WO2022224627A1 - Manufacturing method for member having laser build-up layer - Google Patents

Manufacturing method for member having laser build-up layer Download PDF

Info

Publication number
WO2022224627A1
WO2022224627A1 PCT/JP2022/011213 JP2022011213W WO2022224627A1 WO 2022224627 A1 WO2022224627 A1 WO 2022224627A1 JP 2022011213 W JP2022011213 W JP 2022011213W WO 2022224627 A1 WO2022224627 A1 WO 2022224627A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laser
build
thermal spray
base material
Prior art date
Application number
PCT/JP2022/011213
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 横田
和樹 植田
Original Assignee
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社 filed Critical トーカロ株式会社
Priority to JP2023516335A priority Critical patent/JP7493680B2/en
Publication of WO2022224627A1 publication Critical patent/WO2022224627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding

Definitions

  • the present invention relates to a method of manufacturing a member having a laser build-up layer formed by forming a sprayed layer on a substrate and then supplying laser build-up powder while irradiating the sprayed layer with laser light. It is a thing.
  • a heat source such as an arc or laser beam may be used to heat and melt the powdery material to form a build-up layer on the surface.
  • a heat source such as an arc or laser beam
  • the surface of the base material is locally melted by the irradiation of the laser beam, and laser cladding powder such as metal powder is injected onto the surface.
  • a build-up layer can be formed, thereby adding high wear resistance and corrosion resistance to the base material surface.
  • Patent Document 1 discloses a method of heating and melting a nickel-based heat-resistant alloy powder as a laser cladding powder to form a laser cladding layer. Specifically, while supplying nickel-based heat-resistant alloy powder together with laser light from a laser irradiation nozzle to the surface of a copper or copper alloy substrate, the nozzle is scanned over the surface of the substrate to obtain a thickness of 0.1 mm to 3 mm. The laser build-up layer is formed by forming a nickel-based alloy layer and building up the nickel-based alloy layer in multiple layers to a thickness of 0.2 mm to 10 mm. As a result, the excellent heat resistance, corrosion resistance, and wear resistance inherent to the nickel-based alloy can be added to the surface of the copper or copper alloy substrate.
  • Patent Documents 2 and 3 an electroplating layer made of nickel and cobalt is formed in advance on the surface of a copper or copper alloy substrate, and nickel-based heat-resistant alloy powder is supplied to the surface of the plating layer while laser light is applied.
  • a method of forming a laser build-up layer on the surface of a plating layer by irradiating is disclosed.
  • a laser beam having a wavelength band of 900 nm to 1100 nm (hereinafter referred to as a basic wavelength band) is used as a heat source.
  • Some of the light energy is absorbed by the substrate.
  • the light energy absorbed by the base material is converted into heat energy to generate heat, thereby locally melting the surface of the base material and forming a laser build-up layer on the base material as described above.
  • the Rukoto Therefore, in order to form a laser cladding layer on a base material, it is important to melt the base material appropriately. be.
  • the copper or copper alloy used for the base material has a low absorptance with respect to the laser light in the fundamental wavelength band, and efficiently absorbs the light energy of the laser light. Can not do it. Therefore, sufficient thermal energy required for melting the base material cannot be obtained. As a result, the base material cannot be sufficiently melted, making it difficult to form a laser build-up layer on the copper or copper alloy base material.
  • Patent Documents 2 and 3 according to a method in which an electroplating layer made of nickel and cobalt is provided on a copper or copper alloy base material in advance and a laser build-up layer is formed on the surface of the plating layer, Since nickel has a higher absorptivity for laser light in the fundamental wavelength band than copper, it is possible to form a laser build-up layer on the surface of the plating layer.
  • the base material is not melted during the laser build-up, and the base material and the laser build-up layer are joined via the electroplating layer.
  • the adhesion that can be obtained between the conventional laser build-up layer and the base material cannot be ensured.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable formation of a laser build-up layer directly on a copper or copper alloy base material.
  • a method of manufacturing a member having a laser build-up layer according to the present invention is characterized by performing the following steps (a) and (b).
  • More detailed features of the method of manufacturing a member having a laser build-up layer of the present invention include the following (1) to (4).
  • the thickness of the sprayed layer formed in step (a) is 10 ⁇ m to 500 ⁇ m.
  • the thermal spray layer formed in step (a) has a surface roughness Ra of 5.0 ⁇ m or more.
  • the laser cladding powder is nickel or nickel-based alloy powder. (4) Further, the following step (c) is performed.
  • 1 and 2 are process diagrams showing each stage of the following embodiment.
  • a thermal spray layer 30 is formed on the substrate 10 by thermal spraying.
  • the thermal spray layer 30 is formed by spraying the thermal spray material 20 onto the surface of the base material 10 from the thermal spray apparatus 1 using an inert gas as a film-forming working gas.
  • the substrate 10 is copper or a copper alloy
  • the thermal spray material 20 is nickel or a nickel-based alloy.
  • the thermal spray layer 30 made of nickel or nickel-based alloy is formed on the copper or copper alloy substrate 10 (step (a)).
  • the thermal spraying method of the thermal spray layer 30 according to the present embodiment is not particularly limited, but for example, atmospheric pressure plasma thermal spraying, low pressure plasma thermal spraying, high speed flame thermal spraying, gas flame thermal spraying, and arc thermal spraying. , detonation thermal spraying, etc. can be used.
  • the thermal spray material 20 is not particularly limited as long as it is nickel or a nickel-based alloy.
  • the nickel-based alloy refers to an alloy in which the ratio of nickel is the highest among the elements constituting the alloy. At this time, the content of nickel in the nickel-based alloy is preferably 50% by mass or more, more preferably 55% by mass or more.
  • Examples of nickel-based alloys include Hastelloy (registered trademark) C, Inconel, NiCr alloys, NiCrAlY alloys, and NiAl alloys.
  • laser irradiation means including a laser oscillator (not shown) capable of laser irradiation, a laser head 2 and an optical system 3 such as a condenser lens, and a laser cladding powder 50 are placed at a laser irradiation position.
  • a laser cladding powder 50 is supplied to the surface of the thermal spray layer 30 while a laser beam 40 is irradiated using a normal laser cladding apparatus having a powder supply unit 4 that can supply the powder 50 .
  • the laser beam 40 is output from a laser oscillator, enters the laser head 2, and then reaches the optical system 3 in which a condenser lens and the like are built.
  • the laser beam 40 that has reached the optical system 3 is condensed and emitted from the irradiation port at the lower end of the laser head 2 . Then, the laser beam 40 is irradiated onto the surface of the thermal spray layer 30 with the point just below the lower end of the laser head 2 as a focal point. At this time, the thermal spray layer 30 absorbs the laser beam 40 to generate heat, thereby melting the entire thermal spray layer 30 and part of the substrate 10 in the thickness direction to form a molten pool (not shown). . Also, the carrier gas and the laser build-up powder 50 flow in from the upper end of the powder supply part 4 and are discharged to a position where the surface of the thermal spray layer 30 is irradiated with the laser light 40 .
  • the discharged laser build-up powder 50 is melted together with the base material 10 by the laser beam 40 to form a laser build-up layer 60 on the surface of the base material 10 .
  • the laser beam 40 is irradiated to remove the laser cladding powder 50, the entire thermal spray layer 30 in the thickness direction, and the copper or copper alloy base material 10. is partially melted to form the laser build-up layer 60 (step (b)).
  • Types of lasers that can be used in this embodiment include fiber lasers, semiconductor lasers, YAG lasers, and the like.
  • the wavelength of the laser light 40 can be changed as appropriate, it is preferably 900 nm to 1100 nm, which is a wavelength band (basic wavelength band) generally used for laser build-up, since a high output can be obtained.
  • a wavelength band basic wavelength band
  • copper or copper alloys have a low absorptance for the laser light 40 in the fundamental wavelength band. Therefore, even if the copper or copper alloy base material 10 is irradiated with the laser beam 40 in the fundamental wavelength band, the base material 10 is not sufficiently melted, and it is difficult to form the laser build-up layer 60.
  • the thermal spray layer 30 having a high absorption rate of the laser light 40 in the fundamental wavelength band is formed on the copper or copper alloy base material 10
  • the laser light in the fundamental wavelength band is 40 can be used to form a laser build-up layer 60 directly on the copper or copper alloy substrate 10 .
  • the reflectance of the laser beam 40 in the fundamental wavelength band of the thermal spray layer 30 is preferably less than 60%, more preferably 51% or less.
  • the beam shape at the focal point of the laser light 40 can be appropriately set to rectangular, circular, or the like.
  • the laser head 2 side may be scanned, or the substrate 10 side may be scanned.
  • the reflectance of the thermal sprayed layer irradiated with the laser beam 40 is also taken into account to appropriately set the irradiation conditions.
  • the thermal spray layer 30 is provided by the thermal spray method, as described above.
  • the thermal spray layer 30 has a larger surface roughness Ra than a plated layer or the like, and the larger the surface roughness Ra, the higher the absorption rate of the laser beam 40 . Therefore, since the thermal spray layer 30 formed on the copper or copper alloy base material 10 has a relatively high absorptivity for the laser light 40, it is possible to sufficiently melt a portion of the base material 10.
  • nickel which is the material of the thermal spray layer 30, is completely solid-soluble with copper.
  • the thermal spray layer 30 made of nickel or a nickel-based alloy and the copper or copper alloy substrate 10 are mutually melted by the irradiation of the laser beam 40, the intermetallic compound is less likely to precipitate, and the laser thickness is reduced.
  • the build-up layer 60 it is possible to reduce the occurrence of cracks caused by intermetallic compounds. Therefore, according to the method of manufacturing a member having the laser build-up layer 60 according to the present embodiment, not only the sprayed layer 30 but also a part of the base material 10 can be melted, and laser build-up can be performed directly on the base material 10. Layer 60 can be manufactured.
  • the film thickness of the sprayed layer 30 formed in step (a) is preferably 10 ⁇ m to 500 ⁇ m.
  • the thermal spray layer 30 having a thickness of 10 ⁇ m to 500 ⁇ m is irradiated with the laser beam 40, the base material 10 is sufficiently melted, so that the laser build-up layer 60 can be easily formed.
  • the thermal spray layer 30 with a thickness of less than 10 ⁇ m is irradiated with the laser beam 40, the thermal spray layer 30 disappears before the base material 10 is melted, and the base material 10 is not sufficiently melted, resulting in poor film formation.
  • the thermal spray layer 30 having a thickness of more than 500 ⁇ m is irradiated with the laser light 40, the heat cannot be sufficiently transferred to the base material 10, and the base material 10 may not be sufficiently melted.
  • the surface roughness Ra of the sprayed layer 30 formed in step (a) is preferably 2.5 ⁇ m or more, more preferably 5.0 ⁇ m or more.
  • the thermal spray layer 30 having a surface roughness Ra of 5.0 ⁇ m or more is irradiated with the laser light 40, the reflectance of the laser light 40 in the thermal spray layer 30 decreases, and the base material 10 is sufficiently melted. , the laser build-up layer 60 can be easily formed.
  • the thermal spray layer 30 having a surface roughness Ra of less than 5.0 ⁇ m, particularly a surface roughness Ra of less than 2.5 ⁇ m is irradiated with the laser beam 40, the thermal spray layer 30 does not sufficiently absorb the laser beam 40. A partial bonding failure may occur at the interface between the base material 10 and the laser built-up layer 60 due to insufficient melting of the base material 10 .
  • the upper limit of surface roughness Ra is 15.0 micrometers, for example.
  • the laser cladding powder 50 supplied when irradiating the laser beam 40 in step (b) is preferably nickel or nickel-based alloy powder.
  • nickel and copper have a solid solution relationship. Therefore, even if the laser cladding powder 50 supplied in the step (b) and the copper or copper alloy base material 10 are mutually melted by the irradiation of the laser beam 40, the intermetallic compound is difficult to precipitate. When forming the layer 60, it becomes possible to prevent the occurrence of cracks due to the intermetallic compound.
  • the laser cladding layer 60 formed in the step (b) is irradiated with the laser beam 40 while supplying a powder having a different component from the laser cladding powder 50 used in the step (b),
  • a multilayer laser cladding layer may be formed by melting the laser cladding powder and a part of the laser cladding layer 60 .
  • the laser cladding layer 60 formed in the step (b) is irradiated with the laser beam 40 while supplying powder having the same components as the laser cladding powder 50 used in the step (b),
  • a multilayer laser cladding layer may be formed by melting the laser cladding powder and a part of the laser cladding layer 60 .
  • the method for manufacturing the laser build-up layer 60 of the present embodiment it is possible to form the laser build-up layer 60 with a small film thickness and a low dilution rate.
  • the laser built-up layer 60 can be formed with a film thickness of 500 ⁇ m or more and 2000 ⁇ m or less and a dilution ratio of 3% or more and 20% or less.
  • the dilution ratio in the present application means the ratio of components of the copper or copper alloy base material 10 contained in the laser build-up layer 60 .
  • the method of manufacturing the laser build-up layer 60 of the present embodiment enables the formation of the laser build-up layer 60 having a small film thickness and a low dilution rate.
  • the method for manufacturing the laser build-up layer 60 of the present embodiment enables the formation of the laser build-up layer 60 having a smaller film thickness. Changes in thermal characteristics can be kept small.
  • Example 1 A 50 mm square ⁇ 5 mm copper bulk material was prepared as a base material, and the bulk material was subjected to a blasting treatment using alumina particles to roughen the surface. Next, a thermal spray layer was formed on the substrate by a high-speed flame spray method using nickel powder as a thermal spray material. The sprayed layer thus formed had a surface roughness Ra of 2.8 ⁇ m and a film thickness of 20 ⁇ m.
  • Inconel 625 which is one of the nickel-based alloys (nickel: 58% by mass or more, chromium: 20 to 23% by mass, iron: 5.0% by mass or less, molybdenum: 8.0 to 10% .0% by mass, niobium (+ tantalum): 3.15 to 4.15% by mass) as a laser cladding powder, and irradiated with a laser beam to produce the laser cladding layer in Example 1. gone.
  • Example 2 A laser build-up layer in Example 2 was produced in the same manner as in Example 1 except that the surface roughness Ra of the sprayed layer was changed to 5.1 ⁇ m by changing the blasting conditions.
  • Example 3 By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 8.1 ⁇ m, and the film thickness of the sprayed layer was set to 50 ⁇ m. We fabricated a laser build-up layer in .
  • Example 4 By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 9.4 ⁇ m, and the film thickness of the sprayed layer was set to 100 ⁇ m. We fabricated a laser build-up layer in .
  • Example 5 By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 9.6 ⁇ m, and the film thickness of the sprayed layer was set to 300 ⁇ m. We fabricated a laser build-up layer in .
  • Example 6 In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 ⁇ m, the film thickness of the sprayed layer was set to 50 ⁇ m, and Stellite (registered trademark) 21 (chromium: 27.5% by mass, carbon: 0.25% by mass, nickel: 2.6% by mass, molybdenum: 5.4% by mass, iron: 2.0% by mass, silicon: 1.5% by mass, balance: cobalt) was used as the laser cladding powder, the laser cladding layer in Example 6 was produced in the same manner as in Example 1.
  • Stellite (registered trademark) 21 chromium: 27.5% by mass, carbon: 0.25% by mass, nickel: 2.6% by mass, molybdenum: 5.4% by mass, iron: 2.0% by mass, silicon: 1.5% by mass, balance: cobalt
  • Example 7 In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 ⁇ m, the film thickness of the sprayed layer was set to 50 ⁇ m, and Hastelloy (registered trademark) C22 (nickel: 50% by mass or more, chromium: 20-22.5% by mass, molybdenum: 12.5-14.5% by mass, tungsten: 2.5-3.5% by mass, iron: 2.0-6.0% by mass ) was used as the laser cladding powder.
  • Hastelloy (registered trademark) C22 nickel: 50% by mass or more, chromium: 20-22.5% by mass, molybdenum: 12.5-14.5% by mass, tungsten: 2.5-3.5% by mass, iron: 2.0-6.0% by mass
  • Example 8 In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 ⁇ m, the film thickness of the sprayed layer was set to 50 ⁇ m, and Hastelloy (registered trademark) C276 (nickel: 50% by mass or more, chromium: 14.5-16.5% by mass, molybdenum: 15.0-17.0% by mass, tungsten: 3.0-4.5% by mass, iron: 4.0-7.0% mass%) was used as the laser cladding powder, the laser cladding layer in Example 8 was produced in the same manner as in Example 1.
  • Hastelloy (registered trademark) C276 nickel: 50% by mass or more, chromium: 14.5-16.5% by mass, molybdenum: 15.0-17.0% by mass, tungsten: 3.0-4.5% by mass, iron: 4.0-7.0% mass
  • Example 9 Inconel 625 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.0 ⁇ m, and the film thickness of the thermal spray layer was 50 ⁇ m.
  • Example 10 By the same method as in Example 1 except that Hastelloy (registered trademark) C22 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.3 ⁇ m, and the thickness of the thermal spray layer was 50 ⁇ m. , the laser build-up layer in Example 10 was produced.
  • Hastelloy (registered trademark) C22 was used as the thermal spray material.
  • Example 11 By the same method as in Example 1 except that Hastelloy (registered trademark) C276 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.2 ⁇ m, and the thickness of the thermal spray layer was 50 ⁇ m. , the laser build-up layer in Example 11 was produced.
  • Hastelloy (registered trademark) C276 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.2 ⁇ m, and the thickness of the thermal spray layer was 50 ⁇ m.
  • Example 12 In the same manner as in Example 1, except that a beryllium copper alloy was used as the base material, the surface roughness Ra of the thermal spray layer was set to 7.5 ⁇ m, and the film thickness of the thermal spray layer was set to 50 ⁇ m. 12 was prepared.
  • Example 13 In the same manner as in Example 1, except that a chromium-copper alloy was used as the base material, the surface roughness Ra of the thermal spray layer was set to 7.7 ⁇ m, and the film thickness of the thermal spray layer was set to 50 ⁇ m. 13 was produced.
  • Comparative example 1 A copper bulk material of 50 mm square ⁇ 5 mm was prepared as a base material, and the surface of the base material was not roughened by blasting. Inconel 625 was supplied to the base material as a laser build-up powder, and a laser beam was applied. By irradiating, a laser build-up layer in Comparative Example 1 was produced.
  • Comparative example 2 The laser cladding layer in Comparative Example 2 was fabricated in the same manner as in Comparative Example 1, except that blasting using alumina particles was performed before the laser light irradiation and the surface roughness Ra of the base material was set to 3.9 ⁇ m. was made.
  • Comparative example 3 A laser build-up layer in Comparative Example 3 was produced in the same manner as in Example 1, except that the surface roughness Ra of the thermal spray layer was 10.0 ⁇ m and the film thickness of the thermal spray layer was 600 ⁇ m. .
  • Comparative example 4 A copper bulk material of 50 mm square ⁇ 5 mm was prepared as a base material, and a plating layer was formed by electroless nickel plating (medium phosphorus type). The plated layer thus formed had a surface roughness Ra of 0.18 ⁇ m and a film thickness of 8 ⁇ m. Next, a laser cladding layer in Comparative Example 4 was produced by irradiating the plating layer with laser light while supplying Inconel 625 as a laser cladding powder.
  • Comparative example 5 The same method as in Example 1 except that Stellite (registered trademark) 21 powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 7.8 ⁇ m, and the thickness of the thermal spray layer was 50 ⁇ m. Thus, a laser build-up layer in Comparative Example 5 was produced.
  • Comparative example 6 Comparative Example 6 was prepared in the same manner as in Example 1 except that aluminum powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was set to 8.0 ⁇ m, and the film thickness of the thermal spray layer was set to 50 ⁇ m. We fabricated a laser build-up layer in .
  • Comparative example 7 Comparative Example 7 was prepared in the same manner as in Example 1 except that SUS316 powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 7.9 ⁇ m, and the film thickness of the thermal spray layer was 50 ⁇ m. We fabricated a laser build-up layer in .
  • Table 1 summarizes the evaluation results in Examples 1-13 and Comparative Examples 1-7.
  • the surface roughness Ra, film thickness, and reflectance of the sprayed layer in Examples 1 to 13 and Comparative Examples 1 to 7 were measured before laser build-up.
  • the surface roughness Ra was measured using a portable roughness meter (Mitsutoyo), and the film thickness was measured using a micrometer (Mitsutoyo) and calculated values are shown.
  • the reflectance is measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation), and the value at a wavelength of 1000 nm is calculated and shown.
  • the evaluation index for each item in the film evaluation column in Table 1 will be described later.
  • [Comprehensive evaluation] It is derived based on the above-mentioned evaluation of [possibility of film formation], [bonding of interfaces], and [cracks].
  • the meaning of the evaluation index is as follows. ⁇ : A good laser build-up layer in which formation of the laser build-up layer was confirmed, and no bonding failure at the interface between the substrate and the laser build-up layer and the existence of cracks were confirmed. ⁇ : A laser build-up layer in which formation of a laser build-up layer was confirmed, but partial bond failure or the presence of cracks was partially confirmed at the interface between the substrate and the laser build-up layer. x: Formation of the laser build-up layer was not confirmed.
  • a laser build-up layer could not be formed by the methods of Comparative Examples 5 to 7. This is because a material that is not fully solid-solubilized with copper is used as the thermal spraying material, so a large amount of intermetallic compounds is generated at the interface between the base material and the laser build-up layer, and cracks develop at the interface, causing laser damage. It is presumed that this is because the build-up layer was separated from the base material.
  • Example 1 and Comparative Examples 1 and 2 are compared.
  • formation of a laser build-up layer was confirmed, and in Comparative Examples 1 and 2, formation of a laser build-up layer was not confirmed.
  • the difference between Example 1 and Comparative Examples 1 and 2 that contributes to whether or not the laser build-up layer can be formed is the presence or absence of the thermal spray layer and the reflectance associated therewith. It has been confirmed that a sprayed layer must be provided on the substrate, and that the reflectance of the sprayed layer is preferably less than 60%.
  • Example 1 and Example 2 are compared. Formation of a laser build-up layer was confirmed in both Examples 1 and 2, and among them, a suitable laser build-up layer was confirmed in Example 2.
  • the difference between Example 1 and Example 2 is the surface roughness Ra and the reflectance associated therewith, and the reflectance of the sprayed layer is preferably 51% or less in order to form a suitable laser build-up layer. was confirmed.
  • the reflectance of the sprayed layer is preferably less than 60%, more preferably 51% or less, in order to form a suitable laser build-up layer.
  • the present invention can be effectively utilized in many industrial fields, such as the automobile industry, semiconductor industry, steel industry, aerospace industry, and energy industry.
  • thermal spraying device 1 thermal spraying device 2 laser head 3 optical system 4 powder supply unit 10 substrate 20 thermal spraying material 30 thermal spraying layer 40 laser beam 50 laser welding powder 60 laser welding layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

This manufacturing method for a member having a laser build-up layer comprises: a step (a) of forming a thermally sprayed layer, of a nickel or a nickel-based alloy material, on copper or a copper alloy base material; and a step (b) of forming a laser build-up layer by emitting a laser beam onto a surface of the thermally sprayed layer formed in step (a) while supplying a laser build-up powder to said surface, and melting a portion of the base material, all of the laser build-up powder, and all of the thermally sprayed layer in the thickness direction.

Description

レーザ肉盛層を有する部材の製造方法Method for manufacturing member having laser build-up layer
 本発明は、基材上に溶射層を形成した後、この溶射層に対してレーザ光を照射しながらレーザ肉盛粉末を供給することによって形成されたレーザ肉盛層を有する部材の製造方法に関するものである。 The present invention relates to a method of manufacturing a member having a laser build-up layer formed by forming a sprayed layer on a substrate and then supplying laser build-up powder while irradiating the sprayed layer with laser light. It is a thing.
 基材の表面に機械的特性を付与することを目的として、アークまたはレーザ光などの熱源により粉末状材料を加熱溶融してその表面に肉盛層を形成することが行われる場合がある。特に、熱源にレーザ光を用いたレーザ肉盛では、レーザ光の照射によって基材の表面を局所的に溶融するとともに、その表面に金属粉末などのレーザ肉盛粉末を噴射投入することでレーザ肉盛層を形成でき、これにより基材表面に高い耐摩耗性や耐食性を付加することができる。 For the purpose of imparting mechanical properties to the surface of the base material, a heat source such as an arc or laser beam may be used to heat and melt the powdery material to form a build-up layer on the surface. In particular, in laser cladding using a laser beam as a heat source, the surface of the base material is locally melted by the irradiation of the laser beam, and laser cladding powder such as metal powder is injected onto the surface. A build-up layer can be formed, thereby adding high wear resistance and corrosion resistance to the base material surface.
 従来のレーザ肉盛として、例えば、特許文献1には、レーザ肉盛粉末としてのニッケル基耐熱合金粉末を加熱溶融してレーザ肉盛層を形成する方法が開示されている。具体的には、銅または銅合金基材の表面に、レーザ照射ノズルからレーザ光と共に、ニッケル基耐熱合金粉末を供給しながら、基材の表面にノズルを走査させて厚み0.1mm~3mmのニッケル基合金層を形成し、そのニッケル基合金層を厚み0.2mm~10mmに多層肉盛することによってレーザ肉盛層を形成している。これによって、銅または銅合金基材の表面に、ニッケル基合金本来の優れた耐熱性、耐食性および耐摩耗性を付加することができるものとしている。 As a conventional laser cladding, for example, Patent Document 1 discloses a method of heating and melting a nickel-based heat-resistant alloy powder as a laser cladding powder to form a laser cladding layer. Specifically, while supplying nickel-based heat-resistant alloy powder together with laser light from a laser irradiation nozzle to the surface of a copper or copper alloy substrate, the nozzle is scanned over the surface of the substrate to obtain a thickness of 0.1 mm to 3 mm. The laser build-up layer is formed by forming a nickel-based alloy layer and building up the nickel-based alloy layer in multiple layers to a thickness of 0.2 mm to 10 mm. As a result, the excellent heat resistance, corrosion resistance, and wear resistance inherent to the nickel-based alloy can be added to the surface of the copper or copper alloy substrate.
 また、特許文献2および3には、銅または銅合金基材の表面に、ニッケルおよびコバルトからなる電気めっき層をあらかじめ形成し、そのめっき層の表面にニッケル基耐熱合金粉末を供給しながらレーザ光を照射して、めっき層の表面にレーザ肉盛層を形成する方法が開示されている。 Further, in Patent Documents 2 and 3, an electroplating layer made of nickel and cobalt is formed in advance on the surface of a copper or copper alloy substrate, and nickel-based heat-resistant alloy powder is supplied to the surface of the plating layer while laser light is applied. A method of forming a laser build-up layer on the surface of a plating layer by irradiating is disclosed.
特開2019-098371号公報JP 2019-098371 A 特開2019-122973号公報JP 2019-122973 A 特開2019-130578号公報JP 2019-130578 A
 レーザ肉盛では、通常、熱源として900nm~1100nmの波長帯(以下、基本波長帯)を有するレーザ光を使用し、その基本波長帯のレーザ光を基材の表面に照射すると、レーザ光が有する光エネルギーの一部が基材に吸収される。その際に、基材に吸収された光エネルギーは熱エネルギーに変換されて発熱が生じ、それによって上述の通り基材の表面が局所的に溶融されて基材上にレーザ肉盛層が形成されることとなる。したがって、基材上にレーザ肉盛層を形成するためには、基材を適度に溶融させることが重要であり、そのためには基本波長帯のレーザ光に対して吸収率が高いことが有利である。 In laser cladding, usually, a laser beam having a wavelength band of 900 nm to 1100 nm (hereinafter referred to as a basic wavelength band) is used as a heat source. Some of the light energy is absorbed by the substrate. At that time, the light energy absorbed by the base material is converted into heat energy to generate heat, thereby locally melting the surface of the base material and forming a laser build-up layer on the base material as described above. The Rukoto. Therefore, in order to form a laser cladding layer on a base material, it is important to melt the base material appropriately. be.
 しかしながら、特許文献1に示すレーザ肉盛層の製造方法の場合、基材に使用される銅または銅合金は、基本波長帯のレーザ光に対する吸収率が低く、レーザ光の光エネルギーを効率よく吸収することができない。そのため、基材の溶融に必要な熱エネルギーを十分に得ることができない。その結果、基材を十分に溶融することができず、銅または銅合金基材上に、レーザ肉盛層を形成することが困難となる。 However, in the case of the method for manufacturing a laser build-up layer disclosed in Patent Document 1, the copper or copper alloy used for the base material has a low absorptance with respect to the laser light in the fundamental wavelength band, and efficiently absorbs the light energy of the laser light. Can not do it. Therefore, sufficient thermal energy required for melting the base material cannot be obtained. As a result, the base material cannot be sufficiently melted, making it difficult to form a laser build-up layer on the copper or copper alloy base material.
 また、特許文献2および3のように、銅または銅合金基材上にニッケルとコバルトとからなる電気めっき層をあらかじめ設け、そのめっき層の表面にレーザ肉盛層を形成する方法によれば、ニッケルが銅よりも基本波長帯のレーザ光に対する吸収率が高いため、めっき層の表面にレーザ肉盛層を形成することは可能である。しかしながら、特許文献2および3の方法では、レーザ肉盛の際に、基材まで溶融しておらず、電気めっき層を介して基材とレーザ肉盛層とが接合されていることから、一般的なレーザ肉盛層と基材との間で得られる密着性が確保できないといった問題が起こる。 Further, as in Patent Documents 2 and 3, according to a method in which an electroplating layer made of nickel and cobalt is provided on a copper or copper alloy base material in advance and a laser build-up layer is formed on the surface of the plating layer, Since nickel has a higher absorptivity for laser light in the fundamental wavelength band than copper, it is possible to form a laser build-up layer on the surface of the plating layer. However, in the methods of Patent Documents 2 and 3, the base material is not melted during the laser build-up, and the base material and the laser build-up layer are joined via the electroplating layer. However, there arises a problem that the adhesion that can be obtained between the conventional laser build-up layer and the base material cannot be ensured.
 本発明は、前記問題に鑑みてなされたものであり、その目的は、銅または銅合金基材上に直接にレーザ肉盛層を形成できるようにすることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to enable formation of a laser build-up layer directly on a copper or copper alloy base material.
 本発明のレーザ肉盛層を有する部材の製造方法は、次の工程(a)および工程(b)を行うことを特徴とする。
 (a):銅または銅合金基材上に、ニッケルまたはニッケル基合金を材料とする溶射層を形成する工程
 (b):前記工程(a)で形成した前記溶射層の表面に、レーザ肉盛粉末を供給しつつ、レーザ光を照射し、当該レーザ肉盛粉末、ならびに厚み方向における当該溶射層の全部、および、前記基材の一部を溶融することでレーザ肉盛層を形成する工程
A method of manufacturing a member having a laser build-up layer according to the present invention is characterized by performing the following steps (a) and (b).
(a): Step of forming a thermal spray layer made of nickel or a nickel-based alloy on a copper or copper alloy base material (b): Laser overlaying on the surface of the thermal spray layer formed in step (a) A step of forming a laser cladding layer by irradiating a laser beam while supplying powder to melt the laser cladding powder, the entire thermal spray layer in the thickness direction, and a portion of the base material.
 本発明のレーザ肉盛層を有する部材の製造方法のより詳細な特徴としては、次の(1)~(4)が挙げられる。
 (1)前記工程(a)で形成した溶射層の厚さは、10μm~500μmである。
 (2)前記工程(a)で形成した溶射層の表面粗さRaは、5.0μm以上である。
 (3)前記レーザ肉盛粉末は、ニッケルまたはニッケル基合金粉末である。
 (4)さらに次の工程(c)を行うことを特徴とする。
(c):前記工程(b)で形成した前記レーザ肉盛層に対して、前記レーザ肉盛粉末とは異なる成分の粉末を供給しつつ、レーザ光を照射し、当該レーザ肉盛粉末、および前記レーザ肉盛層の一部を溶融することで、多層レーザ肉盛層を形成する工程
More detailed features of the method of manufacturing a member having a laser build-up layer of the present invention include the following (1) to (4).
(1) The thickness of the sprayed layer formed in step (a) is 10 μm to 500 μm.
(2) The thermal spray layer formed in step (a) has a surface roughness Ra of 5.0 μm or more.
(3) The laser cladding powder is nickel or nickel-based alloy powder.
(4) Further, the following step (c) is performed.
(c): irradiating the laser cladding layer formed in the step (b) with a laser beam while supplying a powder having a component different from that of the laser cladding powder, the laser cladding powder, and a step of forming a multi-layered laser build-up layer by melting a part of the laser build-up layer;
 本発明によれば、銅または銅合金基材上に直接にレーザ肉盛層を形成することが可能となる。 According to the present invention, it is possible to directly form a laser build-up layer on a copper or copper alloy base material.
本発明の一実施形態に係る溶射層を形成する工程(a)を表す工程図である。It is process drawing showing the process (a) which forms the sprayed layer which concerns on one Embodiment of this invention. 本発明の一実施形態に係るレーザ肉盛層を形成する工程(b)を表す工程図である。It is process drawing showing the process (b) which forms the laser cladding layer which concerns on one Embodiment of this invention.
 以下に、本発明に係るレーザ肉盛層を有する部材の製造方法の一実施形態について説明する。図1および図2は、下記実施形態の各段階を表す工程図である。 An embodiment of a method for manufacturing a member having a laser build-up layer according to the present invention will be described below. 1 and 2 are process diagrams showing each stage of the following embodiment.
 まず、図1に示すように、溶射法によって基材10上に溶射層30を形成する。具体的に、基材10の表面に、不活性ガスを成膜用作動ガスとする溶射装置1から溶射材料20を吹き付けることによって溶射層30を形成する。ここで、基材10は、銅または銅合金であり、溶射材料20は、ニッケルまたはニッケル基合金である。言い換えると、銅または銅合金基材10上に、ニッケルまたはニッケル基合金を材料とする溶射層30を形成する(工程(a))。ここで、本実施形態に係る溶射層30の溶射法は、特に限定されることはないが、例えば大気圧プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法、ガスフレーム溶射法、アーク溶射法、爆発溶射法などを用いることができる。また、溶射材料20としては、ニッケルまたはニッケル基合金であれば、特に限定はされない。ここで、ニッケル基合金とは、合金を構成する元素のうち、ニッケルの比率が最も高い合金のことを指す。このとき、ニッケル基合金におけるニッケルの含有率は、50質量%以上が好ましく、55質量%以上がより好ましい。ニッケル基合金としては、例えば、ハステロイ(登録商標)C、インコネル、NiCr合金、NiCrAlY合金、および、NiAl合金などが挙げられる。 First, as shown in FIG. 1, a thermal spray layer 30 is formed on the substrate 10 by thermal spraying. Specifically, the thermal spray layer 30 is formed by spraying the thermal spray material 20 onto the surface of the base material 10 from the thermal spray apparatus 1 using an inert gas as a film-forming working gas. Here, the substrate 10 is copper or a copper alloy, and the thermal spray material 20 is nickel or a nickel-based alloy. In other words, the thermal spray layer 30 made of nickel or nickel-based alloy is formed on the copper or copper alloy substrate 10 (step (a)). Here, the thermal spraying method of the thermal spray layer 30 according to the present embodiment is not particularly limited, but for example, atmospheric pressure plasma thermal spraying, low pressure plasma thermal spraying, high speed flame thermal spraying, gas flame thermal spraying, and arc thermal spraying. , detonation thermal spraying, etc. can be used. Also, the thermal spray material 20 is not particularly limited as long as it is nickel or a nickel-based alloy. Here, the nickel-based alloy refers to an alloy in which the ratio of nickel is the highest among the elements constituting the alloy. At this time, the content of nickel in the nickel-based alloy is preferably 50% by mass or more, more preferably 55% by mass or more. Examples of nickel-based alloys include Hastelloy (registered trademark) C, Inconel, NiCr alloys, NiCrAlY alloys, and NiAl alloys.
 次に、図2に示すように、レーザ照射可能なレーザ発振器(図示せず)、レーザヘッド2および集光レンズ等の光学系3を含むレーザ照射手段と、レーザ肉盛粉末50をレーザ照射位置に供給可能な粉末供給部4とを有する通常のレーザ肉盛装置を用いて、溶射層30の表面にレーザ肉盛粉末50を供給しつつレーザ光40を照射する。具体的に、レーザ光40は、レーザ発振器から出力されてレーザヘッド2に入射し、その後、集光レンズなどが内蔵された光学系3まで到達する。光学系3に到達したレーザ光40は集光されてレーザヘッド2の下端の照射口から照射される。そして、レーザ光40はレーザヘッド2の下端直下が集点となって溶射層30の表面上に照射される。このとき、溶射層30がレーザ光40を吸収して発熱が生じ、それによって厚み方向における溶射層30の全部と基材10の一部とが溶融されて溶融池(図示せず)を形成する。また、粉末供給部4の上端からキャリアガスおよびレーザ肉盛粉末50が流入し、レーザ光40が溶射層30の表面上に照射される位置に吐出される。吐出されたレーザ肉盛粉末50は、レーザ光40によって基材10とともに溶融され、基材10の表面にレーザ肉盛層60を形成する。言い換えると、溶射層30の表面にレーザ肉盛粉末50を供給しつつレーザ光40を照射して、レーザ肉盛粉末50、厚み方向における溶射層30の全部、および、銅または銅合金基材10の一部を溶融することで、レーザ肉盛層60を形成する(工程(b))。 Next, as shown in FIG. 2, laser irradiation means including a laser oscillator (not shown) capable of laser irradiation, a laser head 2 and an optical system 3 such as a condenser lens, and a laser cladding powder 50 are placed at a laser irradiation position. A laser cladding powder 50 is supplied to the surface of the thermal spray layer 30 while a laser beam 40 is irradiated using a normal laser cladding apparatus having a powder supply unit 4 that can supply the powder 50 . Specifically, the laser beam 40 is output from a laser oscillator, enters the laser head 2, and then reaches the optical system 3 in which a condenser lens and the like are built. The laser beam 40 that has reached the optical system 3 is condensed and emitted from the irradiation port at the lower end of the laser head 2 . Then, the laser beam 40 is irradiated onto the surface of the thermal spray layer 30 with the point just below the lower end of the laser head 2 as a focal point. At this time, the thermal spray layer 30 absorbs the laser beam 40 to generate heat, thereby melting the entire thermal spray layer 30 and part of the substrate 10 in the thickness direction to form a molten pool (not shown). . Also, the carrier gas and the laser build-up powder 50 flow in from the upper end of the powder supply part 4 and are discharged to a position where the surface of the thermal spray layer 30 is irradiated with the laser light 40 . The discharged laser build-up powder 50 is melted together with the base material 10 by the laser beam 40 to form a laser build-up layer 60 on the surface of the base material 10 . In other words, while supplying the laser cladding powder 50 to the surface of the thermal spray layer 30, the laser beam 40 is irradiated to remove the laser cladding powder 50, the entire thermal spray layer 30 in the thickness direction, and the copper or copper alloy base material 10. is partially melted to form the laser build-up layer 60 (step (b)).
 本実施形態で用いることのできるレーザの種類としては、ファイバーレーザ、半導体レーザ、YAGレーザなどが挙げられる。 Types of lasers that can be used in this embodiment include fiber lasers, semiconductor lasers, YAG lasers, and the like.
 レーザ光40の波長は、適宜条件を変更可能であるが、高い出力が得られることからレーザ肉盛に一般的に用いられる波長帯(基本波長帯)である900nm~1100nmが好ましい。一般的に、銅または銅合金は、基本波長帯でのレーザ光40の吸収率が低い。そのため、銅または銅合金基材10上に、基本波長帯のレーザ光40を照射したとしても基材10が十分に溶融されず、レーザ肉盛層60を形成することが困難であるが、本実施形態のレーザ肉盛層60の製造方法によると、銅または銅合金基材10上に、基本波長帯のレーザ光40の吸収率が高い溶射層30を形成するため、基本波長帯のレーザ光40を用いて、銅または銅合金基材10上に直接にレーザ肉盛層60を形成することが可能となる。なお、本実施形態において、良好なレーザ肉盛層60を成膜するためには、溶射層30の基本波長帯でのレーザ光40の反射率が60%未満であることが好ましく、さらに好ましくは51%以下である。 Although the wavelength of the laser light 40 can be changed as appropriate, it is preferably 900 nm to 1100 nm, which is a wavelength band (basic wavelength band) generally used for laser build-up, since a high output can be obtained. In general, copper or copper alloys have a low absorptance for the laser light 40 in the fundamental wavelength band. Therefore, even if the copper or copper alloy base material 10 is irradiated with the laser beam 40 in the fundamental wavelength band, the base material 10 is not sufficiently melted, and it is difficult to form the laser build-up layer 60. According to the method for manufacturing the laser build-up layer 60 of the embodiment, since the thermal spray layer 30 having a high absorption rate of the laser light 40 in the fundamental wavelength band is formed on the copper or copper alloy base material 10, the laser light in the fundamental wavelength band is 40 can be used to form a laser build-up layer 60 directly on the copper or copper alloy substrate 10 . In this embodiment, in order to form a favorable laser build-up layer 60, the reflectance of the laser beam 40 in the fundamental wavelength band of the thermal spray layer 30 is preferably less than 60%, more preferably 51% or less.
 レーザ光40の焦点でのビーム形状は、矩形、円形など適宜設定することができる。また、レーザヘッド2側を走査してもよいし、基材10側を走査してもよい。これらの条件に加え、レーザ光40を照射する溶射層の反射率も考慮して、適宜、照射条件を設定する。 The beam shape at the focal point of the laser light 40 can be appropriately set to rectangular, circular, or the like. Alternatively, the laser head 2 side may be scanned, or the substrate 10 side may be scanned. In addition to these conditions, the reflectance of the thermal sprayed layer irradiated with the laser beam 40 is also taken into account to appropriately set the irradiation conditions.
 以上のように、本実施形態に係るレーザ肉盛層60の製造方法によると、上述の通り、溶射法によって溶射層30が設けられている。一般的に、溶射層30は、めっき層などに比べて表面粗さRaが大きくなり、また、表面粗さRaが大きいほどレーザ光40の吸収率は高くなる。したがって、銅または銅合金基材10上に形成した溶射層30は、レーザ光40の吸収率が比較的高いため、基材10の一部を十分に溶融させることが可能となる。また、溶射層30の材料となるニッケルは、銅と全率固溶の関係である。その結果、ニッケルまたはニッケル基合金を材料とする溶射層30と、銅または銅合金基材10と、をレーザ光40の照射により互いに溶融させたとしても金属間化合物が析出しにくくなり、レーザ肉盛層60の形成に際し、金属間化合物に起因するクラックの発生を低減することが可能となる。したがって、本実施形態に係るレーザ肉盛層60を有する部材の製造方法によると、溶射層30のみならず基材10の一部も溶融することができ、基材10上に直接にレーザ肉盛層60を製造することができる。 As described above, according to the method for manufacturing the laser build-up layer 60 according to the present embodiment, the thermal spray layer 30 is provided by the thermal spray method, as described above. In general, the thermal spray layer 30 has a larger surface roughness Ra than a plated layer or the like, and the larger the surface roughness Ra, the higher the absorption rate of the laser beam 40 . Therefore, since the thermal spray layer 30 formed on the copper or copper alloy base material 10 has a relatively high absorptivity for the laser light 40, it is possible to sufficiently melt a portion of the base material 10. FIG. Also, nickel, which is the material of the thermal spray layer 30, is completely solid-soluble with copper. As a result, even if the thermal spray layer 30 made of nickel or a nickel-based alloy and the copper or copper alloy substrate 10 are mutually melted by the irradiation of the laser beam 40, the intermetallic compound is less likely to precipitate, and the laser thickness is reduced. When forming the build-up layer 60, it is possible to reduce the occurrence of cracks caused by intermetallic compounds. Therefore, according to the method of manufacturing a member having the laser build-up layer 60 according to the present embodiment, not only the sprayed layer 30 but also a part of the base material 10 can be melted, and laser build-up can be performed directly on the base material 10. Layer 60 can be manufactured.
 本実施形態において、工程(a)で形成した溶射層30の膜厚は、10μm~500μmであることが好ましい。膜厚が10μm~500μmの溶射層30にレーザ光40を照射した場合、基材10の溶融が十分に行われるため、容易にレーザ肉盛層60を形成することが可能となる。一方、膜厚が10μm未満の溶射層30にレーザ光40を照射した場合、基材10の溶融前に溶射層30が消失してしまい、基材10が十分に溶融されずに、成膜不良となることがある。また、膜厚が500μm超過の溶射層30にレーザ光40を照射した場合、基材10まで十分に熱を伝えることができず、基材10が十分に溶融できないことがある。 In this embodiment, the film thickness of the sprayed layer 30 formed in step (a) is preferably 10 μm to 500 μm. When the thermal spray layer 30 having a thickness of 10 μm to 500 μm is irradiated with the laser beam 40, the base material 10 is sufficiently melted, so that the laser build-up layer 60 can be easily formed. On the other hand, when the thermal spray layer 30 with a thickness of less than 10 μm is irradiated with the laser beam 40, the thermal spray layer 30 disappears before the base material 10 is melted, and the base material 10 is not sufficiently melted, resulting in poor film formation. can be Further, when the thermal spray layer 30 having a thickness of more than 500 μm is irradiated with the laser light 40, the heat cannot be sufficiently transferred to the base material 10, and the base material 10 may not be sufficiently melted.
 本実施形態において、工程(a)で形成した溶射層30の表面粗さRaは、2.5μm以上であることが好ましく、5.0μm以上であることがより好ましい。特に、表面粗さRaが5.0μm以上の溶射層30にレーザ光40を照射した場合、当該溶射層30におけるレーザ光40の反射率が低くなり、基材10の溶融が十分に行われるため、容易にレーザ肉盛層60を形成することが可能となる。一方、表面粗さRaが5.0μm未満、特に表面粗さRaが2.5μm未満の溶射層30にレーザ光40を照射した場合、当該溶射層30におけるレーザ光40の吸収が十分でなく、基材10の溶融が十分に行われずに、基材10とレーザ肉盛層60との界面に一部結合不良が発生することがある。なお、表面粗さRaの上限は、例えば15.0μmである。 In this embodiment, the surface roughness Ra of the sprayed layer 30 formed in step (a) is preferably 2.5 μm or more, more preferably 5.0 μm or more. In particular, when the thermal spray layer 30 having a surface roughness Ra of 5.0 μm or more is irradiated with the laser light 40, the reflectance of the laser light 40 in the thermal spray layer 30 decreases, and the base material 10 is sufficiently melted. , the laser build-up layer 60 can be easily formed. On the other hand, when the thermal spray layer 30 having a surface roughness Ra of less than 5.0 μm, particularly a surface roughness Ra of less than 2.5 μm, is irradiated with the laser beam 40, the thermal spray layer 30 does not sufficiently absorb the laser beam 40. A partial bonding failure may occur at the interface between the base material 10 and the laser built-up layer 60 due to insufficient melting of the base material 10 . In addition, the upper limit of surface roughness Ra is 15.0 micrometers, for example.
 本実施形態において、工程(b)でレーザ光40を照射する際に供給するレーザ肉盛粉末50は、ニッケルまたはニッケル基合金粉末であることが好ましい。上述の通り、ニッケルと銅は全率固溶の関係である。したがって、工程(b)で供給するレーザ肉盛粉末50と、銅または銅合金基材10と、をレーザ光40の照射により互いに溶融させたとしても金属間化合物が析出されにくいため、レーザ肉盛層60の形成に際し、金属間化合物に起因するクラックの発生を防止することが可能となる。 In the present embodiment, the laser cladding powder 50 supplied when irradiating the laser beam 40 in step (b) is preferably nickel or nickel-based alloy powder. As described above, nickel and copper have a solid solution relationship. Therefore, even if the laser cladding powder 50 supplied in the step (b) and the copper or copper alloy base material 10 are mutually melted by the irradiation of the laser beam 40, the intermetallic compound is difficult to precipitate. When forming the layer 60, it becomes possible to prevent the occurrence of cracks due to the intermetallic compound.
 本実施形態では、工程(b)で形成したレーザ肉盛層60に対して、工程(b)で使用したレーザ肉盛粉末50と異なる成分の粉末を供給しつつ、レーザ光40を照射し、当該レーザ肉盛粉末、およびレーザ肉盛層60の一部を溶融することで、多層レーザ肉盛層を形成してもよい。 In the present embodiment, the laser cladding layer 60 formed in the step (b) is irradiated with the laser beam 40 while supplying a powder having a different component from the laser cladding powder 50 used in the step (b), A multilayer laser cladding layer may be formed by melting the laser cladding powder and a part of the laser cladding layer 60 .
 本実施形態では、工程(b)で形成したレーザ肉盛層60に対して、工程(b)で使用したレーザ肉盛粉末50と同一成分の粉末を供給しつつ、レーザ光40を照射し、当該レーザ肉盛粉末、およびレーザ肉盛層60の一部を溶融することで、多層レーザ肉盛層を形成してもよい。 In the present embodiment, the laser cladding layer 60 formed in the step (b) is irradiated with the laser beam 40 while supplying powder having the same components as the laser cladding powder 50 used in the step (b), A multilayer laser cladding layer may be formed by melting the laser cladding powder and a part of the laser cladding layer 60 .
 本実施形態のレーザ肉盛層60の製造方法によると、膜厚が小さく、希釈率が低いレーザ肉盛層60も形成することができる。例えば、膜厚が500μm以上2000μm以下、希釈率が3%以上20%以下のレーザ肉盛層60を形成することができる。なお、本願における希釈率とは、レーザ肉盛層60が含有する銅または銅合金基材10の成分割合のことである。 According to the method for manufacturing the laser build-up layer 60 of the present embodiment, it is possible to form the laser build-up layer 60 with a small film thickness and a low dilution rate. For example, the laser built-up layer 60 can be formed with a film thickness of 500 μm or more and 2000 μm or less and a dilution ratio of 3% or more and 20% or less. In addition, the dilution ratio in the present application means the ratio of components of the copper or copper alloy base material 10 contained in the laser build-up layer 60 .
 このように、本実施形態のレーザ肉盛層60の製造方法は、膜厚が小さく、希釈率が低いレーザ肉盛層60の形成も可能となるため、レーザ肉盛層60に持たせる機能の選択肢を広げることができる。例えば、高温環境で使用される銅部材には、高い熱伝導率等の熱的特性が求められているが、高温での耐食性や耐摩耗性を付与する目的で希釈率が低いレーザ肉盛層60を形成した場合、その膜厚が大きいと熱的特性の低下につながる。しかしながら、本実施形態のレーザ肉盛層60の製造方法は、膜厚がより小さいレーザ肉盛層60の形成が可能となるため、レーザ肉盛層60を形成した銅または銅合金基材10の熱的特性の変化を小さく抑えることができる。 As described above, the method of manufacturing the laser build-up layer 60 of the present embodiment enables the formation of the laser build-up layer 60 having a small film thickness and a low dilution rate. You can expand your options. For example, copper parts used in high-temperature environments are required to have thermal properties such as high thermal conductivity. When the film 60 is formed and its thickness is large, it leads to deterioration of thermal characteristics. However, the method for manufacturing the laser build-up layer 60 of the present embodiment enables the formation of the laser build-up layer 60 having a smaller film thickness. Changes in thermal characteristics can be kept small.
 以下に、本発明を適用した実施例およびその比較例について説明する。本実施例は、本発明について例示するものであり、発明の範囲を限定するものではない。 Examples to which the present invention is applied and comparative examples thereof will be described below. The examples are illustrative of the present invention and are not intended to limit the scope of the invention.
実施例1
 基材として50mm角×5mmの銅製のバルク材を用意し、当該バルク材に対してアルミナ粒子を用いたブラスト処理を行い、表面を粗面化した。次に、ニッケル粉末を溶射材料として、高速フレーム溶射法により、基材上に溶射層を形成した。形成した溶射層の表面粗さRaは2.8μmとし、膜厚は20μmとした。次に、溶射層に対し、ニッケル基合金の1つであるインコネル625(ニッケル:58質量%以上、クロム:20~23質量%、鉄:5.0質量%以下、モリブデン:8.0~10.0質量%、ニオブ(+タンタル):3.15~4.15質量%)をレーザ肉盛粉末として供給しつつ、レーザ光を照射することで、実施例1におけるレーザ肉盛層の作製を行った。
Example 1
A 50 mm square×5 mm copper bulk material was prepared as a base material, and the bulk material was subjected to a blasting treatment using alumina particles to roughen the surface. Next, a thermal spray layer was formed on the substrate by a high-speed flame spray method using nickel powder as a thermal spray material. The sprayed layer thus formed had a surface roughness Ra of 2.8 μm and a film thickness of 20 μm. Next, for the sprayed layer, Inconel 625, which is one of the nickel-based alloys (nickel: 58% by mass or more, chromium: 20 to 23% by mass, iron: 5.0% by mass or less, molybdenum: 8.0 to 10% .0% by mass, niobium (+ tantalum): 3.15 to 4.15% by mass) as a laser cladding powder, and irradiated with a laser beam to produce the laser cladding layer in Example 1. gone.
実施例2
 ブラスト処理の条件を変更することにより、溶射層の表面粗さRaを5.1μmとしたこと以外は実施例1と同様の方法により、実施例2におけるレーザ肉盛層の作製を行った。
Example 2
A laser build-up layer in Example 2 was produced in the same manner as in Example 1 except that the surface roughness Ra of the sprayed layer was changed to 5.1 μm by changing the blasting conditions.
実施例3
 ブラスト処理の条件を変更することにより、溶射層の表面粗さRaを8.1μmとしたこと、および溶射層の膜厚を50μmとしたこと以外は実施例1と同様の方法により、実施例3におけるレーザ肉盛層の作製を行った。
Example 3
By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 8.1 μm, and the film thickness of the sprayed layer was set to 50 μm. We fabricated a laser build-up layer in .
実施例4
 ブラスト処理の条件を変更することにより、溶射層の表面粗さRaを9.4μmとしたこと、および溶射層の膜厚を100μmとしたこと以外は実施例1と同様の方法により、実施例4におけるレーザ肉盛層の作製を行った。
Example 4
By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 9.4 μm, and the film thickness of the sprayed layer was set to 100 μm. We fabricated a laser build-up layer in .
実施例5
 ブラスト処理の条件を変更することにより、溶射層の表面粗さRaを9.6μmとしたこと、および溶射層の膜厚を300μmとしたこと以外は実施例1と同様の方法により、実施例5におけるレーザ肉盛層の作製を行った。
Example 5
By changing the blasting conditions, the surface roughness Ra of the sprayed layer was set to 9.6 μm, and the film thickness of the sprayed layer was set to 300 μm. We fabricated a laser build-up layer in .
実施例6
 前記と同様にして、溶射層の表面粗さRaを8.1μmとしたこと、溶射層の膜厚を50μmとしたこと、およびコバルト基合金の1つであるステライト(登録商標)21(クロム:27.5質量%、炭素:0.25質量%、ニッケル:2.6質量%、モリブデン:5.4質量%、鉄:2.0質量%、シリコン:1.5質量%、残部:コバルト)をレーザ肉盛粉末として使用したこと以外は実施例1と同様の方法により、実施例6におけるレーザ肉盛層の作製を行った。
Example 6
In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 μm, the film thickness of the sprayed layer was set to 50 μm, and Stellite (registered trademark) 21 (chromium: 27.5% by mass, carbon: 0.25% by mass, nickel: 2.6% by mass, molybdenum: 5.4% by mass, iron: 2.0% by mass, silicon: 1.5% by mass, balance: cobalt) was used as the laser cladding powder, the laser cladding layer in Example 6 was produced in the same manner as in Example 1.
実施例7
 前記と同様にして、溶射層の表面粗さRaを8.1μmとしたこと、溶射層の膜厚を50μmとしたこと、およびニッケル基合金の1つであるハステロイ(登録商標)C22(ニッケル:50質量%以上、クロム:20~22.5質量%、モリブデン:12.5~14.5質量%、タングステン:2.5~3.5質量%、鉄:2.0~6.0質量%)をレーザ肉盛粉末として使用したこと以外は実施例1と同様の方法により、実施例7におけるレーザ肉盛層の作製を行った。
Example 7
In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 μm, the film thickness of the sprayed layer was set to 50 μm, and Hastelloy (registered trademark) C22 (nickel: 50% by mass or more, chromium: 20-22.5% by mass, molybdenum: 12.5-14.5% by mass, tungsten: 2.5-3.5% by mass, iron: 2.0-6.0% by mass ) was used as the laser cladding powder.
実施例8
 前記と同様にして、溶射層の表面粗さRaを8.1μmとしたこと、溶射層の膜厚を50μmとしたこと、およびニッケル基合金の1つであるハステロイ(登録商標)C276(ニッケル:50質量%以上、クロム:14.5~16.5質量%、モリブデン:15.0~17.0質量%、タングステン:3.0~4.5質量%、鉄:4.0~7.0質量%)をレーザ肉盛粉末として使用したこと以外は実施例1と同様の方法により、実施例8におけるレーザ肉盛層の作製を行った。
Example 8
In the same manner as described above, the surface roughness Ra of the sprayed layer was set to 8.1 μm, the film thickness of the sprayed layer was set to 50 μm, and Hastelloy (registered trademark) C276 (nickel: 50% by mass or more, chromium: 14.5-16.5% by mass, molybdenum: 15.0-17.0% by mass, tungsten: 3.0-4.5% by mass, iron: 4.0-7.0% mass%) was used as the laser cladding powder, the laser cladding layer in Example 8 was produced in the same manner as in Example 1.
実施例9
 インコネル625を溶射材料として使用したこと、溶射層の表面粗さRaを8.0μmとしたこと、および溶射層の膜厚を50μmにしたこと以外は実施例1と同様の方法により、実施例9におけるレーザ肉盛層の作製を行った。
Example 9
Inconel 625 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.0 μm, and the film thickness of the thermal spray layer was 50 μm. We fabricated a laser build-up layer in .
実施例10
 ハステロイ(登録商標)C22を溶射材料として使用したこと、溶射層の表面粗さRaを8.3μmとしたこと、および溶射層の膜厚を50μmにしたこと以外は実施例1と同様の方法により、実施例10におけるレーザ肉盛層の作製を行った。
Example 10
By the same method as in Example 1 except that Hastelloy (registered trademark) C22 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.3 μm, and the thickness of the thermal spray layer was 50 μm. , the laser build-up layer in Example 10 was produced.
実施例11
 ハステロイ(登録商標)C276を溶射材料として使用したこと、溶射層の表面粗さRaを8.2μmとしたこと、および溶射層の膜厚を50μmにしたこと以外は実施例1と同様の方法により、実施例11におけるレーザ肉盛層の作製を行った。
Example 11
By the same method as in Example 1 except that Hastelloy (registered trademark) C276 was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 8.2 μm, and the thickness of the thermal spray layer was 50 μm. , the laser build-up layer in Example 11 was produced.
実施例12
 ベリリウム銅合金を基材として使用したこと、溶射層の表面粗さRaを7.5μmとしたこと、および溶射層の膜厚を50μmにしたこと以外は実施例1と同様の方法により、実施例12におけるレーザ肉盛層の作製を行った。
Example 12
In the same manner as in Example 1, except that a beryllium copper alloy was used as the base material, the surface roughness Ra of the thermal spray layer was set to 7.5 μm, and the film thickness of the thermal spray layer was set to 50 μm. 12 was prepared.
実施例13
 クロム銅合金を基材として使用したこと、溶射層の表面粗さRaを7.7μmとしたこと、および溶射層の膜厚を50μmにしたこと以外は実施例1と同様の方法により、実施例13におけるレーザ肉盛層の作製を行った。
Example 13
In the same manner as in Example 1, except that a chromium-copper alloy was used as the base material, the surface roughness Ra of the thermal spray layer was set to 7.7 μm, and the film thickness of the thermal spray layer was set to 50 μm. 13 was produced.
比較例1
 基材として50mm角×5mmの銅製のバルク材を用意し、ブラスト処理による基材の粗面化を行わず、基材に対して、インコネル625をレーザ肉盛粉末として供給しつつ、レーザ光を照射することで、比較例1におけるレーザ肉盛層の作製を行った。
Comparative example 1
A copper bulk material of 50 mm square × 5 mm was prepared as a base material, and the surface of the base material was not roughened by blasting. Inconel 625 was supplied to the base material as a laser build-up powder, and a laser beam was applied. By irradiating, a laser build-up layer in Comparative Example 1 was produced.
比較例2
 レーザ光の照射前に、アルミナ粒子を用いたブラスト処理を行い、基材の表面粗さRaを3.9μmとしたこと以外は比較例1と同様の方法により、比較例2におけるレーザ肉盛層の作製を行った。
Comparative example 2
The laser cladding layer in Comparative Example 2 was fabricated in the same manner as in Comparative Example 1, except that blasting using alumina particles was performed before the laser light irradiation and the surface roughness Ra of the base material was set to 3.9 μm. was made.
比較例3
 溶射層の表面粗さRaを10.0μmとしたこと、および溶射層の膜厚を600μmとしたこと以外は実施例1と同様の方法により、比較例3におけるレーザ肉盛層の作製を行った。
Comparative example 3
A laser build-up layer in Comparative Example 3 was produced in the same manner as in Example 1, except that the surface roughness Ra of the thermal spray layer was 10.0 μm and the film thickness of the thermal spray layer was 600 μm. .
比較例4
 基材として50mm角×5mmの銅製のバルク材を用意し、無電解ニッケルめっき(中リンタイプ)によりめっき層を形成した。形成しためっき層の表面粗さRaは0.18μmとし、膜厚は8μmとした。次に、めっき層に対し、インコネル625をレーザ肉盛粉末として供給しつつ、レーザ光を照射することで、比較例4におけるレーザ肉盛層の作製を行った。
Comparative example 4
A copper bulk material of 50 mm square×5 mm was prepared as a base material, and a plating layer was formed by electroless nickel plating (medium phosphorus type). The plated layer thus formed had a surface roughness Ra of 0.18 μm and a film thickness of 8 μm. Next, a laser cladding layer in Comparative Example 4 was produced by irradiating the plating layer with laser light while supplying Inconel 625 as a laser cladding powder.
比較例5
 ステライト(登録商標)21粉末を溶射材料として使用したこと、溶射層の表面粗さRaを7.8μmとしたこと、および溶射層の膜厚を50μmとしたこと以外は実施例1と同様の方法により、比較例5におけるレーザ肉盛層の作製を行った。
Comparative example 5
The same method as in Example 1 except that Stellite (registered trademark) 21 powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 7.8 μm, and the thickness of the thermal spray layer was 50 μm. Thus, a laser build-up layer in Comparative Example 5 was produced.
比較例6
 アルミニウム粉末を溶射材料として使用したこと、溶射層の表面粗さRaを8.0μmとしたこと、および溶射層の膜厚を50μmとしたこと以外は実施例1と同様の方法により、比較例6におけるレーザ肉盛層の作製を行った。
Comparative example 6
Comparative Example 6 was prepared in the same manner as in Example 1 except that aluminum powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was set to 8.0 μm, and the film thickness of the thermal spray layer was set to 50 μm. We fabricated a laser build-up layer in .
比較例7
 SUS316粉末を溶射材料として使用したこと、溶射層の表面粗さRaを7.9μmとしたこと、および溶射層の膜厚を50μmとしたこと以外は実施例1と同様の方法により、比較例7におけるレーザ肉盛層の作製を行った。
Comparative example 7
Comparative Example 7 was prepared in the same manner as in Example 1 except that SUS316 powder was used as the thermal spray material, the surface roughness Ra of the thermal spray layer was 7.9 μm, and the film thickness of the thermal spray layer was 50 μm. We fabricated a laser build-up layer in .
 以上のようにして、実施例1~13および比較例1~7の各方法によりレーザ肉盛層の作製を行った。表1は、実施例1~13および比較例1~7における評価結果をまとめた表である。実施例1~13および比較例1~7における溶射層の表面粗さRa、膜厚、および、反射率は、レーザ肉盛施工前の段階で測定したものである。表面粗さRaについては、ポータブル粗さ計(Mitsutoyo社製)を用いて測定し、膜厚については、マイクロメータ(Mitsutoyo社製)を用いて測定し、算出した値を掲載している。また、反射率については、紫外可視近赤外分光光度計(日本分光社製)を用いて測定し、波長が1000nm時の値を算出し掲載している。なお、表1中の皮膜評価欄における各項目の評価指標については後述する。 As described above, laser build-up layers were produced by the methods of Examples 1 to 13 and Comparative Examples 1 to 7. Table 1 summarizes the evaluation results in Examples 1-13 and Comparative Examples 1-7. The surface roughness Ra, film thickness, and reflectance of the sprayed layer in Examples 1 to 13 and Comparative Examples 1 to 7 were measured before laser build-up. The surface roughness Ra was measured using a portable roughness meter (Mitsutoyo), and the film thickness was measured using a micrometer (Mitsutoyo) and calculated values are shown. In addition, the reflectance is measured using an ultraviolet-visible-near-infrared spectrophotometer (manufactured by JASCO Corporation), and the value at a wavelength of 1000 nm is calculated and shown. The evaluation index for each item in the film evaluation column in Table 1 will be described later.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
[成膜可否]
 レーザ肉盛を施工後、目視にてレーザ肉盛層の成膜可否を確認した。評価指標の意味は以下の通りである。
〇:レーザ肉盛層の成膜が確認された。
×:レーザ肉盛層の成膜が確認されなかった。
[Possibility of film formation]
After constructing the laser build-up, it was visually confirmed whether or not the laser build-up layer could be formed. The meaning of the evaluation index is as follows.
◯: Formation of a laser build-up layer was confirmed.
x: Formation of the laser build-up layer was not confirmed.
[界面の結合]
 レーザ肉盛層の成膜が確認されたものについて、マイクロスコープ(キーエンス社製)を用いて断面を観察し、基材とレーザ肉盛層との界面の結合不良の有無を確認した。評価指標の意味は以下の通りである。
〇:基材とレーザ肉盛層との界面に結合不良は確認されなかった。
△:基材とレーザ肉盛層との界面に一部結合不良が確認された。
[Coupling of interfaces]
For those in which the formation of the laser build-up layer was confirmed, the cross section was observed using a microscope (manufactured by Keyence Corporation) to confirm the presence or absence of bonding failure at the interface between the base material and the laser build-up layer. The meaning of the evaluation index is as follows.
◯: No bonding failure was observed at the interface between the base material and the laser build-up layer.
Δ: Partial bonding failure was confirmed at the interface between the substrate and the laser build-up layer.
[クラック]
 レーザ肉盛層の成膜が確認されたものについて、マイクロスコープ(キーエンス社製)を用いて断面を観察し、クラックの有無を確認した。評価指標の意味は以下の通りである。
有:クラックの存在が一部確認された。
無:クラックの存在は確認されなかった。
[crack]
For those in which the formation of the laser build-up layer was confirmed, the cross section was observed using a microscope (manufactured by Keyence Corporation) to confirm the presence or absence of cracks. The meaning of the evaluation index is as follows.
Presence: Presence of cracks was partially confirmed.
None: The existence of cracks was not confirmed.
[総合評価]
 上述の[成膜可否][界面の結合][クラック]の評価をもとに導き出したものである。評価指標の意味は以下の通りである。
〇:レーザ肉盛層の成膜が確認され、基材とレーザ肉盛層との界面の結合不良、およびクラックの存在が確認されていない良好なレーザ肉盛層。
△:レーザ肉盛層の成膜は確認されたが、基材とレーザ肉盛層との界面に一部結合不良、もしくはクラックの存在が一部確認されたレーザ肉盛層。
×:レーザ肉盛層の成膜が確認されなかった。
[Comprehensive evaluation]
It is derived based on the above-mentioned evaluation of [possibility of film formation], [bonding of interfaces], and [cracks]. The meaning of the evaluation index is as follows.
◯: A good laser build-up layer in which formation of the laser build-up layer was confirmed, and no bonding failure at the interface between the substrate and the laser build-up layer and the existence of cracks were confirmed.
Δ: A laser build-up layer in which formation of a laser build-up layer was confirmed, but partial bond failure or the presence of cracks was partially confirmed at the interface between the substrate and the laser build-up layer.
x: Formation of the laser build-up layer was not confirmed.
 以上の結果から分かるように、実施例1~13ではレーザ肉盛層を成膜することができ、その中でも、実施例2~5、実施例7~13については、良好なレーザ肉盛層を成膜することができた。一方で、比較例1~7については、レーザ肉盛層を成膜することができなかった。 As can be seen from the above results, in Examples 1 to 13, the laser build-up layer can be formed. It was possible to form a film. On the other hand, in Comparative Examples 1 to 7, no laser built-up layer could be formed.
 実施例1の方法では、基材とレーザ肉盛層との間に一部結合不良が見られた。これは、溶射層のレーザ光の反射率が他の実施例と比較して高いことにより、基材を十分に溶融することできなかったことが原因であると推察される。 In the method of Example 1, partial bonding failure was observed between the base material and the laser build-up layer. It is presumed that this is because the base material could not be sufficiently melted due to the high reflectance of the thermal spray layer to the laser beam compared to other examples.
 実施例6の方法では、断面にクラックの存在が一部確認された。これは、レーザ肉盛粉末にコバルト基合金であるステライト(登録商標)21を使用したことにより、皮膜中に金属間化合物が生成されたことが原因であると推察される。 In the method of Example 6, the presence of cracks was partially confirmed in the cross section. This is presumed to be caused by the use of Stellite (registered trademark) 21, which is a cobalt-based alloy, as the laser cladding powder, and an intermetallic compound was generated in the film.
 比較例1、2の方法では、レーザ肉盛層を形成することができなかった。これは、基材のレーザ光の反射率が実施例1の溶射層の反射率よりもさらに高いことにより、基材を十分に溶融することができなかったことが原因であると推察される。 With the methods of Comparative Examples 1 and 2, it was not possible to form a laser build-up layer. It is presumed that this is because the reflectance of the base material to the laser beam is higher than that of the thermal spray layer of Example 1, so that the base material cannot be sufficiently melted.
 比較例3の方法では、レーザ肉盛層を形成することができなかった。これは、溶射層の膜厚が厚いことにより、基材を十分に溶融することができなかったことが原因であると推察される。 With the method of Comparative Example 3, it was not possible to form a laser build-up layer. It is presumed that this is because the base material could not be sufficiently melted due to the thickness of the sprayed layer.
 比較例4の方法では、レーザ肉盛層を形成することができなかった。これは、表面粗さが小さいめっき層のレーザ光の反射率が実施例1の溶射層の反射率よりもさらに高いことにより、基材を十分に溶融することができなかったことが原因であると推察される。 With the method of Comparative Example 4, the laser build-up layer could not be formed. This is because the reflectance of the laser beam of the plating layer with small surface roughness is higher than that of the sprayed layer of Example 1, so that the base material cannot be sufficiently melted. It is speculated that
 比較例5~7の方法では、レーザ肉盛層を形成することができなかった。これは、溶射材料に銅と全率固溶の関係ではない材料を使用したことにより、基材とレーザ肉盛層との界面に金属間化合物が多く生成され、界面にクラックが進展し、レーザ肉盛層が基材から剥離したためであると推察される。 A laser build-up layer could not be formed by the methods of Comparative Examples 5 to 7. This is because a material that is not fully solid-solubilized with copper is used as the thermal spraying material, so a large amount of intermetallic compounds is generated at the interface between the base material and the laser build-up layer, and cracks develop at the interface, causing laser damage. It is presumed that this is because the build-up layer was separated from the base material.
 ここで、実施例1と比較例1、2とを比較する。実施例1はレーザ肉盛層の形成が確認されたものであり、比較例1、2はレーザ肉盛層の形成が確認されなかったものである。実施例1と比較例1、2との間において、レーザ肉盛層の成膜可否に寄与する相違点は、溶射層の有無とそれに伴う反射率であり、レーザ肉盛層を形成するためには、基材上に溶射層を設けなければならず、さらにその溶射層の反射率は60%未満が好ましいことが確認された。 Here, Example 1 and Comparative Examples 1 and 2 are compared. In Example 1, formation of a laser build-up layer was confirmed, and in Comparative Examples 1 and 2, formation of a laser build-up layer was not confirmed. The difference between Example 1 and Comparative Examples 1 and 2 that contributes to whether or not the laser build-up layer can be formed is the presence or absence of the thermal spray layer and the reflectance associated therewith. It has been confirmed that a sprayed layer must be provided on the substrate, and that the reflectance of the sprayed layer is preferably less than 60%.
 次に、実施例1と実施例2とを比較する。実施例1、2ともにレーザ肉盛層の形成が確認されたものであり、その中でも実施例2は好適なレーザ肉盛層が確認されたものである。実施例1と実施例2との相違点は、表面粗さRaとそれに伴う反射率であり、好適なレーザ肉盛層の形成のためには、溶射層の反射率は51%以下が好ましいことが確認された。 Next, Example 1 and Example 2 are compared. Formation of a laser build-up layer was confirmed in both Examples 1 and 2, and among them, a suitable laser build-up layer was confirmed in Example 2. The difference between Example 1 and Example 2 is the surface roughness Ra and the reflectance associated therewith, and the reflectance of the sprayed layer is preferably 51% or less in order to form a suitable laser build-up layer. was confirmed.
 つまり、好適なレーザ肉盛層を形成するためには、溶射層の反射率は60%未満が好ましく、さらに好ましくは51%以下であることが確認された。 In other words, it was confirmed that the reflectance of the sprayed layer is preferably less than 60%, more preferably 51% or less, in order to form a suitable laser build-up layer.
 本発明は、自動車産業、半導体産業、鉄鋼産業、航空・宇宙産業、エネルギー産業など、多くの産業分野において有効活用することができる。 The present invention can be effectively utilized in many industrial fields, such as the automobile industry, semiconductor industry, steel industry, aerospace industry, and energy industry.
1    溶射装置
2    レーザヘッド
3    光学系
4    粉末供給部
10   基材
20   溶射材料
30   溶射層
40   レーザ光
50   レーザ肉盛粉末
60   レーザ肉盛層

 
1 thermal spraying device 2 laser head 3 optical system 4 powder supply unit 10 substrate 20 thermal spraying material 30 thermal spraying layer 40 laser beam 50 laser welding powder 60 laser welding layer

Claims (5)

  1.  基材上にレーザ肉盛層を有する部材の製造方法であって、
     銅または銅合金基材上に、ニッケルまたはニッケル基合金を材料とする溶射層を形成する工程(a)と、
     前記工程(a)で形成した前記溶射層の表面に、レーザ肉盛粉末を供給しつつ、レーザ光を照射し、当該レーザ肉盛粉末、ならびに厚み方向における当該溶射層の全部、および、前記基材の一部を溶融することでレーザ肉盛層を形成する工程(b)と、を含むレーザ肉盛層を有する部材の製造方法。
    A method for manufacturing a member having a laser build-up layer on a base material,
    Step (a) of forming a thermal spray layer made of nickel or a nickel-based alloy on a copper or copper alloy substrate;
    The surface of the thermal sprayed layer formed in the step (a) is irradiated with laser light while supplying the laser cladding powder, and the laser cladding powder, the entire thermal sprayed layer in the thickness direction, and the substrate A method of manufacturing a member having a laser build-up layer, comprising a step (b) of forming a laser build-up layer by melting a part of the material.
  2.  前記工程(a)で形成した前記溶射層の厚さは、10μm~500μmである請求項1に記載のレーザ肉盛層を有する部材の製造方法。 The method for manufacturing a member having a laser build-up layer according to claim 1, wherein the thermal spray layer formed in the step (a) has a thickness of 10 µm to 500 µm.
  3.  前記工程(a)で形成した前記溶射層の表面粗さRaは、5.0μm以上である請求項1または2に記載のレーザ肉盛層を有する部材の製造方法。 The method for manufacturing a member having a laser build-up layer according to claim 1 or 2, wherein the thermal spray layer formed in the step (a) has a surface roughness Ra of 5.0 µm or more.
  4.  前記レーザ肉盛粉末は、ニッケルまたはニッケル基合金粉末である請求項1~3のいずれか1項に記載のレーザ肉盛層を有する部材の製造方法。 The method of manufacturing a member having a laser build-up layer according to any one of claims 1 to 3, wherein the laser build-up powder is nickel or nickel-based alloy powder.
  5.  前記工程(b)で形成した前記レーザ肉盛層に対して、前記レーザ肉盛粉末と同一または異なる成分の粉末を供給しつつ、レーザ光を照射し、当該レーザ肉盛粉末、および前記レーザ肉盛層の一部を溶融することで、多層レーザ肉盛層を形成する工程(c)をさらに有する請求項1~4のいずれか1項に記載のレーザ肉盛層を有する部材の製造方法。

     
    The laser cladding layer formed in the step (b) is irradiated with a laser beam while supplying powder having the same or different components as the laser cladding powder, and the laser cladding powder and the laser cladding are irradiated. The method for manufacturing a member having a laser build-up layer according to any one of claims 1 to 4, further comprising a step (c) of forming a multilayer laser build-up layer by melting a part of the build-up layer.

PCT/JP2022/011213 2021-04-19 2022-03-14 Manufacturing method for member having laser build-up layer WO2022224627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516335A JP7493680B2 (en) 2021-04-19 2022-03-14 Method for manufacturing a component having a laser cladding layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-070102 2021-04-19
JP2021070102 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224627A1 true WO2022224627A1 (en) 2022-10-27

Family

ID=83722904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011213 WO2022224627A1 (en) 2021-04-19 2022-03-14 Manufacturing method for member having laser build-up layer

Country Status (2)

Country Link
TW (1) TW202243771A (en)
WO (1) WO2022224627A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085972A (en) * 1996-09-10 1998-04-07 Nippon Steel Corp Method for reforming surface of copper or copper alloy
JP2018029090A (en) * 2014-11-26 2018-02-22 株式会社日立製作所 Junction structure of different types of metals, method for forming the structure, and water-cooling power conversion element having the structure
JP2019136753A (en) * 2018-02-14 2019-08-22 株式会社野村鍍金 Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same
JP2019163550A (en) * 2015-07-23 2019-09-26 トーカロ株式会社 Production method of surface modification member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085972A (en) * 1996-09-10 1998-04-07 Nippon Steel Corp Method for reforming surface of copper or copper alloy
JP2018029090A (en) * 2014-11-26 2018-02-22 株式会社日立製作所 Junction structure of different types of metals, method for forming the structure, and water-cooling power conversion element having the structure
JP2019163550A (en) * 2015-07-23 2019-09-26 トーカロ株式会社 Production method of surface modification member
JP2019136753A (en) * 2018-02-14 2019-08-22 株式会社野村鍍金 Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same

Also Published As

Publication number Publication date
TW202243771A (en) 2022-11-16
JPWO2022224627A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US11654498B2 (en) Nickel-based brazing foil and process for brazing
JP5268937B2 (en) Method for joining tantalum coated steel structures
US8702919B2 (en) Target designs and related methods for coupled target assemblies, methods of production and uses thereof
RU2624884C2 (en) Localized repair of the component from superalloy
Shanjin et al. An investigation of pulsed laser cutting of titanium alloy sheet
JP6595593B2 (en) Method for manufacturing turbine engine component
Jhavar et al. Micro-plasma transferred arc additive manufacturing for die and mold surface remanufacturing
US20080035707A1 (en) Transient-liquid-phase joining of ceramics at low temperatures
CN1572406A (en) Process for repairing turbine components
KR102070769B1 (en) Method for applying a protective layer to a turbine component
JP2010514572A (en) Method of applying brazing powder to a substrate for surface cleaning and protection
JP2009113114A (en) Method of soldering magnesium alloy workpiece
JP2006077327A (en) Material composite
JP7013823B2 (en) Manufacturing method of mold for continuous casting
JP7394025B2 (en) Parts for electrical/electronic equipment
TW201704503A (en) Method for manufacturing surface-modified member
US7820939B2 (en) Zero-gap laser welding
WO2022224627A1 (en) Manufacturing method for member having laser build-up layer
KR20120031857A (en) Junction method of each other different quality of material
JP7493680B2 (en) Method for manufacturing a component having a laser cladding layer
Zhang et al. Fiber laser deposition of Inconel 718 using powders
JP2007021580A (en) Solder alloy for producing sputtering target, and sputtering target using the same
JP7082210B2 (en) Methods and systems for on-site manufacturing and supply of sintered wire for additional manufacturing or repair
Seltzman et al. Brazing characteristics, microstructure, and wettability of laser powder bed fusion additive manufactured GRCop-84 compared to CuCrZr and OFC, and brazing to titanium-zirconium-molybdenum alloy limiters
WO2014129199A1 (en) Heat exchanger and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023516335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791407

Country of ref document: EP

Kind code of ref document: A1