JP2017188067A - 自律移動体 - Google Patents

自律移動体 Download PDF

Info

Publication number
JP2017188067A
JP2017188067A JP2016225523A JP2016225523A JP2017188067A JP 2017188067 A JP2017188067 A JP 2017188067A JP 2016225523 A JP2016225523 A JP 2016225523A JP 2016225523 A JP2016225523 A JP 2016225523A JP 2017188067 A JP2017188067 A JP 2017188067A
Authority
JP
Japan
Prior art keywords
reliability
self
mobile body
autonomous mobile
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016225523A
Other languages
English (en)
Inventor
原田 尚幸
Naoyuki Harada
尚幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Priority to CN201710095354.2A priority Critical patent/CN107272727B/zh
Priority to US15/458,928 priority patent/US10162368B2/en
Priority to EP17162043.8A priority patent/EP3229096A1/en
Publication of JP2017188067A publication Critical patent/JP2017188067A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】自己位置を高い信頼度で維持し続けることのできる自律移動体の提供。【解決手段】自己位置をセンサ103で計測し移動手段101を制御して目的の場所に自律的に移動する自律移動体100であって、自己位置に関するセンサ情報を取得するセンサ情報取得手段141と、センサ情報に基づき自己位置を推定する位置推定手段142と、推定される自己位置の信頼度を算出する信頼度算出手段143と、信頼度と推定された自己位置とを紐付けて記録する位置信頼度記録手段144と、信頼度が所定の条件を満たした場合、位置信頼度記録手段により記録された情報に基づき信頼度の高い位置に移動するよう移動手段101を制御する信頼度回復行動制御手段145とを備える自律移動体。【選択図】図2

Description

本発明は、自己位置をセンサで計測し移動手段を制御して目的の場所に自律的に移動する自律移動体に関する。
従来、各種センサによって自己位置を把握しながら目的の場所に自律的に移動可能な自律移動体が提案されている。このような自律移動体は、自己位置の取得に失敗すると予め設定された場所に到達できず目的の作業を行うことができなくなる。
例えば、特許文献1には、予め記憶した建物等の障害物を含む地図情報とセンサによる計測結果とを用いて自己位置を取得しながら自律的に移動する自律飛行ロボットが開示されている。当該自律飛行ロボットは、トラックなどの大きめの障害物が出現することによって周囲の環境が大きく変化し、自己位置が取得できなくなった場合には、飛行高度を高くして自己位置を再取得することにより目的の作業を行うものとなっている。
特開2014−149622号公報
ところが、前記自己位置の再取得技術では、地上を走行するような自律移動体には適用することができず、また、上空に橋や電線が存在していた場合、高度を上げることが困難な場合もある。
また、地図情報とセンサからの情報とが不一致になった場合に自己位置を再取得するため、他の原因で自己位置が取得できなくなった場合に対応することができない。
本発明は、上記課題に鑑みなされたものであり、自己位置取得の方式や自己位置を見失う原因によらず、自己位置を高い信頼度で維持し続けることのできる自律移動体を提供する。
上記目的を達成するために、本発明にかかる自律移動体は、自己位置をセンサで計測し移動手段を制御して目的の場所に自律的に移動する自律移動体であって、前記センサから自己位置に関するセンサ情報を取得するセンサ情報取得手段と、前記センサ情報取得手段が取得したセンサ情報に基づき自己位置を推定する位置推定手段と、前記位置推定手段により推定される自己位置の信頼度を算出する信頼度算出手段と、前記信頼度算出手段で算出された信頼度と前記位置推定手段で推定された自己位置とを紐付けて記録する位置信頼度記録手段と、前記信頼度算出手段が算出した信頼度が所定の条件を満たした場合、前記位置信頼度記録手段により記録された情報に基づき信頼度の高い位置に移動するよう前記移動手段を制御する信頼度回復行動制御手段とを備える。
本発明によれば、自己位置の信頼度を把握して所定の基準を下回る場合には、実績に基づいて高い信頼度で自己位置を取得できる位置に移動できるため、安定的に高い信頼度で自己位置を把握しながら自律的に移動することができる。
図1は、実施の形態1に係る自律移動体の外観を示す斜視図である。 図2は、制御手段が備える機能部の一部を機構部の一部と共に示すブロック図である。 図3は、記憶部に記憶されたデータの一例を視覚的に示す図である。 図4は、実施の形態1に係る信頼度回復行動制御手段の処理の流れを示すフローチャートである。 図5は、自己位置を中心とした場合の信頼度の位置的分布を立体的に示す斜視図である。 図6は、実施の形態2にかかる制御手段が備える機能部の一部を機構部の一部と共に示すブロック図である。 図7は、期待値算出手段が期待値を算出する際に形成する領域のイメージを示す斜視図である。 図8は、橋梁検査作業を行う自律移動体を示す斜視図である。
次に、本発明に係る自律移動体の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本発明に係る自律移動体の一例を示したものに過ぎない。従って本発明は、以下の実施の形態を参考に請求の範囲の文言によって範囲が画定されるものであり、以下の実施の形態のみに限定されるものではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
また、図面は、本発明を示すために適宜強調や省略、比率の調整を行った模式的な図となっており、実際の形状や位置関係、比率とは異なる場合がある。
(実施の形態1)
以下、自律移動体100の例として自律飛行体、いわゆるドローンを用い、本発明の実施の形態1について説明する。
図1は、本実施の形態に係る自律移動体の外観を示す斜視図である。
図2は、制御手段が備える機能部の一部を機構部の一部と共に示すブロック図である。
これらの図に示すように、本実施の形態で利用する自律移動体100は、移動手段101として複数のロータ111(プロペラ)と、ロータ111をそれぞれ個別に駆動する複数のモータ112と、自己位置を取得するためのセンサ103と、センサ103からの信号を取得しモータ112を制御して自立移動を司る制御装置104とを備えている。
複数のロータ111を備えたドローンタイプの自律移動体100は、個々のロータ111の回転数を個別に制御することにより、様々な方向(例えば、前後左右上下)への自律移動体100の移動や姿勢の調節を行うことができるものとなっている。本実施の形態の場合、制御装置104は、ロータ111の回転数の制御状態に基づく情報もセンサ情報として移動手段101から取得し、自己位置を推定する情報の一つとして用いている。
センサ103は、計測により自己位置を推定するための情報を取得できる装置であれば特に限定されるものではない。具体的にセンサ103としては、3軸方向の角度や各速度、および、3軸方向の加速度を検出する慣性計測装置(IMU:Inertial Measurement Unit)、圧力計(高度計)、流量計(風速計)、GPS(Global Positioning System)受信機、LRF(Laser Range Finder)、深度カメラなどを例示することができる。また、自律移動体100は、複数種類のセンサ103の中から一つ、または、複数種類のセンサ103を装備している。また、装備されるセンサ103は、自律移動体100の種類や移動目的、移動場所によって適宜選択される。
制御装置104は、図2に示すように、センサ103などから取得した情報に基づき移動手段101を制御して自律移動体100を移動させる装置であり、記憶部140などに記憶されているプログラムを実行することにより各種処理を行ういわゆるCPU等を備えたコンピュータである。制御装置104は、プログラムによって実行される処理部として、センサ情報取得手段141と、位置推定手段142と、信頼度算出手段143と、位置信頼度記録手段144と、信頼度回復行動制御手段145とを備えている。
記憶部140は、ROM(Read Only Memory)やHDD(Hard Disk Drive)等の情報記憶装置であり、各処理部に対応するプログラムや自己位置など記憶する。また、記憶部140は、目的地の位置情報、径路や障害物などを示す地図情報等も記憶する。
センサ情報取得手段141は、センサ103が計測した信号を自己位置の推定に用いられるセンサ情報として取得する処理部である。また、センサ情報取得手段141は、移動手段101から得られる情報、例えば、複数のロータ111のそれぞれの回転数などの制御情報もセンサ情報として取得する。
位置推定手段142は、センサ情報に基づいて、自律移動体100の現在の位置に関する自己位置を推定する処理部である。本実施の形態の場合、位置推定手段142は、複数のセンサ情報に基づいて実際にセンサ103が測定した結果である測定位置を算出する。次に位置推定手段142は、複数の測定位置を統合して自己位置を推定する処理を行う。自己位置を推定する方法は特に限定されるものではないが、例えば、GPS衛星から受信した信号に基づき算出された測定位置と、慣性計測装置からのセンサ情報に基づき算出された測定位置などとは、カルマンフィルタにより自己位置を推定してもよい。また、深度カメラからのセンサ情報と記憶部140に記憶された地図情報とを照合することにより算出される測定位置と、慣性計測装置からのセンサ情報に基づき算出された測定位置などとは、SLAM(Simultaneous Localization And Mapping)により推定してもよい。
位置推定手段142としてカルマンフィルタが採用された場合、自己位置は正規分布として表現される。正規分布の分散は最後に絶対位置を観測してからの経過時間や移動量に応じて増加し、絶対位置を観測することで減少する。つまり、信頼度は最後に絶対位置を観測してからの経過時間や移動量に応じて減少し、絶対位置を観測することで増加(回復)する。絶対位置の観測はGPSによる測位や、位置が既知のランドマークの観測によって行われる。
信頼度算出手段143は、計測するセンサ103自体の信頼度、経時的に低下する信頼度、自己位置を推定した際に用いたセンサ情報の誤差などに基づき自己位置の信頼度を算出する処理部である。例えば、信頼度算出手段143は、位置推定手段142が自己位置を推定する際に用いた分布(例えば正規分布)を用い、分散の逆数を信頼度として算出する。
位置信頼度記録手段144は、位置推定手段142で推定された自己位置と信頼度算出手段143で算出された信頼度とを紐付けて記憶部140に記録する処理部である。本実施の形態の場合、位置信頼度記録手段144は、図3に示すように、紐付けられた自己位置と信頼度にさらに時刻情報を紐付けて記憶部140に記録する。ここで時刻情報とは、例えば、位置推定手段142で自己位置が推定された際の時刻を示す情報である。なお、図3では、信頼度以外の時刻と座標に関する情報は相互に区別するための識別記号が記載されており、これらは、具体的な意味を持っていない。
信頼度回復行動制御手段145は、信頼度算出手段143が算出した信頼度が所定の条件を満たした場合、位置信頼度記録手段144により記録された情報に基づき信頼度の高い位置に移動するよう移動手段101を制御する処理部である。
図4は、信頼度回復行動制御手段の処理の流れを示すフローチャートである。
同図に示すように、信頼度回復行動制御手段145は、信頼度が所定の条件を満たしているか否かを判定する(S101)。信頼度が所定の条件を満たしていない場合(S101:N)、通常作業を維持する。ここで、通常の作業とは、例えば自律移動体100が目標の位置へ移動する作業や、目標の位置においてする検査などの作業である。
信頼度が所定の条件を満たした場合の具体的な判定手法の例(パターン)を以下に列挙する。
1−1.信頼度回復行動制御手段145は、信頼度算出手段143で算出された信頼度を逐次取得し、取得した信頼度が予め定められた第二閾値を下回った場合、信頼度が低下したとして回復制御を実行する(S103)。
1−2.信頼度回復行動制御手段145は、記憶部140に記憶された信頼度の内、遡った所定期間の信頼度を統計処理して統計信頼度を逐次算出する。そして、信頼度回復行動制御手段145は、信頼度算出手段143から逐次取得した信頼度と前記統計信頼度との差分を算出し、差分が第三閾値以上の場合は急激に信頼度が低下したとして回復制御を実行する(S103)。
1−3.信頼度回復行動制御手段145は、記憶部140に記憶された信頼度を現在から遡って調査し、信頼度が低下し続けている期間が予め定めた第四閾値よりも長い場合は信頼度が低下したとして回復制御を実行する(S103)。
次に、回復のための具体的な制御手法の例(パターン)を以下に列挙する。
2−1.信頼度回復行動制御手段145は、記憶部140に記録された信頼度に基づき、信頼度が第一閾値以上になるまで記憶部140に記録された自己位置をたどって逐次移動するよう移動手段101を制御する。
具体的に図3に示すデータに基づき説明する。前提として、現在時刻が6であり、第一閾値は0.8である。信頼度回復行動制御手段145は、現在位置G(信頼度0.3)→F(信頼度0.5)→E(信頼度0.6)→D(信頼度0.8)の座標をたどるように移動手段101を制御して自律移動体100を移動させる。つまり、信頼度が第四閾値以上であった座標まで来た径路を自律移動体100に後戻りさせる。
以上により、高い信頼度の座標位置で自己位置を再度推定し、通常作業を実施するための行動に移行する。
このような回復行動は、自律移動体100が初めての空間を移動している場合や、突発的に発生した風などにより信頼度が急激に低下した場合などに有効である。
2−2.信頼度回復行動制御手段145は、記憶部140に記憶されている信頼度が第一閾値以上、かつ、現在の自己位置に最も近い位置に移動するよう移動手段101を制御する。
具体的には、図5に示すように、信頼度が所定の条件を満たした際(現在時刻6)の自律移動体100の自己位置を中心とし、その周囲(上下、前後、左右)に存在する座標であって、第一閾値(0.8)以上の信頼度の座標(A、C、D)を記憶部140から抽出する。さらに、各座標と現在の自己位置とのユークリッド距離を算出し、ユークリッド距離の最も小さい座標(D)に直線的に移動するように移動手段101を制御して自律移動体100を座標Dに移動させる。
以上により、高い信頼度の座標位置により短い時間で到達することができ、当該座標で自己位置を再度推定し、通常作業を実施するための行動により短い時間で移行することができる。
このような回復行動は、自律移動体100が狭い範囲で検査作業などを行っている場合などに有効である。
2−3.信頼度回復行動制御手段145は、信頼度が第一閾値以上、かつ、現在時刻に最も近い時刻情報に紐付けられた位置に移動するよう移動手段101を制御する。
具体的に図3に示すデータに基づき説明する。前提として、現在時刻が6であり、第四閾値が0.8である。信頼度回復行動制御手段145は、5(信頼度0.5)→4(信頼度0.6)→3(信頼度0.8)と時間を遡って信頼度をチェックし、信頼度が第四閾値以上であった座標、即ち座標(D)に直線的に移動するように移動手段101を制御して自律移動体100を座標Dに移動させる。
以上により、高い信頼度の座標位置により短い時間で到達することができ、当該座標で自己位置を再度推定し、通常作業を実施するための行動により短い時間で移行することができる。
このような回復行動は、自律移動体100が障害物の少ない広い空間を移動している場合などに有効である。
(実施の形態2)
続いて、自律移動体100の他の実施の形態について説明する。なお、前記実施の形態1と同様の作用や機能、同様の形状や機構や構造を有するもの(部分)には同じ符号を付して説明を省略する場合がある。また、以下では実施の形態1と異なる点を中心に説明し、同じ内容については説明を省略する場合がある。
図6は、本実施の形態にかかる制御手段が備える機能部の一部を機構部の一部と共に示すブロック図である。
本実施の形態に係る制御装置104は、期待値算出手段146が追加されている以外は、実施の形態1と同様である。
期待値算出手段146は、自律移動体100の自己位置を中心として空間を分割し、記憶部140に記憶されている信頼度であって分割された各領域に含まれる信頼度に基づき領域ごとに期待値を算出する処理部である。
具体的には、図7にイメージで示すように、期待値算出手段146は、信頼度が所定の条件を満たした際の自律移動体100の自己位置を中心として放射状に領域を分割し、各領域に含まれる信頼度を記憶部140から抽出する。そして、各領域に含まれる複数の信頼度についてそれぞれ統計処理を行い領域ごとに期待値を算出する。本実施の形態の場合、紐付けられている自己位置と信頼度について時刻は必ずしも紐付けられている必要はない。
本実施の形態の場合、信頼度回復行動制御手段145の具体的な判定手法は以下の通りである。
2−4.信頼度が所定の条件を満たした場合、信頼度回復行動制御手段145は、期待値算出手段146から領域ごとの期待値を取得する。さらに、期待値の比較を行い期待値の最も大きい領域の方向に直線的に移動するように移動手段101を制御して自律移動体100を座標Dに移動させる。また、信頼度回復行動制御手段145は、信頼度が第一閾値以上である座標に最も近づくまで自律移動体100を移動させる。
以上により、高い信頼度の座標位置に高い確率で到達することができ、当該座標で自己位置を再度推定し、通常作業を実施するための行動により確実に移行することができる。
このような回復行動は、自律移動体100が広範囲にわたって移動している場合や、長期にわたって同一の領域内で多数回作業を行っている場合などに有効である。
次に、具体的な自律移動体100の実施例を説明する。
図8は、橋梁検査作業を行う自律移動体を示す斜視図である。
同図に示すように、本実施例の場合、自律移動体100はドローンである。また、自律移動体100が実施する作業は、橋梁200の下面の検査であり、自律移動体100が上部に搭載する検査用カメラによって橋梁200の下面を広範囲にわたって撮像する作業である。なお、自律移動体100により撮像された映像と撮像された位置とに基づき構造部材のひび割れの検出などが行われる。
このような作業において、自律移動体100は、所定の位置Aから飛行し、時刻3には経由位置である位置Dに到達する。位置Dは、GPS衛星210からの信号を高感度で受信できる位置であり、信頼度は0.8となっている。
次に、自律移動体100は、IMUやGPSなどのセンサ103からのセンサ情報に基づきカルマンフィルタを用いて自己位置を推定しながら時刻4において橋梁200の下方である位置Eに到達し橋梁200の撮像を開始する。橋梁200の下方はGPS衛星210からの信号の受信は困難であるが、IMUなどのセンサ103からのセンサ情報に基づき自己位置は推定され、その信頼度は0.6となっている。
次に、橋梁200の下方を移動しながら橋梁200の撮像を行い、位置Eから位置F、位置Fから位置Gに進む。位置Eから位置Fを経由して位置Gに向かう過程において、自律移動体100はGPS衛星210からの信号を取得できないため、自己位置の信頼度は時間と共に低下していく。
位置Gに到達した段階で予め定められた第二閾値(0.3)を下回ったため、信頼度回復行動制御手段145は、記憶部140に記憶されている信頼度が第一閾値(0.7)以上、かつ、現在の自己位置Gに最も近い位置である位置Dに移動するよう移動手段101を制御する。
移動手段101の制御により、位置Dに直線的に移動した自律移動体100は、自己位置の信頼度が回復したため、回復行動を実行した始めの位置Gに直線的に戻り、再度橋梁200の撮影を行う。
以上の様に自律移動体100を移動させることで、自己位置の信頼度を高い状態に維持しつつ効率的に作業を行うことが可能となる。
なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。
例えば、上記実施の形態では自律移動体100として三次元方向に自由に移動可能な自律飛行体、いわゆる空中を飛行可能なドローンを例示したが、自律移動体100はこれに限定されるわけではない。自律移動体100としては、例えば、地面を走行する自律走行車、水面を航行する自律船等を挙示することができる。
また、センサ103は、自己位置の推定に寄与する情報を測定できるものは特に限定されるものではなく、既に列挙したもの以外のあらゆるセンサを含む。
また、全ての処理部を一つの制御装置104で実現するものとしたが、各処理を複数の制御手段で分担し、相互の通信によって情報を授受するものでもかまわない。
また、期待値算出手段146は、放射状の領域において期待値を算出したが、これに限定されるわけではなく、図5に示すようなブロック状の領域について期待値を算出するなど任意に領域を分割することもできる。
また、回復行動を終了する条件は、回復行動中も自己位置と信頼度を逐次算出し、得られた信頼度が所定の値を上回ることで終了してもよい。また、目的地と自己位置が一致した場合に終了してもかまわない。
また、信頼度が回復した後は、回復行動を開始した地点に戻ってもよく、信頼度が回復した位置から目的地に直接向かってもかまわない。
本発明は、自律的に移動する車両、列車、船舶、航空機、掃除機などに利用可能である。
100 自律移動体
101 移動手段
103 センサ
104 制御装置
111 ロータ
112 モータ
140 記憶部
141 センサ情報取得手段
142 位置推定手段
143 信頼度算出手段
144 位置信頼度記録手段
145 信頼度回復行動制御手段
146 期待値算出手段
200 橋梁
210 GPS衛星

Claims (8)

  1. 自己位置をセンサで計測し移動手段を制御して目的の場所に自律的に移動する自律移動体であって、
    前記センサから自己位置に関するセンサ情報を取得するセンサ情報取得手段と、
    前記センサ情報取得手段が取得したセンサ情報に基づき自己位置を推定する位置推定手段と、
    前記位置推定手段により推定される自己位置の信頼度を算出する信頼度算出手段と、
    前記信頼度算出手段で算出された信頼度と前記位置推定手段で推定された自己位置とを紐付けて記録する位置信頼度記録手段と、
    前記信頼度算出手段が算出した信頼度が所定の条件を満たした場合、前記位置信頼度記録手段により記録された情報に基づき信頼度の高い位置に移動するよう前記移動手段を制御する信頼度回復行動制御手段と
    を備える自律移動体。
  2. 前記信頼度回復行動制御手段は、記録された信頼度に基づき、信頼度が第一閾値以上になるまで記録された自己位置をたどって逐次移動するよう前記移動手段を制御する
    請求項1に記載の自律移動体。
  3. 前記信頼度回復行動制御手段は、信頼度が第一閾値以上、かつ、自己位置に最も近い位置に移動するよう前記移動手段を制御する
    請求項1に記載の自律移動体。
  4. 位置信頼度記録手段はさらに、算出された時刻に対応する情報を時刻情報を自己位置、および、信頼度に紐付けて記録し、
    前記信頼度回復行動制御手段は、信頼度が第一閾値以上、かつ、現在時刻に最も近い時刻情報に紐付けられた位置に移動するよう前記移動手段を制御する
    請求項1に記載の自律移動体。
  5. 自己位置を中心として空間を分割し、分割された各領域に含まれる信頼度に基づき期待値を算出する期待値算出手段をさらに備え、
    前記信頼度回復行動制御手段は、期待値が高い方向に直線的に移動するよう前記移動手段を制御する
    請求項1に記載の自律移動体。
  6. 信頼度が所定の条件を満たした場合とは、信頼度が第二閾値を下回った場合である
    請求項1〜5のいずれか一項に記載の自律移動体。
  7. 信頼度が所定の条件を満たした場合とは、信頼度が急激に低下した場合である
    請求項1〜5のいずれか一項に記載の自律移動体。
  8. 信頼度が所定の条件を満たした場合とは、信頼度が所定時間に渡り低下し続けた場合である
    請求項1〜5のいずれか一項に記載の自律移動体。
JP2016225523A 2016-04-01 2016-11-18 自律移動体 Pending JP2017188067A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710095354.2A CN107272727B (zh) 2016-04-01 2017-02-22 自主移动体
US15/458,928 US10162368B2 (en) 2016-04-01 2017-03-14 Autonomous moving machine
EP17162043.8A EP3229096A1 (en) 2016-04-01 2017-03-21 Autonomous moving machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016074524 2016-04-01
JP2016074524 2016-04-01

Publications (1)

Publication Number Publication Date
JP2017188067A true JP2017188067A (ja) 2017-10-12

Family

ID=60045586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016225523A Pending JP2017188067A (ja) 2016-04-01 2016-11-18 自律移動体

Country Status (1)

Country Link
JP (1) JP2017188067A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018492A (ja) * 2018-07-31 2020-02-06 清一 中島 医療用ドローンシステム
JP2020197467A (ja) * 2019-06-04 2020-12-10 俊雄 小泉 Slamによる自律飛行機能を備えた無人機を用いた構造物の検査方法
CN113079698A (zh) * 2019-11-05 2021-07-06 乐天株式会社 进行航空器的飞行控制的控制装置、及控制方法
WO2022004333A1 (ja) * 2020-07-01 2022-01-06 ソニーグループ株式会社 情報処理装置、情報処理システム、および情報処理方法、並びにプログラム
JP2022059815A (ja) * 2020-10-02 2022-04-14 本田技研工業株式会社 移動体制御装置、移動体、移動体制御方法、およびプログラム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249735A (ja) * 2006-03-17 2007-09-27 Fujitsu Ltd ロボット位置制御装置およびロボット自己位置回復方法
JP2008059391A (ja) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd 遠隔操作移動体
JP2008249419A (ja) * 2007-03-29 2008-10-16 Fujitsu Ltd 無線測位システム、移動体、そのプログラム
JP2011043405A (ja) * 2009-08-21 2011-03-03 Toyota Motor Corp 自己位置推定装置、自己位置推定方法及びプログラム
JP2016173709A (ja) * 2015-03-17 2016-09-29 セコム株式会社 自律移動ロボット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007249735A (ja) * 2006-03-17 2007-09-27 Fujitsu Ltd ロボット位置制御装置およびロボット自己位置回復方法
JP2008059391A (ja) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd 遠隔操作移動体
JP2008249419A (ja) * 2007-03-29 2008-10-16 Fujitsu Ltd 無線測位システム、移動体、そのプログラム
JP2011043405A (ja) * 2009-08-21 2011-03-03 Toyota Motor Corp 自己位置推定装置、自己位置推定方法及びプログラム
JP2016173709A (ja) * 2015-03-17 2016-09-29 セコム株式会社 自律移動ロボット

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020018492A (ja) * 2018-07-31 2020-02-06 清一 中島 医療用ドローンシステム
JP7178081B2 (ja) 2018-07-31 2022-11-25 清一 中島 医療用ドローンシステム
JP2020197467A (ja) * 2019-06-04 2020-12-10 俊雄 小泉 Slamによる自律飛行機能を備えた無人機を用いた構造物の検査方法
CN113079698A (zh) * 2019-11-05 2021-07-06 乐天株式会社 进行航空器的飞行控制的控制装置、及控制方法
WO2022004333A1 (ja) * 2020-07-01 2022-01-06 ソニーグループ株式会社 情報処理装置、情報処理システム、および情報処理方法、並びにプログラム
JP2022059815A (ja) * 2020-10-02 2022-04-14 本田技研工業株式会社 移動体制御装置、移動体、移動体制御方法、およびプログラム
JP7366373B2 (ja) 2020-10-02 2023-10-23 本田技研工業株式会社 移動体制御装置、移動体、移動体制御方法、およびプログラム

Similar Documents

Publication Publication Date Title
CN107272727B (zh) 自主移动体
US10150563B2 (en) Autonomous moving machine system
JP6799444B2 (ja) 自律移動体システム
JP2017188067A (ja) 自律移動体
TWI827649B (zh) 用於vslam比例估計的設備、系統和方法
JP6235213B2 (ja) 自律飛行ロボット
JP6195450B2 (ja) 自律飛行ロボット
JP2015006874A (ja) 3次元証拠グリッドを使用する自律着陸のためのシステムおよび方法
EP3531223B1 (en) Obstacle avoidance method and aircraft
CN111033561A (zh) 用于利用语义信息来导航机器人设备的系统和方法
US8467612B2 (en) System and methods for navigation using corresponding line features
JP6527726B2 (ja) 自律移動ロボット
JP6140458B2 (ja) 自律移動ロボット
JP6014485B2 (ja) 自律飛行ロボット
Mulgaonkar et al. The tiercel: A novel autonomous micro aerial vehicle that can map the environment by flying into obstacles
JP6469492B2 (ja) 自律移動ロボット
US20180164122A1 (en) Electronic Control Device for Controlling a Drone, Related Drone, Controlling Method and Computer Program
JP6832394B2 (ja) 自己位置推定装置、自己位置選択装置、及び学習器
JP2022015978A (ja) 無人航空機の制御方法、無人航空機、および、無人航空機の制御プログラム
Pfingsthorn et al. Full 3D navigation correction using low frequency visual tracking with a stereo camera
JP6956305B2 (ja) 制御装置、制御方法及びプログラム
JP7352908B2 (ja) 無人航空機の推定位置を修正するためのシステム、方法、プログラム及びプログラムを記憶した記憶媒体
JP2021047744A (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2023067892A1 (ja) 情報処理装置、情報処理方法、及びプログラム
Asrofi et al. Optimal path planning of a mini usv using sharp cornering algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005