JP6796243B2 - Mechanical parts coated with copper-nickel alloy material - Google Patents

Mechanical parts coated with copper-nickel alloy material Download PDF

Info

Publication number
JP6796243B2
JP6796243B2 JP2016092191A JP2016092191A JP6796243B2 JP 6796243 B2 JP6796243 B2 JP 6796243B2 JP 2016092191 A JP2016092191 A JP 2016092191A JP 2016092191 A JP2016092191 A JP 2016092191A JP 6796243 B2 JP6796243 B2 JP 6796243B2
Authority
JP
Japan
Prior art keywords
nickel
copper
plating
layer
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016092191A
Other languages
Japanese (ja)
Other versions
JP2017197836A (en
Inventor
岩崎 正樹
正樹 岩崎
山口 純
純 山口
利幸 中嶋
利幸 中嶋
啓治 仲井
啓治 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nomura Plating Co Ltd
Original Assignee
Nippon Steel Corp
Nomura Plating Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nomura Plating Co Ltd filed Critical Nippon Steel Corp
Priority to JP2016092191A priority Critical patent/JP6796243B2/en
Publication of JP2017197836A publication Critical patent/JP2017197836A/en
Application granted granted Critical
Publication of JP6796243B2 publication Critical patent/JP6796243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、電気導電性と耐食性に優れる銅−ニッケル合金材料に関するものであり、導電性、熱伝導性、耐食性などの特性が要求される機械部品の表面に被覆して使用される。 The present invention relates to a copper-nickel alloy material having excellent electrical conductivity and corrosion resistance, and is used by coating it on the surface of a mechanical component that requires properties such as conductivity, thermal conductivity, and corrosion resistance.

銅とニッケルの合金は、ニッケルを10〜30wt%含有する白銅(キュプロニッケル)やニッケルを45wt%含有するコンスタンタンとして知られており、冶金法で製造されている。銅とニッケルとの合金は、冶金法で容易に製造できるが、これを電気めっきで製造する場合には、銅の析出電位がニッケルに比べて非常に貴であり、銅の優先的な析出が起きる。このことにより、安定して銅とニッケルの合金の電気めっき皮膜を得ることは困難であった。しかし、特許文献1〜3に示すように、銅の優先析出を克服し、電気めっき法による銅とニッケルの合金被覆層の開発がなされてきた。 The alloy of copper and nickel is known as cupronickel (cupronickel) containing 10 to 30 wt% of nickel and constantan containing 45 wt% of nickel, and is manufactured by a metallurgical method. An alloy of copper and nickel can be easily produced by a metallurgical method, but when it is produced by electroplating, the precipitation potential of copper is much more precious than that of nickel, and preferential precipitation of copper occurs. Get up. As a result, it was difficult to stably obtain an electroplating film of an alloy of copper and nickel. However, as shown in Patent Documents 1 to 3, the preferential precipitation of copper has been overcome, and an alloy coating layer of copper and nickel has been developed by an electroplating method.

特許文献1は、工業的に成功した銅−ニッケル合金を得る電気めっき浴がないことに着目して、安定した銅−ニッケル合金を得るためにピロリン酸浴をベースとして、グルコースと硝酸アンモニウムなどの添加剤を試み、銅イオンの優先析出を抑制し、外観がニッケル色から淡銅色の銅−ニッケル合金めっきを得たとしている。 Patent Document 1 focuses on the fact that there is no electroplating bath for obtaining an industrially successful copper-nickel alloy, and adds glucose, ammonium nitrate, etc. based on a pyrophosphate bath in order to obtain a stable copper-nickel alloy. It is said that the agent was tried to suppress preferential precipitation of copper ions, and a copper-nickel alloy plating having a nickel-colored to light copper-colored appearance was obtained.

特許文献2は、色ムラの無いニッケル光沢のニッケル−銅合金を得ることを目的に、めっき液の安定化のために、錯化剤としてクエン酸ナトリウムとpH緩衝剤としてホウ酸を添加しためっき液を用いた。 Patent Document 2 provides plating with sodium citrate as a complexing agent and boric acid as a pH buffer for the purpose of obtaining a nickel-copper alloy having a nickel luster without color unevenness in order to stabilize the plating solution. A liquid was used.

特許文献3は、添加剤として四ほう酸ナトリウムに、りんご酸、グルコン酸及びサリチル酸とサッカリンを加えためっき液から、Cu量が20〜65%の範囲にある白銅色の銅−ニッケル合金めっきを得ている。 Patent Document 3 obtains a cupronickel-colored copper-nickel alloy plating in which the amount of Cu is in the range of 20 to 65% from a plating solution obtained by adding apple acid, gluconic acid, salicylic acid and saccharin to sodium tetraborate as an additive. ing.

特許文献1〜3の例は、めっきの色、特に光沢のある色を出すことを目的としており、良い光沢を得るためにめっき厚は薄い方が好ましく、さらに短時間のめっきであればめっき液組成の変化と銅イオンの優先析出を抑制できたと容易に想像できる。因みに、めっき厚みに関する記述は、特許文献3の8〜10μm以外見いだせなかった。また、合金組成は、特許文献3のCu量が20〜65%の範囲以外に記述はなかった。 The examples of Patent Documents 1 to 3 are aimed at producing a plating color, particularly a glossy color, and it is preferable that the plating thickness is thin in order to obtain good gloss, and a plating solution is used for short-time plating. It can be easily imagined that the change in composition and the preferential precipitation of copper ions could be suppressed. Incidentally, no description regarding the plating thickness was found except for 8 to 10 μm of Patent Document 3. Further, the alloy composition was not described except in the range of 20 to 65% of Cu in Patent Document 3.

特公昭62−14233号公報Special Publication No. 62-14233 特開平2−285091号公報Japanese Unexamined Patent Publication No. 2-285991 特開平5−98488号公報Japanese Unexamined Patent Publication No. 5-98488

近年の鉄鋼連続鋳造機は、鋳造する鋳片の品質を良くする為に電磁撹拌機能を備えたものがあり、その鉄鋼連続鋳造用鋳型材として銅合金が使われる。銅にクロム、ジルコニウムを添加した合金やさらにアルミニウムを添加した析出硬化型銅合金が使用されており、高温強度、熱伝導度、機械加工性に優れ、同時に電気伝導度をコントロールした合金が使用されている。 In recent years, some steel continuous casting machines have an electromagnetic stirring function in order to improve the quality of the slabs to be cast, and a copper alloy is used as a mold material for the steel continuous casting. Alloys with chromium and zirconium added to copper and precipitation-curable copper alloys with aluminum added are used, and alloys with excellent high-temperature strength, thermal conductivity, and machinability, and at the same time with controlled electrical conductivity are used. ing.

鉄鋼連続鋳造用の鋳型は、使用に伴いヒートクラックによる亀裂や溶鋼の流れによって部分的な摩耗が進行し易い。損耗した表面部分を研削により除去し、その部分に厚いめっき層を被覆することで、鋳型を再生することができる。しかし、現在、鋳型内電磁撹拌装置に使用される鋳型用材料は導電率が銅の30〜80%に相当する材料であり、鋳型再生用に優れた導電性と熱伝導性を発揮する銅合金めっき層がなかった。 The mold for continuous steel casting tends to be partially worn due to cracks due to heat cracks and the flow of molten steel with use. The mold can be regenerated by removing the worn surface portion by grinding and coating the portion with a thick plating layer. However, at present, the mold material used in the in-mold electromagnetic stirrer is a material having a conductivity equivalent to 30 to 80% of copper, and is a copper alloy exhibiting excellent conductivity and thermal conductivity for mold regeneration. There was no plating layer.

また、損傷を受けた鋳型は母材へ少なくとも深さ数百μmから深くは数mmに達するクラックが入ることもあり、それらを研削除去する量に対応するためにも0.3mm以上の厚膜のめっき皮膜が必要であり、安定して厚膜を被覆する必要があった。 In addition, the damaged mold may have cracks in the base metal that reach at least several hundred μm to several mm in depth, and a thick film of 0.3 mm or more can be used to accommodate the amount of grinding and removal of these cracks. It was necessary to cover the thick film in a stable manner.

本発明は、これらの課題を解決しようとするものであり、析出硬化型銅合金と同等の導電性と熱伝導性を有し、同時に耐熱性に優れる銅−ニッケル合金めっき材料を電気めっき法で得ることを目的としている。また、安定して厚膜を被覆することも目的としている。 The present invention is intended to solve these problems, and a copper-nickel alloy plating material having the same conductivity and thermal conductivity as a precipitation-curable copper alloy and at the same time having excellent heat resistance is electroplated. The purpose is to get. It is also intended to stably coat a thick film.

請求項1の発明は、銅、ニッケル及び不可避的不純物からなり、かつ銅の含有率が50wt%以上である銅−ニッケル合金が0.3mm以上の厚さに電気めっきされており、得られるめっき層がめっき層全体の平均ニッケル含有率よりも高いニッケル含有率を有する高ニッケル含有層と、前記平均ニッケル含有率よりも低いニッケル含有率を有する低ニッケル含有層とが2層以上に交互に積層されており、前記平均ニッケル含有率は20wt%以下であり、前記高ニッケル含有層のニッケル含有率と前記低ニッケル含有層のニッケル含有率との差は3.25wt%以上であることを特徴とする銅−ニッケル合金材料を、その表面の一部または全面に被覆した機械部品である。
請求項2の発明は、請求項1記載の銅−ニッケル合金材料を被覆した機械部品において、銅−ニッケル合金の平均ニッケル含有率が0.5〜20wt%であることを特徴とする。
請求項3の発明は、請求項1または2に記載の銅−ニッケル合金材料を被覆した機械部品において、めっき層中の高ニッケル含有層の層厚が0.1〜5.0μmで、低ニッケル含有層の層厚が0.1〜25μmであって、高ニッケル含有層と低ニッケル含有層の層厚比が1:1〜1:5の範囲にあることを特徴とする
The invention of claim 1 is obtained by electroplating a copper-nickel alloy composed of copper, nickel and unavoidable impurities and having a copper content of 50 wt% or more to a thickness of 0.3 mm or more. The high nickel-containing layer having a nickel content higher than the average nickel content of the entire plating layer and the low nickel-containing layer having a nickel content lower than the average nickel content are alternately laminated in two or more layers. are, the average nickel content is not more than 20 wt%, the high nickel difference between nickel content of the nickel content of the containing layer and the low nickel containing layer, characterized in der Rukoto least 3.25Wt% It is a mechanical part in which a part or the entire surface of the copper-nickel alloy material is coated .
The invention of claim 2 is characterized in that the average nickel content of the copper-nickel alloy is 0.5 to 20 wt% in the mechanical parts coated with the copper-nickel alloy material according to claim 1.
The invention of claim 3 is the mechanical component coated with the copper-nickel alloy material according to claim 1 or 2, wherein the layer thickness of the high nickel-containing layer in the plating layer is 0.1 to 5.0 μm and the nickel is low. The layer thickness of the containing layer is 0.1 to 25 μm, and the layer thickness ratio between the high nickel-containing layer and the low nickel-containing layer is in the range of 1: 1 to 1: 5 .

本発明の機械部品の表面に被覆した銅−ニッケル合金材料は、めっき層全体の平均ニッケル含有率よりも高いニッケル含有率を有する高ニッケル含有層と、前記平均ニッケル含有率よりも低いニッケル含有率を有する低ニッケル含有層とが2層以上に交互に積層されており、前記平均ニッケル含有率は20wt%以下であり、前記高ニッケル含有層のニッケル含有率と前記低ニッケル含有層のニッケル含有率との差は3.25wt%以上であるので、0.3mm以上の厚さに安定して電気めっきすることができ、また、銅の含有率が50wt%以上であり、析出硬化型銅合金と比べて遜色の無い導電性、熱伝導性、耐食性などの特性を実現できる効果がある。
請求項2の発明によれば、導電率が純銅比の25〜80%の範囲にあり、全体膜厚が0.3mm以上の厚膜電気めっき材料を、例えば鋼用連続鋳造鋳型や射出成型用金型に提供することが可能となった。
請求項3の発明によれば、高ニッケル含有層の層厚が0.1〜5.0μmで、低ニッケル含有層の層厚が0.1〜25μmであって、高ニッケル含有層と低ニッケル含有層の層厚比が1:1〜1:5の範囲にあることにより、効率よく表面荒れの無い良質なめっき層を得ることができた。
The copper-nickel alloy material coated on the surface of the mechanical component of the present invention has a high nickel content layer having a nickel content higher than the average nickel content of the entire plating layer and a nickel content lower than the average nickel content. The low nickel-containing layers having the above are alternately laminated in two or more layers , the average nickel content is 20 wt% or less, and the nickel content of the high nickel-containing layer and the nickel content of the low nickel-containing layer are difference 3.25Wt% or more der Runode with, stable than 0.3mm thick can be electroplated, also has a content of copper is more than 50 wt%, precipitation hardening copper alloy It has the effect of realizing characteristics such as conductivity, thermal conductivity, and corrosion resistance that are comparable to those of the above.
According to the invention of claim 2, a thick film electroplating material having a conductivity in the range of 25 to 80% of pure copper and having an overall thickness of 0.3 mm or more can be used, for example, for continuous casting dies for steel or injection molding. It has become possible to provide it to the mold.
According to the invention of claim 3, the layer thickness of the high nickel-containing layer is 0.1 to 5.0 μm, the layer thickness of the low nickel-containing layer is 0.1 to 25 μm, and the high nickel-containing layer and the low nickel are low nickel. Since the layer thickness ratio of the containing layer was in the range of 1: 1 to 1: 5, it was possible to efficiently obtain a high-quality plating layer without surface roughness.

本発明の銅−ニッケル合金材料の断面ミクロ組織を示す写真である。It is a photograph which shows the cross-sectional microstructure of the copper-nickel alloy material of this invention. 本発明の銅−ニッケル合金材料のニッケル含有率と導電率の関係を示す図である。It is a figure which shows the relationship between the nickel content and the conductivity of the copper-nickel alloy material of this invention.

導電率が純銅の25〜80%に相当する材料を、膜厚0.3mm以上、好ましくは1mm以上の良質な厚膜めっき皮膜として形成するという課題を克服するため、材料選定を行った。目標とする鋳型や金型用途では、銅に比肩する高い抜熱性を持つだけでなく、電磁撹拌を妨げない導電率すなわち純銅の25〜80%に相当する導電率が要求されることから、銅の含有量が50wt%以上である銅とニッケルの合金を選定した。 In order to overcome the problem of forming a material having a conductivity equivalent to 25 to 80% of pure copper as a high-quality thick-film plating film having a film thickness of 0.3 mm or more, preferably 1 mm or more, the material was selected. The target mold and mold applications require not only high heat removal properties comparable to copper, but also conductivity that does not interfere with electromagnetic agitation, that is, conductivity equivalent to 25 to 80% of pure copper. An alloy of copper and nickel having a content of 50 wt% or more was selected.

特許文献1〜3のように、銅とニッケルのめっきでは、銅の析出電位がニッケルに比べて非常に貴であり、銅の優先的な析出が起きてしまい、それが原因でめっき浴の不均衡が生じ、均一な組成の合金を厚くめっきすることは困難であった。 As in Patent Documents 1 to 3, in the plating of copper and nickel, the precipitation potential of copper is much more precious than that of nickel, and preferential precipitation of copper occurs, which causes the plating bath to fail. Equilibration occurred and it was difficult to thickly plate alloys of uniform composition.

そのような状況であっても、最もめっき組成が変化しにくいめっき液組成の探索を行った結果、ピロリン酸浴が最も好ましく、ほう砂とキレート剤の添加により浴が一層安定化出来ることが判明した。そこで、本発明においてはめっき浴としてピロリン酸銅−ニッケル浴を選定した。 Even in such a situation, as a result of searching for a plating solution composition in which the plating composition is most unlikely to change, it was found that the pyrophosphate bath is the most preferable, and the bath can be further stabilized by adding borax and a chelating agent. did. Therefore, in the present invention, a copper pyrophosphate-nickel bath was selected as the plating bath.

次に、比較的安定なめっき浴を選定しても合金めっきを長時間一定にすることが困難であるために、均一組成の合金めっき皮膜を図る目的で、めっき浴の撹拌に着目し撹拌条件の最適化も行った。 Next, since it is difficult to keep the alloy plating constant for a long time even if a relatively stable plating bath is selected, the stirring conditions are focused on the stirring of the plating bath for the purpose of obtaining an alloy plating film having a uniform composition. Was also optimized.

また、めっき厚みが増してくると、銅とニッケルとの析出バランスが崩れることに起因すると考えられるが、めっき表面に荒れが生じ始め、色調的にもめっき皮膜の不均質さが生じてくる。なお、この不均質さが生じ始める膜厚は、ニッケルの含有量が少ないめっき液組成で、より早期に生じることが判明したために、めっき浴と撹拌条件の最適化により、一定厚みの組成が均質なめっき皮膜を得ることは可能となったが、膜厚0.3mm以上の良質な厚膜めっき皮膜を安定的に得ることは出来なかった。 Further, when the plating thickness is increased, it is considered that the cause is that the precipitation balance of copper and nickel is lost, but the plating surface starts to be roughened, and the plating film becomes inhomogeneous in terms of color tone. It was found that the film thickness at which this inhomogeneity begins to occur occurs earlier in the plating solution composition with a low nickel content. Therefore, by optimizing the plating bath and stirring conditions, the composition with a constant thickness becomes homogeneous. Although it was possible to obtain a good plating film, it was not possible to stably obtain a high-quality thick-film plating film having a film thickness of 0.3 mm or more.

そこで、一定厚み以上の銅−ニッケル合金めっき層を安定的に得られる方法について検討した結果、同じ組成の合金を厚くしていくことは困難であったが、異なる組成の皮膜の上であれば比較的に安定してめっきできることが判ったことから、所望の厚膜の銅−ニッケル合金めっき層を、一層の均一めっきで得ることを断念し、ニッケルの含有量が異なる合金層を交互に積み重ねることにより、交互積層全体で所望の導電性、熱伝導性、耐熱性を持つめっき層を得ることができた。 Therefore, as a result of investigating a method for stably obtaining a copper-nickel alloy plating layer having a certain thickness or more, it was difficult to thicken an alloy having the same composition, but if it is on a film having a different composition, Since it was found that the plating can be performed relatively stably, the desired thick copper-nickel alloy plating layer was abandoned by one-layer uniform plating, and alloy layers having different nickel contents were alternately stacked. As a result, it was possible to obtain a plating layer having desired conductivity, thermal conductivity, and heat resistance in the entire alternating lamination.

すなわち、導電率が純銅比の25〜80%、全体膜厚が0.3mm以上の厚膜を得るために、めっき層は銅を主成分とする銅−ニッケル合金から成り、ニッケル含有率の異なる2種類の銅−ニッケル合金薄層を交互に積層することで、めっき層として厚膜化を達成した。従来、銅−ニッケル合金の厚膜めっきは困難であったが、適正なめっき浴の選定とめっき液撹拌条件の最適化により、所望の合金めっき材料を実現させた。 That is, in order to obtain a thick film having a conductivity of 25 to 80% of the pure copper ratio and an overall thickness of 0.3 mm or more, the plating layer is made of a copper-nickel alloy containing copper as a main component and has different nickel contents. By alternately laminating two types of copper-nickel alloy thin layers, a thick film was achieved as a plating layer. Conventionally, it has been difficult to perform thick film plating of a copper-nickel alloy, but a desired alloy plating material has been realized by selecting an appropriate plating bath and optimizing the plating solution stirring conditions.

上記により作製した交互積層した銅−ニッケル合金めっき層において、導電率が純銅比の25〜80%の範囲、比抵抗では2.0×10-8〜6.8×10-8Ω・mに相当する範囲が好ましい。 In the alternately laminated copper-nickel alloy plating layer prepared as described above, the conductivity is in the range of 25 to 80% of the pure copper ratio, and the specific resistance is 2.0 × 10 -8 to 6.8 × 10 -8 Ω · m. The corresponding range is preferred.

また、耐熱性・耐摩耗性との関係も考慮し、ニッケルの平均含有率は、0.5〜20wt%、好ましくは1〜15wt%が良い。また、交互積層しためっき層において、ニッケルの含有率が高い高含有層の層厚が0.1〜5.0μm、ニッケルの含有率が低い低含有層の層厚が0.1〜25μmの場合に、効率よく表面荒れの無い良質なめっき層を得ることができた。 Further, in consideration of the relationship with heat resistance and abrasion resistance, the average nickel content is preferably 0.5 to 20 wt%, preferably 1 to 15 wt%. Further, in the alternately laminated plating layers, when the layer thickness of the high content layer having a high nickel content is 0.1 to 5.0 μm and the layer thickness of the low content layer having a low nickel content is 0.1 to 25 μm. In addition, it was possible to efficiently obtain a high-quality plating layer without surface roughness.

上記交互積層した銅−ニッケル合金めっき層は、安定しためっき組織構造を持ち、厚膜めっきが可能となり、耐熱性・電気伝導率にも優れることから、電磁誘導を利用する金型以外にも、高い導電性や、熱伝導性を活用する機械部品に応用することができる。 The alternately laminated copper-nickel alloy plating layer has a stable plating structure, enables thick film plating, and has excellent heat resistance and electrical conductivity. Therefore, in addition to dies that use electromagnetic induction, It can be applied to mechanical parts that utilize high conductivity and thermal conductivity.

交互積層した銅−ニッケル合金めっき層を構成する単層の電気めっき条件を以下に示す。 The electroplating conditions of the single layer constituting the alternately laminated copper-nickel alloy plating layer are shown below.

クエン酸浴、硫酸浴、スルファミン酸浴、ピロリン酸浴等について調査した結果、ピロリン酸浴が最も良好であり、ピロリン酸浴において銅イオンとニッケルイオンの適正比率、補助成分としてキレート剤の添加量、pH緩衝剤としてホウ砂あるいはホウ酸の添加適正量を検討し、同時に撹拌条件についても検討した。表1に適正な電気めっき条件の範囲を示す。 As a result of investigating a citric acid bath, a sulfuric acid bath, a sulfamic acid bath, a pyrophosphate bath, etc., the pyrophosphate bath is the best, and the appropriate ratio of copper ions and nickel ions in the pyrophosphate bath and the amount of a buffer added as an auxiliary component , The appropriate amount of boric acid or boric acid added as a pH buffer was examined, and at the same time, the stirring conditions were also examined. Table 1 shows the range of appropriate electroplating conditions.

表1の条件で撹拌を入れない場合には、銅−ニッケル合金中のニッケル含有率は、0.1〜1.0%と著しく低いものしか得られず、膜厚が100〜130μmを超えた辺りから異常な粗雑めっきとなることを知見した。また、先行技術文献である特許第3833892号は、図8に記載されているように、ニッケル含有量が50%を超えるニッケル−銅合金の電気めっき皮膜の作成時にパルス電流を適用している。このことから、銅−ニッケル合金皮膜においても、パルス電流を印加し、ニッケル含有率を高めることとめっき皮膜の厚膜化を試みた。銅とニッケルの合金比率は、パルス電流の低い時間帯と高い電流域の時間帯とで多少のニッケル含有率の差が見られるものの、その差は僅か0.5〜0.7wt%程度の差しかなく、層全体の平均ニッケル含有率が、約1.5wt%程度と低かった。また、膜厚が約100μmを超えると粗雑な皮膜表面が形成された。 When stirring was not applied under the conditions shown in Table 1, the nickel content in the copper-nickel alloy was extremely low, 0.1 to 1.0%, and the film thickness exceeded 100 to 130 μm. It was found that abnormal coarse plating occurs from around. Further, Japanese Patent No. 3833892, which is a prior art document, applies a pulse current when forming an electroplating film of a nickel-copper alloy having a nickel content of more than 50%, as described in FIG. For this reason, we tried to increase the nickel content and thicken the plating film by applying a pulse current to the copper-nickel alloy film as well. Regarding the alloy ratio of copper and nickel, although there is a slight difference in nickel content between the time zone where the pulse current is low and the time zone where the pulse current is high, the difference is only about 0.5 to 0.7 wt%. However, the average nickel content of the entire layer was as low as about 1.5 wt%. Further, when the film thickness exceeded about 100 μm, a rough film surface was formed.

以上の試験を経て、銅−ニッケル合金系皮膜の合金比率のコントロールと厚膜化のいずれをも両立出来る条件を模索した結果、めっき浴中でめっき液の適切な撹拌を実施すると、合金比率を所望の割合に選択でき、良質な皮膜が形成できることを見い出した。 Through the above tests, as a result of searching for conditions that can achieve both control of the alloy ratio of the copper-nickel alloy film and thickening of the film, when the plating solution is appropriately stirred in the plating bath, the alloy ratio is increased. It has been found that a desired ratio can be selected and a good quality film can be formed.

(実施例)
ピロリン酸銅−ニッケル合金浴において、Cuイオン濃度 0.15mol/L、Niイオン濃度 0.15mol/L、ホウ砂 0.1mol/L、キレート剤 0.2mol/L、浴のpH 7.2、温度 52℃、電流密度(Dk) 3A/dm2 、液量 30Lを固定条件として、浴の撹拌はエア撹拌作動とエア撹拌停止の条件を交互に行い、銅−ニッケル合金めっきを厚付け性の確認のため1mm厚目標に被覆した。表2に実施条件を示した。
(Example)
In a copper pyrophosphate-nickel alloy bath, Cu ion concentration 0.15 mol / L, Ni ion concentration 0.15 mol / L, broom sand 0.1 mol / L, chelating agent 0.2 mol / L, bath pH 7.2, With a temperature of 52 ° C, a current density (Dk) of 3A / dm 2 , and a liquid volume of 30L as fixed conditions, the bath is stirred by alternating the conditions of air stirring operation and air stirring stop, and copper-nickel alloy plating is thickened. A 1 mm thick target was coated for confirmation. Table 2 shows the implementation conditions.

表2−No.3で得られた皮膜断面を図1に示した。図1でも明らかなようにめっき浴の撹拌とその時間の調整により、単純な液撹拌方法では得られない組織の異なった層が積層された銅―ニッケル合金が得られた。 The cross section of the film obtained in Table 2-No. 3 is shown in FIG. As is clear from FIG. 1, by stirring the plating bath and adjusting the time, a copper-nickel alloy in which different layers of structures that cannot be obtained by a simple liquid stirring method are laminated was obtained.

表2にエア撹拌の作動/停止に対応する膜厚とEPMAによる膜の合金組成評価結果を示す。 Table 2 shows the film thickness corresponding to the operation / stop of air agitation and the alloy composition evaluation result of the film by EPMA.

図1における、明部は撹拌作動時に成長した低ニッケル含有層であり、暗部は撹拌停止時に成長した高ニッケル含有層であり、ニッケル含有率の異なる層が交互に積層した銅−ニッケル合金層の得られることが判った。 In FIG. 1, the bright part is a low nickel-containing layer grown during stirring operation, the dark part is a high nickel-containing layer grown when stirring is stopped, and a copper-nickel alloy layer in which layers having different nickel contents are alternately laminated. It turned out to be obtained.

また、撹拌条件の組み合わせにより、平均ニッケル含有率を25wt%程度まで高められると同時に撹拌操作を繰り返すことにより極めて厚い銅−ニッケル合金材を得ることができる。 Further, by combining the stirring conditions, the average nickel content can be increased to about 25 wt%, and at the same time, an extremely thick copper-nickel alloy material can be obtained by repeating the stirring operation.

また、厚くめっきする過程で同一組成の銅−ニッケル合金浴を利用して、撹拌時間を任意に調整することで平均ニッケル含有率を素材近傍から上層に向って変化させた傾斜銅−ニッケル合金めっき材とすることも可能である。 In addition, inclined copper-nickel alloy plating in which the average nickel content is changed from the vicinity of the material toward the upper layer by arbitrarily adjusting the stirring time using a copper-nickel alloy bath having the same composition in the process of thick plating. It can also be used as a material.

得られた皮膜のみを採取し、4端子法で各平均合金組成の電気抵抗を調査し、純銅に対する導電率の変化を図2に示した。導電率はNi含有率が増えるに従い徐々に低下しており、Ni含有率が20%を超えたところで銅に対する導電率が25%を下回った。 Only the obtained film was sampled, the electrical resistance of each average alloy composition was investigated by the 4-terminal method, and the change in conductivity with respect to pure copper was shown in FIG. The conductivity gradually decreased as the Ni content increased, and when the Ni content exceeded 20%, the conductivity with respect to copper fell below 25%.

(機械部品の実施例)
本発明の銅−ニッケル合金材料は、例えば、製鋼時の連続鋳造用鋳型に適用出来る。すなわち溶鋼を、冷却しながら既定形状に連続的に固化させる連続鋳造工程の鋳型表面にめっきして使用する。連続鋳造工程では、製品の品質向上の目的で、溶鋼流動を制御するため鋳型内電磁誘導撹拌法が採用されている。その場合、鋳型材料には、適正な値の導電率および熱伝導が要求され、同時に、耐熱性も要求される。また、樹脂の射出成形金型表面のめっき材料にも適用できる。製品の品質を維持しながら、成形時間を短くする方法として、金型の電磁誘導加熱と冷媒による高速冷却を連続して行うことができ、金型の寿命も長くできる。
(Example of mechanical parts)
The copper-nickel alloy material of the present invention can be applied to, for example, a mold for continuous casting during steelmaking. That is, the molten steel is used by plating on the mold surface of a continuous casting process in which the molten steel is continuously solidified into a predetermined shape while being cooled. In the continuous casting process, an in-mold electromagnetic induction stirring method is adopted to control the flow of molten steel for the purpose of improving the quality of the product. In that case, the mold material is required to have appropriate values of conductivity and heat conduction, and at the same time, heat resistance is also required. It can also be applied to a plating material on the surface of a resin injection molding die. As a method of shortening the molding time while maintaining the quality of the product, electromagnetic induction heating of the mold and high-speed cooling with a refrigerant can be continuously performed, and the life of the mold can be extended.

Claims (3)

銅、ニッケル及び不可避的不純物からなり、かつ銅の含有率が50wt%以上である銅−ニッケル合金が0.3mm以上の厚さに電気めっきされており、得られるめっき層がめっき層全体の平均ニッケル含有率よりも高いニッケル含有率を有する高ニッケル含有層と、前記平均ニッケル含有率よりも低いニッケル含有率を有する低ニッケル含有層とが2層以上に交互に積層されており、前記平均ニッケル含有率は20wt%以下であり、前記高ニッケル含有層のニッケル含有率と前記低ニッケル含有層のニッケル含有率との差は3.25wt%以上であることを特徴とする銅−ニッケル合金材料を、その表面の一部または全面に被覆した機械部品A copper-nickel alloy consisting of copper, nickel and unavoidable impurities and having a copper content of 50 wt% or more is electroplated to a thickness of 0.3 mm or more, and the obtained plating layer is the average of the entire plating layer. A high nickel-containing layer having a nickel content higher than the nickel content and a low nickel-containing layer having a nickel content lower than the average nickel content are alternately laminated in two or more layers, and the average nickel content is less 20 wt%, copper difference between nickel content of the nickel content of the high nickel-containing layer low nickel-containing layer is characterized der Rukoto least 3.25wt% - nickel alloy materials A mechanical part that covers part or all of its surface . 銅−ニッケル合金の平均ニッケル含有率が0.5〜20wt%であることを特徴とする請求項1記載の銅−ニッケル合金材料を被覆した機械部品The mechanical component coated with the copper-nickel alloy material according to claim 1, wherein the average nickel content of the copper-nickel alloy is 0.5 to 20 wt%. めっき層中の高ニッケル含有層の層厚が0.1〜5.0μmで、低ニッケル含有層の層厚が0.1〜25μmであって、高ニッケル含有層と低ニッケル含有層の層厚比が1:1〜1:5の範囲にあることを特徴とする請求項1または2に記載の銅−ニッケル合金材料を被覆した機械部品The layer thickness of the high nickel-containing layer in the plating layer is 0.1 to 5.0 μm, the layer thickness of the low nickel-containing layer is 0.1 to 25 μm, and the layer thickness of the high nickel-containing layer and the low nickel-containing layer. The mechanical component coated with the copper-nickel alloy material according to claim 1 or 2, wherein the ratio is in the range of 1: 1 to 1: 5.
JP2016092191A 2016-04-30 2016-04-30 Mechanical parts coated with copper-nickel alloy material Active JP6796243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092191A JP6796243B2 (en) 2016-04-30 2016-04-30 Mechanical parts coated with copper-nickel alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092191A JP6796243B2 (en) 2016-04-30 2016-04-30 Mechanical parts coated with copper-nickel alloy material

Publications (2)

Publication Number Publication Date
JP2017197836A JP2017197836A (en) 2017-11-02
JP6796243B2 true JP6796243B2 (en) 2020-12-09

Family

ID=60237518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092191A Active JP6796243B2 (en) 2016-04-30 2016-04-30 Mechanical parts coated with copper-nickel alloy material

Country Status (1)

Country Link
JP (1) JP6796243B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5377840A (en) * 1976-12-21 1978-07-10 Mishima Kosan Co Ltd Preparation of mold for slab
JPH0598488A (en) * 1991-06-05 1993-04-20 Daiwa Kasei Kenkyusho:Kk Copper-nickel alloy electroplating bath
JP6119053B2 (en) * 2012-04-19 2017-04-26 ディップソール株式会社 Copper-nickel alloy electroplating bath and plating method
JP6048429B2 (en) * 2014-03-04 2016-12-21 株式会社野村鍍金 Cobalt-nickel alloy material and article coated therewith

Also Published As

Publication number Publication date
JP2017197836A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
CN101426960B (en) Tin-plated Cu-Ni-Si alloy strip
KR102393772B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN105088019A (en) Aluminum alloy, preparation method thereof, aluminum alloy moulded body, and aluminium alloy surface coloring method
KR102420968B1 (en) Copper-nickel-tin alloy, method for manufacturing and use thereof
CN103614750B (en) A kind of preparation technology of continuous casting crystallizer copper plate nickel tungsten electroplating coating
CN100576366C (en) Zinc-plated Cu-Ni-Si-Zn-Sn is alloy bar and zinc-plated
JP6048429B2 (en) Cobalt-nickel alloy material and article coated therewith
CN103614751A (en) Copper-plate nickel-manganese-alloy electroplated layer of continuous-casting crystallizer and preparation process thereof
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JP7022266B2 (en) Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it
JP2017538031A (en) Die-casting aluminum alloy with improved corrosion resistance, frequency filter, and method for manufacturing communication device parts
JPS6117581B2 (en)
CN112981190A (en) Aluminum alloy for die casting and method for manufacturing cast aluminum alloy using the same
JP2012143798A (en) Plated aluminum alloy casting and method for production thereof
JP6796243B2 (en) Mechanical parts coated with copper-nickel alloy material
JP7020147B2 (en) Manufacturing method of mold for continuous casting
JP7010008B2 (en) Manufacturing method of mold for continuous casting
CN105562637B (en) A kind of preparation method for the copper plate of crystallizer for being plated with nickel cobalt (alloy) layer
CN105562636B (en) A kind of preparation method for the copper plate of crystallizer for being plated with permivar layer
KR100413660B1 (en) Cu-Ni-Mn-Sn-Zr, Cr alloys for corrosion resistance to sea water
JP4170977B2 (en) Material for electronic parts with excellent press punchability
JP5161842B2 (en) Continuous casting mold
JP6781922B2 (en) How to regenerate the mold
JP2018059176A (en) Aluminum alloy sheet and anodic oxidation treated aluminum alloy sheet
JP4892678B2 (en) Nickel-boron composite plating solution, composite plating method using the solution, and composite plating parts using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6796243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250