JP5971438B1 - Boiler dust removing device and dust removing method - Google Patents

Boiler dust removing device and dust removing method Download PDF

Info

Publication number
JP5971438B1
JP5971438B1 JP2016032492A JP2016032492A JP5971438B1 JP 5971438 B1 JP5971438 B1 JP 5971438B1 JP 2016032492 A JP2016032492 A JP 2016032492A JP 2016032492 A JP2016032492 A JP 2016032492A JP 5971438 B1 JP5971438 B1 JP 5971438B1
Authority
JP
Japan
Prior art keywords
heat transfer
pressure wave
exhaust gas
boiler
convection heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016032492A
Other languages
Japanese (ja)
Other versions
JP2017020773A (en
Inventor
達将 野田
達将 野田
坪井 敏男
敏男 坪井
彰人 菅野
彰人 菅野
山本 浩
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56701667&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5971438(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Application granted granted Critical
Publication of JP5971438B1 publication Critical patent/JP5971438B1/en
Publication of JP2017020773A publication Critical patent/JP2017020773A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

【課題】スートブロワを用いずにボイラ内部のダストを効率的に除去して、ボイラの収熱量を維持する。【解決手段】廃棄物焼却炉10に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部21、22により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1放射室26、第2放射室28、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室30を備えたボイラ20で、第2放射室28の放射伝熱面と対流伝熱室30の対流伝熱面に付着したダストを除去するために、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ20内へ圧力波を放出する圧力波発生装置61〜64を設けると共に、圧力波発生装置61〜64の圧力波放出ノズルを、第2放射室28に1個以上6個以下配設し、対流伝熱室30に2個以上6個以下配設する。【選択図】図1An object of the present invention is to efficiently remove dust inside a boiler without using a soot blower and maintain the amount of heat collected by the boiler. Radiation heat from exhaust gas from upstream side, which is divided by two turning portions 21 and 22 which are connected to a waste incinerator 10 and bend the flow path of exhaust gas for heat recovery from the exhaust gas. In response to the heat exchange between the first radiation chamber 26, the second radiation chamber 28, and the exhaust heat and the convection heat transfer surface of the heat transfer tube, which are provided with a radiation heat transfer surface that generates steam upon receipt of the heat, further heat is generated. In order to remove dust adhering to the radiant heat transfer surface of the second radiant chamber 28 and the convective heat transfer surface of the convection heat transfer chamber 30 in the boiler 20 having the convection heat transfer chamber 30, fuel gas and oxidant gas are used. Pressure wave generators 61 to 64 that mix and burn under high pressure to generate pressure waves and release pressure waves into the boiler 20 are provided, and the pressure wave discharge nozzles of the pressure wave generators 61 to 64 are connected to the second radiation. 1 to 6 are disposed in the chamber 28, and the convection heat transfer chamber 30 is disposed. More than 6 or less disposed. [Selection] Figure 1

Description

本発明は、ボイラのダスト除去装置及びダスト除去方法に係り、特に、発電設備を有するごみ焼却施設に用いるのに好適な、ボイラのダスト除去装置及びダスト除去方法に関する。   The present invention relates to a boiler dust removal apparatus and a dust removal method, and more particularly to a boiler dust removal apparatus and a dust removal method suitable for use in a garbage incineration facility having a power generation facility.

発電設備を有するごみ焼却施設の運営において、発電量・売電量の維持と向上は、ごみの安定処理に次ぐ最重要項目のひとつである。   In the operation of a waste incineration facility with power generation facilities, maintaining and improving the amount of power generated and sold is one of the most important items after the stable treatment of waste.

ごみ焼却施設における発電は、焼却炉でのごみの燃焼から得られる高温の排ガスからボイラにて熱回収を行い、所定の温度・圧力の蒸気を発生させてタービン発電機に導入することにより行われている。   Power generation at a waste incineration facility is performed by recovering heat from a high-temperature exhaust gas obtained from the combustion of waste in an incinerator and generating steam at a predetermined temperature and pressure and introducing it into a turbine generator. ing.

ボイラは、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備える放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生し更に過熱する対流伝熱室とを備えている。   The boiler has a radiant chamber having a radiant heat transfer surface that generates steam by receiving radiant heat from the exhaust gas, a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube, and further superheats. It has.

放射室には、排ガス流路を囲む鋼製側壁の外側に加温水を流通させ放射加熱により蒸気を発生させる放射伝熱管が放射伝熱面として配設されている。   In the radiant chamber, a radiant heat transfer tube is provided as a radiant heat transfer surface through which heated water is circulated on the outside of the steel side wall surrounding the exhaust gas flow path to generate steam by radiant heating.

対流伝熱室には、排ガス流路内に排ガスと接触して対流伝熱により蒸気を発生させ更に過熱する伝熱管(過熱器とも称する)が対流伝熱面として配設されている。対流伝熱面は水平方向に伝熱管が複数配設された伝熱管群が高さ方向に複数段配設されて構成されている。   In the convection heat transfer chamber, a heat transfer tube (also referred to as a superheater) that contacts the exhaust gas in the exhaust gas flow path to generate steam by convective heat transfer and further superheats is disposed as a convection heat transfer surface. The convection heat transfer surface is configured by arranging a plurality of heat transfer tube groups in which a plurality of heat transfer tubes are arranged in the horizontal direction in the height direction.

対流伝熱室には、排ガス流路内に水を加熱して加温水とする伝熱管を有するエコノマイザが配設されることがある。   The convection heat transfer chamber may be provided with an economizer having a heat transfer tube that heats water in the exhaust gas flow path to produce heated water.

ごみ焼却において発生する排ガス中には、塩素・硫黄・重金属類等を含む小粒径のダストが含まれるが、これらがボイラの放射伝熱面、対流伝熱面に付着すると、その付着ダストが断熱材の役割をするので伝熱効率が低下する。それにより、熱回収効率も低下する。その結果、蒸気発生量が低下し、タービン発電機の発電量が減少する。その他にも、伝熱管同士の間隙が付着ダストにより閉塞し、排ガスの流通に支障が生じることもある。   The exhaust gas generated in refuse incineration contains dust of small particle size including chlorine, sulfur, heavy metals, etc., but if these adhere to the radiant and convective heat transfer surfaces of the boiler, the adhering dust will be Since it acts as a heat insulating material, heat transfer efficiency decreases. Thereby, the heat recovery efficiency also decreases. As a result, the amount of steam generated decreases, and the amount of power generated by the turbine generator decreases. In addition, the gap between the heat transfer tubes may be blocked by adhering dust, which may hinder the flow of exhaust gas.

このため、付着したダストを定期的に除去する設備が必要となる。対流伝熱面に付着するダストを除去する技術として、石炭ボイラや多くのボイラでの実績のある装置として蒸気式スートブロワ(SB)が挙げられる。蒸気式スートブロワは複数のノズルから水蒸気を伝熱管に向けて噴射し、伝熱管表面に付着したダストを剥離し除去するもので、定期的なタイミングで噴射される。   For this reason, the equipment which removes adhering dust regularly is needed. As a technique for removing dust adhering to the convection heat transfer surface, a steam soot blower (SB) can be cited as an apparatus that has a proven record in coal boilers and many boilers. A steam soot blower injects water vapor from a plurality of nozzles toward a heat transfer tube to peel off and remove dust adhering to the surface of the heat transfer tube, and is injected at regular timing.

蒸気式スートブロワは、伝熱管上に付着したダストの除去には効果的であるが、以下に示す問題がある。   The steam soot blower is effective in removing dust adhering to the heat transfer tube, but has the following problems.

(1)水蒸気の噴射と共にスートブロワ装置の配管内に凝縮・残留していた水滴を共に噴射してしまうことがあり、その場合は伝熱管に対して「ドレンアタック」と呼ばれる損傷を与えることがある。それに加えてボイラ内に設置されたスートブロワ本体のガイドの役割を担うエレメントパイプにおいて、噴射された蒸気及び水滴により、付着ダスト中の塩素及び硫黄が溶解してエレメントパイプに付着しこれを腐食させることが生じ、交換のためのコストがかかっている。このドレンアタックを防止するためのプロテクタを設置する場合もあるが、これの設置及び交換にもコストがかかっている。 (1) When water vapor is injected, water droplets that have condensed and remained in the piping of the soot blower device may be injected together. In this case, the heat transfer tube may be damaged as "drain attack". . In addition, in the element pipe that plays the role of the guide of the soot blower body installed in the boiler, the injected steam and water droplets dissolve the chlorine and sulfur in the adhering dust and adhere to the element pipe and corrode it. And cost for replacement. Although a protector for preventing this drain attack may be installed, the installation and replacement of this protector are also costly.

(2)ダストが堆積して長時間経過するとダスト堆積層の厚みが増す。そうすると、排ガス温度より低い伝熱管表面温度でのダスト冷却を行えなくなり、ダスト堆積層表面温度が上昇する。ダスト堆積層表面温度が上昇して溶融し、固着すると、スートブロワでも除去できなくなり、ボイラ閉塞につながる。 (2) When dust accumulates for a long time, the thickness of the dust accumulation layer increases. If it does so, it will become impossible to perform dust cooling at the heat exchanger tube surface temperature lower than exhaust gas temperature, and the dust accumulation layer surface temperature will rise. When the surface temperature of the dust accumulation layer rises and melts and adheres, it cannot be removed even with a soot blower, leading to boiler blockage.

(3)焼却炉から排出される排ガスを煙突へ導くために誘引送風機を運転し、焼却炉内圧を負圧に維持するようにしているが、スートブロワを運転すると、噴射した蒸気により排ガス量が増大して焼却炉内圧が大きく変動し、負圧から正圧になり、焼却炉内ガス・ダストが噴出する危険がある。 (3) The induction blower is operated to guide the exhaust gas discharged from the incinerator to the chimney, and the incinerator internal pressure is maintained at a negative pressure. However, when the soot blower is operated, the amount of exhaust gas increases due to the injected steam. As a result, the pressure in the incinerator fluctuates greatly, changing from negative pressure to positive pressure, and there is a risk that gas and dust in the incinerator will be ejected.

(4)スートブロワを運転すると、噴射した蒸気により排ガス温度変動も大きくなり、ボイラより下流側の減温塔入口温度も変動して、冷却噴霧水量制御が対応できなくなり、排ガス温度を所定内に維持することが難しくなることがある。 (4) When the soot blower is operated, the exhaust gas temperature fluctuates greatly due to the injected steam, and the temperature at the inlet of the temperature reducing tower downstream from the boiler also fluctuates, making it impossible to control the cooling spray water amount and maintaining the exhaust gas temperature within a predetermined range. Can be difficult to do.

(5)スートブロワが噴射する過熱蒸気は、ボイラが発生した過熱蒸気の一部を用いるため、スートブロワ運転時は蒸気タービンに供給する過熱蒸気量が減少して発電量が低下することになり、好ましくない。 (5) Since the superheated steam injected by the soot blower uses a part of the superheated steam generated by the boiler, the amount of superheated steam supplied to the steam turbine decreases during operation of the soot blower, and the power generation amount decreases. Absent.

また、放射伝熱面に付着したダストは、蒸気式スートブロワにより除去することは困難であり、廃棄物焼却施設の運転休止時に放射室内で足場を組み、手作業で除去することが行われており、そのため、メンテナンス費用は高く、多くの時間も必要となる。   In addition, it is difficult to remove dust adhering to the radiant heat transfer surface with a steam-type soot blower, and a scaffold is built in the radiant chamber when the waste incineration facility is out of operation, and removed manually. Therefore, the maintenance cost is high and a lot of time is required.

さらに、ごみ焼却施設の運転中に放射伝熱面に付着するダストの影響で、放射伝熱面の伝熱効率が低下し熱回収率が低下して、下流側の伝熱管群入口ガス温度が上昇することとなり、伝熱管に付着するダストが融着し固着して、スートブロワを行っても効率的なダスト除去が困難になることもある。   In addition, due to the effect of dust adhering to the radiant heat transfer surface during operation of the waste incineration facility, the heat transfer efficiency of the radiant heat transfer surface decreases and the heat recovery rate decreases, and the downstream heat transfer tube group inlet gas temperature increases. As a result, the dust adhering to the heat transfer tube is fused and fixed, and even if the soot blower is used, efficient dust removal may be difficult.

これらの問題を解決するため、蒸気式スートブロワを使用しないボイラのダスト除去方法が検討されており、衝撃波によるダスト除去装置(特許文献1参照)や圧力波によるダスト除去装置(特許文献2参照)が知られている。   In order to solve these problems, a dust removal method for a boiler that does not use a steam soot blower has been studied, and a dust removal device using shock waves (see Patent Document 1) and a dust removal device using pressure waves (see Patent Document 2) are available. Are known.

特許文献1に記載の装置では、排ガス熱交換器内に、加圧エアを10秒間隔で0.5秒間噴射する衝撃波発射管を設け、伝熱管に向けて衝撃波を間欠的に発射し、衝撃波の衝撃で伝熱管表面に付着するダストを吹き飛ばし除去する。   In the apparatus described in Patent Document 1, a shock wave launch tube that injects pressurized air for 0.5 seconds at 10 second intervals is provided in an exhaust gas heat exchanger, and shock waves are intermittently emitted toward the heat transfer tube. The dust adhering to the heat transfer tube surface is blown off and removed by the impact of.

特許文献2に記載の装置では、プロパンガスと空気を混合して点火プラグにより着火する爆轟管、又は、排気ガスを供給するディーゼルエンジンで構成される圧力波発生器により、ボイラ内の排ガス流路空間内に外部から気体を周期的な間隔で間欠的に噴射して当該排ガス流路空間内に圧力波を送り圧力変動を生じさせ、ボイラ構成部材を損傷させることなく、効果的にダストの付着を抑制する。   In the apparatus described in Patent Document 2, exhaust gas flow in a boiler is produced by a pressure wave generator composed of a detonator tube that mixes propane gas and air and ignites with an ignition plug, or a diesel engine that supplies exhaust gas. Gas is intermittently injected from the outside into the passage space at periodic intervals to send pressure waves into the exhaust gas passage space, causing pressure fluctuations, and effectively preventing dust from being damaged without damaging the boiler components. Suppresses adhesion.

特開2001−141391号公報JP 2001-141391 A 特開2004−278921号公報Japanese Patent Application Laid-Open No. 2004-278921

しかしながら、衝撃波もしくは圧力波を用いてボイラ内の付着ダスト除去を行う場合、その効果の及ぶ範囲は限定的であり、複数の衝撃波発射管や圧力波発生器を設置する必要がある。その設置台数が不足すると付着ダストを除去する効果が低下する。また、過剰に設置すると設備コスト及びランニングコストが増加し、好ましくない。このように衝撃波発射管あるいは圧力波発生装置の適切な設置条件について特許文献1、2には明確にされていない。   However, when removing dust adhering in a boiler using a shock wave or a pressure wave, the range of the effect is limited, and it is necessary to install a plurality of shock wave launch tubes and pressure wave generators. If the number of installed units is insufficient, the effect of removing adhering dust decreases. Moreover, if it installs excessively, an installation cost and a running cost will increase, and it is not preferable. As described above, Patent Documents 1 and 2 do not clarify an appropriate installation condition of the shock wave emission tube or the pressure wave generator.

本発明は、以上のような状況に鑑みてなされたもので、廃棄物焼却施設等のボイラの放射伝熱面と対流伝熱面のダストを圧力波を用いて除去する際に、圧力波発生装置を適切に配設することができ、効率よくかつ低い設備費、運転費で行うことができるボイラのダスト除去装置及びダスト除去方法を提供することを課題とするものである。   The present invention has been made in view of the above situation, and pressure waves are generated when dust is removed from the radiant heat transfer surface and the convection heat transfer surface of a boiler such as a waste incineration facility using a pressure wave. It is an object of the present invention to provide a dust removal apparatus and a dust removal method for a boiler that can be appropriately arranged and can be efficiently performed at low equipment costs and operation costs.

本発明は、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、3次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記2次過熱器との間と、前記3次過熱器と前記1次過熱器との間に配設することにより、前記課題を解決したものである。   In the present invention, steam is generated by receiving radiant heat from exhaust gas from the upstream side, which is divided by two turning sections that are connected to a waste incinerator and bend the flow path of exhaust gas for heat recovery from the exhaust gas. First and second radiation chambers having radiation heat transfer surfaces for generating heat, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheat, The convection heat transfer chamber removes dust adhering to the convection heat transfer surface of the convection heat transfer chamber with a boiler having a screen tube, secondary superheater, tertiary superheater and primary superheater from the upstream side in the exhaust gas flow direction. And a pressure wave generator for generating a pressure wave by mixing and burning fuel gas and an oxidant gas under high pressure and releasing the pressure wave into the boiler. The pressure wave discharge nozzle of the device, the screen And between said secondary superheater, by arranging between the tertiary superheater and the primary superheater, is obtained by solving the above problems.

ここで、圧力波発生装置の圧力波放出ノズルを、対流伝熱室において、スクリーン管と2次過熱器との間と、3次過熱器と1次過熱器との間に配設するのは、圧力波放出ノズルを対流伝熱室のそれぞれの位置に配設することにより、圧力波放出ノズルから放出する圧力波によりスクリーン管と2次過熱器の対流伝熱面、及び3次過熱器と1次過熱器の対流伝熱面に振動と風圧を受けさせ付着ダストを剥離除去することができるためである。この二つの位置に圧力波放出ノズルを配設することにより、対流伝熱室の構成機器のそれぞれに隙間なく圧力波を放射させ、圧力波による付着ダストの剥離除去作用効果を確実に奏することができるからである。   Here, the pressure wave discharge nozzle of the pressure wave generator is disposed between the screen tube and the secondary superheater and between the tertiary superheater and the primary superheater in the convection heat transfer chamber. By disposing the pressure wave discharge nozzle at each position of the convection heat transfer chamber, the convection heat transfer surface of the screen tube and the secondary superheater, and the tertiary superheater by the pressure wave discharged from the pressure wave discharge nozzle, This is because the convection heat transfer surface of the primary superheater can be subjected to vibration and wind pressure to peel and remove the attached dust. By arranging the pressure wave discharge nozzles at these two positions, it is possible to radiate the pressure wave to each of the components of the convection heat transfer chamber without any gap, and to reliably exert the effect of removing and removing the adhered dust by the pressure wave. Because it can.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、3次過熱器、2次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記3次過熱器との間と、前記2次過熱器と前記1次過熱器との間に配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a tertiary superheater, a secondary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, and dust adhered to the convective heat transfer surface of the convection heat transfer chamber. In the boiler dust removal device for removing the pressure, a pressure wave generator for mixing the fuel gas and the oxidant gas under high pressure and burning them to generate a pressure wave and release the pressure wave into the boiler is provided. The pressure wave discharge nozzle of the wave generator is connected to the screen. And between the the down tube 3 primary superheater, by arranging between the primary superheater and the secondary superheater, it is obtained by solving the above problems as well.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、水平蒸発管、2次過熱器、1次過熱器及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記水平蒸発管と前記2次過熱器との間と、前記1次過熱器と前記エコノマイザとの間に配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a horizontal evaporation tube, a secondary superheater, a primary superheater and an economizer from the upstream side in the exhaust gas flow direction, and adhered to the convection heat transfer surface of the convection heat transfer chamber. A boiler dust removing apparatus for removing dust is provided with a pressure wave generating device that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler, Pressure wave discharge nozzle of pressure wave generator , And between the secondary superheater and the horizontal evaporation tube, by providing between the said primary superheater economizer, it is obtained by solving the above problems as well.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、1次過熱器、水平蒸発管及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記2次過熱器との間と、前記水平蒸発管と前記エコノマイザとの間に配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a secondary superheater, a primary superheater, a horizontal evaporator tube and an economizer from the upstream side in the exhaust gas flow direction, and is attached to the convection heat transfer surface of the convection heat transfer chamber. A boiler dust removing apparatus for removing dust is provided with a pressure wave generating device that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler, Pressure wave discharge nozzle of pressure wave generator , And between the secondary superheater and the screen tubes, by providing between the said horizontal evaporation tube economizer, it is obtained by solving the above problems as well.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、過熱器、第1エコノマイザ及び第2エコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記過熱器との間と、前記第1エコノマイザと前記第2エコノマイザとの間に配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a superheater, a first economizer and a second economizer from the upstream side in the exhaust gas flow direction to remove dust adhering to the convection heat transfer surface of the convection heat transfer chamber. In the boiler dust removal apparatus, a pressure wave generator is provided that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler. Pressure wave discharge nozzle in front And between the screen tube and the superheater, by arranging between the first economizer and the second economizer, it is obtained by solving the above problems as well.

ここで、前記対流伝熱室の高さが10m以上20m以下である場合、前記圧力波発生装置の圧力波放出ノズルを、高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することができる。   Here, when the height of the convection heat transfer chamber is 10 m or more and 20 m or less, the pressure wave discharge nozzles of the pressure wave generator are arranged in the height direction at intervals of 3 m or more and 7 m or less, and 2 or more and 6 or less. It can be arranged.

これは、圧力波放出ノズルの高さ方向配設間隔を3m以上7m以下とすることにより、圧力波放出ノズルから放出する圧力波により対流伝熱室の構成機器の対流伝熱面に振動と風圧を受けさせ付着ダストを剥離除去する作用が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができるためである。圧力波放出ノズルの高さ方向配設間隔を3m未満とすると、隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することが生じたり、圧力波放出ノズルの高さ方向配設間隔を7mより広くすると、圧力波の作用効果が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができなくなる不具合が生じるので好ましくない。   This is because the pressure wave discharge nozzle height interval between 3 m and 7 m causes vibration and wind pressure on the convection heat transfer surface of the components of the convection heat transfer chamber due to the pressure wave discharged from the pressure wave discharge nozzle. This is because it is possible to provide a range in which the effect of peeling and removing the attached dust is received without causing a gap between the adjacent ranges. If the distance between the pressure wave discharge nozzles in the height direction is less than 3 m, the pressure waves discharged from the adjacent pressure wave discharge nozzles may interfere with each other and the effect of the pressure wave may be reduced, or the pressure wave discharge nozzle If the distance in the height direction is larger than 7 m, it is not preferable because a range in which the effect of the pressure wave reaches cannot be provided without a gap between the adjacent ranges.

また、圧力波発生装置の圧力波放出ノズルを対流伝熱室に少なくとも2個配設することにより、圧力波の作用効果が及ばない個所が生じることなく、対流伝熱室の構成機器の対流伝熱面に振動と風圧を受けさせ付着ダストを剥離除去することができる。対流伝熱室の幅が大きい場合には圧力波放出ノズルを同じ高さ位置で複数配設することが好ましい。一方、圧力波放出ノズルを7個より多く配設すると隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することが生じたり、7個より多く配設しても付着ダストを剥離除去する作用効果が増大することなく、かえって装置コストや運転コストが増大するという不具合が生じるので好ましくない。   Further, by disposing at least two pressure wave discharge nozzles of the pressure wave generator in the convection heat transfer chamber, there is no place where the effect of the pressure wave does not occur, and the convection transfer of the components of the convection heat transfer chamber occurs. Adhering dust can be peeled and removed by applying vibration and wind pressure to the hot surface. When the width of the convection heat transfer chamber is large, it is preferable to arrange a plurality of pressure wave discharge nozzles at the same height position. On the other hand, if more than seven pressure wave discharge nozzles are arranged, pressure waves emitted from adjacent pressure wave discharge nozzles may interfere with each other, resulting in a decrease in the effect of pressure waves, or more than seven pressure wave discharge nozzles. However, the effect of peeling and removing the adhering dust does not increase, and on the contrary, there is a problem that the apparatus cost and the operating cost increase, which is not preferable.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室の高さが10m以上20m以下であるボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. In the boiler dust removal apparatus for removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber in a boiler having a height of the convection heat transfer chamber of 10 m or more and 20 m or less, fuel gas and oxidant A pressure wave generator that mixes and burns gas under high pressure to generate a pressure wave and discharges the pressure wave into the boiler is provided, and a pressure wave discharge nozzle of the pressure wave generator is installed in the convection heat transfer chamber. 2 or more 6 in the vertical direction spacing 3m or more and 7m or less By disposing the following is obtained by solving the above problems as well.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、前記第2放射室の高さが10m以上20m以下であり前記対流伝熱室の高さが10m以上20m以下であるボイラで、前記第2放射室の放射伝熱面と前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に1個以上6個以下配設し、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することにより、同様に前記課題を解決したものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. A boiler in which the height of the second radiation chamber is 10 m or more and 20 m or less and the height of the convection heat transfer chamber is 10 m or more and 20 m or less, and the radiation heat transfer surface of the second radiation chamber and the convection heat transfer chamber In a boiler dust removal device for removing dust adhering to the convection heat transfer surface of a boiler, pressure is generated by mixing a fuel gas and an oxidant gas under high pressure and burning them to generate pressure waves and release pressure waves into the boiler A wave generator and a pressure of the pressure wave generator By disposing 1 to 6 discharge nozzles in the second radiation chamber and disposing 2 to 6 in the convection heat transfer chamber at a height direction disposition of 3 m to 7 m, Similarly, the problem is solved.

ここで、圧力波発生装置の圧力波放出ノズルを、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設する、又は前記第2放射室に1個以上6個以下配設し、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設するのは、下記の根拠に基づく。   Here, the pressure wave discharge nozzles of the pressure wave generator are disposed in the convection heat transfer chamber in the height direction at intervals of 3 m or more and 7 m or less, and 2 or more and 6 or less, or the second radiation chamber 1 The arrangement of 6 or more and 6 or less, and the arrangement of 2 or more and 6 or less in the convection heat transfer chamber with an arrangement interval in the height direction of 3 m or more and 7 m or less is based on the following grounds.

即ち、対流伝熱室に配設する圧力波放出ノズルの高さ方向配設間隔を3m以上7m以下とすることにより、圧力波放出ノズルから放出する圧力波により対流伝熱室の構成機器の対流伝熱面に振動と風圧を受けさせ付着ダストを剥離除去する作用が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができるためである。圧力波放出ノズルの高さ方向配設間隔を3m未満とすると、隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することが生じたり、圧力波放出ノズルの高さ方向配設間隔を7mより広くすると、圧力波の作用効果が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができなくなる不具合が生じるので好ましくない。   That is, by setting the height direction interval of the pressure wave discharge nozzles disposed in the convection heat transfer chamber to 3 m or more and 7 m or less, the convection of the components of the convection heat transfer chamber is caused by the pressure waves discharged from the pressure wave discharge nozzle. This is because it is possible to provide a range in which the heat transfer surface is subjected to vibration and wind pressure to peel and remove the adhering dust without causing a gap between the adjacent ranges. If the distance between the pressure wave discharge nozzles in the height direction is less than 3 m, the pressure waves discharged from the adjacent pressure wave discharge nozzles may interfere with each other and the effect of the pressure wave may be reduced, or the pressure wave discharge nozzle If the distance in the height direction is larger than 7 m, it is not preferable because a range in which the effect of the pressure wave reaches cannot be provided without a gap between the adjacent ranges.

圧力波放出ノズルを下限の個数以上配設することにより、圧力波放出ノズルから放出する圧力波により放射伝熱面又は対流伝熱面に振動と風圧を受けさせ付着ダストを剥離除去する作用が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができるためである。一方、上限の個数より多く配設すると隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することが生じたり、上限の個数より多く配設しても付着ダストを剥離除去する作用効果が増大することなく、かえって装置コストや運転コストが増大するという不具合が生じるため好ましくない。   By disposing more than the minimum number of pressure wave discharge nozzles, the action of peeling and removing adhering dust by receiving vibration and wind pressure on the radiation heat transfer surface or convection heat transfer surface by the pressure wave discharged from the pressure wave discharge nozzle This is because the range can be provided without a gap between adjacent ranges. On the other hand, if the number is more than the upper limit, the pressure waves emitted from the adjacent pressure wave discharge nozzles may interfere with each other and the action effect of the pressure wave may be reduced, or even if the number exceeds the upper limit, the adhesion will occur. This is not preferable because there is a problem that the device cost and the operation cost increase without increasing the effect of peeling and removing dust.

更に、前記ボイラの下流側に連設された、ボイラに供給する水を加熱するための別置エコノマイザにも、前記圧力波放出ノズルを配設することができる。   Furthermore, the pressure wave discharge nozzle can also be disposed in a separate economizer that is provided downstream of the boiler and that heats water supplied to the boiler.

この別置エコノマイザに配設した圧力波放出ノズルにより圧力波を放出することにより別置エコノマイザ内の複数段のエコノマイザの付着ダストを剥離除去することができる。   By discharging a pressure wave with the pressure wave discharge nozzle disposed in the separate economizer, dust adhered to a plurality of economizers in the separate economizer can be peeled and removed.

更に、圧力波放出ノズルをマンホール位置に配設することができる。圧力波放出ノズルをマンホール位置に配設するようにして、圧力波放出ノズルをマンホール蓋に取り付けることにより、圧力波発生装置を容易に配設することができ、配設費用やメンテナンス費用を低減することができる。   Furthermore, the pressure wave discharge nozzle can be disposed at the manhole position. By installing the pressure wave discharge nozzle at the manhole position and attaching the pressure wave discharge nozzle to the manhole cover, the pressure wave generator can be easily installed, reducing the installation cost and maintenance cost. be able to.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、3次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記スクリーン管と前記2次過熱器との間と、前記3次過熱器と前記1次過熱器との間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a secondary superheater, a tertiary superheater, and a primary superheater from the upstream side in the exhaust gas flow direction, and is attached to the convective heat transfer surface of the convection heat transfer chamber. When the gas is removed, the screen tube and the secondary superheater are mixed using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and discharge the pressure wave into the boiler. And between the tertiary superheater and the primary superheater. From the pressure wave emission nozzle, there is provided a dust removing method of a boiler, characterized in that to release the pressure wave to the convective heat transfer chamber.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、3次過熱器、2次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記スクリーン管と前記3次過熱器との間と、前記2次過熱器と前記1次過熱器との間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a tertiary superheater, a secondary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, and dust adhered to the convective heat transfer surface of the convection heat transfer chamber. When the gas is removed, the screen tube and the tertiary superheater are mixed using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler. Between the secondary heater and between the secondary superheater and the primary superheater. From the pressure wave emission nozzle, there is provided a dust removing method of a boiler, characterized in that to release the pressure wave to the convective heat transfer chamber.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、水平蒸発管、2次過熱器、1次過熱器及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記水平蒸発管と前記2次過熱器との間と、前記1次過熱器と前記エコノマイザとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a horizontal evaporation tube, a secondary superheater, a primary superheater and an economizer from the upstream side in the exhaust gas flow direction, and adhered to the convection heat transfer surface of the convection heat transfer chamber. When removing dust, the horizontal evaporating pipe and the 2 are used by using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and discharge the pressure wave into the boiler. Between the secondary superheater, the primary superheater and the economizer From arranged pressure wave discharge nozzle during, there is provided a dust removing method of a boiler, characterized in that to release the pressure wave to the convective heat transfer chamber.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、1次過熱器、水平蒸発管及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記スクリーン管と前記2次過熱器との間と、前記水平蒸発管と前記エコノマイザとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection heat transfer chamber is a boiler having a screen tube, a secondary superheater, a primary superheater, a horizontal evaporator tube and an economizer from the upstream side in the exhaust gas flow direction, and is attached to the convection heat transfer surface of the convection heat transfer chamber. When removing dust, a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and discharge the pressure wave into the boiler is used. Between the superheater, the horizontal evaporator tube and the economy There is provided a dust removing method of a boiler, characterized in that the pressure wave discharge nozzle, releasing a pressure wave in the convective heat transfer chamber disposed between.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、過熱器、第1エコノマイザ及び第2エコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記スクリーン管と前記過熱器との間と、前記第1エコノマイザと前記第2エコノマイザとの間にとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. When the convection heat transfer chamber is a boiler having a screen tube, a superheater, a first economizer and a second economizer from the upstream side in the exhaust gas flow direction, dust attached to the convection heat transfer surface of the convection heat transfer chamber is removed. In addition, using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and discharge the pressure wave into the boiler, between the screen tube and the superheater, The first economizer and the second economizer There is provided a dust removing method of a boiler, characterized in that the pressure wave discharge nozzle, releasing a pressure wave in the convective heat transfer chamber arranged between the between.

ここで、前記対流伝熱室の高さが10m以上20m以下である場合、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該対流伝熱室内に圧力波を放出することができる。   Here, when the height of the convection heat transfer chamber is 10 m or more and 20 m or less, the pressure wave is arranged in the convection heat transfer chamber with a height direction interval of 3 m or more and 7 m or less and 2 or more and 6 or less. A pressure wave can be discharged from the discharge nozzle into the convection heat transfer chamber.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室の高さが10m以上20m以下であるボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. When removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber, the fuel gas and the oxidant gas are mixed under high pressure in a boiler having a convection heat transfer chamber height of 10 m to 20 m. Using a pressure wave generator that generates pressure waves by combustion and discharges the pressure waves into the boiler, the convection heat transfer chamber has a height direction interval of 3 m or more and 7 m or less, and 2 or more and 6 or less. A pressure wave discharge nozzle provided to discharge a pressure wave into the convection heat transfer chamber. There is provided a dust removing method of a boiler to symptoms.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、前記第2放射室の高さが10m以上20m以下であり前記対流伝熱室の高さが10m以上20m以下であるボイラで、前記放射室の放射伝熱面と前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、前記第2放射室に1個以上6個以下配設され前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該第2放射室及び対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法を提供するものである。   The present invention also receives radiant heat from the exhaust gas from the upstream side, which is divided by two turning portions that are connected to a waste incinerator and bends the flow path of the exhaust gas for heat recovery from the exhaust gas. First and second radiant chambers having radiant heat transfer surfaces for generating steam, and convection heat transfer chambers that generate steam by heat exchange between the exhaust gas and the convective heat transfer surfaces of the heat transfer tubes and further superheat. The convection between the radiation heat transfer surface of the radiation chamber and the convection heat transfer chamber is a boiler having a height of the second radiation chamber of 10 m to 20 m and a height of the convection heat transfer chamber of 10 m to 20 m. When removing dust adhering to the heat transfer surface, using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler, 1 to 6 in the second radiant chamber, the height direction in the convection heat transfer chamber A dust removing method for a boiler, characterized in that pressure waves are discharged into the second radiation chamber and the convection heat transfer chamber from pressure wave discharge nozzles arranged at intervals of 3 m or more and 7 m or less and 2 or more and 6 or less. Is to provide.

ここで、前記ボイラの下流側に連設された、ボイラに供給する水を加熱するための別置エコノマイザ内にも、圧力波を放出することができる。   Here, a pressure wave can also be discharged into a separate economizer that is provided downstream of the boiler and that heats water supplied to the boiler.

又、マンホール位置に配設された圧力波放出ノズルから圧力波を放出することができる。   Moreover, a pressure wave can be emitted from a pressure wave discharge nozzle disposed at the manhole position.

本発明によれば、例えば廃棄物焼却施設ボイラの放射伝熱面と対流伝熱面のダストを圧力波を用いて除去する際に圧力波発生装置を適切に配設することができ、ダスト除去を効率よくかつ低い設備費、運転費で行うことができる。   According to the present invention, for example, when removing dust on the radiation heat transfer surface and the convection heat transfer surface of a waste incineration facility boiler using a pressure wave, the pressure wave generator can be appropriately disposed, and the dust removal Can be performed efficiently and at low equipment and operating costs.

また、本発明により、ボイラの運転中にスートブロワを運転しなくてもボイラ内壁に付着したダストを効率的に除去することが可能になり、ボイラの収熱量を維持することができる。スートブロワの運転がなくなるので、前述したドレンアタックに起因する腐食・減肉トラブルがなくなり、経済的である。また、スートブロワを用いる場合に生じる前述の問題を防ぐことができる。   Further, according to the present invention, it is possible to efficiently remove dust adhering to the boiler inner wall without operating the soot blower during operation of the boiler, and the amount of heat collected by the boiler can be maintained. Since the operation of the soot blower is eliminated, the above-described corrosion / thinning trouble caused by the drain attack is eliminated, which is economical. In addition, the above-mentioned problems that occur when using a soot blower can be prevented.

また、スートブロワの運転は一般的に一日あたり1回あるいは2回であるのに対し、圧力波発生装置は1時間から6時間の間に1回以上運転する。つまり、短時間の間にダストを除去することになる。そうすると、付着するダスト量を低減することが可能になるので、付着したダスト中に含まれる重金属類、塩類などによるボイラ内壁面、伝熱管表面の腐食進行を防止することができ、メンテナンス費を下げ、運転管理も容易な廃棄物焼却施設ボイラ操業が可能になる。加えて必要最低限の圧力波発生装置の設置により、経済面にも有利な装置運用が可能となる。   The soot blower is generally operated once or twice per day, whereas the pressure wave generator is operated at least once in 1 to 6 hours. That is, dust is removed in a short time. As a result, the amount of dust adhering can be reduced, so that it is possible to prevent the corrosion of the boiler inner wall surface and heat transfer tube surface due to heavy metals and salts contained in the adhering dust, thereby reducing maintenance costs. This makes it possible to operate a waste incineration facility boiler that is easy to manage. In addition, the installation of the minimum necessary pressure wave generator enables the operation of the apparatus which is economically advantageous.

本発明の実施形態の構成を示す断面図Sectional drawing which shows the structure of embodiment of this invention 本発明の実施形態である対流伝熱室の圧力波放出ノズルの配設位置を示す図The figure which shows the arrangement | positioning position of the pressure wave discharge nozzle of the convection heat transfer chamber which is embodiment of this invention. 本発明の(A)実施例と(B)比較例の運転状態を示す図The figure which shows the driving | running state of the (A) Example and (B) comparative example of this invention

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

本発明が適用される、図1に示す如く、焼却炉10に連設され、排ガスから熱回収するためのボイラ20は、排ガスの流通路を屈曲せしめる2つの変向部21、22により区分され、排ガス流れ方向の上流側から、第1放射室26、第2放射室28、及び対流伝熱室30を備えている。焼却炉10から排ガスを受け入れる第1放射室26の入口近傍はガス混合室24となっている。焼却炉10から導入される排ガスは、第1放射室26の下方から上方へ、第2放射室28の上方から下方へ、対流伝熱室30の下方から上方へ流通される。   As shown in FIG. 1 to which the present invention is applied, a boiler 20 connected to an incinerator 10 for recovering heat from exhaust gas is divided by two turning portions 21 and 22 that bend the flow path of the exhaust gas. The first radiation chamber 26, the second radiation chamber 28, and the convection heat transfer chamber 30 are provided from the upstream side in the exhaust gas flow direction. A gas mixing chamber 24 is provided in the vicinity of the inlet of the first radiation chamber 26 that receives exhaust gas from the incinerator 10. The exhaust gas introduced from the incinerator 10 flows from the lower side of the first radiation chamber 26 to the upper side, from the upper side to the lower side of the second radiation chamber 28, and from the lower side to the upper side of the convection heat transfer chamber 30.

前記第1放射室26及び第2放射室28は、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面をそれぞれ備えている。   The first radiation chamber 26 and the second radiation chamber 28 are each provided with a radiation heat transfer surface that generates radiant heat from the exhaust gas and generates steam.

前記対流伝熱室30は、排ガス流れ方向の上流側から、スクリーン管32、2次過熱器34、3次過熱器36、1次過熱器38、及び第2エコノマイザ42を備えている。2次過熱器34、3次過熱器36、1次過熱器38は、それぞれ、水平方向に配列した複数の伝熱管を高さ方向に多段に設けた伝熱管群を備えており、伝熱管が対流伝熱面を構成しており、排ガスとの熱交換により蒸気を発生して更に過熱するようにされている。スクリーン管32は伝熱管が旗形に備えられ対流伝熱室30に導入される排ガスを冷却するようにされている。   The convection heat transfer chamber 30 includes a screen tube 32, a secondary superheater 34, a tertiary superheater 36, a primary superheater 38, and a second economizer 42 from the upstream side in the exhaust gas flow direction. Each of the secondary superheater 34, the tertiary superheater 36, and the primary superheater 38 includes a heat transfer tube group in which a plurality of heat transfer tubes arranged in the horizontal direction are provided in multiple stages in the height direction. A convection heat transfer surface is formed, and steam is generated by heat exchange with the exhaust gas to further overheat. The screen tube 32 is provided with a heat transfer tube in a flag shape and cools the exhaust gas introduced into the convection heat transfer chamber 30.

ボイラ20の下流側には別置エコノマイザ50が接続されている。別置エコノマイザ50内には第1エコノマイザ51が配設され、別置エコノマイザ50の第1エコノマイザ51と対流伝熱室30の第2エコノマイザ42には伝熱管が配設され、排ガスとの熱交換により水が加熱され加温水が生成され、ボイラ20に供給される。   A separate economizer 50 is connected to the downstream side of the boiler 20. A first economizer 51 is disposed in the separate economizer 50, and a heat transfer pipe is disposed in the first economizer 51 of the separate economizer 50 and the second economizer 42 of the convection heat transfer chamber 30 to exchange heat with the exhaust gas. As a result, the water is heated and heated water is generated and supplied to the boiler 20.

本実施形態においては、前記第2放射室28の放射伝熱面と前記対流伝熱室30の対流伝熱面及び第1エコノマイザ51の伝熱面に付着したダストを除去するための、燃料ガス(例えばメタンガス)と酸化剤ガス(例えば酸素ガス)を混合ガスホルダ内で高圧下で混合し、例えば点火プラグで着火し爆発燃焼させて圧力波を発生させ圧力波放出ノズル(図示省略)からボイラ内部に圧力波を放出させる4台の圧力波発生装置61〜64が設けられている。   In the present embodiment, the fuel gas for removing dust adhering to the radiant heat transfer surface of the second radiant chamber 28, the convective heat transfer surface of the convective heat transfer chamber 30, and the heat transfer surface of the first economizer 51. (For example, methane gas) and oxidant gas (for example, oxygen gas) are mixed in a mixed gas holder under high pressure, and are ignited by, for example, a spark plug, explode and burned to generate a pressure wave, and from the pressure wave discharge nozzle (not shown) inside the boiler There are provided four pressure wave generators 61 to 64 for releasing pressure waves.

図において、70は制御盤である。   In the figure, 70 is a control panel.

ここで、圧力波発生装置61の圧力波放出ノズルは、前記第2放射室28の放射伝熱面近傍に配設され、圧力波発生装置62、63の圧力波放出ノズルは、前記対流伝熱室30の対流伝熱面近傍に配設され、更に圧力波発生装置64の圧力波放出ノズルは、前記第1エコノマイザ51の最上段の上部に配設されている。   Here, the pressure wave discharge nozzle of the pressure wave generator 61 is disposed in the vicinity of the radiation heat transfer surface of the second radiation chamber 28, and the pressure wave discharge nozzles of the pressure wave generators 62 and 63 are the convection heat transfer. The pressure wave discharge nozzle of the pressure wave generator 64 is disposed in the vicinity of the convection heat transfer surface of the chamber 30, and is disposed on the uppermost portion of the first economizer 51.

前記対流伝熱室30に設ける圧力波発生装置62、63の圧力波放出ノズルは、それぞれ、スクリーン管32と2次過熱器34との間、及び、3次過熱器36と1次過熱器38との間に設けることができる。また、これらの位置に設けられたマンホール(図示省略)に圧力波放出ノズルを取り付けることができる。   The pressure wave discharge nozzles of the pressure wave generators 62 and 63 provided in the convection heat transfer chamber 30 are respectively between the screen tube 32 and the secondary superheater 34, and the tertiary superheater 36 and the primary superheater 38. Between the two. Further, pressure wave discharge nozzles can be attached to manholes (not shown) provided at these positions.

ここで、対流伝熱室30の高さが10m以上20m以下であるとき、該対流伝熱室30に設ける圧力波発生装置62、63の圧力波放出ノズルの高さ方向配設間隔は、3m以上7m以下とすることができる。   Here, when the height of the convection heat transfer chamber 30 is not less than 10 m and not more than 20 m, the arrangement interval in the height direction of the pressure wave discharge nozzles of the pressure wave generators 62 and 63 provided in the convection heat transfer chamber 30 is 3 m. It can be set to 7 m or less.

前記制御盤70から与えられる指示により、前記圧力波発生装置61〜64は、混合ガスを点火プラグで点火して圧力波を発生させる。   In response to an instruction given from the control panel 70, the pressure wave generators 61 to 64 ignite the mixed gas with a spark plug to generate a pressure wave.

具体的には、圧力波発生装置の混合ガスホルダにメタンガスと酸素ガスを充填・混合し、点火プラグで着火し、爆発燃焼させる。爆発燃焼時の混合ガスホルダ内の圧力は例えば最高53.2barに達する。これにより、ボイラ20内の圧力波放出ノズル先端からボイラ20内部に圧力波が放出される。その際、放射伝熱面及び対流伝熱面に振動及び風圧を与え、付着ダストを剥離し除去する。圧力波放出ノズルから放出される圧力波が、放射伝熱面及び対流伝熱面に付着ダストを剥離させる程度の振動及び風圧を与える範囲は、圧力波放出ノズルから上方及び下方へそれぞれ3.5m程度の範囲である。そのため、放射伝熱室及び対流伝熱室における圧力波放出ノズルの高さ方向配設間隔を7m以下とすることが好ましく、付着ダストを剥離させる作用が及ぶ範囲を、隣接する範囲との間に隙間が生じることなく設けることができる。さらに、圧力波放出ノズルの高さ方向配設間隔を3m以上とすることが好ましく、隣接する圧力波放出ノズルから放出する圧力波同士が干渉して圧力波の作用効果が低下することなく、付着ダストを確実に剥離させることができる。このように、対流伝熱室の伝熱管群に十分な振動と風圧を与えるためには、圧力波放出ノズルの高さ方向配設間隔を3m以上7m以下とすることが好ましい。   Specifically, methane gas and oxygen gas are filled and mixed in a mixed gas holder of a pressure wave generator, ignited with a spark plug, and explosively burned. The pressure in the mixed gas holder during the explosion combustion reaches, for example, a maximum of 53.2 bar. Thereby, a pressure wave is discharged into the boiler 20 from the tip of the pressure wave discharge nozzle in the boiler 20. At that time, vibration and wind pressure are applied to the radiation heat transfer surface and the convection heat transfer surface, and the attached dust is peeled off and removed. The range in which the pressure wave emitted from the pressure wave discharge nozzle gives vibration and wind pressure to the extent that the attached dust is separated from the radiation heat transfer surface and the convection heat transfer surface is 3.5 m upward and downward from the pressure wave discharge nozzle, respectively. The range of the degree. Therefore, it is preferable that the height direction interval of the pressure wave discharge nozzles in the radiant heat transfer chamber and the convection heat transfer chamber is 7 m or less, and the range in which the adhered dust is separated is between the adjacent ranges. It can be provided without a gap. Furthermore, it is preferable that the height wave interval between the pressure wave discharge nozzles is 3 m or more, and the pressure waves discharged from the adjacent pressure wave discharge nozzles interfere with each other, and the adhesion of the pressure wave discharge nozzles is not reduced. Dust can be reliably peeled off. Thus, in order to give sufficient vibration and wind pressure to the heat transfer tube group of the convection heat transfer chamber, it is preferable to set the distance between the pressure wave discharge nozzles in the height direction to 3 m or more and 7 m or less.

図2に、本発明の実施形態である対流伝熱室30内の圧力波放出ノズルの配設位置を示す。実施形態Aは、対流伝熱室30が排ガス流れ方向で上流側からスクリーン管32、2次過熱器34、3次過熱器36及び1次過熱器38を有するボイラで、前記対流伝熱室30の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管32と前記2次過熱器34との間と、前記3次過熱器36と前記1次過熱器38との間に配設している。   In FIG. 2, the arrangement | positioning position of the pressure wave discharge nozzle in the convection heat transfer chamber 30 which is embodiment of this invention is shown. The embodiment A is a boiler in which the convection heat transfer chamber 30 has a screen tube 32, a secondary superheater 34, a tertiary superheater 36, and a primary superheater 38 from the upstream side in the exhaust gas flow direction. In a boiler dust removal device for removing dust adhering to the convection heat transfer surface of a boiler, pressure is generated by mixing a fuel gas and an oxidant gas under high pressure and burning them to generate pressure waves and release pressure waves into the boiler A wave generator is provided, and a pressure wave discharge nozzle of the pressure wave generator is provided between the screen tube 32 and the secondary superheater 34, and between the tertiary superheater 36 and the primary superheater 38. It is arranged in between.

なお、実施形態A’のように、前記1次過熱器38の下流側(即ち最下流側)に第2エコノマイザ42が設けられていたり、実施形態A”のように、同じく前記1次過熱器38の下流側(即ち最下流側)に水平蒸発管44が設けられていても良い。   A second economizer 42 is provided on the downstream side (that is, the most downstream side) of the primary superheater 38 as in the embodiment A ′, or the primary superheater is also the same as in the embodiment A ″. A horizontal evaporation pipe 44 may be provided on the downstream side of 38 (that is, the most downstream side).

ここで、前記水平蒸発管44は、エコノマイザにより加温された水を加熱し、蒸気を発生させる伝熱管である。   Here, the horizontal evaporation pipe 44 is a heat transfer pipe that heats water heated by an economizer and generates steam.

実施形態A'''は、対流伝熱室30が排ガス流れ方向で上流側からスクリーン管32、3次過熱器36、2次過熱器34及び1次過熱器38を有するボイラ20で、圧力波発生装置の圧力波放出ノズルを、前記スクリーン管32と前記3次過熱器36との間と、前記2次過熱器34と前記1次過熱器38との間に配設している。さらに、前記1次過熱器38の下流側(即ち最下流側)に第2エコノマイザ42が設けられていたり、同じく前記1次過熱器38の下流側(即ち最下流側)に水平蒸発管44が設けられていても良い。   The embodiment A ′ ″ is a boiler 20 in which the convection heat transfer chamber 30 has a screen tube 32, a tertiary superheater 36, a secondary superheater 34, and a primary superheater 38 from the upstream side in the exhaust gas flow direction. Pressure wave discharge nozzles of the generator are arranged between the screen tube 32 and the tertiary superheater 36 and between the secondary superheater 34 and the primary superheater 38. Further, a second economizer 42 is provided on the downstream side (that is, the most downstream side) of the primary superheater 38, and a horizontal evaporation pipe 44 is also provided on the downstream side (that is, the most downstream side) of the primary superheater 38. It may be provided.

実施形態Bは、前記対流伝熱室30が排ガス流れ方向で上流側からスクリーン管32、水平蒸発管44、2次過熱器34、1次過熱器38及び第2エコノマイザ42を有するボイラで、前記対流伝熱室30の対流伝熱面に付着したダストを除去するためのボイラ20のダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記水平蒸発管44と前記2次過熱器34との間と、前記1次過熱器38と前記第2エコノマイザ42との間に配設している。   The embodiment B is a boiler in which the convection heat transfer chamber 30 includes a screen tube 32, a horizontal evaporation tube 44, a secondary superheater 34, a primary superheater 38, and a second economizer 42 from the upstream side in the exhaust gas flow direction. In the dust removal device of the boiler 20 for removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber 30, fuel gas and oxidant gas are mixed under high pressure and burned to generate pressure waves into the boiler. A pressure wave generating device that discharges a pressure wave is provided, and a pressure wave discharging nozzle of the pressure wave generating device is provided between the horizontal evaporation pipe 44 and the secondary superheater 34, the primary superheater 38, and the It is arranged between the second economizer 42.

なお、上記実施形態A、A’、A”、A'''、Bでは、いずれも図1に示した別置エコノマイザ50が設けられ、その中に第1エコノマイザ51が設けられている。   In Embodiments A, A ′, A ″, A ′ ″, and B, the separate economizer 50 shown in FIG. 1 is provided, and the first economizer 51 is provided therein.

次に、別置エコノマイザ50を設けず、対流伝熱室30内に第1エコノマイザ51及び第2エコノマイザ42を設けた実施形態B’、C、Dについて説明する。   Next, Embodiments B ′, C, and D in which the first economizer 51 and the second economizer 42 are provided in the convection heat transfer chamber 30 without providing the separate economizer 50 will be described.

実施形態B’では、実施形態Bと同様の構成において、対流伝熱室30内の第2エコノマイザ42の下流側(即ち最下流側)に第1エコノマイザ51が設けられており、実施形態Bと同様に、圧力波発生装置の圧力波放出ノズルを、前記水平蒸発管44と前記2次過熱器34との間と、前記1次過熱器38と前記第2エコノマイザ42との間に配設している。   In the embodiment B ′, the first economizer 51 is provided on the downstream side (that is, the most downstream side) of the second economizer 42 in the convection heat transfer chamber 30 in the same configuration as the embodiment B. Similarly, pressure wave discharge nozzles of the pressure wave generator are arranged between the horizontal evaporator tube 44 and the secondary superheater 34, and between the primary superheater 38 and the second economizer 42. ing.

又、実施形態Cは、前記対流伝熱室30が排ガス流れ方向で上流側からスクリーン管32、2次過熱器34、1次過熱器38、水平蒸発管44及び第1、第2エコノマイザ51、42を有するボイラで、前記対流伝熱室30の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管32と前記2次過熱器34との間と、前記水平蒸発管44と前記第1エコノマイザ51との間に配設している。   In the embodiment C, the convection heat transfer chamber 30 is arranged from the upstream side in the exhaust gas flow direction to the screen tube 32, the secondary superheater 34, the primary superheater 38, the horizontal evaporation tube 44 and the first and second economizers 51, In the boiler dust removing apparatus for removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber 30 in a boiler having 42, fuel gas and oxidant gas are mixed and burned under high pressure to generate pressure waves And a pressure wave generating device for emitting pressure waves into the boiler is provided, and the pressure wave discharging nozzle of the pressure wave generating device is disposed between the screen tube 32 and the secondary superheater 34 and the horizontal evaporation. It is disposed between the pipe 44 and the first economizer 51.

又、実施形態Dは、前記対流伝熱室30が排ガス流れ方向で上流側からスクリーン管32、過熱器46、第1エコノマイザ51及び第2エコノマイザ42を有するボイラで、前記対流伝熱室30の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管32と前記過熱器46との間と、前記第1エコノマイザ51と前記第2エコノマイザ42との間に配設している。   Embodiment D is a boiler in which the convection heat transfer chamber 30 includes a screen tube 32, a superheater 46, a first economizer 51, and a second economizer 42 from the upstream side in the exhaust gas flow direction. In a boiler dust removal device for removing dust adhering to a convection heat transfer surface, a pressure wave is generated by mixing fuel gas and oxidant gas under high pressure and burning them to generate pressure waves and release pressure waves into the boiler A generator is provided, and a pressure wave discharge nozzle of the pressure wave generator is disposed between the screen tube 32 and the superheater 46, and between the first economizer 51 and the second economizer. ing.

実施形態A、A’、A”、A'''、Dでは、前記対流伝熱室30の過熱器へ、放射室の放射伝熱面で加熱され発生した蒸気を供給し、蒸気を加熱して加熱蒸気とするが、実施形態B、B’、Cのように、水平蒸発管44を設ける場合は、これに加えて対流伝熱室30でも蒸気を発生させる。   In Embodiments A, A ′, A ″, A ′ ″ and D, the steam generated by heating on the radiant heat transfer surface of the radiant chamber is supplied to the superheater of the convection heat transfer chamber 30 to heat the steam. However, when the horizontal evaporation pipe 44 is provided as in Embodiments B, B ′, and C, steam is also generated in the convection heat transfer chamber 30.

なお、前記対流伝熱室30の高さは10m以上20m以下とし、前記圧力波放出ノズルの高さ方向配設間隔は3m以上7m以下とすることができる。   In addition, the height of the convection heat transfer chamber 30 may be 10 m or more and 20 m or less, and the distance between the pressure wave discharge nozzles in the height direction may be 3 m or more and 7 m or less.

ここで、実施形態A、A’、A”が請求項1に対応し、実施形態A'''が請求項2に対応し、実施形態B、B’ が請求項3に対応し、実施形態Cが請求項4に対応し、実施形態Dが請求項5に対応している。   Here, the embodiments A, A ′, A ″ correspond to claim 1, the embodiment A ′ ″ corresponds to claim 2, the embodiments B, B ′ correspond to claim 3, and the embodiments C corresponds to claim 4, and the embodiment D corresponds to claim 5.

図1のように都市ごみ焼却炉10に連設された、実施形態A’に対応するボイラ20に、4台の圧力波発生装置61〜64を配設した。焼却炉は連続操業である。   As shown in FIG. 1, four pressure wave generators 61 to 64 are disposed in the boiler 20 corresponding to the embodiment A ′ connected to the municipal waste incinerator 10. The incinerator is a continuous operation.

圧力波発生装置61〜64による圧力波放出を2時間に1回の頻度で70日間行い、第1エコノマイザ51出口の排ガス温度の経時変化を計測したところ、図3(A)に示すような結果が得られた。横軸は運転時間である。   The pressure wave was released by the pressure wave generators 61 to 64 at a frequency of once every 2 hours for 70 days, and the time-dependent change in the exhaust gas temperature at the outlet of the first economizer 51 was measured. The result shown in FIG. was gotten. The horizontal axis is the operating time.

一方、比較例としてスートブロワによるダスト除去を行った際の第1エコノマイザ51出口の排ガス温度の経時変化を計測したところ、図3(B)に示すような結果が得られた。比較例では、第1エコノマイザ51出口の排ガス温度測定値が設定値以上に上昇した際に、スートブロワを稼働させた。   On the other hand, as a comparative example, the time-dependent change in the exhaust gas temperature at the outlet of the first economizer 51 when dust was removed by a soot blower was measured, and the result shown in FIG. 3B was obtained. In the comparative example, the soot blower was operated when the exhaust gas temperature measurement value at the outlet of the first economizer 51 rose above the set value.

図3から明らかなように、第1エコノマイザ51出口の排ガス温度の平均値は、実施例では224℃であり、比較例では219℃であり、大きな差が無く、伝熱面に付着したダストが除去されていて伝熱効率が低下することを抑制していることを意味し、本発明により伝熱面に付着したダストを除去する効果は、スートブロワによるダスト除去と同等の効果であることが確認できた。   As can be seen from FIG. 3, the average value of the exhaust gas temperature at the outlet of the first economizer 51 is 224 ° C. in the example and 219 ° C. in the comparative example. This means that the heat transfer efficiency is reduced and the reduction of dust attached to the heat transfer surface according to the present invention can be confirmed to be equivalent to the dust removal by the soot blower. It was.

実施例では、圧力波放出ダスト除去運転を2時間に1回の間隔で実施したところ、ダストを除去する間隔が短く伝熱効率の低下が小さいので、第1エコノマイザ51出口温度の変動は少なくなり、ボイラ20内での収熱量の変動が小さいことを示しており、蒸気発生量の安定化につながることが確認できた。   In the embodiment, when the pressure wave discharge dust removal operation is performed once every two hours, the dust removal interval is short and the decrease in heat transfer efficiency is small, so the fluctuation of the outlet temperature of the first economizer 51 is reduced. This shows that the fluctuation in the amount of heat collected in the boiler 20 is small, and it has been confirmed that this leads to stabilization of the amount of steam generated.

一方、比較例では、第1エコノマイザ51出口の排ガス温度測定値が設定値以上に上昇した際に、スートブロワが稼働するため、12〜24時間に1回程度の頻度でダスト除去することとなり、付着ダスト量が多く伝熱効率の低下が大きいため、第1エコノマイザ51出口の温度の変動が大きく、ボイラ20内での収熱量の変動が大きいことを示している。   On the other hand, in the comparative example, when the exhaust gas temperature measurement value at the outlet of the first economizer 51 rises to the set value or more, the soot blower operates, so that dust is removed at a frequency of about once every 12 to 24 hours. Since the amount of dust is large and the decrease in heat transfer efficiency is large, the variation in the temperature at the outlet of the first economizer 51 is large, indicating that the variation in the amount of heat collected in the boiler 20 is large.

圧力波放出ダスト除去運転を1〜6時間に1回の間隔で実施することが、伝熱面へのダスト付着が軽微なうちに除去できるため好ましく、2〜3時間に1回の間隔で実施することが、より短時間の間にダストを除去でき、ダスト付着による問題の発生を確実に抑制することができるので、より好ましい。   It is preferable to perform the pressure wave discharge dust removal operation once every 1 to 6 hours because dust can be removed while the adhesion to the heat transfer surface is slight, and once every 2 to 3 hours. It is more preferable to be able to remove the dust in a shorter time and reliably suppress the occurrence of problems due to dust adhesion.

このようにして、本発明により、スートブロワを用いずにボイラ20内部のダストを効果的に除去することが可能であり、ボイラ20の収熱量を維持して、スートブロワを用いる場合に生じる問題を防ぐことができる。   In this way, according to the present invention, dust inside the boiler 20 can be effectively removed without using a soot blower, and the amount of heat collected by the boiler 20 can be maintained to prevent problems that occur when using a soot blower. be able to.

なお、前記実施例では、圧力波放出ノズルを第2放射室28に1個、対流伝熱室30に2個、第1エコノマイザ51に1個配設していたが、圧力波放出ノズルの配設位置及び個数はこれに限定されず、第2放射室28や第1エコノマイザ51の圧力波放出ノズルを省略したり、対流伝熱室30に圧力波放出ノズルを1個配設することもできる。   In the above embodiment, one pressure wave discharge nozzle is disposed in the second radiation chamber 28, two in the convection heat transfer chamber 30, and one in the first economizer 51. The installation position and the number are not limited to this, and the pressure wave discharge nozzles of the second radiation chamber 28 and the first economizer 51 may be omitted, or one pressure wave discharge nozzle may be disposed in the convection heat transfer chamber 30. .

また、前記実施例では、本発明を都市ごみ焼却炉に連設されたボイラに適用していたが、本発明の適用対象はこれに限定されない。   Moreover, in the said Example, although this invention was applied to the boiler connected with the municipal waste incinerator, the application object of this invention is not limited to this.

10…焼却炉
20…ボイラ
21、22…変向部
26…第1放射室
28…第2放射室
30…対流伝熱室
32…スクリーン管
34…2次過熱器
36…3次過熱器
38…1次過熱器
42…第2エコノマイザ
44…水平蒸発管
46…過熱器
50…別置エコノマイザ
51…第1エコノマイザ
61〜64…圧力波発生装置
70…制御盤
DESCRIPTION OF SYMBOLS 10 ... Incinerator 20 ... Boiler 21, 22 ... Turning part 26 ... 1st radiation chamber 28 ... 2nd radiation chamber 30 ... Convection heat transfer chamber 32 ... Screen tube 34 ... Secondary superheater 36 ... Tertiary superheater 38 ... Primary superheater 42 ... second economizer 44 ... horizontal evaporation pipe 46 ... superheater 50 ... separate economizer 51 ... first economizer 61-64 ... pressure wave generator 70 ... control panel

Claims (20)

廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、3次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記2次過熱器との間と、前記3次過熱器と前記1次過熱器との間に配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a secondary superheater, a tertiary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, and a boiler for removing dust adhering to the convective heat transfer surface of the convection heat transfer chamber In the dust removal device of
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
A boiler characterized in that pressure wave discharge nozzles of the pressure wave generator are disposed between the screen tube and the secondary superheater, and between the tertiary superheater and the primary superheater. Dust removal equipment.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、3次過熱器、2次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記3次過熱器との間と、前記2次過熱器と前記1次過熱器との間に配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a tertiary superheater, a secondary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, and a boiler for removing dust adhering to the convective heat transfer surface of the convection heat transfer chamber In the dust removal device of
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
A boiler in which the pressure wave discharge nozzle of the pressure wave generator is disposed between the screen tube and the tertiary superheater, and between the secondary superheater and the primary superheater. Dust removal equipment.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、水平蒸発管、2次過熱器、1次過熱器及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記水平蒸発管と前記2次過熱器との間と、前記1次過熱器と前記エコノマイザとの間に配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a horizontal evaporator tube, a secondary superheater, a primary superheater and an economizer from the upstream side in the exhaust gas flow direction for removing dust adhering to the convective heat transfer surface of the convection heat transfer chamber In boiler dust removal equipment,
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
The dust of a boiler, wherein the pressure wave discharge nozzle of the pressure wave generator is disposed between the horizontal evaporator tube and the secondary superheater, and between the primary superheater and the economizer. Removal device.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、1次過熱器、水平蒸発管及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記2次過熱器との間と、前記水平蒸発管と前記エコノマイザとの間に配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a secondary superheater, a primary superheater, a horizontal evaporator tube and an economizer from the upstream side in the exhaust gas flow direction, for removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber In boiler dust removal equipment,
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
A dust removing device for a boiler, characterized in that pressure wave discharge nozzles of the pressure wave generating device are disposed between the screen tube and the secondary superheater, and between the horizontal evaporation tube and the economizer. .
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、過熱器、第1エコノマイザ及び第2エコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記スクリーン管と前記過熱器との間と、前記第1エコノマイザと前記第2エコノマイザとの間に配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a superheater, a first economizer, and a second economizer from the upstream side in the exhaust gas flow direction, and removes the dust adhering to the convective heat transfer surface of the convection heat transfer chamber. In
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
A dust removing device for a boiler, characterized in that a pressure wave discharge nozzle of the pressure wave generating device is disposed between the screen tube and the superheater, and between the first economizer and the second economizer. .
前記対流伝熱室の高さが10m以上20m以下であって、前記圧力波発生装置の圧力波放出ノズルを、高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することを特徴とする請求項1乃至5のいずれかに記載のボイラのダスト除去装置。   The height of the convection heat transfer chamber is not less than 10 m and not more than 20 m, and the pressure wave discharge nozzles of the pressure wave generating device are disposed in the height direction at intervals of not less than 3 m and not more than 7 m, and not less than 2 and not more than 6. The boiler dust removing apparatus according to any one of claims 1 to 5, wherein 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室の高さが10m以上20m以下であるボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats In the boiler dust removal apparatus for removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber in a boiler having a height of 10 m or more and 20 m or less,
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
2. A dust removing apparatus for a boiler, wherein two or more pressure wave discharge nozzles of the pressure wave generator are disposed in the convection heat transfer chamber at a height direction interval of 3 m or more and 7 m or less.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、前記第2放射室の高さが10m以上20m以下であり前記対流伝熱室の高さが10m以上20m以下であるボイラで、前記放射室の放射伝熱面と前記対流伝熱室の対流伝熱面に付着したダストを除去するためのボイラのダスト除去装置において、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を設けると共に、
該圧力波発生装置の圧力波放出ノズルを、前記第2放射室に1個以上6個以下配設し、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設することを特徴とするボイラのダスト除去装置。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A first and second radiation chamber having a heat transfer surface; and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats, the second radiation chamber. In which the height of the convection heat transfer chamber is 10 m or more and 20 m or less, and is attached to the radiant heat transfer surface of the radiant chamber and the convective heat transfer surface of the convection heat transfer chamber. In a boiler dust removal device for removing dust,
While providing a pressure wave generator that mixes fuel gas and oxidant gas under high pressure and burns to generate a pressure wave and release the pressure wave into the boiler,
One or more pressure wave discharge nozzles of the pressure wave generating device are disposed in the second radiation chamber, and two or more pressure waves are disposed in the convection heat transfer chamber in a height direction interval of 3 m to 7 m. A dust removing device for a boiler, wherein the dust removing device is arranged in the number of pieces.
前記ボイラの下流側に連設された、ボイラに供給する水を加熱するための別置エコノマイザにも、前記圧力波放出ノズルを配設することを特徴とする請求項1乃至8のいずれかに記載のボイラのダスト除去装置。   9. The pressure wave discharge nozzle is also disposed in a separate economizer that is provided downstream of the boiler and that heats water supplied to the boiler. The boiler dust removal apparatus as described. 前記圧力波放出ノズルをマンホール位置に配設することを特徴とする請求項1乃至9のいずれかに記載のボイラのダスト除去装置。   The boiler dust removing device according to any one of claims 1 to 9, wherein the pressure wave discharge nozzle is disposed at a manhole position. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、3次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記スクリーン管と前記2次過熱器との間と、前記3次過熱器と前記1次過熱器との間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a secondary superheater, a tertiary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, when removing dust adhering to the convective heat transfer surface of the convection heat transfer chamber,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
A pressure wave is discharged into the convection heat transfer chamber from a pressure wave discharge nozzle disposed between the screen tube and the secondary superheater and between the tertiary superheater and the primary superheater. A method for removing dust from a boiler.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、3次過熱器、2次過熱器及び1次過熱器を有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記スクリーン管と前記3次過熱器との間と、前記2次過熱器と前記1次過熱器との間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a tertiary superheater, a secondary superheater and a primary superheater from the upstream side in the exhaust gas flow direction, when removing dust adhering to the convective heat transfer surface of the convection heat transfer chamber,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
A pressure wave is discharged into the convection heat transfer chamber from a pressure wave discharge nozzle disposed between the screen tube and the tertiary superheater and between the secondary superheater and the primary superheater. A method for removing dust from a boiler.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、水平蒸発管、2次過熱器、1次過熱器及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記水平蒸発管と前記2次過熱器との間と、前記1次過熱器と前記エコノマイザとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats When removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber with a boiler having a screen tube, horizontal evaporator tube, secondary superheater, primary superheater and economizer from the upstream side in the exhaust gas flow direction ,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
Discharging pressure waves into the convection heat transfer chamber from pressure wave discharge nozzles disposed between the horizontal evaporator pipe and the secondary superheater and between the primary superheater and the economizer. A method for removing dust from a boiler.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、2次過熱器、1次過熱器、水平蒸発管及びエコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記スクリーン管と前記2次過熱器との間と、前記水平蒸発管と前記エコノマイザとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats When removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber with a boiler having a screen tube, secondary superheater, primary superheater, horizontal evaporator tube and economizer from the upstream side in the exhaust gas flow direction ,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
A pressure wave is discharged into the convection heat transfer chamber from a pressure wave discharge nozzle disposed between the screen tube and the secondary superheater, and between the horizontal evaporator tube and the economizer. To remove dust from boiler.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室が排ガス流れ方向で上流側からスクリーン管、過熱器、第1エコノマイザ及び第2エコノマイザを有するボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記スクリーン管と前記過熱器との間と、前記第1エコノマイザと前記第2エコノマイザとの間にとの間に配設された圧力波放出ノズルから、前記対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats Is a boiler having a screen tube, a superheater, a first economizer and a second economizer from the upstream side in the exhaust gas flow direction, when removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
A pressure wave is discharged into the convection heat transfer chamber from a pressure wave discharge nozzle disposed between the screen tube and the superheater and between the first economizer and the second economizer. A method for removing dust from a boiler.
前記対流伝熱室の高さが10m以上20m以下であって、前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該対流伝熱室内に圧力波を放出することを特徴とする請求項11乃至15のいずれかに記載のボイラのダスト除去方法。   A pressure wave discharge nozzle in which the height of the convection heat transfer chamber is 10 m or more and 20 m or less, and the arrangement distance in the height direction is 3 m or more and 7 m or less and 2 or more and 6 or less in the convection heat transfer chamber; The method for removing dust from a boiler according to any one of claims 11 to 15, wherein pressure waves are discharged into the convection heat transfer chamber. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、該対流伝熱室の高さが10m以上20m以下であるボイラで、前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A convection heat transfer chamber provided with first and second radiation chambers having heat transfer surfaces, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surfaces of the heat transfer tubes and further superheats When removing dust adhering to the convection heat transfer surface of the convection heat transfer chamber with a boiler having a height of 10 m to 20 m,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
A pressure wave is discharged into the convection heat transfer chamber from a pressure wave discharge nozzle disposed in the convection heat transfer chamber with a height arrangement interval of 3 m or more and 7 m or less and 2 or more and 6 or less. Boiler dust removal method.
廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる2つの変向部により区分された、上流側から、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備えた第1、第2放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備え、前記第2放射室の高さが10m以上20m以下であり前記対流伝熱室の高さが10m以上20m以下であるボイラで、前記放射室の放射伝熱面と前記対流伝熱室の対流伝熱面に付着したダストを除去する際に、
燃料ガスと酸化剤ガスを高圧下で混合し燃焼して圧力波を発生させボイラ内へ圧力波を放出する圧力波発生装置を用いて、
前記第2放射室に1個以上6個以下配設され前記対流伝熱室に高さ方向配設間隔が3m以上7m以下で2個以上6個以下配設された圧力波放出ノズルから、該第2放射室及び対流伝熱室内に圧力波を放出することを特徴とするボイラのダスト除去方法。
Radiation that generates steam by receiving radiant heat from the exhaust gas from the upstream side, separated by two turning sections that bend the flow path of the exhaust gas, connected to the waste incinerator to recover heat from the exhaust gas A first and second radiation chamber having a heat transfer surface; and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats, the second radiation chamber. In which the height of the convection heat transfer chamber is 10 m or more and 20 m or less, and is attached to the radiant heat transfer surface of the radiant chamber and the convective heat transfer surface of the convection heat transfer chamber. When removing dust,
Using a pressure wave generator that mixes and burns fuel gas and oxidant gas under high pressure to generate a pressure wave and release the pressure wave into the boiler,
From the pressure wave discharge nozzle disposed in the second radiation chamber from 1 to 6 and disposed in the convection heat transfer chamber in the height direction interval of 3 m to 7 m and from 2 to 6 A method for removing dust from a boiler, wherein pressure waves are discharged into a second radiation chamber and a convection heat transfer chamber.
前記ボイラの下流側に連設された、ボイラに供給する水を加熱するための別置エコノマイザ内にも、圧力波を放出することを特徴とする請求項11乃至18のいずれかに記載のボイラのダスト除去方法。   The boiler according to any one of claims 11 to 18, wherein a pressure wave is also emitted into a separate economizer that is provided downstream of the boiler and that heats water supplied to the boiler. Dust removal method. マンホール位置に配設された圧力波放出ノズルから圧力波を放出することを特徴とする請求項11乃至19のいずれかに記載のボイラのダスト除去方法。   The boiler dust removal method according to any one of claims 11 to 19, wherein a pressure wave is discharged from a pressure wave discharge nozzle disposed at a manhole position.
JP2016032492A 2015-07-07 2016-02-23 Boiler dust removing device and dust removing method Active JP5971438B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015136429 2015-07-07
JP2015136429 2015-07-07

Publications (2)

Publication Number Publication Date
JP5971438B1 true JP5971438B1 (en) 2016-08-17
JP2017020773A JP2017020773A (en) 2017-01-26

Family

ID=56701667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016032492A Active JP5971438B1 (en) 2015-07-07 2016-02-23 Boiler dust removing device and dust removing method

Country Status (1)

Country Link
JP (1) JP5971438B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720836A (en) * 2020-07-06 2020-09-29 南通万达锅炉有限公司 Super high pressure grate waste incineration boiler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187267A (en) * 2016-03-31 2017-10-12 Jfeエンジニアリング株式会社 Boiler anticorrosive device and anticorrosive method
JP7153431B2 (en) * 2017-08-17 2022-10-14 Jfeエンジニアリング株式会社 Boiler corrosion prevention device and corrosion prevention method
JP2019045104A (en) * 2017-09-05 2019-03-22 Jfeエンジニアリング株式会社 Waste incinerator boiler

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920959B2 (en) * 1981-03-28 1984-05-16 尾崎 順三 Soot blowing method and soot blower
JPS6391401A (en) * 1986-10-02 1988-04-22 三菱重工業株式会社 Exhaust-gas economizer soot adhesion preventive method
JP2001141391A (en) * 1999-11-12 2001-05-25 Tokyo Gas Engineering Co Ltd Method of removing ash or dust adhering to heat conductive pipe of exhaust gas heat exchanger, and its device
JP2004278921A (en) * 2003-03-17 2004-10-07 Jfe Engineering Kk Dust removing method, dust removing device and dust attachment inhibiting method
JP2005249283A (en) * 2004-03-04 2005-09-15 Jfe Engineering Kk Waste incinerator
JP2006125759A (en) * 2004-10-29 2006-05-18 Babcock Hitachi Kk Operation control device for incinerator
JP2007218458A (en) * 2006-02-15 2007-08-30 Mitsubishi Heavy Ind Ltd Boiler structure comprising swirl melting furnace
JP2010023035A (en) * 2001-04-12 2010-02-04 Bang & Clean Gmbh Method and device for cleaning combustion equipment
US20120180738A1 (en) * 2011-01-13 2012-07-19 General Electric Company Catalyst obstacles for pulse detonation device employed in a detonation device cleaning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920959B2 (en) * 1981-03-28 1984-05-16 尾崎 順三 Soot blowing method and soot blower
JPS6391401A (en) * 1986-10-02 1988-04-22 三菱重工業株式会社 Exhaust-gas economizer soot adhesion preventive method
JP2001141391A (en) * 1999-11-12 2001-05-25 Tokyo Gas Engineering Co Ltd Method of removing ash or dust adhering to heat conductive pipe of exhaust gas heat exchanger, and its device
JP2010023035A (en) * 2001-04-12 2010-02-04 Bang & Clean Gmbh Method and device for cleaning combustion equipment
JP2004278921A (en) * 2003-03-17 2004-10-07 Jfe Engineering Kk Dust removing method, dust removing device and dust attachment inhibiting method
JP2005249283A (en) * 2004-03-04 2005-09-15 Jfe Engineering Kk Waste incinerator
JP2006125759A (en) * 2004-10-29 2006-05-18 Babcock Hitachi Kk Operation control device for incinerator
JP2007218458A (en) * 2006-02-15 2007-08-30 Mitsubishi Heavy Ind Ltd Boiler structure comprising swirl melting furnace
US20120180738A1 (en) * 2011-01-13 2012-07-19 General Electric Company Catalyst obstacles for pulse detonation device employed in a detonation device cleaning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111720836A (en) * 2020-07-06 2020-09-29 南通万达锅炉有限公司 Super high pressure grate waste incineration boiler

Also Published As

Publication number Publication date
JP2017020773A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6693239B2 (en) Boiler dust removing device and dust removing method
JP5971438B1 (en) Boiler dust removing device and dust removing method
EP2329191B1 (en) Gas impulse blower
FI122653B (en) Arrangement in a recovery boiler
EP0212245B1 (en) Combustion of halogenated hydrocarbons with heat recovery
JP2017181007A (en) Blockage suppression device and blockage suppression method for boiler
JP2009510383A (en) Steam generating boiler from flue gas under optimum conditions
JP2013064595A (en) Furnace of power station boiler
EP1995547A2 (en) Pulse detonation cleaning apparatus
JP5843391B2 (en) Waste power generation system
CN108779913B (en) Mechanical grate type garbage incinerator provided with waste heat recovery boiler
EP2434247B1 (en) Pulse detonation cleaning system
JP2019045104A (en) Waste incinerator boiler
JP2019105394A (en) Method for suppressing blockage and corrosion in waste incinerator boiler
EP3591291B1 (en) Boiler, ship comprising boiler, and inert gas generation method
RU2012149843A (en) BOILER AND STEAM HEATER, AND ALSO WAY
JP2016041939A (en) Waste power generation system
JP2007309162A (en) Waste incinerator power generation device
JP6655947B2 (en) Modification method of burner unit, burner unit and boiler
JP2023018550A (en) Deposit removal system and deposit removal method
JP6927705B2 (en) Methods and equipment for producing superheated steam by the heat generated in the boiler of the incinerator
EP3591293B1 (en) Boiler, boiler system, and boiler operation method
JP2023167410A (en) Boiler and protection method for the same
JP2018141585A5 (en)
JP6430099B2 (en) Boiler system

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5971438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350