JP6048429B2 - Cobalt-nickel alloy material and article coated therewith - Google Patents
Cobalt-nickel alloy material and article coated therewith Download PDFInfo
- Publication number
- JP6048429B2 JP6048429B2 JP2014041569A JP2014041569A JP6048429B2 JP 6048429 B2 JP6048429 B2 JP 6048429B2 JP 2014041569 A JP2014041569 A JP 2014041569A JP 2014041569 A JP2014041569 A JP 2014041569A JP 6048429 B2 JP6048429 B2 JP 6048429B2
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- nickel
- nickel alloy
- alloy
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000990 Ni alloy Inorganic materials 0.000 title claims description 62
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 title claims description 51
- 239000000956 alloy Substances 0.000 title claims description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 89
- 229910052759 nickel Inorganic materials 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 238000007747 plating Methods 0.000 claims description 16
- 229910017052 cobalt Inorganic materials 0.000 claims description 14
- 239000010941 cobalt Substances 0.000 claims description 14
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 14
- 238000009713 electroplating Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 description 20
- 230000007797 corrosion Effects 0.000 description 20
- 239000010408 film Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910000531 Co alloy Inorganic materials 0.000 description 8
- 238000009749 continuous casting Methods 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910001453 nickel ion Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Continuous Casting (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Fuel Cell (AREA)
Description
本発明は、耐熱性・耐食性・耐摩耗性に優れるだけでなく、伸びが著しく改善された独特の積層構造を有するコバルト−ニッケル合金材料及びそれを被覆された物品に関するものである。 The present invention relates to a cobalt-nickel alloy material having a unique laminated structure that is not only excellent in heat resistance, corrosion resistance, and wear resistance, but also markedly improved in elongation, and an article coated with the cobalt-nickel alloy material.
近年の鉄鋼連続鋳造鋳型の被覆材料として、コバルト−ニッケル合金を被覆することは良く知られており、特許文献1には、鉄鋼連続鋳造鋳型内面の鋳片による摩耗損耗防止、特に鋳型内面の下端部での腐食損耗防止を図る為にニッケルを10〜30wt%含有するコバルト合金を被覆している。つまり鋳型下部での耐摩耗性の改善にはニッケル量が少ない方が良く、また同じく下部での耐腐食性改善には逆にニッケル量が多い方が良いとし、16〜30wt%が適切であるとしている。しかし、コバルト−ニッケル合金の伸びは純ニッケルと比べると相対的に劣っており、特にニッケル量が10wt%以下の場合にはそれが顕著で、鋳造速度が速い場合には、鋳型上部でのヒートクラックを生ずるなどの課題があり、問題の回避の為にコバルト−ニッケル合金の被覆を鋳型の下半分にとどめ、上半分は素材のままで、あるいは伸びの良いニッケル皮膜で被覆して対応している。 As a coating material for a steel continuous casting mold in recent years, it is well known to coat a cobalt-nickel alloy. In order to prevent corrosion wear at the part, a cobalt alloy containing 10 to 30 wt% of nickel is coated. That is, it is better that the amount of nickel is smaller for improving the wear resistance at the lower part of the mold, and it is better that the amount of nickel is better for improving the corrosion resistance at the lower part, and 16 to 30 wt% is appropriate. It is said. However, the elongation of the cobalt-nickel alloy is relatively inferior to that of pure nickel, particularly when the nickel content is 10 wt% or less, and when the casting speed is high, the heat at the top of the mold is high. There are problems such as cracking. To avoid the problem, keep the cobalt-nickel alloy coating on the lower half of the mold, and cover the upper half with the raw material or with a nickel film with good elongation. Yes.
特許文献2では、コバルト−ニッケル合金に炭素を共析させて皮膜の伸び、引張り強さを改善する提案が記載されている。提案の方法をトレースしてカーボン粉末やブチンジオールの存在による炭素の共析の可否を確認したが、カーボン粉末がめっき液にイオンの形態で完全溶解するはずもなく、単に炭素粉を固体で含有させた粗雑なコバルト−ニッケル分散めっきとなる。また特許文献2に開示している光沢ニッケルめっき用の第二種光沢剤として著名なブチンジオールを添加した場合には、コバルト−ニッケル合金皮膜に光沢性・平坦性は付与出来ても伸びや引張り強さを改善するどころか脆い皮膜となり到底目的を達成し得るものではない。 Patent Document 2 describes a proposal for improving the elongation and tensile strength of a film by co-depositing carbon in a cobalt-nickel alloy. The proposed method was traced to confirm whether carbon co-deposition was possible due to the presence of carbon powder and butynediol. However, the carbon powder should not completely dissolve in the form of ions in the plating solution, and simply contains carbon powder as a solid. The resulting coarse cobalt-nickel dispersion plating. In addition, when butynediol, which is well-known as the second type brightener for bright nickel plating disclosed in Patent Document 2, is added, even if gloss and flatness can be imparted to the cobalt-nickel alloy film, elongation or tension is achieved. Instead of improving the strength, it becomes a brittle film and cannot achieve its purpose at all.
特許文献3では、同一めっき浴を用いて、めっき電流の電流密度を一定周期で切り替えることにより、隣接する薄膜層の組成と異なる組成を有する合金薄膜層を複数積層した多層構造薄膜とその製造方法が開示されているが、サブミクロンオーダーの積層単位を複数積層することにより全体の膜厚が3μmにも満たないような多層構造薄膜を形成することで、磁気ヘッドの磁気特性を改善する技術であり、耐熱性・耐食性・耐摩耗性や伸びの改善とは無関係である。 In Patent Document 3, a multilayer structure thin film in which a plurality of alloy thin film layers having a composition different from the composition of adjacent thin film layers are stacked by switching the current density of the plating current at a constant cycle using the same plating bath and a method for manufacturing the same Is a technology that improves the magnetic characteristics of a magnetic head by forming a multilayer structure thin film with a total film thickness of less than 3 μm by laminating a plurality of lamination units of sub-micron order. Yes, it has nothing to do with improvement in heat resistance, corrosion resistance, wear resistance and elongation.
一方、鉄鋼連続鋳造鋳型への被覆材料として求められる特性は、鋳造する鋼種・鋳造条件により一括りにすることはできない。つまり耐熱性・耐摩耗性はいずれの鋳型にも共通する要求特性であるが、加えて連続鋳造機毎に鋳造鋳型の内壁面に被覆する皮膜に対する特性が少しずつ異なるのが実情で、ある鋳造鋳型の場合は、耐摩耗性をある程度犠牲にしても鋳型内壁下部の腐食耐摩耗性を強く求め、また別の鋳型の事例では、被熱温度の高い鋳型内壁上部では、耐摩耗性よりもヒートクラック防止の為に皮膜の伸びが最優先される。 On the other hand, the characteristics required as a coating material for a continuous casting mold of steel cannot be grouped according to the steel type and casting conditions to be cast. In other words, heat resistance and wear resistance are required characteristics that are common to all molds, but in addition, the characteristics of the coating on the inner wall of the casting mold are slightly different for each continuous casting machine. In the case of molds, corrosion wear resistance at the lower part of the mold inner wall is strongly sought even at the expense of wear resistance to some extent, and in the case of another mold, the upper part of the mold inner wall where the heat temperature is high is higher than the wear resistance. Elongation of the film is the top priority for preventing cracks.
特許文献が開示する内容は、コバルト−ニッケル合金のみで、耐摩耗性・耐食性付与・伸びの改善には、限界があることを示唆している。つまり、耐摩耗性付与には高コバルト合金が、また耐食性付与とヒートクラック防止には高ニッケル合金が良いことを示している。 The content disclosed in the patent document suggests that there is a limit to the improvement of wear resistance, corrosion resistance imparting, and elongation only with a cobalt-nickel alloy. That is, a high cobalt alloy is good for imparting wear resistance, and a high nickel alloy is good for imparting corrosion resistance and preventing heat cracks.
しかし、コバルト−ニッケル合金を被覆した連続鋳造用銅製鋳型の場合には、合金皮膜単体で要求される特性の全てを満足させることは不可能に近い。その為ニッケルを鋳型内壁面表面全体に被覆し、次いで鋳型下半分に局所的にコバルト−ニッケル合金を被覆する形態、鋳型上部が溶鋼と直接接触する弊害に眼をつぶって下半分のみに当該合金を被覆する形態、あるいはこれらの形態に加えて、下部耐食性の改善の為に耐摩耗性を犠牲にしてニッケルの合金比を高めたコバルト合金を利用する形態をとっているのが実態である。 However, in the case of a continuous casting copper mold coated with a cobalt-nickel alloy, it is almost impossible to satisfy all of the characteristics required by the alloy film alone. For this reason, nickel is coated on the entire inner wall surface of the mold, and then a cobalt-nickel alloy is locally coated on the lower half of the mold. In addition to these forms, or in addition to these forms, the actual condition is to use a cobalt alloy in which the alloy ratio of nickel is increased at the expense of wear resistance in order to improve the lower corrosion resistance.
異種金属、コバルトと白金との多層膜を作成した例は、非特許文献1に見られるが、2浴と2電源を用いてナノレベルで積層させるものであり、実施方法目的が根本的に異なる。また非特許文献2には2種類のめっき液を利用したナノレベル多層膜の製作と一液によるナノレベル多層膜の製作を開示しているが、一液での多層膜の実現は、薄膜且つ銅とニッケルとの電極電位が極端に異なっている為に達成できたものであり、電極電位の近接するいずれもコバルトとニッケルを共析させ、且つニッケルの析出濃度(含有量)を意図的に変化させた層構成とした本発明のものとは根本的に異なっている。 An example of creating a multilayer film of different metals, cobalt and platinum is found in Non-Patent Document 1, but it is laminated at the nano level using two baths and two power sources, and the purpose of the implementation method is fundamentally different. . Non-Patent Document 2 discloses the fabrication of a nano-level multilayer film using two types of plating solutions and the fabrication of a nano-level multilayer film using a single liquid. This was achieved because the electrode potentials of copper and nickel were extremely different. Cobalt and nickel were co-deposited at any electrode potential close, and the nickel deposition concentration (content) was intentional. This is fundamentally different from that of the present invention in which the layer structure is changed.
本発明は、従来のコバルト−ニッケル合金材料の有する問題点に鑑みてなされたものであって、耐摩耗性・耐食性・高い引っ張り強度・高い伸びの全てを著しく高めたコバルト−ニッケル合金材料を電気めっき法で得ることを目的としている。 The present invention has been made in view of the problems of conventional cobalt-nickel alloy materials, and has been developed by using a cobalt-nickel alloy material that has significantly enhanced all of wear resistance, corrosion resistance, high tensile strength, and high elongation. It is intended to be obtained by plating.
請求項1の発明は、不可避的不純物、コバルト及びニッケルからなるコバルト−ニッケル合金であって、ニッケル比率の小さい層と大きい層の2種類の層を上下方向に繰り返し交互に積層した構造を有し、ニッケル比率の小さい層と大きい層とのニッケル比率の差が1〜20wt%であることを特徴とするコバルト−ニッケル合金材料である。
請求項2の発明は、請求項1に記載のコバルト−ニッケル合金材料において、積層構造を有する合金は、その製作手段が電気めっき法であり、且つ同一のめっき液で製作することを特徴とする。
請求項3の発明は、請求項1または2に記載のコバルト−ニッケル合金材料において、ニッケル比率の小さい層と大きい層の厚さは、それぞれ1〜500μmであって、それぞれの層厚比を1:1から1:10の範囲としたことを特徴とする。
請求項4の発明は、請求項1〜3のいずれかに記載のコバルト−ニッケル合金材料を被覆された物品である。
The invention according to claim 1, unavoidable impurities, cobalt of cobalt and nickel - a nickel alloy, the two layers were repeatedly stacked alternately in the vertical direction structure of small layer with large layer of the nickel ratio a nickel alloy material - Yes, and cobalt, wherein the difference between the nickel ratio of the layer higher and lower layer of the nickel ratio is 1 to 20 wt%.
A second aspect of the present invention is the cobalt-nickel alloy material according to the first aspect, wherein the alloy having a laminated structure is manufactured by an electroplating method using the same plating solution. .
The invention according to claim 3, cobalt according to claim 1 or 2 - the nickel alloy material, the thickness of the small layer with large layer of nickel ratio, respectively a 1 to 500 [mu] m, each layer thickness ratio 1 1 to 1:10.
The invention of claim 4 is an article coated with the cobalt-nickel alloy material according to any one of claims 1 to 3 .
本発明のコバルト−ニッケル合金材料は、ニッケル比率の小さい層と大きい層の2種類の層を上下方向に繰り返し交互に積層した構造を有し、ニッケル比率の小さい層と大きい層とのニッケル比率の差を1〜20wt%としたので、コバルト色の強い特性と、ニッケル色が強い特性とが同時に現われる効果があり、通常の手法で製作した合金と比べて、伸び、引張り強さ、硬度、耐食性などの特性を任意に改善することができる効果があり、一部の特性をその他の物性を変えずに改善することも可能である。
請求項2の発明は、ただ一種類の液だけを利用して電気めっきすることで、ニッケル合金比に多寡のある層を積層した材料を製作できる。具体的には、1分間以上のインターバルで、電流密度の強弱、ないしエア吹き込み量の強弱、あるいはその両方を併用することで製作できる。
請求項3の発明は、ニッケル比率の小さい層と大きい層の厚さを、それぞれ1μm以上としたことにより、コバルト色の強い特性と、ニッケル色が強い特性とが明確に現われて、さらにはそれぞれの特性が合わさることにより、伸び、引張り強さ、耐摩耗性、耐食性が想定外に改善される効果がある。
すなわち、本発明のコバルト−ニッケル合金材料は、積層構造を有していない通常のコバルト−ニッケル合金と比較すると、平均値で測ったニッケル比率が同じであっても、伸び、引張り強さ、耐摩耗性、耐食性が想定外に改善される効果がある(図6〜図9参照)。
Cobalt present invention - nickel alloy material, have a two layers repeatedly stacked alternately in the vertical direction structure of small layer with large layer of nickel ratio, the nickel ratio of the layer higher and lower layer of the nickel ratio Since the difference is set to 1 to 20 wt%, there is an effect that a strong cobalt color property and a strong nickel color property appear at the same time , and the elongation, tensile strength, hardness, and corrosion resistance compared to an alloy manufactured by a normal method. Thus, it is possible to arbitrarily improve the characteristics, and it is possible to improve some characteristics without changing other physical properties.
The invention according to claim 2 can produce a material in which layers having various nickel alloy ratios are laminated by electroplating using only one kind of liquid. Specifically, it can be manufactured by using both current density strength and air blowing amount strength or both at intervals of 1 minute or more.
The invention according to claim 3, the thickness of the layer higher small layer of the nickel ratio, by which the respectively 1μm or more, a strong characteristic of cobalt color, appear clearly has a strong characteristic nickel color, yet each By combining these characteristics, the elongation, tensile strength, wear resistance, and corrosion resistance are improved unexpectedly.
That is, the cobalt-nickel alloy material of the present invention has an elongation, tensile strength, resistance to resistance even when the nickel ratio measured by the average value is the same as that of a normal cobalt-nickel alloy having no laminated structure. There is an effect that wear resistance and corrosion resistance are unexpectedly improved (see FIGS. 6 to 9).
本発明の課題を解決するためには、上述した特許文献のようにコバルト−ニッケル合金の液組成の見直しや新たな添加剤の併用のみでは不可能なことはまぎれもない事実で、コバルト−ニッケル合金の合金比によってその特性が固定されてしまう。そこで本発明者らは、発想を転換して液の組成以外の電気めっき法を構成する要素、例えば電気めっきに必須とする整流器(交流を直流に変換する機器)や液のかき混ぜを含めた液の対流方法などに着目し、実験を繰り返した。 In order to solve the problems of the present invention, as described in the above-mentioned patent document, it is a fact that cannot be simply achieved by reviewing the liquid composition of a cobalt-nickel alloy or using a new additive alone. The characteristics are fixed by the alloy ratio of the alloy. Therefore, the present inventors changed the way of thinking to construct elements of electroplating methods other than the composition of the liquid, for example, rectifiers (equipment that converts alternating current into direct current) essential for electroplating and liquid mixing. The experiment was repeated focusing on the convection method.
実験では、交流を単純に整流した直流電源による電解、当該直流を断続的にオン・オフさせ、通電時間の有無をパラメータとして合金皮膜を作成するパルス電解、パルス電解の変法として無通電時間、電流値に強弱を付した電解、さらには周期的に陰極と陽極の極性を繰り返し、それぞれの陰極と陽極との通電時間を周期的に変化させる周期的電解(PR電解と称す)によって合金皮膜を作成して、耐摩耗性・耐食性・引張り強度・伸び等を調査した。その結果、直流電流を時間的に強弱を付して電解するパルス電解に於いて、電流の強弱の時間設定をそれぞれ1分以上とすることによって初めてコバルト−ニッケル合金皮膜に明瞭で特異な層構造を発現出来ることを見出した。この時のコバルト−ニッケル合金浴の液組成は、表1に示しているが、コバルトイオンとニッケルイオン、温度・電流密度・めっき液に吹き込むエア量は表1に示す範囲から適宜選定した。 In the experiment, electrolysis with a DC power source that simply rectified AC, pulsed electrolysis where the DC is intermittently turned on and off, and an alloy film is created using the presence or absence of energization time as a parameter, no energization time as a variation of pulse electrolysis, The alloy film is formed by electrolysis with different current values, and by periodically repeating the polarity of the cathode and anode and periodically changing the energization time of each cathode and anode (referred to as PR electrolysis). Created and investigated wear resistance, corrosion resistance, tensile strength, elongation, etc. As a result, in pulse electrolysis that electrolyzes DC current with time, the layer structure is clear and unique for the cobalt-nickel alloy film for the first time by setting the current strength time to 1 minute or more. It was found that can be expressed. The liquid composition of the cobalt-nickel alloy bath at this time is shown in Table 1. Cobalt ions and nickel ions, temperature, current density, and the amount of air blown into the plating solution were appropriately selected from the ranges shown in Table 1.
例えば、図1は電流密度強弱法を用いて、液の組成として金属コバルトイオン0.45mol/L、金属ニッケルイオン0.90mol/Lとし、温度50℃、エア撹拌量0.2m3 /m2 ・分に固定し、電流密度2A/dm2 で1分間、4A/dm2 で1分間のパルス状電解を繰り返して、合計1mm厚を目標に被覆した場合の断面ミクロ組織である。この合金の高電流密度層は約2μm、低電流密度層は約1μmの層膜厚が交互に積層し、これが繰り返された構造となっている。 For example, FIG. 1 uses the current density strength method, and the composition of the liquid is 0.45 mol / L metal cobalt ion and 0.90 mol / L metal nickel ion, the temperature is 50 ° C., and the air stirring amount is 0.2 m 3 / m 2. This is a cross-sectional microstructure in the case where pulsed electrolysis is repeated for 1 minute at a current density of 2 A / dm 2 and 1 minute at 4 A / dm 2 to cover a total thickness of 1 mm. The alloy has a structure in which the high current density layers of the alloy have a thickness of about 2 μm and the low current density layers have a thickness of about 1 μm alternately stacked.
一方、これに対して定電流密度法として、同じ浴を用いて電流密度を3A/dm2 に固定して1mm厚迄連続して電解した合金の断面ミクロ組織が、図2である。この場合は樹脂状組織のみで積層構造は存在しない。 On the other hand, as a constant current density method, FIG. 2 shows a cross-sectional microstructure of an alloy electrolyzed continuously to a thickness of 1 mm with the current density fixed at 3 A / dm 2 using the same bath. In this case, there is no laminated structure only with a resinous structure.
また断面よりEPMAにて線分析した結果、電流の強弱を付して作製したコバルト−ニッケル合金と、一定電流密度で電解して作成したコバルト−ニッケル合金のニッケル含有率を比較したものを表2に示す。なお、それぞれの層の厚みは、高電流密度付与時間と低電流密度付与時間とを1分間以上の範囲で任意に変化させることによって達成できる。また高電流密度と低電流密度の差は、少なくとも2A/dm2 以上の差としなければ層間のニッケル含有量に顕著な差異を生じさせることが出来ないことが明らかとなったが、電流密度の強弱にも限界があって、外観を損ねる問題があり、高電流密度側を無闇やたらと高くすることが出来ないので、結果として相互の層のニッケル含有量差には限界がある。 Table 2 shows a comparison of the nickel content of cobalt-nickel alloys produced by applying current strength and cobalt-nickel alloys produced by electrolysis at a constant current density as a result of line analysis by EPMA from the cross section. Shown in The thickness of each layer can be achieved by arbitrarily changing the high current density application time and the low current density application time within a range of 1 minute or more. In addition, it has been clarified that the difference between the high current density and the low current density cannot produce a significant difference in the nickel content between the layers unless the difference is at least 2 A / dm 2 or more. There is also a limit in strength, and there is a problem of damaging the appearance, and the high current density side cannot be made high without darkness. As a result, there is a limit in the difference in nickel content between the layers.
図1は表2の電流密度強弱法で製作した積層構造を有するコバルト−ニッケル合金の断面ミクロ組織であり、電流密度差により高電流密度層と低電流密度層のニッケル含有率を変えており、通電時間差で高電流密度層と低電流密度層の層厚みを変えている。図2は、定電流密度法で製作したコバルト−ニッケル合金の断面ミクロ組織を示している。 FIG. 1 is a cross-sectional microstructure of a cobalt-nickel alloy having a laminated structure manufactured by the current density strength method shown in Table 2. The nickel content of the high current density layer and the low current density layer is changed by the current density difference. The layer thicknesses of the high current density layer and the low current density layer are changed depending on the energization time difference. FIG. 2 shows a cross-sectional microstructure of a cobalt-nickel alloy produced by the constant current density method.
次に本発明者らは電流密度を変化させるのではなく、エア撹拌時の通気量の強弱でニッケル合金比の差異を生じさせる方法を検討し、液の組成は電流密度強弱の実験に用いたものと同一組成とし、温度50℃、電流密度3A/dm2 の元にエア通気量:0.1m3 /m2 と0.4m3 /m2 とで、同じく1mm厚を目標にコバルト−ニッケル合金を作成した。エア通気量0.1m3 /m2 及び0.4m3 /m2 の場合の時間設定を3分間に設定した。結果を表3に示すが、電流密度の強弱よりもエア通気量の強弱の方が層間のニッケル含有量の多寡の差を遥かに大きくすることも可能であることを発見した。 Next, instead of changing the current density, the present inventors examined a method of causing a difference in the nickel alloy ratio by the strength of the air flow during air agitation, and the composition of the liquid was used in an experiment of the current density strength. Cobalt-nickel with the same composition as the one, with a temperature of 50 ° C., current density of 3 A / dm 2 , and air flow rate of 0.1 m 3 / m 2 and 0.4 m 3 / m 2 , with the same target of 1 mm thickness An alloy was created. The time setting when the air flow rate was 0.1 m 3 / m 2 and 0.4 m 3 / m 2 was set to 3 minutes. The results are shown in Table 3, and it was discovered that the difference in the nickel content between the layers can be made much larger when the air flow rate is higher than the current density.
また、各個のエア通気量の時間を任意に設定することにより、それぞれの層厚を任意に変化させることも可能となり、適用目的に応じて皮膜硬度・耐食性・引張り強さ・伸び等の物性を変化させることが可能である。さらに、電流密度強弱とエア通気量強弱を組み合わせれば、積層する各層のニッケル含有量の差を大きくすることが可能となる。 It is also possible to arbitrarily change the thickness of each layer by arbitrarily setting the time of air flow for each individual, and physical properties such as film hardness, corrosion resistance, tensile strength, and elongation can be selected according to the application purpose. It is possible to change. Furthermore, if the current density strength and air flow rate strength are combined, it is possible to increase the difference in nickel content of each layer to be laminated.
図3〜図5は、浴温度50℃、電流密度3A/dm2 でエア通気量を変化させ、且つそれぞれのエア通気時間を変えて作製したコバルト−ニッケル合金の断面ミクロ組織を示したものであるが、それぞれのエア通気時間の好ましい範囲は、1〜40分間の範囲で設定するのが良い。設定したエア強/エア弱の時間は、図3では強5分/弱3分、図4では強5分/弱30分、図5では強30分/弱30分であった。図3〜図5を見れば、ニッケル含有率の異なる各層の層厚比を1:1〜1:10の範囲で任意に設定できることは明らかである。 3 to 5 show cross-sectional microstructures of cobalt-nickel alloys prepared by changing the air flow rate at a bath temperature of 50 ° C. and a current density of 3 A / dm 2 and changing the air flow time. However, a preferable range of each air ventilation time is preferably set in a range of 1 to 40 minutes. The set time of strong air / weak air was strong 5 minutes / weak 3 minutes in FIG. 3, strong 5 minutes / weak 30 minutes in FIG. 4, and strong 30 minutes / weak 30 minutes in FIG. 3 to 5, it is apparent that the layer thickness ratio of each layer having a different nickel content can be arbitrarily set within a range of 1: 1 to 1:10.
また、図6は、95wt%ニッケル−コバルト合金、積層型コバルト−15wt%ニッケル合金、通常のコバルト−16wt%ニッケル合金の3種類を作製し、N=3で伸びを測定した結果である。積層型のコバルト−ニッケル合金の場合のニッケル含有量は全体の層の平均値で示しているが、同じ程度のニッケル合金比であっても伸びが3倍以上の合金とすることができる。なお、それぞれの引張り破断強度も、それぞれニッケル−5wt%コバルト合金で、57.2Kg/mm2 、通常のコバルト−16wt%ニッケル合金の場合で、59.3Kg/mm2 であったが、積層構造のコバルト−15wt%ニッケル合金の場合では、69.8Kg/mm2 と強靭な合金となっている。 FIG. 6 shows the results of measuring the elongation at N = 3 by preparing three types of 95 wt% nickel-cobalt alloy, laminated cobalt-15 wt% nickel alloy, and ordinary cobalt-16 wt% nickel alloy. Although the nickel content in the case of a multilayered cobalt-nickel alloy is shown as an average value of the entire layer, even if the nickel alloy ratio is about the same, an alloy having an elongation of 3 times or more can be obtained. Incidentally, each of the tensile breaking strength, respectively nickel -5Wt% cobalt alloy, 57.2Kg / mm 2, in the case of the conventional cobalt -16Wt% nickel alloy, but was 59.3Kg / mm 2, the laminated structure In the case of the cobalt-15 wt% nickel alloy, it is a strong alloy of 69.8 kg / mm 2 .
コバルト−ニッケル合金に於いて、コバルト含有量が増加すると耐摩耗性が改善されるのは良く分かるが、図7の如く、積層型のコバルト−ニッケル合金にすると、通常のコバルトーニッケル合金と比べると耐摩耗性もやや改善される特異な性状を示している。このように、コバルト−ニッケル合金に於いて何故、伸び、引張り強さ、摩耗量すらも改善される傾向があるかの理由は、全体としてみれば合金でありながらもニッケルリッチ層、コバルトリッチ層が隣接して存在し、これをベースに繰り返して積層されていることにより、コバルト色の強い特性、また別の場合にはニッケル色が強い特性、さらにはそれぞれの特性が合わさることにより、想定外の効果を発揮しているものと考えられる。なお、図7の摩耗試験は、テーバーアブレッションテスターで評価した結果である。 In the cobalt-nickel alloy, it is well understood that the wear resistance is improved when the cobalt content is increased. However, as shown in FIG. 7, a multilayered cobalt-nickel alloy is compared with a normal cobalt-nickel alloy. It shows a unique property that wear resistance is slightly improved. In this way, the reason why the elongation, tensile strength, and even the wear amount tend to be improved in the cobalt-nickel alloy is as follows. Are adjacent to each other and are laminated repeatedly based on this, so that the strong characteristics of cobalt color, the strong characteristics of nickel color in other cases, and the combination of these characteristics, it is unexpected It is thought that the effect of is demonstrated. In addition, the abrasion test of FIG. 7 is the result evaluated by the Taber ablation tester.
耐食性については、液と条件を表3に示した条件で、積層型コバルト−ニッケル合金の評価用試験片を作製し、塩酸、硫酸、フッ酸のそれぞれ1M溶液に対する腐食試験を行ってみると、図8の如くほぼ同じニッケル含有量であっても耐食性に差異が認められる。 For corrosion resistance, under the conditions shown in Table 3 for the solution and conditions, a test piece for evaluation of a multilayered cobalt-nickel alloy was prepared, and a corrosion test was performed on each 1M solution of hydrochloric acid, sulfuric acid, and hydrofluoric acid. As shown in FIG. 8, there is a difference in corrosion resistance even when the nickel content is almost the same.
当該合金を鉄鋼連続鋳造鋳型に適用する場合、連続鋳造機により、あるいは鋳造する鋼種により、鋳型内壁の上半分では、コバルト−ニッケル合金皮膜に強力なヒートクラックを呈すものがある。これは皮膜自体の伸びの特性が大きく関与しており、通常のコバルト−ニッケル合金では対処できない場合がある。この問題の解決に液組成・温度条件等を固定して、電流とエア吹き込み量の強弱を付与し、且つそれぞれの時間を適切に設定すれば、図9に見られるように耐摩耗性を維持しつつ、通常の電気めっきではあり得ない高温時の伸びを呈し、確実にヒートクラックを防止することが可能となった。
なお、本発明のコバルト−ニッケル合金材料は、製作の形態としては、合金皮膜のみでも、また特定の基材に被覆した状態でも製作できる。
When the alloy is applied to a steel continuous casting mold, there is a case where a cobalt-nickel alloy film exhibits strong heat cracks in the upper half of the mold inner wall by a continuous casting machine or a steel type to be cast. This is largely related to the elongation characteristics of the coating itself, and may not be able to cope with ordinary cobalt-nickel alloys. Fixing the liquid composition and temperature conditions to solve this problem, giving the current and air blowing amount, and setting each time appropriately maintains the wear resistance as seen in Fig. 9. However, it exhibited elongation at high temperatures, which is not possible with normal electroplating, and it was possible to reliably prevent heat cracking.
Note that the cobalt-nickel alloy material of the present invention can be manufactured only in an alloy film or in a state where it is coated on a specific substrate.
以下に本発明の実施例の一部を表4にて記載する。表4の実施例では、低濃度層のNi含有率は12wt%より少なく、高濃度層のNi含有率は13wt%より多く設定されている。表4によれば、低濃度層と高濃度層のNi含有率に4〜20wt%の差を設けることにより、同程度の平均Ni含有率を有する比較例に比べて、Co−Ni合金の物性が大幅に改善されていることが分かる。また、特に伸びの改善については、低濃度層と高濃度層のNi含有率の差が10〜20wt%となる実施例3〜5の場合に、より一層顕著なものとなることが分かる。 Some examples of the present invention are listed in Table 4 below. In the example of Table 4, the Ni content of the low concentration layer is set to be less than 12 wt%, and the Ni content of the high concentration layer is set to be more than 13 wt%. According to Table 4, by providing a difference of 4 to 20 wt% in the Ni content of the low-concentration layer and the high-concentration layer, the physical properties of the Co—Ni alloy as compared with the comparative example having the same average Ni content It can be seen that is greatly improved. In particular, the improvement in elongation becomes even more remarkable in Examples 3 to 5 in which the difference in Ni content between the low concentration layer and the high concentration layer is 10 to 20 wt%.
本発明は下記の実施例で記載されたものに限定されず、本発明の技術的範囲を逸脱しない範囲に於いて適宜変更や修正が可能であることは言うまでもない。 It goes without saying that the present invention is not limited to those described in the following examples, and that changes and modifications can be made as appropriate without departing from the technical scope of the present invention.
本発明のコバルト−ニッケル合金材料は、鉄鋼連続鋳造鋳型の基体となる銅合金製材料の表面に被覆して利用されたり、また、独特の耐熱性・耐摩耗性・耐食性故に当該合金のみで製作する成形金型材料としてニッケル電鋳の代替としても利用可能である。さらにリチウム電池の負極集電体用銅箔への耐食性付与や燃料の燃焼温度の高いSOFC型燃料電池のセパレータなどの保護皮膜にも適用できる。 The cobalt-nickel alloy material of the present invention can be used by coating the surface of a copper alloy material that becomes the base of a continuous casting mold for steel, or it can be produced only from the alloy because of its unique heat resistance, wear resistance, and corrosion resistance. It can also be used as an alternative to nickel electroforming as a forming mold material. Further, the present invention can be applied to a protective film such as a separator for a SOFC type fuel cell having a high combustion temperature of fuel and imparting corrosion resistance to a copper foil for a negative electrode current collector of a lithium battery.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041569A JP6048429B2 (en) | 2014-03-04 | 2014-03-04 | Cobalt-nickel alloy material and article coated therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041569A JP6048429B2 (en) | 2014-03-04 | 2014-03-04 | Cobalt-nickel alloy material and article coated therewith |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015166483A JP2015166483A (en) | 2015-09-24 |
JP6048429B2 true JP6048429B2 (en) | 2016-12-21 |
Family
ID=54257477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041569A Active JP6048429B2 (en) | 2014-03-04 | 2014-03-04 | Cobalt-nickel alloy material and article coated therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6048429B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6484586B2 (en) * | 2016-04-28 | 2019-03-13 | 三島光産株式会社 | Method for producing electroformed material and method for producing structure |
JP6796243B2 (en) * | 2016-04-30 | 2020-12-09 | 日本製鉄株式会社 | Mechanical parts coated with copper-nickel alloy material |
JP7014353B2 (en) * | 2017-03-31 | 2022-02-01 | 株式会社Flosfia | Crystalline laminated structure |
JP7020147B2 (en) * | 2018-02-01 | 2022-02-16 | 株式会社野村鍍金 | Manufacturing method of mold for continuous casting |
JP7022266B2 (en) * | 2018-02-14 | 2022-02-18 | 株式会社野村鍍金 | Cobalt-nickel alloy material, method of manufacturing mold for continuous casting using it |
JP7282515B2 (en) * | 2018-12-26 | 2023-05-29 | 日鉄ケミカル&マテリアル株式会社 | Carbon fiber material with monitoring function |
CN114921820B (en) * | 2021-02-01 | 2024-05-14 | 芜湖美的厨卫电器制造有限公司 | Cobalt-nickel based composite material, preparation method thereof, hydrogen evolution electrode based on cobalt-nickel based composite material and household appliance |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5252828A (en) * | 1975-10-27 | 1977-04-28 | Sumitomo Metal Ind | Continuous casting mould for iron and steel |
JPS55100851A (en) * | 1979-01-26 | 1980-08-01 | Kawasaki Steel Corp | Mold for continuous casting of bloom, billet and beam blank |
JPS5929343B2 (en) * | 1979-10-09 | 1984-07-19 | 川崎製鉄株式会社 | Continuous casting mold |
JPH06196324A (en) * | 1992-12-25 | 1994-07-15 | Matsushita Electric Ind Co Ltd | Multilayer structure thin film and manufacture thereof |
JP4264271B2 (en) * | 2003-02-06 | 2009-05-13 | 新日本製鐵株式会社 | Continuous casting mold and manufacturing method |
JP2005268571A (en) * | 2004-03-19 | 2005-09-29 | Hitachi Global Storage Technologies Netherlands Bv | Magnetic film and its manufacturing method, and thin film magnetic head |
-
2014
- 2014-03-04 JP JP2014041569A patent/JP6048429B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015166483A (en) | 2015-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6048429B2 (en) | Cobalt-nickel alloy material and article coated therewith | |
US20130071755A1 (en) | Surface treatment method for copper foil, surface-treated copper foil, and copper foil for negative electrode collector of lithium ion secondary battery | |
JP5894721B2 (en) | Surface-treated metal plate and method for producing molded product using the surface-treated metal plate | |
US8445114B2 (en) | Electrocomposite coatings for hard chrome replacement | |
KR20090028481A (en) | Sliding element and process for its production | |
JP5908895B2 (en) | Ni-plated metal plate, welded structure, and battery material manufacturing method | |
JP2012172198A (en) | Electrolytic copper foil and method for manufacturing the same | |
KR102048116B1 (en) | High-strength, low-warping electrolytic copper foil and method for producing same | |
KR101046301B1 (en) | Nickel flash plating solution, electric zinc steel sheet and manufacturing method thereof | |
JP5941959B2 (en) | Electrolytic copper foil and method for producing the same | |
JPH0136559B2 (en) | ||
TW201937007A (en) | Sn coated steel sheet and method for producing Sn coated steel sheet | |
JP2011208175A (en) | Method for producing plated article, and plated article | |
Wang et al. | Improved mechanical properties of Cu–Sn–Zn–TiO2 coatings | |
WO2012121020A1 (en) | Electrolytic copper foil having high strength and less projections due to abnormal electrodeposition and method for manufacturing same | |
JP2014114503A (en) | Zinc-based electrogalvanized steel sheet and method for producing the same | |
JP7400766B2 (en) | Zinc-based electroplated steel sheet and its manufacturing method | |
Hansal | Pulse plating gaining importance–Review of the 3rd European Pulse Plating Seminar | |
WO2013150640A1 (en) | Electrolytic copper foil and method for manufacturing same | |
JP6796243B2 (en) | Mechanical parts coated with copper-nickel alloy material | |
KR101536563B1 (en) | Aluminum electroplating method | |
JP5817403B2 (en) | Anode material for plating, manufacturing method of anode material for plating | |
Murphy | Zinc and zinc alloys | |
JP2016069663A (en) | Manufacturing method of zinc-based electric plating steel sheet excellent in fingerprint resistance and whiteness | |
CN104985147A (en) | High-casting-speed Ni-Co-Fe alloy clad layer continuous casted crystallizer copper board and preparation technology thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6048429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |