JP2017187267A - Boiler anticorrosive device and anticorrosive method - Google Patents

Boiler anticorrosive device and anticorrosive method Download PDF

Info

Publication number
JP2017187267A
JP2017187267A JP2016174041A JP2016174041A JP2017187267A JP 2017187267 A JP2017187267 A JP 2017187267A JP 2016174041 A JP2016174041 A JP 2016174041A JP 2016174041 A JP2016174041 A JP 2016174041A JP 2017187267 A JP2017187267 A JP 2017187267A
Authority
JP
Japan
Prior art keywords
heat transfer
exhaust gas
pressure wave
boiler
convection heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016174041A
Other languages
Japanese (ja)
Inventor
翔太 川崎
Shota KAWASAKI
翔太 川崎
達将 野田
Tatsumasa Noda
達将 野田
坪井 敏男
Toshio Tsuboi
敏男 坪井
彰人 菅野
Akihito Sugano
彰人 菅野
山本 浩
Hiroshi Yamamoto
浩 山本
北川 尚男
Hisao Kitagawa
尚男 北川
平山 敦
Atsushi Hirayama
敦 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Publication of JP2017187267A publication Critical patent/JP2017187267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently restrict the boiler blockage caused by the formation of adherence dust layer with low equipment cost and low operation cost while preventing the heat exchanger tube corrosion caused by chloride fused and adhered on a super heater heat exchanger tube of a convection heat transfer chamber of a boiler connected to a waste incinerator.SOLUTION: A boiler 20 that is connected to a waste incinerator 10 for recovering heat from waste gas that comprises: first and second radiation chambers 26 and 28; and a convection heat transfer chamber 30 from the upstream, in which using a pressure wave generation control device 70 for controlling the operation of a pressure wave generation device 61 in which fuel gas is mixed with oxidant gas under high pressure to generate a pressure wave by burning them and discharge the pressure wave into the boiler 20 from a pressure wave discharge nozzle arranged in the second radiation chamber 28, when the exhaust gas temperature measured value measured by exhaust gas temperature meters 71 and 72 at the inlet of the convection heat transfer chamber 30 or the inlet of a most upstream side super heater 34 of the convection heat transfer chamber 30 is a prescribed value or more, the pressure wave is discharged from the pressure wave discharge nozzle.SELECTED DRAWING: Figure 1

Description

本発明は、ボイラの伝熱管に融解、固着した塩化物によるボイラの腐食防止装置及び腐食防止方法に係り、特に、発電設備を有するごみ焼却施設に用いるのに好適な、ボイラ腐食防止装置及び腐食防止方法に関する。   The present invention relates to a boiler corrosion prevention apparatus and corrosion prevention method using chloride melted and fixed to a heat transfer tube of a boiler, and more particularly to a boiler corrosion prevention apparatus and corrosion suitable for use in a waste incineration facility having a power generation facility. It relates to a prevention method.

発電設備を有するごみ焼却施設の運営において、発電量・売電量の維持と向上は、ごみの安定処理に次ぐ最重要項目のひとつである。ごみ焼却施設における発電は、焼却炉でのごみの燃焼から得られる高温の排ガスからボイラにて熱回収を行い、所定の温度・圧力の蒸気を発生させてタービン発電機に導入することにより行われている。ボイラは、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備える放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生し更に過熱する対流伝熱室とを備えている。   In the operation of a waste incineration facility with power generation facilities, maintaining and improving the amount of power generated and sold is one of the most important items after the stable treatment of waste. Power generation at a waste incineration facility is performed by recovering heat from a high-temperature exhaust gas obtained from the combustion of waste in an incinerator and generating steam at a predetermined temperature and pressure and introducing it into a turbine generator. ing. The boiler has a radiant chamber having a radiant heat transfer surface that generates steam by receiving radiant heat from the exhaust gas, a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube, and further superheats. It has.

放射室には、排ガス流路を囲む鋼製側壁の外側に加温水を流通させ放射加熱により蒸気を発生させる放射伝熱管が放射伝熱面として配設されている。対流伝熱室には、排ガス流路内に排ガスと接触して対流伝熱により蒸気を発生させ更に過熱する伝熱管(過熱器とも称する)が対流伝熱面として配設されている。対流伝熱面は水平方向に伝熱管が複数配設された伝熱管群が高さ方向に複数段配設されて構成されている。対流伝熱室には、排ガス流路内に水を加熱して加温水とする伝熱管を有するエコノマイザが配設されることがある。また、ボイラの下流側にボイラに供給する水を加熱するために排ガス流路内に水を加熱して加温水とする伝熱管を有する別置エコノマイザが連設されることもある。   In the radiant chamber, a radiant heat transfer tube is provided as a radiant heat transfer surface through which heated water is circulated on the outside of the steel side wall surrounding the exhaust gas flow path to generate steam by radiant heating. In the convection heat transfer chamber, a heat transfer tube (also referred to as a superheater) that contacts the exhaust gas in the exhaust gas flow path to generate steam by convective heat transfer and further superheats is disposed as a convection heat transfer surface. The convection heat transfer surface is configured by arranging a plurality of heat transfer tube groups in which a plurality of heat transfer tubes are arranged in the horizontal direction in the height direction. The convection heat transfer chamber may be provided with an economizer having a heat transfer tube that heats water in the exhaust gas flow path to produce heated water. Moreover, in order to heat the water supplied to a boiler in the downstream of a boiler, the separate economizer which has a heat exchanger tube which heats water in an exhaust gas flow path and makes it warm water may be provided in series.

ごみ焼却において発生する排ガス中には、塩素・硫黄・重金属類等を含む小粒径のダストが含まれるが、これらがボイラの放射伝熱面、対流伝熱面に付着すると、その付着ダストが断熱材の役割をするので伝熱効率が低下する。それにより、熱回収効率も低下する。その結果、蒸気発生量が低下し、タービン発電機の発電量が減少する。その他にも、伝熱管同士の間隙が付着ダストにより閉塞し、排ガスの流通に支障が生じることもある。   The exhaust gas generated in refuse incineration contains dust of small particle size including chlorine, sulfur, heavy metals, etc., but if these adhere to the radiant and convective heat transfer surfaces of the boiler, the adhering dust will be Since it acts as a heat insulating material, heat transfer efficiency decreases. Thereby, the heat recovery efficiency also decreases. As a result, the amount of steam generated decreases, and the amount of power generated by the turbine generator decreases. In addition, the gap between the heat transfer tubes may be blocked by adhering dust, which may hinder the flow of exhaust gas.

このため、付着したダストを定期的に除去する設備が必要となる。対流伝熱面に付着するダストを除去する技術として、石炭ボイラや多くのボイラでの実績のある装置として蒸気式スートブロワ(特許文献1参照)が挙げられる。蒸気式スートブロワは複数のノズルから水蒸気を伝熱管に向けて噴射し、伝熱管表面に付着したダストを剥離し除去するもので、定期的なタイミングで水蒸気を噴射する。   For this reason, the equipment which removes adhering dust regularly is needed. As a technique for removing dust adhering to the convection heat transfer surface, a steam soot blower (see Patent Document 1) is known as an apparatus that has a proven record in coal boilers and many boilers. The steam soot blower injects water vapor from a plurality of nozzles toward the heat transfer tube, and peels and removes dust adhering to the surface of the heat transfer tube, and injects water vapor at a regular timing.

特開2007−183069号公報JP 2007-183069 A

廃棄物焼却炉から排出される排ガスには廃棄物に含まれる成分と排ガス中の塩化水素との反応により生成した塩化物が含まれている。廃棄物焼却炉に連設されているボイラの対流伝熱室の過熱器伝熱管表面には、焼却炉より飛散、揮散した塩化物等が付着する。飛散、揮散する塩化物の融点は組成により異なるが、代表的な塩化物である塩化カリウムと塩化ナトリウムの1:1混合塩の融点は657℃であり、この二つの混合塩の融点は657℃が最も低い融点となる。   The exhaust gas discharged from the waste incinerator contains chloride generated by the reaction between the components contained in the waste and hydrogen chloride in the exhaust gas. Chloride and the like scattered and volatilized from the incinerator adhere to the surface of the superheater heat transfer tube in the convection heat transfer chamber of the boiler connected to the waste incinerator. The melting point of the chloride that is scattered and volatilized varies depending on the composition, but the melting point of a 1: 1 mixed salt of potassium chloride and sodium chloride, which is a typical chloride, is 657 ° C., and the melting point of these two mixed salts is 657 ° C. Is the lowest melting point.

一般的な廃棄物焼却炉において、焼却炉出口の排ガス温度は900℃以上であるため、これらの塩化物は排ガス中に液体あるいは気体の状態で含まれ、ボイラに流入する。排ガスはボイラの放射室内に設けられた水冷壁で構成される放射伝熱面で熱回収されて温度が低下し、下流側の過熱器伝熱管群が設置されている対流伝熱室の入口で排ガス温度が約600〜650℃となる。この対流伝熱室の入口の排ガス温度雰囲気は、塩化カリウム・塩化ナトリウム混合塩(塩化物という)の融点以下であるため、混合塩は固体状態となっている。そのため、過熱器伝熱管表面に付着する塩化物は融解固着せず、他の飛灰などのダストと同様に付着しているだけであるため、通常ダスト除去のために用いられている蒸気式スートブロワにて、過熱器伝熱管表面の付着ダストは容易に除去することが可能である。   In a general waste incinerator, since the exhaust gas temperature at the incinerator outlet is 900 ° C. or higher, these chlorides are contained in the exhaust gas in a liquid or gas state and flow into the boiler. The exhaust gas is recovered by heat at the radiant heat transfer surface consisting of water-cooled walls provided in the radiant chamber of the boiler, the temperature drops, and at the entrance of the convection heat transfer chamber where the downstream superheater heat transfer tube group is installed. The exhaust gas temperature is about 600 to 650 ° C. Since the exhaust gas temperature atmosphere at the entrance of the convection heat transfer chamber is below the melting point of the potassium chloride / sodium chloride mixed salt (referred to as chloride), the mixed salt is in a solid state. For this reason, the chloride adhering to the surface of the superheater heat transfer tube does not melt and adhere, but only adheres in the same way as other dust such as fly ash. Thus, the adhering dust on the superheater heat transfer tube surface can be easily removed.

廃棄物焼却炉を連続運転すると、ボイラ放射伝熱面である水冷壁上にもダストが付着し、堆積する。この付着ダストは堆積厚さが増すにつれて断熱材として作用し、水冷壁の熱回収能力が低下し、排ガス温度を低下させる能力が低下する。そのため、下流側の過熱器伝熱管群が設置されている対流伝熱室の入口に流入する排ガス温度が上昇し、650℃以上になることがある。   When the waste incinerator is operated continuously, dust adheres to and accumulates on the water-cooled wall, which is the boiler radiation heat transfer surface. This deposited dust acts as a heat insulating material as the deposition thickness increases, so that the heat recovery ability of the water-cooled wall is lowered and the ability to lower the exhaust gas temperature is lowered. Therefore, the temperature of the exhaust gas flowing into the inlet of the convection heat transfer chamber in which the downstream superheater heat transfer tube group is installed may rise to 650 ° C. or higher.

塩化物の融点は657℃以上であるため、過熱器伝熱管表面に付着した塩化物は、その融点より高い排ガスと接触することで、その一部が融解して伝熱管表面に固着する。融解、固着した塩化物は、蒸気式スートブロワによっても除去できなくなる場合がある。これらの伝熱管表面に融解、固着した塩化物に他の飛散ダストが付着し、時間経過に伴って伝熱管表面に形成された付着ダスト層の厚さが増加すると伝熱管の間隙が狭くなりボイラが閉塞することとなる危険性が増加する。また、過熱器伝熱管表面の付着ダスト層厚さが増加すると、過熱器伝熱管の熱回収能力が低下する。   Since the melting point of chloride is 657 ° C. or more, the chloride adhering to the surface of the superheater heat transfer tube comes into contact with the exhaust gas higher than the melting point, so that a part of the chloride melts and adheres to the surface of the heat transfer tube. The molten and fixed chloride may not be removed even by a steam soot blower. When other scattered dust adheres to the molten and fixed chloride on these heat transfer tube surfaces, and the thickness of the adhered dust layer formed on the heat transfer tube surface increases with time, the gap between the heat transfer tubes becomes narrower and the boiler The risk of becoming blocked becomes increased. Moreover, when the adhesion dust layer thickness on the superheater heat transfer tube surface increases, the heat recovery capability of the superheater heat transfer tube decreases.

さらに、排ガスに含まれる塩化物が過熱器伝熱管表面に付着して、その一部が融解すると、過熱器伝熱管表面において塩化物中の塩素の作用により伝熱管の腐食、減肉が生じる。伝熱管の腐食、減肉が進行し、法令で定められている減肉量を超過すると過熱器伝熱管を交換する必要がある。この過熱器伝熱管の交換には多大なコストがかかるため、その対策として過熱器伝熱管表面にインコネルやハステロイなどの耐食金属材料を溶射あるいは肉盛して耐食性被覆を行うことで減肉速度を軽減させている。しかし、この耐食金属材料の溶射、肉盛にも多大な費用が必要であり、廃棄物発電施設の設備コストを増大させる問題となっている。   Further, when chloride contained in the exhaust gas adheres to the surface of the superheater heat transfer tube and a part thereof melts, corrosion of the heat transfer tube and thickness reduction occur due to the action of chlorine in the chloride on the surface of the superheater heat transfer tube. When the heat transfer tube is corroded or thinned and exceeds the amount of thinning required by law, it is necessary to replace the superheater heat transfer tube. Replacement of this superheater heat transfer tube is very expensive, and as a countermeasure against this, the thickness of the superheater heat transfer tube can be reduced by spraying or overlaying a corrosion resistant metal material such as Inconel or Hastelloy on the surface of the superheater heat transfer tube. It is reduced. However, the thermal spraying and overlaying of the corrosion-resistant metal material also requires a large amount of money, which increases the equipment cost of the waste power generation facility.

本発明は、以上のような状況に鑑みてなされたもので、廃棄物焼却炉に連設されるボイラ内の対流伝熱室の過熱器伝熱管に融解、固着する塩化物により生じる伝熱管の腐食防止、また、付着ダスト層の形成によって生じるボイラの閉塞抑制を、効率よくかつ低い設備費、運転費で行うことができるボイラの腐食防止装置及び腐食防止方法を提供することを課題とするものである。   The present invention has been made in view of the situation as described above, and is a heat transfer tube formed by chloride melted and fixed to a superheater heat transfer tube in a convection heat transfer chamber in a boiler connected to a waste incinerator. It is an object of the present invention to provide a corrosion prevention device and a corrosion prevention method for a boiler that can efficiently prevent corrosion of the boiler and prevent boiler blockage caused by the formation of an adhering dust layer with low equipment costs and operating costs. It is.

実際の廃棄物焼却施設にて過熱器伝熱管表面の付着ダストを採取し分析して明らかにした付着ダストの組成、化合物形態と対流伝熱室入口排ガス温度を表1に示す。   Table 1 shows the composition, compound form, and exhaust gas temperature at the inlet of the convection heat transfer chamber, which were clarified by collecting and analyzing the dust attached to the surface of the superheater heat transfer tube at an actual waste incineration facility.

Figure 2017187267
Figure 2017187267

廃棄物焼却施設A、Bのように対流伝熱室入口排ガス温度が650℃より高い場合は、過熱器伝熱管表面の付着ダストの組成はClが高く、Sが低く、主要化合物の化学形態は塩化物のKCl、NaClであった。   When the exhaust gas temperature at the inlet of the convection heat transfer chamber is higher than 650 ° C. as in the waste incineration facilities A and B, the composition of adhering dust on the superheater heat transfer tube surface is high in Cl, low in S, and the chemical form of the main compound is The chlorides were KCl and NaCl.

一方、廃棄物焼却施設Cでは、第2放射室に圧力波発生装置を設置して放射伝熱面への付着ダストを剥離除去してダスト付着による熱回収効率の低下を防ぎ、第2放射室での排ガスからの熱回収を着実に行い、対流伝熱室入口排ガス温度を650℃以下に維持した。この場合には、過熱器伝熱管表面の付着ダストの組成はClが低くてSが高く、主要化合物の形態はK、Naの硫酸化物であった。また、廃棄物焼却施設Dでは、圧力波発生装置を具備しないが、比較的排ガス温度が低く対流伝熱室入口温度が650℃以下であるが、この場合には廃棄物焼却施設Cと同様の結果であった。   On the other hand, in the waste incineration facility C, a pressure wave generator is installed in the second radiation chamber to separate and remove dust adhering to the radiation heat transfer surface to prevent a decrease in heat recovery efficiency due to dust adhesion. The heat recovery from the exhaust gas was performed steadily, and the exhaust gas temperature at the inlet of the convection heat transfer chamber was maintained at 650 ° C. or lower. In this case, the composition of the adhering dust on the surface of the superheater heat transfer tube was low in Cl and high in S, and the form of the main compound was K and Na sulfate. The waste incineration facility D does not include a pressure wave generator, but the exhaust gas temperature is relatively low and the convection heat transfer chamber inlet temperature is 650 ° C. or lower. In this case, the waste incineration facility C is similar to the waste incineration facility C. It was a result.

これら4箇所の廃棄物焼却施設から採取した付着ダストを用いて過熱器伝熱管と同様の材料の腐食試験を行ったところ、表1に示すように塩化物を含むダストでは腐食性が高く、硫酸化物含むダストでは腐食性が低いという結果であった。   Using the adhering dust collected from these four waste incineration facilities, a corrosion test was conducted on the same material as the superheater heat transfer tube. As shown in Table 1, dust containing chloride is highly corrosive, and sulfuric acid The result was that the dust containing the chemicals was less corrosive.

廃棄物焼却施設Cでは、第2放射室に圧力波発生装置を設置して放射伝熱面への付着ダストを剥離除去したが、圧力波発生装置の代わりにボイラ頂部から水噴射ノズルを挿入して第2放射室内の水冷壁上に液体の水を噴射して付着ダストを除去する水噴射装置を用いた場合でも同じ結果が得られた。   In the waste incineration facility C, a pressure wave generator was installed in the second radiation chamber to remove and remove dust adhering to the radiant heat transfer surface. Instead of the pressure wave generator, a water injection nozzle was inserted from the top of the boiler. The same result was obtained even when a water jet device that jets liquid water onto the water cooling wall in the second radiation chamber to remove the adhering dust was used.

第2放射室に圧力波発生装置あるいは水噴射装置を設置して放射伝熱面の付着ダストを剥離除去してダスト付着による熱回収効率の低下を防ぎ、第2放射室での排ガスからの熱回収を着実に行い、対流伝熱室入口排ガス温度を650℃以下に維持することにより、このような結果が得られる理由について、発明者らが検討した内容を以下に説明する。   A pressure wave generator or water jetting device is installed in the second radiation chamber to peel off and remove dust adhering to the radiant heat transfer surface to prevent a decrease in heat recovery efficiency due to dust adhesion, and heat from exhaust gas in the second radiation chamber. The reason why the inventors have studied the reason why such a result can be obtained by steadily collecting and maintaining the exhaust gas temperature at the inlet of the convection heat transfer chamber at 650 ° C. or lower will be described below.

廃棄物焼却施設のボイラ内を流通する排ガスには、硫黄酸化物SOxが含まれる。このSOxは他に含まれるO2、H2Oなどと共にボイラ内の過熱器伝熱管表面上に付着している塩化物K(Na)Clと反応し、硫酸化物K(Na)2SO4を生成する。
2K(Na)Cl+SO2+1/2O2+H2O → K(Na)2SO4+2HCl …(1)
The exhaust gas flowing through the boiler of the waste incineration facility contains sulfur oxide SOx. This SOx reacts with chloride K (Na) Cl adhering to the surface of the superheater heat transfer tube in the boiler together with O 2 , H 2 O and the like contained therein to convert the sulfate K (Na) 2 SO 4 Generate.
2K (Na) Cl + SO 2 + 1 / 2O 2 + H 2 O → K (Na) 2 SO 4 + 2HCl (1)

廃棄物焼却施設のボイラの過熱器伝熱管表面においては、この塩化物から硫酸化物が生成する反応は650℃以下の温度雰囲気で容易に進行する。650℃より高い温度では融解した塩化物が付着ダスト層表面を被覆してしまい、ダスト層表面で硫酸化物が生成してもダスト層内部まで排ガス中のSOxなどが到達することが難しく、上記(1)式の反応が進行しにくい。   On the surface of the superheater heat transfer tube of the boiler of the waste incineration facility, the reaction in which the sulfate is generated from the chloride proceeds easily in a temperature atmosphere of 650 ° C. or less. At a temperature higher than 650 ° C., the molten chloride coats the surface of the adhering dust layer, and it is difficult for SOx or the like in the exhaust gas to reach the inside of the dust layer even if sulfate is generated on the surface of the dust layer. 1) The reaction of the formula is difficult to proceed.

また、対流伝熱室入口排ガス温度が650℃より高い温度では塩化物が融解、固着することにより、対流伝熱室で蒸気式スートブロワを運転しても過熱器伝熱管表面の付着ダスト、特に伝熱管同士の間隙の過熱器伝熱管表面の付着ダストを完全に除去することが困難になる。すると過熱器伝熱管表面に残存するダスト層厚さが増大し、ますますダスト層内の塩化物と排ガスに含まれるSOxなどとの反応が阻害され、硫酸化物への反応が進行しなくなる。   In addition, when the exhaust gas temperature at the inlet of the convection heat transfer chamber is higher than 650 ° C., chloride melts and adheres, so that even if the steam soot blower is operated in the convection heat transfer chamber, the dust on the superheater heat transfer tube surface, It becomes difficult to completely remove dust adhering to the surface of the superheater heat transfer tube in the gap between the heat tubes. Then, the thickness of the dust layer remaining on the surface of the superheater heat transfer tube increases, and the reaction between chloride in the dust layer and SOx contained in the exhaust gas is further inhibited, and the reaction to the sulfur oxide does not proceed.

これに対して、対流伝熱室入口での排ガス温度が650℃以下の場合は、伝熱管表面の付着ダスト中の塩化物がSOx等と反応して硫酸化物が生成する反応が進行するため、伝熱管表面に塩化物が融解、固着することがなく、蒸気式スートブロワによる過熱器伝熱管表面の付着ダスト除去を良好に行うことができる。そのため、過熱器伝熱管表面のダスト層厚さが増加することを抑制し、かつ塩化物の融解によるダスト層表面の被覆もないので排ガス中のSOxがダスト層内への侵入が容易となり、硫酸化物への反応が進行する。そして、過熱器伝熱管表面に塩化物が融解、固着することを防止できるため、塩化物による伝熱管の腐食、減肉を抑制することができる。   On the other hand, when the exhaust gas temperature at the convection heat transfer chamber inlet is 650 ° C. or less, the reaction in which the chloride in the dust adhering to the heat transfer tube surface reacts with SOx and the like to generate a sulfate proceeds, Chloride does not melt and adhere to the surface of the heat transfer tube, and it is possible to satisfactorily remove dust adhering to the surface of the superheater heat transfer tube with a steam soot blower. Therefore, the increase in the dust layer thickness on the superheater heat transfer tube surface is suppressed, and since there is no coating of the dust layer surface by melting of chloride, SOx in the exhaust gas can easily enter the dust layer, and sulfuric acid Reaction to the compound proceeds. And since it can prevent that a chloride melts | dissolves and adheres to the superheater heat exchanger tube surface, corrosion and thickness reduction of the heat exchanger tube by chloride can be suppressed.

対流伝熱室入口での排ガス温度を650℃以下に維持することにより、対流伝熱室の過熱器伝熱管表面に塩化物が融解、固着することを防止でき、塩化物による伝熱管の腐食、減肉を抑制することができることが明らかになった。また、蒸気式スートブロワによる過熱器伝熱管表面の付着ダスト除去を良好に行うことができる。   By maintaining the exhaust gas temperature at the inlet of the convection heat transfer chamber at 650 ° C. or less, chloride can be prevented from melting and sticking to the superheater heat transfer tube surface of the convection heat transfer chamber. It became clear that thinning can be suppressed. In addition, it is possible to satisfactorily remove adhering dust on the surface of the superheater heat transfer tube using a steam soot blower.

対流伝熱室入口での排ガス温度を650℃以下に維持するために、第2放射室に圧力波発生装置あるいは水噴射装置を設置して放射伝熱面の付着ダストを剥離除去してダスト付着による熱回収効率の低下を防ぎ、第2放射室での排ガスからの熱回収を着実に行うことが好ましい。これにより対流伝熱室入口排ガス温度を650℃以下に維持することを着実に行うことができる。   In order to maintain the exhaust gas temperature at the convection heat transfer chamber inlet at 650 ° C. or lower, a pressure wave generator or a water injection device is installed in the second radiation chamber to separate and remove dust adhering to the radiation heat transfer surface. It is preferable to prevent a decrease in heat recovery efficiency due to, and steadily recover heat from the exhaust gas in the second radiation chamber. Accordingly, it is possible to steadily maintain the exhaust gas temperature at the convection heat transfer chamber inlet at 650 ° C. or lower.

対流伝熱室入口での排ガス温度を650℃以下に維持することとしたが、対流伝熱室入口での排ガス温度の好ましい上限値を、廃棄物から生成する塩化物の融点とすることとしてもよい。廃棄物の組成により生成する塩化物の組成は影響され、融点も影響を受けるが、予め生成する塩化物の組成を調べておくことにより融点を把握することができる。   Although the exhaust gas temperature at the convection heat transfer chamber inlet is maintained at 650 ° C. or lower, the preferable upper limit value of the exhaust gas temperature at the convection heat transfer chamber inlet may be the melting point of chloride generated from waste. Good. The composition of the chloride produced by the composition of the waste is affected and the melting point is also affected, but the melting point can be determined by examining the composition of the chloride produced beforehand.

対流伝熱室に上流側からスクリーン管、過熱器が配設されている場合には、排ガスはスクリーン管により冷却され最上流側過熱器入口での排ガス温度は対流伝熱室入口での温度に比べて50℃程度低下する。そこで、対流伝熱室入口での排ガス温度を650℃以下に維持することに代えて、対流伝熱室の最上流側過熱器入口での排ガス温度を600℃以下に維持することとしてもよい。対流伝熱室の最上流側過熱器入口での排ガス温度を600℃以下に維持することにより、対流伝熱室の過熱器伝熱管表面に塩化物が融解、固着することを防止でき、塩化物による伝熱管の腐食、減肉を抑制することができる。また、蒸気式スートブロワによる過熱器伝熱管表面の付着ダスト除去を良好に行うことができる。   When a screen tube and a superheater are installed in the convection heat transfer chamber from the upstream side, the exhaust gas is cooled by the screen tube, and the exhaust gas temperature at the uppermost stream superheater inlet becomes the temperature at the convection heat transfer chamber inlet. Compared to 50 ° C. Therefore, instead of maintaining the exhaust gas temperature at the convection heat transfer chamber inlet at 650 ° C. or lower, the exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber may be maintained at 600 ° C. or lower. By maintaining the exhaust gas temperature at the uppermost stream side superheater inlet of the convection heat transfer chamber at 600 ° C or less, it is possible to prevent chloride from melting and sticking to the surface of the superheater heat transfer tube in the convection heat transfer chamber. It is possible to suppress corrosion and thinning of the heat transfer tube. In addition, it is possible to satisfactorily remove adhering dust on the surface of the superheater heat transfer tube using a steam soot blower.

対流伝熱室入口での排ガス温度を過熱器伝熱管表面に付着した塩化物に代表される腐食性ダストをSOx等と反応せしめ低腐食性ダストに変換せしめることができる反応を行わせることができる温度雰囲気とすることにより、過熱器伝熱管の腐食、減肉を防止することができる。   The exhaust gas temperature at the entrance of the convection heat transfer chamber can react with corrosive dust represented by chloride adhering to the surface of the superheater heat transfer tube to react with SOx etc. and convert it into low corrosive dust. By setting the temperature atmosphere, corrosion and thinning of the superheater heat transfer tube can be prevented.

また、対流伝熱室において蒸気式スートブロワによる過熱器伝熱管表面の付着ダスト除去を行うことの代わりに、対流伝熱室にも圧力波発生装置を設置して1〜3時間毎にダスト除去運転することがより好ましい。12〜24時間毎に運転する蒸気式スートブロワと比較して、1〜3時間毎運転の圧力波発生装置では過熱器伝熱管表面のダスト層厚さをより薄くできる。すると排ガス中のSOxなどがダスト層内へ侵入し易くなって硫酸化物への反応が進行し易くなる。また硫酸化物に変換すべき塩化物の付着量も低減できるので、より効果が大きくなる。   Also, instead of removing dust adhering to the superheater heat transfer tube surface with a steam soot blower in the convection heat transfer chamber, a pressure wave generator is also installed in the convection heat transfer chamber, and dust removal operation is performed every 1 to 3 hours. More preferably. Compared with a steam soot blower that operates every 12 to 24 hours, the pressure wave generator that operates every 1 to 3 hours can reduce the thickness of the dust layer on the surface of the superheater heat transfer tube. Then, SOx or the like in the exhaust gas easily enters the dust layer, and the reaction to the sulfate easily proceeds. Moreover, since the adhesion amount of the chloride which should be converted into a sulfate can be reduced, the effect is further increased.

本発明は、上記の検討結果に基いてなされたもので、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設け、該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に配設すると共に、前記対流伝熱室の入口で排ガス温度を測定する排ガス温度計と、前記圧力波発生装置の運転を制御する圧力波発生制御装置とを備え、該圧力波発生制御装置は、排ガス温度計による対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することにより、前記課題を解決したものである。   The present invention has been made on the basis of the above-described investigation results, and is connected to a waste incinerator and is divided by two turning portions that bend the flow path of the exhaust gas for heat recovery from the exhaust gas. From the side, heat is generated by heat exchange between the first and second radiant chambers having a radiant heat transfer surface that generates radiant heat from the exhaust gas and the convection heat transfer surface of the heat transfer tube. A boiler having a convection heat transfer chamber having a superheater that further superheats, the boiler corrosion prevention device for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, comprising fuel gas and oxidation A pressure wave generator that mixes and burns the agent gas under high pressure to generate a pressure wave and discharges the pressure wave into the boiler is provided, and a pressure wave discharge nozzle of the pressure wave generator is disposed in the second radiation chamber. At the entrance of the convection heat transfer chamber. An exhaust gas thermometer for measuring the pressure wave generation control device for controlling the operation of the pressure wave generation device, the pressure wave generation control device is an exhaust gas temperature measurement value at the convection heat transfer chamber inlet by the exhaust gas thermometer When the pressure wave is equal to or greater than a predetermined value, the pressure wave generator is controlled so as to discharge a pressure wave from the pressure wave discharge nozzle.

ここで、前記圧力波発生制御装置は、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記圧力波発生ノズルから圧力波を放出するように前記圧力波発生装置を制御することができる。   Here, the pressure wave generation control device controls the pressure wave generation device to emit a pressure wave from the pressure wave generation nozzle when the measured exhaust gas temperature at the convection heat transfer chamber inlet is 650 ° C. or more. Can be controlled.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設け、該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に配設すると共に、前記対流伝熱室の最上流側過熱器入口で排ガス温度を測定する排ガス温度計と、前記圧力波発生装置の運転を制御する圧力波発生制御装置とを備え、該圧力波発生制御装置は、排ガス温度計による対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. Convection transfer having first and second radiation chambers having radiation heat transfer surfaces for generating steam and a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats A boiler equipped with a heat chamber, which prevents corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, and mixes and burns fuel gas and oxidant gas under high pressure. A pressure wave generator for generating a pressure wave and releasing the pressure wave into the boiler, and a pressure wave discharge nozzle of the pressure wave generator is disposed in the second radiation chamber, and the convection heat transfer chamber Exhaust gas temperature at which the exhaust gas temperature is measured at the most upstream superheater inlet And a pressure wave generation control device for controlling the operation of the pressure wave generation device, the pressure wave generation control device is configured to measure the exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber by an exhaust gas thermometer. When the value is equal to or greater than a predetermined value, the problem is similarly solved by controlling the pressure wave generator so as to emit a pressure wave from the pressure wave discharge nozzle.

ここで、前記圧力波発生制御装置は、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することができる。   Here, the pressure wave generation control device emits a pressure wave from the pressure wave discharge nozzle when the measured exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or more. The pressure wave generator can be controlled.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置と、前記対流伝熱室の入口で排ガス温度を測定する排ガス温度計と、前記水噴射装置の運転を制御する水噴射制御装置とを設け、該水噴射制御装置は、前記排ガス温度計による対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記水噴射装置から水を噴射するように制御することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. Convection transfer having first and second radiation chambers having radiation heat transfer surfaces for generating steam and a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats A boiler equipped with a heat chamber, which prevents corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, wherein water is injected to the water cooling wall in the second radiation chamber. A water injection device for removing adhering dust, an exhaust gas thermometer for measuring an exhaust gas temperature at an inlet of the convection heat transfer chamber, and a water injection control device for controlling the operation of the water injection device, the water injection control device At the entrance of the convection heat transfer chamber by the exhaust gas thermometer When the exhaust gas temperature measurement value is a predetermined value or more, by controlling so as to inject water from the water injector is obtained by solving the above problems as well.

ここで、前記水噴射制御装置は、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記水噴射装置から水を噴射するように制御することができる。   Here, the water injection control device can control to inject water from the water injection device when the measured exhaust gas temperature at the convection heat transfer chamber inlet is 650 ° C. or more.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置と、前記対流伝熱室の最上流側過熱器入口で排ガス温度を測定する排ガス温度計と、前記水噴射装置の運転を制御する水噴射制御装置とを設け、該水噴射制御装置は、前記排ガス温度計による対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記水噴射装置から水を噴射するように制御することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. Convection transfer having first and second radiation chambers having radiation heat transfer surfaces for generating steam and a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats A boiler equipped with a heat chamber, which prevents corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, wherein water is injected to the water cooling wall in the second radiation chamber. A water injection device that removes adhering dust, an exhaust gas thermometer that measures the exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber, and a water injection control device that controls the operation of the water injection device, The water injection control device is provided with the exhaust gas thermometer. When the exhaust gas temperature measurement value at the inlet of the most upstream superheater of the heat transfer chamber is equal to or greater than a predetermined value, the above problem is similarly solved by controlling the water injection device to inject water. .

ここで、前記水噴射制御装置は、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記水噴射装置から水を噴射するように制御することができる。   Here, the water injection control device controls the water injection device to inject water when the measured exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or more. Can do.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させ、前記第2放射室に配設された圧力波放出ノズルからボイラ内へ圧力波を放出する圧力波発生装置の運転を制御する圧力波発生制御装置を用いて、排ガス温度計により測定する対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. Convection transfer having first and second radiation chambers having radiation heat transfer surfaces for generating steam and a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats A boiler equipped with a heat chamber, which prevents corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, and is a method of mixing fuel gas and oxidant gas under high pressure and burning. The pressure wave generation control device that controls the operation of the pressure wave generation device that generates a pressure wave and discharges the pressure wave from the pressure wave discharge nozzle disposed in the second radiation chamber into the boiler, Exhaust gas at the convection heat transfer chamber inlet When degree measurement value is a predetermined value or more, there is provided a corrosion prevention method of the boiler, characterized by controlling the pressure wave generator to emit a pressure wave from the pressure wave discharge nozzle.

ここで、前記圧力波発生制御装置を用いて、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することができる。   Here, when the exhaust gas temperature measurement value at the inlet of the convection heat transfer chamber is 650 ° C. or higher, the pressure wave generation control device is used to release the pressure wave from the pressure wave discharge nozzle. The device can be controlled.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させ、前記第2放射室に配設された圧力波放出ノズルからボイラ内へ圧力波を放出する圧力波発生装置の運転を制御する圧力波発生制御装置を用いて、排ガス温度計により測定する対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. Convection transfer having first and second radiation chambers having radiation heat transfer surfaces for generating steam and a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats A boiler equipped with a heat chamber, which prevents corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber, and is a method of mixing fuel gas and oxidant gas under high pressure and burning. The pressure wave generation control device that controls the operation of the pressure wave generation device that generates a pressure wave and discharges the pressure wave from the pressure wave discharge nozzle disposed in the second radiation chamber into the boiler, Of the convection heat transfer chamber measured by a meter Provided is a boiler corrosion prevention method for controlling the pressure wave generator so as to discharge a pressure wave from the pressure wave discharge nozzle when an exhaust gas temperature measurement value at an inlet is a predetermined value or more. It is.

ここで、前記圧力波発生制御装置を用いて、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することができる。   Here, using the pressure wave generation control device, when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or more, the pressure wave is discharged from the pressure wave discharge nozzle. Thus, the pressure wave generator can be controlled.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室、及び、排ガスと伝熱管の対流伝熱面との熱交換によりボイラに供給する水を加熱するエコノマイザを備えるボイラで、前記対流伝熱室及びエコノマイザの伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置の運転を制御する水噴射制御装置を用いて、排ガス温度計により測定する対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、水を噴射するように制御することを特徴とするボイラの腐食防止方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam and convection heat transfer chambers having a superheater that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube and further superheats And a boiler equipped with an economizer for heating water supplied to the boiler by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube, and corrosion of the heat transfer tube due to dust adhering to the convection heat transfer chamber and the economizer heat transfer tube An exhaust gas thermometer using a water injection control device that controls the operation of a water injection device that injects water onto a water cooling wall in the second radiation chamber to remove adhering dust. Convection heat transfer measured by When the exhaust gas temperature measurements at the inlet is higher than a predetermined value, there is provided a corrosion prevention method of boiler and controls so as to inject water.

ここで、前記水噴射制御装置を用いて、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記水噴射装置から水を噴射するように制御することができる。   Here, when the exhaust gas temperature measurement value at the inlet of the convection heat transfer chamber is 650 ° C. or higher, the water injection control device can be used to control to inject water from the water injection device.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室、及び、排ガスと伝熱管の対流伝熱面との熱交換によりボイラに供給する水を加熱するエコノマイザを備えるボイラで、前記対流伝熱室及びエコノマイザの伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置の運転を制御する水噴射制御装置を用いて、排ガス温度計により測定する対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、水を噴射するように制御することを特徴とするボイラの腐食防止方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam and convection heat transfer chambers having a superheater that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube and further superheats And a boiler equipped with an economizer for heating water supplied to the boiler by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube, and corrosion of the heat transfer tube due to dust adhering to the convection heat transfer chamber and the economizer heat transfer tube An exhaust gas thermometer using a water injection control device that controls the operation of a water injection device that injects water onto a water cooling wall in the second radiation chamber to remove adhering dust. Convection heat transfer measured by When exhaust gas temperature measurements at the most upstream side superheater inlet of a predetermined value or more, there is provided a corrosion prevention method of boiler and controls so as to inject water.

ここで、前記水噴射制御装置を用いて、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記水噴射装置から水を噴射するように制御することができる。   Here, when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or higher, the water injection control device is used to control to inject water from the water injection device. can do.

本発明によれば、ボイラ内の対流伝熱室の過熱器伝熱管に融解、固着する塩化物により生じる伝熱管の腐食を防止し、付着ダスト層の形成によって生じるボイラの閉塞を抑制することを、効率よく、かつ、高コストの耐食金属材料の溶射、肉盛を行なわず、低い設備費、運転費で行うことができ、経済的に有利でかつ安定した廃棄物焼却施設の操業が可能となる。   According to the present invention, it is possible to prevent corrosion of the heat transfer tube caused by chloride that melts and adheres to the superheater heat transfer tube of the convection heat transfer chamber in the boiler, and to suppress the blockage of the boiler caused by the formation of the adhered dust layer. Efficient and cost-effective corrosion-resistant metal materials can be sprayed and built-up without low-cost equipment and operating costs, making it possible to operate an economically advantageous and stable waste incineration facility Become.

本発明の第1実施形態の構成を示す断面図Sectional drawing which shows the structure of 1st Embodiment of this invention. 本発明の第2実施形態の構成を示す断面図Sectional drawing which shows the structure of 2nd Embodiment of this invention. 本発明の第3実施形態の構成を示す断面図Sectional drawing which shows the structure of 3rd Embodiment of this invention. 本発明の第4実施形態の構成を示す断面図Sectional drawing which shows the structure of 4th Embodiment of this invention. 本発明の第5実施形態の構成を示す断面図Sectional drawing which shows the structure of 5th Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

まず、本発明が適用される、廃棄物焼却炉と連設されるボイラについて説明する。図1に示す如く、焼却炉10に連設され、排ガスから熱回収するためのボイラ20は、排ガスの流通路を屈曲せしめる2つの変向部21、22により区分され、排ガス流れ方向の上流側から、第1放射室26、第2放射室28、及び対流伝熱室30を備えている。焼却炉10から排ガスを受け入れる第1放射室26の入口近傍はガス混合室24となっている。焼却炉10から導入される排ガスは、第1放射室26の下方から上方へ、第2放射室28の上方から下方へ、対流伝熱室30の下方から上方へ流通される。   First, a boiler connected to a waste incinerator to which the present invention is applied will be described. As shown in FIG. 1, a boiler 20 connected to an incinerator 10 for recovering heat from exhaust gas is divided by two turning portions 21 and 22 that bend the exhaust gas flow passage, and upstream of the exhaust gas flow direction. The first radiation chamber 26, the second radiation chamber 28, and the convection heat transfer chamber 30 are provided. A gas mixing chamber 24 is provided in the vicinity of the inlet of the first radiation chamber 26 that receives exhaust gas from the incinerator 10. The exhaust gas introduced from the incinerator 10 flows from the lower side of the first radiation chamber 26 to the upper side, from the upper side to the lower side of the second radiation chamber 28, and from the lower side to the upper side of the convection heat transfer chamber 30.

前記第1放射室26及び第2放射室28は、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面をそれぞれ備えている。   The first radiation chamber 26 and the second radiation chamber 28 are each provided with a radiation heat transfer surface that generates radiant heat from the exhaust gas and generates steam.

前記対流伝熱室30は、排ガス流れ方向の上流側から、スクリーン管32、2次過熱器34、3次過熱器36、1次過熱器38、及び第2エコノマイザ42を備えている。2次過熱器34、3次過熱器36、1次過熱器38は、それぞれ、水平方向に配列した複数の伝熱管を高さ方向に多段に設けた伝熱管群を備え、該伝熱管群が対流伝熱面を構成しており、排ガスとの熱交換により蒸気を発生して更に過熱するようにされている。スクリーン管32には伝熱管が旗形に備えられ、対流伝熱室30に導入される排ガスを冷却するようにされている。   The convection heat transfer chamber 30 includes a screen tube 32, a secondary superheater 34, a tertiary superheater 36, a primary superheater 38, and a second economizer 42 from the upstream side in the exhaust gas flow direction. Each of the secondary superheater 34, the tertiary superheater 36, and the primary superheater 38 includes a heat transfer tube group in which a plurality of heat transfer tubes arranged in a horizontal direction are provided in multiple stages in the height direction. A convection heat transfer surface is formed, and steam is generated by heat exchange with the exhaust gas to further overheat. The screen tube 32 is provided with a heat transfer tube in the shape of a flag to cool the exhaust gas introduced into the convection heat transfer chamber 30.

本発明を実施するため、本発明の第1実施形態においては、対流伝熱室30の伝熱管に融解、固着する塩化物によるボイラ20の伝熱管の腐食、減肉を防止するボイラの腐食防止装置として、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ20の第2放射室28内へ圧力波を放出する圧力波発生装置61を設け、該圧力波発生装置61の圧力波放出ノズル(図示省略)を、前記第2放射室28に配設している。   In order to carry out the present invention, in the first embodiment of the present invention, the corrosion prevention of the boiler which prevents corrosion and thinning of the heat transfer tube of the boiler 20 due to chloride melted and fixed to the heat transfer tube of the convection heat transfer chamber 30. As a device, there is provided a pressure wave generator 61 that mixes fuel gas and oxidant gas under high pressure and burns them to generate a pressure wave and release the pressure wave into the second radiation chamber 28 of the boiler 20. A pressure wave discharge nozzle (not shown) of the device 61 is disposed in the second radiation chamber 28.

この圧力波放出ノズルは、少なくとも第2放射室28の高さ方向中間位置に1つ配設されている。   One pressure wave discharge nozzle is disposed at an intermediate position in the height direction of at least the second radiation chamber 28.

本実施形態においては、より好ましい形態として対流伝熱室30にも圧力波発生装置62、63の圧力波放出ノズル(図示省略)が設けられており、これらはそれぞれ、スクリーン管32と2次過熱器34との間、及び、3次過熱器36と1次過熱器38との間に設けることができる。また、これらの位置に設けられたマンホール(図示省略)に圧力波放出ノズルを取り付けることもできる。   In the present embodiment, as a more preferable form, the convection heat transfer chamber 30 is also provided with pressure wave discharge nozzles (not shown) of the pressure wave generators 62 and 63, which are respectively connected to the screen tube 32 and the secondary superheater. Between the heat exchanger 34 and between the tertiary superheater 36 and the primary superheater 38. Further, pressure wave discharge nozzles can be attached to manholes (not shown) provided at these positions.

第2放射室28に配設された圧力波発生装置61の圧力波放出ノズルから放出される圧力波を制御するため、対流伝熱室30入口又は第2放射室28出口での排ガス温度を測定する排ガス温度計71と、圧力波発生装置61の運転を制御する圧力波発生制御装置70とを備え、該圧力波発生制御装置70は、排ガス温度計71による排ガス温度測定値が所定値、例えば650℃以上であるとき、圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置61を制御する。   In order to control the pressure wave emitted from the pressure wave discharge nozzle of the pressure wave generator 61 disposed in the second radiation chamber 28, the exhaust gas temperature at the inlet of the convection heat transfer chamber 30 or the outlet of the second radiation chamber 28 is measured. An exhaust gas thermometer 71 and a pressure wave generation control device 70 for controlling the operation of the pressure wave generation device 61. In the pressure wave generation control device 70, an exhaust gas temperature measurement value by the exhaust gas thermometer 71 is a predetermined value, for example, When the temperature is 650 ° C. or higher, the pressure wave generator 61 is controlled so as to emit a pressure wave from the pressure wave discharge nozzle.

前記圧力波発生装置61は、その混合ガスホルダに燃料ガス(例えばメタンガス)と酸化剤ガス(例えば酸素ガス)を高圧下で充填、混合し、前記圧力波発生制御装置70から与えられる指示により混合ガスを点火プラグで着火し、爆発燃焼させて圧力波を発生させる。爆発燃焼時の混合ガスホルダ内の圧力は例えば最高53.2barに達する。これにより、ボイラ20の第2放射室28に配設された圧力波放出ノズルの先端から第2放射室28内部に圧力波が放出される。これにより、第2放射室28の放射伝熱面に振動及び風圧が与えられ、付着ダストが剥離され除去される。   The pressure wave generator 61 fills and mixes a fuel gas (for example, methane gas) and an oxidant gas (for example, oxygen gas) in the mixed gas holder under high pressure, and mixes the gas according to instructions given from the pressure wave generation control device 70. Is ignited with a spark plug and exploded and burned to generate a pressure wave. The pressure in the mixed gas holder during the explosion combustion reaches, for example, a maximum of 53.2 bar. Thereby, a pressure wave is emitted into the second radiation chamber 28 from the tip of the pressure wave discharge nozzle disposed in the second radiation chamber 28 of the boiler 20. Thus, vibration and wind pressure are applied to the radiation heat transfer surface of the second radiation chamber 28, and the attached dust is peeled off and removed.

本実施形態では、対流伝熱室30にも圧力波発生装置62、63を配設しているので、対流伝熱室30の対流伝熱面に付着したダストも除去される。   In the present embodiment, since the pressure wave generators 62 and 63 are also disposed in the convection heat transfer chamber 30, dust attached to the convection heat transfer surface of the convection heat transfer chamber 30 is also removed.

圧力波放出ノズルから放出される圧力波が、対流伝熱面に付着ダストを剥離させる程度の振動及び風圧を与える範囲は、圧力波放出ノズルから上方及び下方へそれぞれ3.5m程度の範囲である。そのため、対流伝熱室30における圧力波放出ノズルの高さ方向配設間隔を7m以下とすることが好ましく、付着ダストを剥離させる作用が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができる。さらに、圧力波放出ノズルの高さ方向配設間隔を3m以上とすることが好ましく、隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することなく、付着ダストを確実に剥離させることができる。このように、対流伝熱室30の伝熱管群に十分な振動と風圧を与えるためには、圧力波放出ノズルの高さ方向配設間隔を3m以上7m以下とすることが好ましい。   The range in which the pressure wave discharged from the pressure wave discharge nozzle gives vibration and wind pressure to the extent that the adhering dust is separated from the convection heat transfer surface is about 3.5 m upward and downward from the pressure wave discharge nozzle. . Therefore, it is preferable to set the height direction disposition interval of the pressure wave discharge nozzles in the convection heat transfer chamber 30 to 7 m or less, and a gap is formed between the adjacent range and the range in which the adhered dust is separated. Can be provided. Furthermore, it is preferable that the height wave interval between the pressure wave discharge nozzles is 3 m or more, and the pressure waves discharged from the adjacent pressure wave discharge nozzles interfere with each other, and the adhesion of the pressure wave discharge nozzles is not reduced. Dust can be reliably peeled off. Thus, in order to give sufficient vibration and wind pressure to the heat transfer tube group of the convection heat transfer chamber 30, it is preferable that the arrangement interval of the pressure wave discharge nozzles in the height direction is 3 m or more and 7 m or less.

なお、図2に示す第2実施形態のように、排ガス温度計72を対流伝熱室30の最上流側(図では一番下)の過熱器34の入口に設け、圧力波発生制御装置70は、該排ガス温度計72により検出される対流伝熱室30の最上流側過熱器34の入口での排ガス温度測定値が、第1実施形態の所定値よりも例えば50℃低い所定値、例えば600℃以上であるとき、圧力波発生装置61〜63の圧力波放出ノズルから圧力波を放出するように制御することもできる。   As in the second embodiment shown in FIG. 2, an exhaust gas thermometer 72 is provided at the inlet of the superheater 34 on the most upstream side (lowermost in the drawing) of the convection heat transfer chamber 30, and the pressure wave generation control device 70. The exhaust gas temperature measurement value at the inlet of the uppermost stream superheater 34 of the convection heat transfer chamber 30 detected by the exhaust gas thermometer 72 is a predetermined value, for example, 50 ° C. lower than the predetermined value of the first embodiment, for example, When the temperature is 600 ° C. or higher, the pressure wave can be controlled to be discharged from the pressure wave discharge nozzles of the pressure wave generators 61 to 63.

次に、図3に示す如く、ボイラ20の下流側に別置エコノマイザ50が付設される場合に適用した本発明の第3実施形態について説明する。本実施形態では、ボイラ20の下流側に別置エコノマイザ50が接続され、該別置エコノマイザ50内には第1エコノマイザ51が配設されている。別置エコノマイザ50の第1エコノマイザ51と対流伝熱室30の第2エコノマイザ42には伝熱管が配設され、排ガスとの熱交換により水が加熱され加温水が生成され、ボイラ20に供給される。   Next, as shown in FIG. 3, a third embodiment of the present invention applied when a separate economizer 50 is attached downstream of the boiler 20 will be described. In the present embodiment, a separate economizer 50 is connected to the downstream side of the boiler 20, and a first economizer 51 is disposed in the separate economizer 50. The first economizer 51 of the separate economizer 50 and the second economizer 42 of the convection heat transfer chamber 30 are provided with heat transfer tubes, and water is heated by heat exchange with the exhaust gas to generate heated water, which is supplied to the boiler 20. The

本実施形態においては、図3に示す如く、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ20内と第1エコノマイザ51内へ圧力波を放出する圧力波発生装置61〜64を設け、該圧力波発生装置61〜64の圧力波放出ノズルを、前記第2放射室28、対流伝熱室30及び別置エコノマイザ50に配設する。   In the present embodiment, as shown in FIG. 3, generation of a pressure wave that mixes fuel gas and oxidant gas under high pressure and burns them to generate a pressure wave and release the pressure wave into the boiler 20 and the first economizer 51. The devices 61 to 64 are provided, and the pressure wave discharge nozzles of the pressure wave generators 61 to 64 are disposed in the second radiation chamber 28, the convection heat transfer chamber 30, and the separate economizer 50.

そして、対流伝熱室30入口又は第2放射室28出口での排ガス温度を測定する排ガス温度計71と、圧力波発生装置61の運転を制御する圧力波発生制御装置70とを備え、圧力波発生制御装置70は、排ガス温度計71による排ガス温度測定値が所定値、例えば650℃以上であるとき、圧力波発生装置61の圧力波放出ノズルから圧力波を放出するように制御する。   An exhaust gas thermometer 71 that measures the exhaust gas temperature at the inlet of the convection heat transfer chamber 30 or the outlet of the second radiation chamber 28 and a pressure wave generation control device 70 that controls the operation of the pressure wave generator 61 are provided. The generation control device 70 performs control so as to release a pressure wave from the pressure wave discharge nozzle of the pressure wave generator 61 when the exhaust gas temperature measurement value by the exhaust gas thermometer 71 is a predetermined value, for example, 650 ° C. or more.

なお、第3実施形態では、圧力波発生制御装置70により制御される圧力波発生装置を第2放射室28に1個配設し、別途、圧力波発生装置を対流伝熱室30に2個、別置エコノマイザ50に少なくとも1個配設していたが、圧力波発生装置の配設位置及び個数はこれに限定されず、別置エコノマイザ50の圧力波発生装置を省略したり、対流伝熱室30に圧力波発生装置を1個配設することもできる。   In the third embodiment, one pressure wave generator controlled by the pressure wave generation controller 70 is disposed in the second radiation chamber 28, and two pressure wave generators are separately provided in the convection heat transfer chamber 30. Although at least one of the separate economizers 50 is disposed, the position and number of the pressure wave generators are not limited to this, and the pressure wave generators of the separate economizer 50 may be omitted or convection heat transfer may be performed. One pressure wave generator may be disposed in the chamber 30.

又、前記第1〜第3実施形態においては、いずれも、第2放射室28に圧力波放出ノズルを設置して放射伝熱面への付着ダストを剥離除去していたが、例えば図4に示す第4実施形態(第1実施形態に対応)や図5に示す第5実施形態(第2実施形態に対応)のように、圧力波放出ノズルの代わりにボイラ20頂部から水噴射ノズル81を挿入して第2放射室28内の水冷壁上に水を噴射して付着ダストを除去する水噴射装置80を用いてもよい。   In each of the first to third embodiments, a pressure wave discharge nozzle is installed in the second radiation chamber 28 to remove and remove dust adhering to the radiation heat transfer surface. For example, FIG. As shown in the fourth embodiment (corresponding to the first embodiment) shown in FIG. 5 or the fifth embodiment (corresponding to the second embodiment) shown in FIG. You may use the water injection apparatus 80 which inserts and injects water on the water cooling wall in the 2nd radiation chamber 28, and removes adhering dust.

前記水噴射ノズル81から噴射される水は、排ガス温度計71(第4実施形態)又は72(第5実施形態)で測定される排気ガス温度が所定値、例えば650℃(第4実施形態)又は600℃(第5実施形態)以上であるときに噴射されるように、水噴射制御装置82により制御される。   The water jetted from the water jet nozzle 81 has a predetermined exhaust gas temperature measured by an exhaust gas thermometer 71 (fourth embodiment) or 72 (fifth embodiment), for example, 650 ° C. (fourth embodiment). Or it is controlled by the water injection control device 82 so that it is injected when the temperature is 600 ° C. (the fifth embodiment) or higher.

第4、第5実施形態では、第1〜第3実施形態と同様の圧力波発生装置62、63も設けているので、対流伝熱室30の付着ダストも除去できる。なお、これらを省略して、第2放射室28への水噴射のみとしてもよい。   In the fourth and fifth embodiments, the pressure wave generators 62 and 63 similar to those in the first to third embodiments are also provided, so that the adhering dust in the convection heat transfer chamber 30 can also be removed. Note that these may be omitted and only water injection into the second radiation chamber 28 may be performed.

又、第1、第3、第4実施形態では排ガス温度計71のみを設け、第2、第5実施形態では排ガス温度計72のみを設けていたが、排ガス温度計71、72を共に設けて動作を確実にすることもできる。   In the first, third, and fourth embodiments, only the exhaust gas thermometer 71 is provided, and in the second and fifth embodiments, only the exhaust gas thermometer 72 is provided. However, both the exhaust gas thermometers 71 and 72 are provided. The operation can be ensured.

前記説明では、本発明を都市ごみ焼却炉に連設されたボイラに適用していたが、本発明の適用対象はこれに限定されない。   In the above description, the present invention is applied to a boiler connected to a municipal waste incinerator, but the application target of the present invention is not limited to this.

10…焼却炉
20…ボイラ
21、22…変向部
26…第1放射室
28…第2放射室
30…対流伝熱室
32…スクリーン管
34…2次過熱器
36…3次過熱器
38…1次過熱器
42…第2エコノマイザ
50…別置エコノマイザ
51…第1エコノマイザ
61、62、63、64…圧力波発生装置
70…圧力波発生制御装置
71、72…排ガス温度計
80…水噴射装置
81…水噴射ノズル
82…水噴射制御装置
DESCRIPTION OF SYMBOLS 10 ... Incinerator 20 ... Boiler 21, 22 ... Turning part 26 ... 1st radiation chamber 28 ... 2nd radiation chamber 30 ... Convection heat transfer chamber 32 ... Screen tube 34 ... Secondary superheater 36 ... Tertiary superheater 38 ... Primary superheater 42 ... second economizer 50 ... separate economizer 51 ... first economizer 61, 62, 63, 64 ... pressure wave generator 70 ... pressure wave generator controller 71, 72 ... exhaust gas thermometer 80 ... water injection device 81 ... Water injection nozzle 82 ... Water injection control device

Claims (16)

廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設け、該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に配設すると共に、
前記対流伝熱室の入口で排ガス温度を測定する排ガス温度計と、前記圧力波発生装置の運転を制御する圧力波発生制御装置とを備え、
該圧力波発生制御装置は、排ガス温度計による対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention device for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
A pressure wave generator is provided that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler. The pressure wave discharge nozzle of the pressure wave generator includes the second While arranged in the radiation chamber,
An exhaust gas thermometer that measures the exhaust gas temperature at the inlet of the convection heat transfer chamber, and a pressure wave generation control device that controls the operation of the pressure wave generation device,
The pressure wave generation control device controls the pressure wave generation device to emit a pressure wave from the pressure wave discharge nozzle when the exhaust gas temperature measurement value at the convection heat transfer chamber inlet by the exhaust gas thermometer is equal to or greater than a predetermined value. A boiler corrosion prevention device characterized by controlling.
前記圧力波発生制御装置は、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とする請求項1に記載のボイラの腐食防止装置。   The pressure wave generation control device controls the pressure wave generation device so as to emit a pressure wave from the pressure wave discharge nozzle when a measured value of exhaust gas temperature at the inlet of the convection heat transfer chamber is 650 ° C. or more. The boiler corrosion prevention apparatus according to claim 1. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設け、該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に配設すると共に、
前記対流伝熱室の最上流側過熱器入口で排ガス温度を測定する排ガス温度計と、前記圧力波発生装置の運転を制御する圧力波発生制御装置とを備え、
該圧力波発生制御装置は、排ガス温度計による対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention device for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
A pressure wave generator is provided that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler. The pressure wave discharge nozzle of the pressure wave generator includes the second While arranged in the radiation chamber,
An exhaust gas thermometer that measures the exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber, and a pressure wave generation control device that controls the operation of the pressure wave generation device,
The pressure wave generation control device emits a pressure wave from the pressure wave discharge nozzle when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber by the exhaust gas thermometer is a predetermined value or more. An apparatus for preventing corrosion of a boiler, characterized by controlling the pressure wave generator.
前記圧力波発生制御装置は、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とする請求項3に記載のボイラの腐食防止装置。   The pressure wave generation control device is configured to release the pressure wave from the pressure wave discharge nozzle when the measured exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or more. The boiler corrosion prevention apparatus according to claim 3, wherein the generator is controlled. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、
前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置と、
前記対流伝熱室の入口で排ガス温度を測定する排ガス温度計と、
前記水噴射装置の運転を制御する水噴射制御装置とを設け、
該水噴射制御装置は、前記排ガス温度計による対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とするボイラの腐食防止装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention device for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
A water injection device for removing adhering dust by injecting water onto the water cooling wall in the second radiation chamber;
An exhaust gas thermometer for measuring the exhaust gas temperature at the entrance of the convection heat transfer chamber;
A water injection control device for controlling the operation of the water injection device;
The water injection control device performs control to inject water from the water injection device when an exhaust gas temperature measurement value at a convection heat transfer chamber inlet by the exhaust gas thermometer is equal to or greater than a predetermined value. Corrosion prevention device.
前記水噴射制御装置は、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とする請求項5に記載のボイラの腐食防止装置。   The said water-injection control apparatus is controlled to inject water from the said water-injection apparatus, when the exhaust gas temperature measured value in the said convection heat transfer chamber inlet is 650 degreeC or more. Boiler corrosion prevention equipment. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止装置であって、
前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置と、
前記対流伝熱室の最上流側過熱器入口で排ガス温度を測定する排ガス温度計と、
前記水噴射装置の運転を制御する水噴射制御装置とを設け、
該水噴射制御装置は、前記排ガス温度計による対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とするボイラの腐食防止装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention device for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
A water injection device for removing adhering dust by injecting water onto the water cooling wall in the second radiation chamber;
An exhaust gas thermometer for measuring the exhaust gas temperature at the most upstream superheater inlet of the convection heat transfer chamber;
A water injection control device for controlling the operation of the water injection device;
The water injection control device controls the water injection device to inject water when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber by the exhaust gas thermometer is a predetermined value or more. A boiler corrosion prevention device characterized by that.
前記水噴射制御装置は、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とする請求項7に記載のボイラの腐食防止装置。   The water injection control device controls to inject water from the water injection device when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or more. The boiler corrosion prevention apparatus according to claim 7. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させ、前記第2放射室に配設された圧力波放出ノズルからボイラ内へ圧力波を放出する圧力波発生装置の運転を制御する圧力波発生制御装置を用いて、
排ガス温度計により測定する対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention method for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
Operation of a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns them to generate pressure waves, and discharges pressure waves into the boiler from a pressure wave discharge nozzle disposed in the second radiation chamber Using a pressure wave generation control device that controls
The pressure wave generator is controlled so as to emit a pressure wave from the pressure wave discharge nozzle when a measured value of the exhaust gas temperature at the convection heat transfer chamber inlet measured by an exhaust gas thermometer is not less than a predetermined value. To prevent boiler corrosion.
前記圧力波発生制御装置を用いて、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とする請求項9に記載のボイラの腐食防止方法。   Using the pressure wave generation control device, when the measured exhaust gas temperature at the convection heat transfer chamber inlet is 650 ° C. or higher, the pressure wave generation device is controlled to emit a pressure wave from the pressure wave discharge nozzle. The method for preventing corrosion of a boiler according to claim 9, wherein: 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室を備えるボイラで、前記対流伝熱室の伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させ、前記第2放射室に配設された圧力波放出ノズルからボイラ内へ圧力波を放出する圧力波発生装置の運転を制御する圧力波発生制御装置を用いて、
排ガス温度計により測定する対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とするボイラの腐食防止方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A boiler having first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats. A boiler corrosion prevention method for preventing corrosion of the heat transfer tube due to dust adhering to the heat transfer tube of the convection heat transfer chamber,
Operation of a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns them to generate pressure waves, and discharges pressure waves into the boiler from a pressure wave discharge nozzle disposed in the second radiation chamber Using a pressure wave generation control device that controls
When the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber measured by the exhaust gas thermometer is equal to or greater than a predetermined value, the pressure wave generator is configured to emit a pressure wave from the pressure wave discharge nozzle. A method for preventing corrosion of a boiler, characterized by controlling.
前記圧力波発生制御装置を用いて、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記圧力波放出ノズルから圧力波を放出するように前記圧力波発生装置を制御することを特徴とする請求項11に記載のボイラの腐食防止方法。   When the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or higher using the pressure wave generation control device, the pressure wave is discharged from the pressure wave discharge nozzle. The method for preventing corrosion of a boiler according to claim 11, wherein the pressure wave generator is controlled. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室、及び、排ガスと伝熱管の対流伝熱面との熱交換によりボイラに供給する水を加熱するエコノマイザを備えるボイラで、前記対流伝熱室及びエコノマイザの伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、
前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置の運転を制御する水噴射制御装置を用いて、
排ガス温度計により測定する対流伝熱室入口での排ガス温度測定値が所定値以上であるとき、水を噴射するように制御することを特徴とするボイラの腐食防止方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas First and second radiation chambers having a heat transfer surface, a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube, and further superheats, and exhaust gas and heat transfer A boiler equipped with an economizer that heats the water supplied to the boiler by heat exchange with the convection heat transfer surface of the heat pipe, and the corrosion of the boiler that prevents corrosion of the heat transfer pipe due to dust adhering to the convection heat transfer chamber and the heat transfer pipe of the economizer A prevention method,
Using a water injection control device that controls the operation of the water injection device that injects water onto the water cooling wall in the second radiation chamber to remove adhering dust,
A method for preventing corrosion of a boiler, characterized in that water is injected when a measured value of exhaust gas temperature at a convection heat transfer chamber inlet measured by an exhaust gas thermometer is equal to or greater than a predetermined value.
前記水噴射制御装置を用いて、前記対流伝熱室入口での排ガス温度測定値が650℃以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とする請求項13に記載のボイラの腐食防止方法。   The water injection control device is used to control to inject water from the water injection device when the measured exhaust gas temperature at the convection heat transfer chamber inlet is 650 ° C or higher. The method for preventing corrosion of a boiler as described in 1. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する過熱器を有する対流伝熱室、及び、排ガスと伝熱管の対流伝熱面との熱交換によりボイラに供給する水を加熱するエコノマイザを備えるボイラで、前記対流伝熱室及びエコノマイザの伝熱管に付着したダストによる伝熱管の腐食を防止するボイラの腐食防止方法であって、
前記第2放射室内の水冷壁に水を噴射して付着ダストを除去する水噴射装置の運転を制御する水噴射制御装置を用いて、
排ガス温度計により測定する対流伝熱室の最上流側過熱器入口での排ガス温度測定値が所定値以上であるとき、水を噴射するように制御することを特徴とするボイラの腐食防止方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas First and second radiation chambers having a heat transfer surface, a convection heat transfer chamber having a superheater that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube, and further superheats, and exhaust gas and heat transfer A boiler equipped with an economizer that heats the water supplied to the boiler by heat exchange with the convection heat transfer surface of the heat pipe, and the corrosion of the boiler that prevents corrosion of the heat transfer pipe due to dust adhering to the convection heat transfer chamber and the heat transfer pipe of the economizer A prevention method,
Using a water injection control device that controls the operation of the water injection device that injects water onto the water cooling wall in the second radiation chamber to remove adhering dust,
A method for preventing corrosion of a boiler, characterized in that control is performed such that water is injected when a measured value of an exhaust gas temperature at an inlet of an uppermost stream side superheater of a convection heat transfer chamber measured by an exhaust gas thermometer is a predetermined value or more.
前記水噴射制御装置を用いて、前記対流伝熱室の最上流側過熱器入口での排ガス温度測定値が600℃以上であるとき、前記水噴射装置から水を噴射するように制御することを特徴とする請求項15に記載のボイラの腐食防止方法。   Using the water injection control device, when the exhaust gas temperature measurement value at the most upstream superheater inlet of the convection heat transfer chamber is 600 ° C. or higher, control is performed so that water is injected from the water injection device. The method for preventing corrosion of a boiler according to claim 15, characterized in that:
JP2016174041A 2016-03-31 2016-09-06 Boiler anticorrosive device and anticorrosive method Pending JP2017187267A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073484 2016-03-31
JP2016073484 2016-03-31

Publications (1)

Publication Number Publication Date
JP2017187267A true JP2017187267A (en) 2017-10-12

Family

ID=60046406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174041A Pending JP2017187267A (en) 2016-03-31 2016-09-06 Boiler anticorrosive device and anticorrosive method

Country Status (1)

Country Link
JP (1) JP2017187267A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105394A (en) * 2017-12-12 2019-06-27 Jfeエンジニアリング株式会社 Method for suppressing blockage and corrosion in waste incinerator boiler
JP2019158166A (en) * 2018-03-07 2019-09-19 Jfeエンジニアリング株式会社 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
JP2019158167A (en) * 2018-03-07 2019-09-19 Jfeエンジニアリング株式会社 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
JP2020146624A (en) * 2019-03-13 2020-09-17 Jfeエンジニアリング株式会社 Exhaust gas treatment device and method
JP2021038947A (en) * 2019-08-30 2021-03-11 川崎重工業株式会社 Corrosion detection device and corrosion detection method
JP2021042870A (en) * 2019-09-06 2021-03-18 三菱重工環境・化学エンジニアリング株式会社 System of removing ash deposited on boiler pipe groups

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180217A (en) * 1982-04-14 1983-10-21 Seo Koatsu Kogyo Kk Method for removing soot
JPH01244209A (en) * 1988-03-25 1989-09-28 Ishikawajima Harima Heavy Ind Co Ltd Operation controlling method for soot blower
JP2002022133A (en) * 2000-07-12 2002-01-23 Nkk Corp Waste heat boiler in waste incinerator and its exhaust- gas temperature control method
JP2003083507A (en) * 2001-09-07 2003-03-19 Takuma Co Ltd High-temperature and high-pressure boiler
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2004188267A (en) * 2002-12-09 2004-07-08 Nippon Steel Corp Apparatus for treating boiler blow water of exhaust gas treating system in waste melting equipment
JP2004202485A (en) * 2002-11-07 2004-07-22 Jfe Plant & Service Corp Highly efficient method for cleaning plant equipment
JP2004278921A (en) * 2003-03-17 2004-10-07 Jfe Engineering Kk Dust removing method, dust removing device and dust attachment inhibiting method
JP2005188918A (en) * 2003-11-20 2005-07-14 United Technol Corp <Utc> Cleaning apparatus for internal surface and cleaning method for internal surface of vessel
JP2006342991A (en) * 2005-06-07 2006-12-21 Mitsubishi Heavy Ind Ltd Furnace interior cleaning method and device
JP2008106960A (en) * 2006-10-23 2008-05-08 Chugoku Electric Power Co Inc:The Method of operating soot blower device
JP2008304178A (en) * 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler
CN201688416U (en) * 2009-12-31 2010-12-29 北京中科通用能源环保有限责任公司 Ash cleaning system for heated surface at the tail of garbage incinerator
JP2011075243A (en) * 2009-10-01 2011-04-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method of cleaning exhaust gas heat exchanger
CN201903063U (en) * 2010-12-24 2011-07-20 伟明环保设备有限公司 Vertical refuse incinerator
CN104566387A (en) * 2014-12-20 2015-04-29 无锡东马锅炉有限公司 Boiler for domestic garbage incineration
JP2017020773A (en) * 2015-07-07 2017-01-26 Jfeエンジニアリング株式会社 Dust removal device of boiler and dust removal method
JP2017181007A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Blockage suppression device and blockage suppression method for boiler
JP2017181008A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Dust removing device and dust removing method for boiler

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180217A (en) * 1982-04-14 1983-10-21 Seo Koatsu Kogyo Kk Method for removing soot
JPH01244209A (en) * 1988-03-25 1989-09-28 Ishikawajima Harima Heavy Ind Co Ltd Operation controlling method for soot blower
JP2002022133A (en) * 2000-07-12 2002-01-23 Nkk Corp Waste heat boiler in waste incinerator and its exhaust- gas temperature control method
JP2003083507A (en) * 2001-09-07 2003-03-19 Takuma Co Ltd High-temperature and high-pressure boiler
JP2003222303A (en) * 2002-01-29 2003-08-08 Jfe Engineering Kk Method of preventing stain of surface of heat transfer tube
JP2004202485A (en) * 2002-11-07 2004-07-22 Jfe Plant & Service Corp Highly efficient method for cleaning plant equipment
JP2004188267A (en) * 2002-12-09 2004-07-08 Nippon Steel Corp Apparatus for treating boiler blow water of exhaust gas treating system in waste melting equipment
JP2004278921A (en) * 2003-03-17 2004-10-07 Jfe Engineering Kk Dust removing method, dust removing device and dust attachment inhibiting method
JP2005188918A (en) * 2003-11-20 2005-07-14 United Technol Corp <Utc> Cleaning apparatus for internal surface and cleaning method for internal surface of vessel
JP2006342991A (en) * 2005-06-07 2006-12-21 Mitsubishi Heavy Ind Ltd Furnace interior cleaning method and device
JP2008106960A (en) * 2006-10-23 2008-05-08 Chugoku Electric Power Co Inc:The Method of operating soot blower device
JP2008304178A (en) * 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler
JP2011075243A (en) * 2009-10-01 2011-04-14 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method of cleaning exhaust gas heat exchanger
CN201688416U (en) * 2009-12-31 2010-12-29 北京中科通用能源环保有限责任公司 Ash cleaning system for heated surface at the tail of garbage incinerator
CN201903063U (en) * 2010-12-24 2011-07-20 伟明环保设备有限公司 Vertical refuse incinerator
CN104566387A (en) * 2014-12-20 2015-04-29 无锡东马锅炉有限公司 Boiler for domestic garbage incineration
JP2017020773A (en) * 2015-07-07 2017-01-26 Jfeエンジニアリング株式会社 Dust removal device of boiler and dust removal method
JP2017181007A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Blockage suppression device and blockage suppression method for boiler
JP2017181008A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Dust removing device and dust removing method for boiler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Continuous Boiler Cleaning with Explosion Generators -the Alternative to Soot Blowers, Shower Cleani", EXPLOSION GENERATOR-ENGLISH PAPER.DOCX, JPN7019003744, 2012, pages 1 - 15, ISSN: 0004286635 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105394A (en) * 2017-12-12 2019-06-27 Jfeエンジニアリング株式会社 Method for suppressing blockage and corrosion in waste incinerator boiler
JP2019158166A (en) * 2018-03-07 2019-09-19 Jfeエンジニアリング株式会社 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
JP2019158167A (en) * 2018-03-07 2019-09-19 Jfeエンジニアリング株式会社 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
JP2020146624A (en) * 2019-03-13 2020-09-17 Jfeエンジニアリング株式会社 Exhaust gas treatment device and method
JP2021038947A (en) * 2019-08-30 2021-03-11 川崎重工業株式会社 Corrosion detection device and corrosion detection method
JP7379023B2 (en) 2019-08-30 2023-11-14 川崎重工業株式会社 Corrosion detection device and corrosion detection method
JP2021042870A (en) * 2019-09-06 2021-03-18 三菱重工環境・化学エンジニアリング株式会社 System of removing ash deposited on boiler pipe groups

Similar Documents

Publication Publication Date Title
JP2017187267A (en) Boiler anticorrosive device and anticorrosive method
US11486572B2 (en) Systems and methods for Utilizing flue gas
JP2017181007A (en) Blockage suppression device and blockage suppression method for boiler
US7845292B2 (en) Process for slag and corrosion control in boilers
JP6693239B2 (en) Boiler dust removing device and dust removing method
PT1760441E (en) Device and an associated method for capturing the specific heat flow on a membrane wall in order to otpimize the operation of a boiler.
CN105240861A (en) Incineration boiler for high-concentration salty organic waste liquid
JP7153431B2 (en) Boiler corrosion prevention device and corrosion prevention method
JP5971438B1 (en) Boiler dust removing device and dust removing method
CN107046808A (en) Method for the alloy for electropositive metal of burning
JP5995842B2 (en) HCl synthesizer with steam generation
JP6863257B2 (en) Waste incinerator Boiler blockage and corrosion control methods
JP2020146624A (en) Exhaust gas treatment device and method
Xu et al. Technological review on enhancing the energy efficiency of MSW incineration plant
JP5974126B1 (en) Energy recovery equipment and waste incineration equipment
JP2019105394A (en) Method for suppressing blockage and corrosion in waste incinerator boiler
CN109210557B (en) Boiler system and method for burning high-alkali coal
CN204328984U (en) The hybrid radiant boiler of a kind of revolution shape
Saxena et al. Development of a high-pressure hot-corrosion burner rig for testing structural materials following long exposures to Arabian extra light crude oil combustion products
US20170082284A1 (en) Combustion Of Lithium At Different Temperatures And Pres-sures And With Gas Surpluses Using Porous Tubes As Burners
JP2019158167A (en) Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
Adams et al. Seghers boiler prism: a proven primary measure against high temperature boiler corrosion
JP2007271205A (en) Furnace situation monitoring/controlling method for melting furnace and its device
JP2019045104A (en) Waste incinerator boiler
KR20180120432A (en) Probe that induce corrosion at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616