous case. Since the film thickness of each layer of the alternately stacked layers affects the crystal grain size and crystallinity, the film thickness of each layer is preferably 0.1 to 50 μm, more preferably 0.5 to 20 μm. If the film thickness is 0.1 μm or less, it is difficult to control the film thickness at the time of plating, and if it is 50 μm or more, it is difficult to increase the number of alternating layers, and as a result, a high-strength film cannot be obtained.

連続鋳造技術の進展とともに、異鋼種を続けて連続鋳造することや、より効率を重視した高速鋳造が望まれ、連続鋳造用鋳型は、より大きな熱負荷や摩耗および耐蝕性に耐え得ることが期待される。銅または銅合金への熱負荷を軽減するための観点からは、交互重積層全体の膜厚は厚い方が好ましい。しかし、最も熱負荷の高いメニスカス部近傍でめっき厚を厚くした場合、抜熱効果が低下するとともに、めっき皮膜への熱影響も更に大きくなり、ヒートクラックの発生を誘発し、更にはめっき剥離に至る。一方、鋳型下端部では摩耗と腐食反応が激しく、その環境に耐え得るためにはめっき皮膜の厚膜化が必須である。このことから、交互重積層全体の膜厚を50〜2000μmとした。   With the progress of continuous casting technology, continuous casting of different steel types and high-speed casting with more emphasis on efficiency are desired, and continuous casting molds are expected to withstand greater thermal loads, wear and corrosion resistance. Is done. From the viewpoint of reducing the thermal load on copper or copper alloy, it is preferable that the film thickness of the entire alternate multi-layered film is thick. However, if the plating thickness is increased in the vicinity of the meniscus where the heat load is the highest, the heat removal effect is reduced and the thermal effect on the plating film is further increased, inducing the occurrence of heat cracks, and further the plating peeling. It reaches. On the other hand, wear and corrosion reactions are intense at the lower end of the mold, and in order to withstand the environment, it is essential to increase the thickness of the plating film. From this, the film thickness of the entire alternating multi-layer was set to 50 to 2000 μm.

交互重積結晶層において、六方晶構造を持つ層の合金組成は、ニッケル含有量10〜20重量%で残部コバルトが好ましい。この組成を外れると六方晶構造を示しにくくなる。また、ニッケル含有量が少ない場合は、コバルト金属の特性が強くなり、皮膜が脆くなる。一方、面心立方晶構造を持つ層の合金組成は、ニッケル含有量21〜60重量%で残部コバルトが好ましい。20重量%以下になると面心立方構造が形成されにくくなり、ニッケル含有量が多いと耐腐食性が向上する傾向にあるが、六方晶構造を持つ層との組成乖離が大きくなるため、交互重積結晶層の伸び特性が低下し、耐熱衝撃性が低くなる傾向がある。このことから、ニッケル含有量は、21〜60重量%がより好ましい。上記コバルト−ニッケル合金めっき組成には、不可避不純物が含まれる。   In the alternately stacked crystal layer, the alloy composition of the layer having a hexagonal crystal structure is preferably a nickel content of 10 to 20% by weight and the balance cobalt. Outside this composition, it becomes difficult to exhibit a hexagonal crystal structure. Further, when the nickel content is low, the characteristics of cobalt metal become strong and the film becomes brittle. On the other hand, the alloy composition of the layer having the face-centered cubic structure is preferably nickel content of 21 to 60% by weight and the balance cobalt. When the amount is less than 20% by weight, a face-centered cubic structure is difficult to be formed, and when the nickel content is high, corrosion resistance tends to be improved. The elongation characteristics of the product crystal layer tend to be lowered and the thermal shock resistance tends to be lowered. For this reason, the nickel content is more preferably 21 to 60% by weight. The cobalt-nickel alloy plating composition contains inevitable impurities.

めっき法により交互重積させた層の構造変化には、200〜500℃で10〜480分の熱処理により、六方晶(hcp)と面心立方晶(fcc)に結晶化することが好ましい。500℃より高温で熱処理すると、銅および銅合金製の鋳型基体が変形しやすくなり、できるだけ低温で行うことが好ましい。一方で、200℃以上でなければ、効率よく各層の結晶構造を変化させることができない。   In order to change the structure of layers alternately stacked by plating, it is preferable to crystallize into hexagonal crystals (hcp) and face-centered cubic crystals (fcc) by heat treatment at 200 to 500 ° C. for 10 to 480 minutes. When heat treatment is performed at a temperature higher than 500 ° C., the mold base made of copper and copper alloy is likely to be deformed, and it is preferable to perform the heat treatment at as low a temperature as possible. On the other hand, unless it is 200 degreeC or more, the crystal structure of each layer cannot be changed efficiently.

このように、銅または銅合金基体表面に、それぞれ六方晶と面心立方晶に構造変化した2種類のめっき層からなる交互重積層を形成することにより、耐熱、耐蝕、耐摩耗性が向上する。さらに、その表面に耐熱性と耐腐食性に優れる保護層を密着性良く形成することで一層の長寿命化が可能となる。すなわち、耐熱性と耐腐食性に優れるニッケル基合金粉末を供給しながらエネルギーを制御したレーザーを照射し、供給した粉末を効率よく溶融するとともに、この粉末供給とレーザー照射を、めっき層表面で直線状に走査することで粉末溶融体から固化したレーザー肉盛り層を形成することにより、層間密着性に優れ、耐熱、耐蝕、耐摩耗性に優れる保護層を形成することができた。   In this way, by forming an alternating multi-layered structure composed of two types of plating layers whose structures are changed to hexagonal crystals and face-centered cubic crystals on the surface of the copper or copper alloy substrate, heat resistance, corrosion resistance, and wear resistance are improved. . Furthermore, it is possible to further extend the life by forming a protective layer having excellent heat resistance and corrosion resistance on the surface with good adhesion. In other words, while supplying nickel-based alloy powder with excellent heat resistance and corrosion resistance, the irradiated laser is irradiated to efficiently melt the supplied powder, and this powder supply and laser irradiation are linearly applied to the plating layer surface. By forming a laser build-up layer solidified from the powder melt by scanning in a shape, a protective layer having excellent interlayer adhesion and excellent heat resistance, corrosion resistance, and wear resistance could be formed.

肉盛りしたニッケル基合金層が合金本来の特性を発揮するためには、合金層内に空孔などの欠陥がなく、合金本来の密度に到達していることが必要である。合金層が空孔のない真密度を得るためには、肉盛りに寄与する合金部を一度完全に溶融することが求められる。合金部を完全溶融するためのエネルギーはレーザーにより供給するが、熱伝導性の良い銅基体などから熱伝導により逃げていく。そのため、良質な合金層を得るためには、エネルギーの供給量、金属粉末の溶融熱量、熱拡散量のすべてを制御できることが重要である。   In order for the built-up nickel-based alloy layer to exhibit the characteristics inherent in the alloy, it is necessary that the alloy layer has no defects such as vacancies and reaches the original density of the alloy. In order for the alloy layer to obtain a true density without voids, it is required to completely melt the alloy part that contributes to build-up once. Energy for completely melting the alloy part is supplied by a laser, but escapes from a copper substrate having good thermal conductivity by heat conduction. Therefore, in order to obtain a good quality alloy layer, it is important to be able to control all of the energy supply amount, the heat of fusion of the metal powder, and the heat diffusion amount.

銅基体とレーザー肉盛り層の中間層として、熱伝導率が純銅の約1/4であるコバルトおよびニッケルの電気めっき層を配することは、レーザー肉盛り時の熱制御に有利である。また、工業的にレーザー肉盛り用に使用できる波長1000nm前後のレーザーエネルギー吸収率は、ニッケルが銅の約3倍であり、銅基体表面にコバルトおよびニッケルの電気めっき層を設けることで、効率よく金属溶融プールを形成でき、熱効率および熱制御の観点から極めて有利である。   As an intermediate layer between the copper substrate and the laser build-up layer, it is advantageous for thermal control during laser build-up to arrange an electroplating layer of cobalt and nickel having a thermal conductivity of about 1/4 that of pure copper. In addition, the laser energy absorption rate at a wavelength of around 1000 nm that can be industrially used for laser overlaying is approximately three times that of copper for nickel, and by providing an electroplated layer of cobalt and nickel on the surface of the copper substrate, it is efficient. A metal molten pool can be formed, which is extremely advantageous from the viewpoint of thermal efficiency and thermal control.

レーザーを使った金属肉盛り法には、溶接棒を使う方法や合金板を溶解していく手法があるが、これらの方法は粉末を使う方法に比較し、溶接棒や未溶解合金板から熱伝導により逃げていく熱エネルギーが大きいため、熱量の制御が困難になるだけでなく、溶接棒や合金板の厚み全体を溶融させなければ、基体との接着強度も含めて高強度を得ることが困難であり、過大なエネルギーを外部より供給する必要がある。レーザーエネルギーが過大になると、鋳型銅基体にまで大きな影響を与え、同時に大きな熱ひずみが発生する要因となっている。また、過大なエネルギーは、めっき層が薄い場合には、めっき層の全厚みが溶解し、鋳型銅基体の一部がレーザー肉盛り層に固溶するなど、肉盛り層自身の特性にも大きな影響を与える危険がある。   In the metal overlaying method using a laser, there are a method of using a welding rod and a method of melting an alloy plate, but these methods are different from the method using a powder in that heat from a welding rod or an unmelted alloy plate is used. Because the heat energy that escapes by conduction is large, not only is it difficult to control the amount of heat, but if the entire thickness of the welding rod and alloy plate is not melted, high strength including adhesion strength to the base can be obtained. It is difficult and it is necessary to supply excessive energy from the outside. When the laser energy becomes excessive, it has a great influence on the mold copper base, and at the same time, a large thermal strain is generated. Excessive energy is also significant in the characteristics of the build-up layer itself, such as when the plating layer is thin, the entire thickness of the plating layer is dissolved, and a part of the mold copper base is dissolved in the laser build-up layer. There is a risk of impact.

本発明のように、レーザー照射ノズルからレーザー光と共に、使用する合金粉末を供給しながら、基体表面にノズルを走査させレーザー肉盛りする方法では、供給する合金粉末のみの溶融目的にレーザーエネルギーを使用でき最も効率的である。具体的には、粉末の溶融によりできる溶融プールのサイズと溶融プールの温度を管理しながら、必要レーザーエネルギーを制御することが可能である。このように必要レーザーエネルギーの制御により、めっき下地層を過度に溶解することなく、めっき層の表面部の一部を上記合金粉末から生成された溶融プールに固溶させることも容易になり、下地層との間に欠陥がなく密着性に優れる強固な肉盛り層を形成することが可能となった。同時に、めっき層からの固溶量も低く抑えることが可能となり、合金肉盛り層の組成変化も0〜10重量%と低くできた。   As in the present invention, while supplying the alloy powder to be used together with the laser beam from the laser irradiation nozzle, the laser is used for melting only the alloy powder to be supplied by scanning the nozzle on the surface of the substrate to build up the laser. Is the most efficient. Specifically, it is possible to control the required laser energy while managing the size of the molten pool formed by melting the powder and the temperature of the molten pool. By controlling the required laser energy in this way, it is also easy to dissolve a part of the surface portion of the plating layer in the molten pool generated from the alloy powder without excessively dissolving the plating base layer. It has become possible to form a strong build-up layer with no defects between the formation and excellent adhesion. At the same time, the amount of solid solution from the plating layer can be kept low, and the composition change of the alloy build-up layer can be reduced to 0 to 10% by weight.

本発明では、2種類の組成を持ち、それぞれ異なった結晶構造を持つコバルト−ニッケル合金めっき層を交互重積した中間層表面に、ニッケル基耐熱合金肉盛り層を溶融・固化により形成させるものであるが、中間層のコバルトおよびニッケルめっき層成分は、ニッケル基耐熱合金にも含まれる成分であることから、めっき層成分が肉盛り層に固溶拡散しても合金組成を大きく損なうことがなく、合金の耐熱性、耐蝕性を高レベルに維持できる。さらに、肉盛り層を2層以上繰り返した場合、コバルトおよびニッケルめっき成分の固溶量は段階的傾斜的に減少し、2層目以上の表面では、使用したニッケル基合金粉末とほぼ同じ組成の肉盛り層を形成することができた。   In the present invention, a nickel-based heat-resistant alloy build-up layer is formed by melting and solidifying on the surface of an intermediate layer in which cobalt-nickel alloy plating layers having two different compositions and different crystal structures are alternately stacked. However, since the cobalt and nickel plating layer components of the intermediate layer are components also included in the nickel-based heat-resistant alloy, the alloy composition is not greatly impaired even if the plating layer component is dissolved in the build-up layer. The heat resistance and corrosion resistance of the alloy can be maintained at a high level. Further, when two or more build-up layers are repeated, the solid solution amount of the cobalt and nickel plating components decreases in a stepwise gradient, and the surface of the second and higher layers has almost the same composition as the nickel-based alloy powder used. A build-up layer could be formed.

表面にニッケル基耐熱合金肉盛り層を形成する場合には、2種類の結晶構造を持つコバルトおよびニッケル合金めっき層を交互重積しためっき中間層の合計膜厚(めっき層の全膜厚)は、上述の50〜2000μmに代えて、30〜500μmとすることが好ましい。   When forming a nickel-based heat-resistant alloy build-up layer on the surface, the total film thickness (total film thickness of the plating layer) of the plating intermediate layer in which cobalt and nickel alloy plating layers having two types of crystal structures are alternately stacked is Instead of the above-mentioned 50 to 2000 μm, it is preferable that the thickness is 30 to 500 μm.

全膜厚が30μm未満では、レーザー肉盛り時に形成する溶融プールにめっき層全体が溶融する恐れがある。万一、めっき層の下すなわち銅あるいは銅合金基体の一部も固溶した場合、固溶合金の融点が大きく低下し、被覆層全体の強度が低下する。また、全膜厚が30μm未満では、レーザー肉盛り時の溶融の問題以外に強度の向上率が低く交互重積効果が十分でない。コバルトおよびニッケル電気めっき層は、銅あるいは銅合金基体とレーザー肉盛り層の中間にあり、肉盛り時の熱ひずみを緩和する役割も持っており、全膜厚は30μm以上が好ましい。一方、全膜厚を500μmより大きくすることは可能であるが、500μmより大きくしても、さらなる熱ひずみ緩和効果の向上は少なくなる。また、500μmより大きくしても、さらなる強度の向上は得にくかった。   If the total film thickness is less than 30 μm, the entire plating layer may be melted in the molten pool formed during laser cladding. In the unlikely event that a part of the copper or copper alloy substrate is also solid-dissolved under the plating layer, the melting point of the solid-solution alloy is greatly lowered, and the strength of the entire coating layer is lowered. In addition, if the total film thickness is less than 30 μm, the strength improvement rate is low and the alternate stacking effect is not sufficient other than the problem of melting during laser cladding. The cobalt and nickel electroplating layer is in the middle of the copper or copper alloy substrate and the laser build-up layer, and also has a role to alleviate thermal strain during build-up, and the total film thickness is preferably 30 μm or more. On the other hand, it is possible to make the total film thickness larger than 500 μm, but even if it is larger than 500 μm, the further improvement of the thermal strain relaxation effect is reduced. Further, even if the thickness is larger than 500 μm, it is difficult to obtain further improvement in strength.

めっき層上のレーザー肉盛り層は、1層または繰り返しによる多層化により形成し、全体の膜厚は0.1〜10mmが好ましい。厚みを0.1mmより薄くする場合には、粉末粒度も小さくする必要がある。微粉末は飛散しやすくかつ空気中に長時間浮遊するので、その使用は作業環境と収率の点から好ましくない。   The laser build-up layer on the plating layer is formed by one layer or multiple layers by repetition, and the total film thickness is preferably 0.1 to 10 mm. When the thickness is less than 0.1 mm, it is necessary to reduce the powder particle size. Since the fine powder easily scatters and floats in the air for a long time, its use is not preferable from the viewpoint of working environment and yield.

一方、レーザー肉盛り1層の膜厚を3mmより厚くすることはあまり好ましくない。3mmより厚くするためには、合金溶融プールサイズおよびレーザーエネルギーが大きくなり、レーザー肉盛り制御や下地層の固溶量制御が困難になる。このことから、鋳型の長寿命の目的でレーザー肉盛り層を厚膜化するためには、レーザー肉盛り層の多層化により実現する。   On the other hand, it is not very preferable to make the thickness of one layer of the laser build-up greater than 3 mm. In order to make it thicker than 3 mm, the alloy molten pool size and the laser energy become large, and it becomes difficult to control the laser build-up and the solid solution amount of the underlayer. For this reason, in order to increase the thickness of the laser build-up layer for the purpose of extending the life of the mold, it is realized by making the laser build-up layer multi-layered.

多層化法により全体の膜厚を10mmより大きくすることも可能であるが、厚膜化による耐摩耗性向上の効果よりもそれ以外の原因で生じる鋳型全体の寿命を考慮すると10mmより大きい厚みは現時点では特段必要でないと判断された。なお、レーザー肉盛り層は、鋳型内面下部のほか鋳型内面上部のメニスカス部付近に形成しても良い。   Although it is possible to make the entire film thickness larger than 10 mm by the multi-layer method, the thickness larger than 10 mm is considered in consideration of the lifetime of the entire mold caused by other reasons than the effect of improving the wear resistance by increasing the film thickness. At this time, it was judged that it was not particularly necessary. The laser overlay layer may be formed in the vicinity of the meniscus portion at the upper part of the inner surface of the mold in addition to the lower part of the inner surface of the mold.

ニッケル基合金肉盛り層は、耐熱、耐蝕性に優れる合金組成のものを選択し、これらの合金粉末を供給しながらレーザー照射する方法で作製した。耐熱、耐蝕性に優れるニッケル基合金として、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(80Ni20Cr)、ワスパロイ(58Ni19Cr14Co4.5Mo3Ti)の一種を選択し、いずれも市販されている合金粉末を使用した。合金粉末の組成は重量%であり、100%に満たない部分は他の成分または不可避的不純物である。   The nickel-based alloy build-up layer was prepared by a method in which an alloy composition excellent in heat resistance and corrosion resistance was selected, and laser irradiation was performed while supplying these alloy powders. As nickel-based alloys having excellent heat resistance and corrosion resistance, Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (47.9Ni23Co20Cr8.5Al0.6Y), NiCr (80Ni20Cr), Waspaloy (58Ni19Cr14Co4. 5Mo3Ti) was selected, and commercially available alloy powders were used. The composition of the alloy powder is% by weight, and the part less than 100% is other components or inevitable impurities.

なお、使用できる合金粉末は、これらに限定されるものではなく、重量%で、Ni:30%以上93%以下、Co:1%以上、Cr:8%以上、Mo:1%以上、W:0.5%以上、Al:0.2%以上、Ti:0.4〜6%、Nb:0.4〜6%、Ta:0.1〜4%、Y:0.1%以上の一種以上、残部、不可避的不純物からなるもの、などが使用できる。   In addition, the alloy powder which can be used is not limited to these, By weight%, Ni: 30% to 93%, Co: 1% or more, Cr: 8% or more, Mo: 1% or more, W: 0.5% or more, Al: 0.2% or more, Ti: 0.4-6%, Nb: 0.4-6%, Ta: 0.1-4%, Y: 0.1% or more As described above, the remainder, inevitable impurities, and the like can be used.

また、鋳型基体に用いられる銅合金は、特に限定されず、従来この技術分野で使用されているものが適宜使用される。例えばクロム・ジルコニウム添加析出硬化型鋳型用銅材(好ましくはCr:0.5〜1.5重量%、Zr:0.08〜0.30重量%)、電磁攪拌用クロム・ジルコニウム・アルミニウム添加鋳型用銅材(好ましくはCr:0.50〜1.50重量%、Zr:0.08〜0.30重量%、Al:0.7〜1.1重量%)等が用いられる。これらの銅合金に代えて純銅を鋳型基体に用いる場合もある。   Further, the copper alloy used for the mold base is not particularly limited, and those conventionally used in this technical field are appropriately used. For example, a copper material for chromium-zirconium-added precipitation hardening mold (preferably Cr: 0.5 to 1.5% by weight, Zr: 0.08 to 0.30% by weight), a chromium / zirconium / aluminum-added mold for electromagnetic stirring Copper materials (preferably Cr: 0.50 to 1.50% by weight, Zr: 0.08 to 0.30% by weight, Al: 0.7 to 1.1% by weight) are used. In some cases, pure copper is used for the mold base instead of these copper alloys.

肉盛り層が厚くなると、肉盛り層表面の粗さが悪くなる。このため、レーザー肉盛り層の形成後、その表面を研磨加工し、表面粗さをRy10μm以下に平坦化することにより、肉盛り層の異常摩耗発生を抑制することができる。
以下、本発明の試験結果に基づき、本発明を詳しく説明する。
When the build-up layer becomes thick, the roughness of the build-up layer surface becomes worse. For this reason, after the formation of the laser build-up layer, the surface thereof is polished and the surface roughness is flattened to Ry 10 μm or less, thereby suppressing abnormal wear of the build-up layer.
Hereinafter, the present invention will be described in detail based on the test results of the present invention.

銅基材の表面に2種類の組成を持ち、それぞれ異なった結晶構造を持つCo−Ni合金の交互重積めっき層を被覆した。表1に、めっき浴の構成および条件を示す。めっき浴は硫酸浴を用い、めっき時のエア撹拌通気量の強弱でNi含有量の差異を生じさせた。まず、1種のめっき層(A層と称す)はNi含有量10〜20wt%で残部Coから選び、もう1種のめっき層(B層と称す)はNi含有量21〜60wt%で残部Coから選び、A層とB層のCo−Ni合金めっき層を交互に重積した皮膜を作製した。具体的には、電流密度3A/dm2 の元にエア通気量:0.1m3 /m2 と0.4m3 /m2 で強弱を付け、各通気時間を制御することで各層の厚みを変化させた。めっき後、機械加工により膜厚を調整し500μmとした。本発明範囲めっき試料と共に範囲外めっき試料も作製し表2に示した。 The surface of the copper base material was coated with an alternating stack plating layer of Co—Ni alloys having two different compositions and different crystal structures. Table 1 shows the configuration and conditions of the plating bath. A sulfuric acid bath was used as the plating bath, and the difference in Ni content was caused by the strength of air aeration air flow during plating. First, one type of plating layer (referred to as A layer) is selected from the remaining Co with a Ni content of 10 to 20 wt%, and the other type of plating layer (referred to as B layer) is selected from the remaining Co with a Ni content of 21 to 60 wt%. A film was prepared by alternately stacking the Co-Ni alloy plating layers of the A layer and the B layer. Specifically, the air vent amount based on a current density of 3A / dm 2: 0.1m with a strength at 3 / m 2 and 0.4 m 3 / m 2, the thickness of each layer by controlling the aeration time Changed. After plating, the film thickness was adjusted to 500 μm by machining. Out-of-range plating samples were produced together with the range-plating samples of the present invention and are shown in Table 2.

本発明の比較例として、熱処理をしない非晶質である2種類の組成を持つCo−Ni合金の交互重積めっき層および単層めっき層を被覆した。表3に本発明例1〜2とそれぞれ同じ組成であるが非晶質の比較例2〜3、および単層めっき層である比較例4を示す。   As a comparative example of the present invention, an alternating stack plating layer and a single layer plating layer of a Co—Ni alloy having two kinds of compositions which are amorphous without heat treatment were coated. Table 3 shows Comparative Examples 2 to 3 having the same composition as Examples 1 and 2 of the present invention but amorphous and Comparative Example 4 which is a single-layer plating layer.

表4では、各試料の引張強さ、破断伸びおよび皮膜硬さを示す。めっき皮膜のみでの引張り試験を行い、皮膜の引張り強さと試験片が破断した時点でのひずみ最大変位から皮膜の破断伸びを求めた。めっき層が非晶質の交互重積層(比較例2〜3)や単層の比較例4に対し、2種類の結晶相を交互重積した本発明例1〜3は引張り強度および破断伸びが大きい。また、めっき層断面から200gfの荷重でマイクロビッカース硬さを測定した結果も表4に示す。結晶交互重積層の積層回数が多いほど硬度が高いことがわかる。   Table 4 shows the tensile strength, breaking elongation, and film hardness of each sample. A tensile test was conducted only with the plating film, and the elongation at break of the film was determined from the tensile strength of the film and the maximum strain displacement at the time when the test piece broke. Inventive Examples 1 to 3, in which two kinds of crystal phases are alternately stacked, have a tensile strength and an elongation at break in contrast to the alternating stacked layers in which the plating layers are amorphous (Comparative Examples 2 to 3) and the comparative example 4 having a single layer. large. Table 4 also shows the results of measuring the micro Vickers hardness from the plating layer cross section with a load of 200 gf. It can be seen that the hardness is higher as the number of crystal alternate stacks is increased.

Cr−Zr−Cuの鋳型基体(サイズ230mm×900mm×50mm)の表面に表2に示す本発明例1〜3と表3に示す単層の比較例4のCo−Ni合金めっきを被覆し、機械加工により膜厚を調整し200μmとした表面にNi−Cr系材(80Ni20Cr)のレーザー肉盛り層を1.0mm形成した。レーザー肉盛り条件は、Ni−Cr系材粉体の平均粒度65μm、粉末供給速度7.2g/min、ノズルスキャン速度600mm/min、半導体レーザー波長950〜1070nm、レーザー出力2000Wで行った。各試料の肉盛り層組成はEPMAにより分析を行い、その結果を表5に示す。各試料の肉盛り層に固溶するめっき層成分は、ほぼ一定の割合を示した。また、本発明例2のCo−Ni合金めっき層上にレーザー肉盛りした断面を図1、図2に示す。図中、1はレーザー肉盛り層、2はCo−Ni交互重積めっき層、3は銅合金基体である。   The surface of a Cr—Zr—Cu mold base (size 230 mm × 900 mm × 50 mm) was coated with the Co—Ni alloy plating of Invention Examples 1 to 3 shown in Table 2 and the single layer Comparative Example 4 shown in Table 3, A laser build-up layer of Ni—Cr-based material (80Ni20Cr) was formed to 1.0 mm on the surface of which the film thickness was adjusted to 200 μm by machining. The laser build-up conditions were as follows: Ni—Cr-based material powder having an average particle size of 65 μm, powder supply rate of 7.2 g / min, nozzle scan rate of 600 mm / min, semiconductor laser wavelength of 950 to 1070 nm, and laser output of 2000 W. The build-up layer composition of each sample was analyzed by EPMA, and the results are shown in Table 5. The plating layer components dissolved in the build-up layer of each sample showed a substantially constant ratio. Moreover, the cross section which carried out the laser deposition on the Co-Ni alloy plating layer of this invention example 2 is shown in FIG. 1, FIG. In the figure, 1 is a laser build-up layer, 2 is a Co—Ni alternating stacked plating layer, and 3 is a copper alloy substrate.

また、各試料の熱衝撃試験を行い、その試験結果を同じく表5に示した。熱衝撃試験は、大気雰囲気中、800℃で20分間加熱し、その後水冷を1サイクルとし、拡大鏡で表面にクラックが確認されるまでの試験回数で評価を行った。めっき層が単一結晶構造の比較例4に対し、2種類の結晶構造を交互重積した本発明例1〜3は熱衝撃回数が大きく伸び、熱衝撃によるクラックの発生防止に顕著な効果を示した。   Moreover, the thermal shock test of each sample was conducted, and the test results are also shown in Table 5. In the thermal shock test, heating was performed at 800 ° C. for 20 minutes in the air atmosphere, and then water cooling was performed in one cycle, and evaluation was performed by the number of tests until a crack was confirmed on the surface with a magnifier. Compared to Comparative Example 4 where the plating layer has a single crystal structure, Invention Examples 1 to 3 in which two types of crystal structures are alternately stacked greatly increase the number of thermal shocks, and have a remarkable effect in preventing cracking due to thermal shock. Indicated.

実施例1の本発明例1の2種類の結晶構造を交互重積させたCo−Ni合金めっき層上に、ハステロイC276の合金粉末を供給しながらレーザーを照射して肉盛り層の積層を3回行い、合計膜厚1.5mmの肉盛り層を形成した。レーザー肉盛り条件は、粒度45〜125μmのハステロイC276粉末を、粉末供給速度8g/minで供給しながら、波長950〜1070nmの半導体レーザーを、レーザー出力2000W、ノズルスキャン速度600mm/minで1層目を施工し、2層目以降はレーザー出力を1600W、ノズルスキャン速度1000mm/minへ変更させて施工した。各肉盛り層の組成をEPMAで分析した結果を表6に示す。肉盛り層は、外層ほど本来のハステロイC276組成(Ni59Cr15Mo16W5Fe3)に近い値を示しているが、2層目でも本来の組成に近いことが確認できた。   On the Co—Ni alloy plating layer in which the two types of crystal structures of Example 1 of the present invention of Example 1 are alternately stacked, a laser beam is applied while supplying an alloy powder of Hastelloy C276 to form a stacking layer of 3 This was repeated to form a built-up layer having a total film thickness of 1.5 mm. The laser build-up conditions are as follows. While supplying Hastelloy C276 powder having a particle size of 45 to 125 μm at a powder supply rate of 8 g / min, a semiconductor laser having a wavelength of 950 to 1070 nm was applied to the first layer at a laser output of 2000 W and a nozzle scan speed of 600 mm / min. In the second and subsequent layers, the laser output was changed to 1600 W and the nozzle scan speed was changed to 1000 mm / min. Table 6 shows the results of EPMA analysis of the composition of each overlay layer. The build-up layer shows a value closer to the original Hastelloy C276 composition (Ni59Cr15Mo16W5Fe3) as the outer layer, but it was confirmed that the second layer was closer to the original composition.

本発明による連続鋳造用鋳型は、溶鋼からの製鋼用鋳型として、優れた耐熱性、耐蝕性、耐摩耗性に加えて高強度と耐熱衝撃性を兼ね備えているが、その高温における長寿命性や高い精度維持性は、高温や腐食性環境における高品質の成形品製造金型の用途にも活用できる。   The continuous casting mold according to the present invention has high strength and thermal shock resistance in addition to excellent heat resistance, corrosion resistance, and wear resistance as a steelmaking mold from molten steel. High accuracy maintainability can also be used for high quality molded product mold applications in high temperature and corrosive environments.

1 レーザー肉盛り層
2 Co−Ni交互重積めっき層
3 銅合金基体
DESCRIPTION OF SYMBOLS 1 Laser build-up layer 2 Co-Ni alternating stacked plating layer 3 Copper alloy base | substrate

Claims (5)

10〜20重量%のニッケルと残部コバルト及び不可避不純物からなり六方晶の結晶構造を持つめっき層と、21〜60重量%のニッケルと残部コバルト及び不可避不純物からなり面心立方晶の結晶構造を持つめっき層が交互に積層した構造を有することを特徴とするコバルト−ニッケル合金材料。 A plating layer composed of 10 to 20% by weight of nickel, the remaining cobalt and unavoidable impurities and having a hexagonal crystal structure, and 21 to 60% by weight of nickel, the remaining cobalt and unavoidable impurities and having a face-centered cubic crystal structure A cobalt-nickel alloy material having a structure in which plating layers are alternately laminated. 銅または銅合金基体表面に、電気めっき法により、10〜20重量%のニッケルと残部コバルト及び不可避不純物からなる層と、21〜60重量%のニッケルと残部コバルト及び不可避不純物からなる層とを交互に積層し、各一層の膜厚が0.1〜50μmであり、全膜厚の合計が50〜2000μmである交互重積めっき層を形成し、200〜500℃で熱処理することにより、それぞれの層を、六方晶と面心立方晶に結晶化させた連続鋳造用鋳型。 On the surface of the copper or copper alloy substrate, 10 to 20% by weight of nickel, the remaining cobalt and unavoidable impurities, and 21 to 60% by weight of nickel, the remaining cobalt and unavoidable impurities are alternately formed by electroplating. Each layer is formed in an alternating stacked plating layer having a thickness of 0.1 to 50 μm and a total thickness of 50 to 2000 μm, and heat-treated at 200 to 500 ° C. Continuous casting mold with layers crystallized into hexagonal crystals and face-centered cubic crystals. 銅または銅合金基体表面に、ニッケルとコバルトとからなり結晶構造が六方晶と面心立方晶と異なる2種類の結晶化した電気めっき層で各膜厚が0.1〜50μmを交互に重積した合計膜厚30〜500μmのめっき層を形成し、その表面にニッケル基耐熱合金粉末を供給しながらレーザーを照射し、粉末を溶融・固化して形成した一層または多層を肉盛りすることにより厚み0.1〜10mmのニッケル基合金被覆層を形成した連続鋳造用鋳型。 Two kinds of crystallized electroplating layers made of nickel and cobalt, which are different from hexagonal and face-centered cubic crystals, are stacked on the surface of the copper or copper alloy substrate in a thickness of 0.1 to 50 μm alternately. By forming a plating layer having a total film thickness of 30 to 500 μm and irradiating a laser while supplying nickel-base heat-resistant alloy powder to the surface, the layer is formed by building up one or more layers formed by melting and solidifying the powder. A continuous casting mold having a nickel-based alloy coating layer of 0.1 to 10 mm. レーザー肉盛り層を形成するニッケル基耐熱合金粉末が、ハステロイC(53Ni19Mo17Cr)、インコネル(80Ni13Cr)、モネル(65Ni31Cu4(Fe+Mn))、NiCoCrAlY(47.9Ni23Co20Cr8.5Al0.6Y)、NiCr(80Ni20Cr)、ワスパロイ(58Ni19Cr14Co4.5Mo3Ti)の一種からなることを特徴とする請求項3記載の連続鋳造用鋳型。 The nickel-based heat-resistant alloy powder forming the laser build-up layer is Hastelloy C (53Ni19Mo17Cr), Inconel (80Ni13Cr), Monel (65Ni31Cu4 (Fe + Mn)), NiCoCrAlY (47.9Ni23Co20Cr8.5Al0.6Y), NiCr (80Ni20Cr), Waspaloy The continuous casting mold according to claim 3, wherein the casting mold is made of one of (58Ni19Cr14Co4.5Mo3Ti). レーザー肉盛り層形成を2回以上の多数回繰り返すことにより、めっき層からのニッケルとコバルトの拡散を内部から表面に傾斜的に減少させた多層レーザー肉盛り層とすることを特徴とする請求項3または4記載の連続鋳造用鋳型の製造方法。 The multilayer laser build-up layer in which the diffusion of nickel and cobalt from the plating layer is gradually reduced from the inside to the surface by repeating the laser build-up layer formation many times at least twice. 3. A method for producing a continuous casting mold according to 3 or 4.
JP2018023757A 2018-02-14 2018-02-14 Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it Active JP7022266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018023757A JP7022266B2 (en) 2018-02-14 2018-02-14 Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018023757A JP7022266B2 (en) 2018-02-14 2018-02-14 Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it

Publications (2)

Publication Number Publication Date
JP2019136753A true JP2019136753A (en) 2019-08-22
JP7022266B2 JP7022266B2 (en) 2022-02-18

Family

ID=67692828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018023757A Active JP7022266B2 (en) 2018-02-14 2018-02-14 Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it

Country Status (1)

Country Link
JP (1) JP7022266B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333696A (en) * 2021-06-01 2021-09-03 西峡龙成特种材料有限公司 CuAlFeNi crystallizer copper plate back plate, parent metal and machining method thereof
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold
CN114807719A (en) * 2022-05-27 2022-07-29 北京理工大学 Laser melting deposition method for realizing AlxCoFeNi high-entropy alloy grain refinement
WO2022224627A1 (en) * 2021-04-19 2022-10-27 トーカロ株式会社 Manufacturing method for member having laser build-up layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073489A (en) * 1993-04-23 1995-01-06 Tdk Corp Soft magnetic thin film
JP2015166483A (en) * 2014-03-04 2015-09-24 株式会社野村鍍金 Cobalt-nickel alloy material, and article coated with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073489A (en) * 1993-04-23 1995-01-06 Tdk Corp Soft magnetic thin film
JP2015166483A (en) * 2014-03-04 2015-09-24 株式会社野村鍍金 Cobalt-nickel alloy material, and article coated with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240696A1 (en) * 2020-05-27 2021-12-02 三島光産株式会社 Continuous casting mold and method for manufacturing continuous casting mold
WO2022224627A1 (en) * 2021-04-19 2022-10-27 トーカロ株式会社 Manufacturing method for member having laser build-up layer
CN113333696A (en) * 2021-06-01 2021-09-03 西峡龙成特种材料有限公司 CuAlFeNi crystallizer copper plate back plate, parent metal and machining method thereof
CN113333696B (en) * 2021-06-01 2023-02-17 西峡龙成特种材料有限公司 CuAlFeNi crystallizer copper plate back plate, parent metal and machining method thereof
CN114807719A (en) * 2022-05-27 2022-07-29 北京理工大学 Laser melting deposition method for realizing AlxCoFeNi high-entropy alloy grain refinement

Also Published As

Publication number Publication date
JP7022266B2 (en) 2022-02-18

Similar Documents

Publication Publication Date Title
Wang et al. In-situ wire-feed additive manufacturing of Cu-Al alloy by addition of silicon
JP7022266B2 (en) Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it
Zhang et al. Additive manufacturing of copper–H13 tool steel bi-metallic structures via Ni-based multi-interlayer
US7165325B2 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
KR20200011470A (en) Dendrite-Reinforced Titanium-Based Metal Matrix Composites
US8973806B2 (en) Fine grained Ni-based alloys for resistance to stress corrosion cracking and methods for their design
JP2018168400A (en) HEAT TREATMENT METHOD FOR Ni-BASED ALLOY LAMINATE MOLDED BODY, MANUFACTURING METHOD FOR Ni-BASED ALLOY LAMINATE MOLDED BODY, Ni-BASED ALLOY POWDER FOR LAMINATE MOLDED BODY, AND Ni-BASED ALLOY LAMINATE MOLDED BODY
JP7013823B2 (en) Manufacturing method of mold for continuous casting
US20120097297A1 (en) High hardness, high corrosion resistance and high wear resistance alloy
KR101832654B1 (en) Ni-Ir-BASED HEAT-RESISTANT ALLOY AND PROCESS FOR PRODUCING SAME
KR102647466B1 (en) Method for manufacturing molds for continuous casting
US20170197283A1 (en) Superalloy composite preforms and applications thereof
JP7020147B2 (en) Manufacturing method of mold for continuous casting
JP7010008B2 (en) Manufacturing method of mold for continuous casting
CN114450426B (en) Alloy, alloy powder, alloy member, and composite member
KR100760749B1 (en) Chromium-plated member
WO2020225846A1 (en) Continuous casting die and method for manufacturing continuous casting die
KR100672839B1 (en) Heat resistant and high oxidation resistant mold material for Cu-alloy die casting and hot-working
JP7148026B1 (en) Ni-based alloy powder for additive manufacturing, laminate-molded article, and method for producing laminate-molded article
WO2023095805A1 (en) Composite material, manufacturing method for composite material, and mold
JP6796243B2 (en) Mechanical parts coated with copper-nickel alloy material
Akash et al. Microstructural characterization and mechanical properties of Inconel 625 wall fabricated by GTAW-based WAAM using stringer bead and circular weave pattern
Marya et al. 3D construction and repair from welding and material science perspectives
JP2021065911A (en) Continuous casting cast manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7022266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150