JP2019158167A - Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler - Google Patents

Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler Download PDF

Info

Publication number
JP2019158167A
JP2019158167A JP2018041340A JP2018041340A JP2019158167A JP 2019158167 A JP2019158167 A JP 2019158167A JP 2018041340 A JP2018041340 A JP 2018041340A JP 2018041340 A JP2018041340 A JP 2018041340A JP 2019158167 A JP2019158167 A JP 2019158167A
Authority
JP
Japan
Prior art keywords
heat transfer
exhaust gas
transfer surface
boiler
radiant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018041340A
Other languages
Japanese (ja)
Inventor
北川 尚男
Hisao Kitagawa
尚男 北川
内山 武
Takeshi Uchiyama
武 内山
中山 剛
Takeshi Nakayama
剛 中山
翔太 川崎
Shota KAWASAKI
翔太 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018041340A priority Critical patent/JP2019158167A/en
Publication of JP2019158167A publication Critical patent/JP2019158167A/en
Pending legal-status Critical Current

Links

Images

Abstract

To prevent a corrosion-proof layer on a radiant heat transfer surface from peeling off even when using a water injection device for removing dust.SOLUTION: In a boiler 20 including: a radiation chamber 28 connected to a waste incinerator 10 for recovering heat from exhaust gas, sectioned by a direction change part bending a passage of the exhaust gas, and including a radiant heat transfer surface 28A which receives radiation heat of the exhaust gas from an upstream side in an exhaust gas flow direction and generates steam; and a convective heat transfer chamber 30 which generates steam by heat exchange between the exhaust gas and a convective heat transfer surface of a heat transfer pipe and overheats the steam, a corrosion-proof layer 28B is formed on the radiant heat transfer surface 28A of the radiation chamber 28, onto which water may be injected from a water injection device 70 for removing dust attached on the radiant heat transfer surface 28A, by buildup welding of stainless steel or Ni-Cr-Mo alloy.SELECTED DRAWING: Figure 1

Description

本発明は、ボイラの放射伝熱面の防食方法及びボイラに係り、特に、発電設備を有するごみ焼却施設に用いるのに好適な、ダスト除去のための水噴射装置を用いても放射伝熱面の防食層の剥離を防止できるボイラの放射伝熱面の防食方法及びボイラに関する。   The present invention relates to a corrosion prevention method and boiler for a radiant heat transfer surface of a boiler, and more particularly to a radiant heat transfer surface using a water jet device for dust removal, which is suitable for use in a garbage incineration facility having a power generation facility. The present invention relates to a corrosion prevention method for a radiant heat transfer surface of a boiler and a boiler that can prevent peeling of the corrosion protection layer.

発電設備を有するごみ焼却施設の運営において、発電量・売電量の維持と向上は、ごみの安定処理に次ぐ最重要項目のひとつである。   In the operation of a waste incineration facility with power generation facilities, maintaining and improving the amount of power generated and sold is one of the most important items after the stable treatment of waste.

ごみ焼却施設における発電は、焼却炉でのごみの燃焼から得られる高温の排ガスからボイラにて熱回収を行い、所定の温度・圧力の蒸気を発生させてタービン発電機に導入することにより行われている。   Power generation at a waste incineration facility is performed by recovering heat from a high-temperature exhaust gas obtained from the combustion of waste in an incinerator and generating steam at a predetermined temperature and pressure and introducing it into a turbine generator. ing.

ボイラは、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面を備える放射室、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生し更に過熱する対流伝熱室とを備えている。   The boiler has a radiant chamber having a radiant heat transfer surface that generates steam by receiving radiant heat from the exhaust gas, a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube, and further superheats. It has.

放射室には、排ガス流路を囲む鋼製側壁の外側に加温水を流通させ放射加熱により蒸気を発生させる放射伝熱管が放射伝熱面として配設されている。   In the radiant chamber, a radiant heat transfer tube is provided as a radiant heat transfer surface through which heated water is circulated on the outside of the steel side wall surrounding the exhaust gas flow path to generate steam by radiant heating.

対流伝熱室には、排ガス流路内に排ガスと接触して対流伝熱により蒸気を発生させ更に過熱する伝熱管(過熱器とも称する)が対流伝熱面として配設されている。対流伝熱面は水平方向に伝熱管が複数配設された伝熱管群が高さ方向に複数段配設されて構成されている。   In the convection heat transfer chamber, a heat transfer tube (also referred to as a superheater) that contacts the exhaust gas in the exhaust gas flow path to generate steam by convective heat transfer and further superheats is disposed as a convection heat transfer surface. The convection heat transfer surface is configured by arranging a plurality of heat transfer tube groups in which a plurality of heat transfer tubes are arranged in the horizontal direction in the height direction.

対流伝熱室には、排ガス流路内に水を加熱して加温水とする伝熱管を有するエコノマイザが配設されることがある。   The convection heat transfer chamber may be provided with an economizer having a heat transfer tube that heats water in the exhaust gas flow path to produce heated water.

ごみ焼却において発生する排ガス中には、塩素・硫黄・重金属類等を含む小粒径のダストが含まれるが、これらがボイラの放射伝熱面、対流伝熱面に付着すると、その付着ダストが断熱材の役割をするので伝熱効率が低下する。それにより、熱回収効率も低下する。その結果、蒸気発生量が低下し、タービン発電機の発電量が減少する。その他にも、伝熱管同士の間隙が付着ダストにより閉塞し、排ガスの流通に支障が生じることもある。   The exhaust gas generated in refuse incineration contains dust of small particle size including chlorine, sulfur, heavy metals, etc., but if these adhere to the radiant and convective heat transfer surfaces of the boiler, the adhering dust will be Since it acts as a heat insulating material, heat transfer efficiency decreases. Thereby, the heat recovery efficiency also decreases. As a result, the amount of steam generated decreases, and the amount of power generated by the turbine generator decreases. In addition, the gap between the heat transfer tubes may be blocked by adhering dust, which may hinder the flow of exhaust gas.

このため、付着したダストを定期的に除去する設備が必要となるが、例えば、放射室の放射伝熱面に付着したダストを除去する技術として、出願人は特許文献1で水噴射装置を用いた技術を提案している。   For this reason, equipment that periodically removes adhering dust is required. For example, as a technique for removing dust adhering to the radiation heat transfer surface of the radiation chamber, the applicant uses a water injection device in Patent Document 1. The technology that had been proposed.

特開2017−181008号公報JP 2017-181008 A

しかしながら、焼却炉の操業中に放射伝熱面に付着したダストを除去するために水や水蒸気を噴射すると放射伝熱面の温度が一時的に低下し、再び高温の炉内ガスに曝されて温度が戻るため、熱膨張と収縮が繰り返され、放射伝熱面の防食のために施した防食層が剥離するという問題が生じていた。   However, when water or water vapor is injected to remove dust adhering to the radiant heat transfer surface during the operation of the incinerator, the temperature of the radiant heat transfer surface temporarily decreases and is again exposed to high-temperature furnace gas. Since the temperature returned, thermal expansion and contraction were repeated, and there was a problem that the anticorrosion layer applied for anticorrosion of the radiation heat transfer surface peeled off.

本発明は、前記問題に鑑みてなされたもので、ダスト除去のための水噴射装置を用いても放射伝熱面の防食層の剥離を防止できるようにすることを課題とする。   This invention is made | formed in view of the said problem, and makes it a subject to prevent peeling of the anticorrosion layer of a radiation heat-transfer surface, even if it uses the water injection apparatus for dust removal.

温度交番による防食層の耐熱衝撃性を調査するため、熱衝撃試験を行った。   A thermal shock test was conducted to investigate the thermal shock resistance of the anticorrosion layer due to temperature alternation.

JIS H8304に準拠して、50mm×50mm×5mmのSS400の板にスチールグリッドを用いてブラスト処理し、表面の汚れを落として表面に凹凸を付けた後、肉盛溶接や溶射で防食層を付けて試験片とした。   In accordance with JIS H8304, 50mm x 50mm x 5mm SS400 plate is blasted using a steel grid, and the surface is cleaned to make the surface uneven, and then an anticorrosive layer is applied by overlay welding or thermal spraying. A test piece was obtained.

それぞれの試験片を、電気炉の中で放射伝熱面の最高温度である300℃まで加熱し、炉から取り出した直後に水冷した。試験片はアルコールをかけて清浄化し、損傷(割れ、剥離)の確認をした後、20倍のルーペで割れの有無を確認した。最大50回まで熱衝撃を繰り返し、損傷が生じなかったものを合格、損傷が生じたものを不合格とした。試験結果を表1に示す。   Each test piece was heated to 300 ° C., which is the maximum temperature of the radiant heat transfer surface, in an electric furnace, and water-cooled immediately after removal from the furnace. The test piece was cleaned with alcohol, and after confirming damage (cracking and peeling), the presence or absence of cracking was confirmed with a 20-fold magnifier. The thermal shock was repeated up to 50 times, and those that were not damaged were accepted and those that were damaged were rejected. The test results are shown in Table 1.

肉盛溶接の溶接条件は表2、溶接ワイヤの化学成分(wt%)は表3、溶射材の組成は表4に示すとおりである。   Table 2 shows the welding conditions for overlay welding, Table 3 shows the chemical composition (wt%) of the welding wire, and Table 4 shows the composition of the thermal spray material.

従来法のフレーム溶射や、高温、高速のプラズマジェットを熱源として大気中で高融点材料を溶射する大気プラズマ溶射(APS)では、密着性が悪く、全て不合格であった。   Conventional flame spraying and atmospheric plasma spraying (APS) in which a high-melting-point material is sprayed in the atmosphere using a high-temperature, high-speed plasma jet as a heat source have poor adhesion and all have failed.

これらに対して、ステンレス鋼のSUS309、及び、Ni−Cr−Mo合金のインコネル625、ハステロイC276及びハステロイC22を肉盛溶接した場合は、合格の結果が得られた。   In contrast, when stainless steel SUS309 and Ni-Cr-Mo alloy Inconel 625, Hastelloy C276, and Hastelloy C22 were overlay welded, acceptable results were obtained.

本発明は、上記知見に基いてなされたもので、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる変向部により区分され、排ガス流れ方向の上流側から排ガスの放射熱を受けて蒸気を発生させる放射伝熱面を備えた放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備えるボイラにおいて、前記放射伝熱面に付着したダストを除去するために水噴射装置から水を噴射する前記放射室の前記放射伝熱面に、ステンレス鋼又はNi−Cr−Mo合金の肉盛溶接により防食層を形成することにより、前記課題を解決するものである。   The present invention has been made on the basis of the above knowledge, and is divided by a turning portion that bends the flow path of the exhaust gas to be connected to the waste incinerator and recovers heat from the exhaust gas, and is upstream of the exhaust gas flow direction. A radiant chamber with a radiant heat transfer surface that generates steam by receiving the radiant heat of the exhaust gas, and a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube and further superheats In order to remove dust adhering to the radiant heat transfer surface, on the radiant heat transfer surface of the radiant chamber for injecting water from a water injection device, a build-up of stainless steel or Ni-Cr-Mo alloy is provided. The said subject is solved by forming an anticorrosion layer by welding.

ここで、前記ステンレス鋼をSUS309とすることができる。   Here, the stainless steel can be SUS309.

又、前記Ni−Cr−Mo合金をインコネル625、ハステロイC276及びハステロイC22とすることができる。   Further, the Ni—Cr—Mo alloy may be Inconel 625, Hastelloy C276, and Hastelloy C22.

本発明は、又、廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる変向部により区分され、排ガス流れ方向の上流側から排ガスの放射熱を受けて蒸気を発生させる放射伝熱面を備えた放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備えるボイラにおいて、前記放射室に水を噴射して前記放射伝熱面に付着したダストを除去するための水噴射装置を備え、前記放射伝熱面には、ステンレス鋼又はNi−Cr−Mo合金の肉盛溶接による防食層が形成されていることを特徴とするボイラを提供することにより、同じく前記課題を解決するものである。   The present invention is also divided by a turning section that bends the exhaust gas flow path and is connected to the waste incinerator to recover heat from the exhaust gas, and receives the radiant heat of the exhaust gas from the upstream side in the exhaust gas flow direction. A radiation chamber having a radiation heat transfer surface for generating steam, and a boiler having a convection heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convection heat transfer surface of the heat transfer tube and further superheats, the radiation chamber A water injection device for removing dust adhering to the radiant heat transfer surface by injecting water onto the radiant heat transfer surface, the anticorrosion layer by overlay welding of stainless steel or Ni-Cr-Mo alloy on the radiant heat transfer surface By providing a boiler characterized in that is formed, the above-mentioned problem is solved.

本発明によれば、ダスト除去のための水噴射装置を用いても放射伝熱面の防食層の剥離を防止することが可能になる。   According to the present invention, it is possible to prevent peeling of the anticorrosion layer on the radiant heat transfer surface even if a water jet device for dust removal is used.

本発明の実施形態の構成を示す断面図Sectional drawing which shows the structure of embodiment of this invention

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態に記載した内容により限定されるものではない。又、以下に記載した実施形態における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment. In addition, constituent elements in the embodiments described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments described below may be appropriately combined, or may be appropriately selected and used.

まず、本発明が適用される、廃棄物焼却炉と連設されるボイラについて説明する。図1に示す如く、焼却炉10に連設され、排ガスから熱回収するためのボイラ20は、排ガスの流通路を屈曲せしめる2つの変向部21、22により区分され、排ガス流れ方向の上流側から、第1放射室26、第2放射室28、及び対流伝熱室30を備えている。焼却炉10から排ガスを受け入れる第1放射室26の入口近傍はガス混合室24となっている。焼却炉10から導入される排ガスは、第1放射室26の下方から上方へ、第2放射室28の上方から下方へ、対流伝熱室30の下方から上方へ流通される。   First, a boiler connected to a waste incinerator to which the present invention is applied will be described. As shown in FIG. 1, a boiler 20 connected to an incinerator 10 for recovering heat from exhaust gas is divided by two turning portions 21 and 22 that bend the exhaust gas flow path, and upstream of the exhaust gas flow direction. The first radiation chamber 26, the second radiation chamber 28, and the convection heat transfer chamber 30 are provided. A gas mixing chamber 24 is provided in the vicinity of the inlet of the first radiation chamber 26 that receives exhaust gas from the incinerator 10. The exhaust gas introduced from the incinerator 10 flows from the lower side of the first radiation chamber 26 to the upper side, from the upper side to the lower side of the second radiation chamber 28, and from the lower side to the upper side of the convection heat transfer chamber 30.

前記第1放射室26及び第2放射室28は、排ガスからの放射熱を受けて蒸気を発生させる放射伝熱面をそれぞれ備えている。   The first radiation chamber 26 and the second radiation chamber 28 are each provided with a radiation heat transfer surface that generates radiant heat from the exhaust gas and generates steam.

前記対流伝熱室30は、排ガス流れ方向の上流側から、スクリーン管32、水平蒸発管44、2次過熱器34、1次過熱器38、及びエコノマイザ42を備えている。2次過熱器34、1次過熱器38は、それぞれ、水平方向に配列した複数の伝熱管を高さ方向に多段に設けた伝熱管群を備え、該伝熱管群が対流伝熱面を構成しており、排ガスとの熱交換により蒸気を発生して更に過熱するようにされている。スクリーン管32には伝熱管が旗形に備えられ、対流伝熱室30に導入される排ガスを冷却するようにされている。水平蒸発管44は、エコノマイザ42により加温された水を加熱し、蒸気を発生させる伝熱管である。   The convection heat transfer chamber 30 includes a screen tube 32, a horizontal evaporation tube 44, a secondary superheater 34, a primary superheater 38, and an economizer 42 from the upstream side in the exhaust gas flow direction. Each of the secondary superheater 34 and the primary superheater 38 includes a heat transfer tube group in which a plurality of heat transfer tubes arranged in a horizontal direction are provided in multiple stages in the height direction, and the heat transfer tube group constitutes a convection heat transfer surface. In addition, steam is generated by heat exchange with the exhaust gas to further overheat. The screen tube 32 is provided with a heat transfer tube in the shape of a flag to cool the exhaust gas introduced into the convection heat transfer chamber 30. The horizontal evaporation pipe 44 is a heat transfer pipe that heats the water heated by the economizer 42 and generates steam.

本実施形態においては、前記第2放射室28に、該第2放射室28の放射伝熱面28Aに付着したダストに対して水を噴射して除去する水噴射装置70が配設されている。水噴射装置70は、複数の噴射口を有し第2放射室28内で上昇下降する水噴射ノズル71と、該水噴射ノズル71に水を供給する給水管72と、前記水噴射ノズル71を上昇下降させる昇降機構73を備えている。   In the present embodiment, the second radiation chamber 28 is provided with a water ejection device 70 that ejects and removes water from the dust adhering to the radiation heat transfer surface 28A of the second radiation chamber 28. . The water injection device 70 includes a plurality of injection ports, a water injection nozzle 71 that moves up and down in the second radiation chamber 28, a water supply pipe 72 that supplies water to the water injection nozzle 71, and the water injection nozzle 71. An elevating mechanism 73 that moves up and down is provided.

第2放射室28に水噴射ノズル71が配設され、前記第2放射室28の放射伝熱面28Aに水を噴射して付着したダストを除去することにより、圧力波発生方式ダスト除去装置を適用することが難しいボイラ幅が5m以上の大型ボイラあるいはボイラ幅が3m以下の小型ボイラにおいても放射伝熱面28Aに付着したダストを効率的に除去することが可能になる。   A water jet nozzle 71 is disposed in the second radiation chamber 28, and water is sprayed onto the radiation heat transfer surface 28A of the second radiation chamber 28 to remove the adhering dust. Even in a large boiler having a boiler width of 5 m or more that is difficult to apply or a small boiler having a boiler width of 3 m or less, it is possible to efficiently remove dust adhering to the radiant heat transfer surface 28A.

ここで、本発明の第1実施形態においては、表1に記載したSUS309の肉盛溶接で防食層28Bを形成することにより、良好な結果を得ることができた。   Here, in the first embodiment of the present invention, good results could be obtained by forming the anticorrosion layer 28B by overlay welding of SUS309 described in Table 1.

又、本発明の第2実施形態においては、インコネル625の肉盛溶接で防食層28Bを形成することにより、良好な結果を得ることができた。   In the second embodiment of the present invention, good results could be obtained by forming the anticorrosion layer 28B by overlay welding of Inconel 625.

又、本発明の第3実施形態においては、ハステロイC276の肉盛溶接で防食層28Bを形成することにより、良好な結果を得ることができた。   In the third embodiment of the present invention, good results could be obtained by forming the anticorrosion layer 28B by overlay welding of Hastelloy C276.

更に、本発明の第4実施形態においては、ハステロイC22の肉盛溶接で防食層28Bを形成することにより、良好な結果を得ることができた。   Furthermore, in the fourth embodiment of the present invention, good results could be obtained by forming the anticorrosion layer 28B by overlay welding of Hastelloy C22.

このようにして、本発明により、ダスト除去のための水噴射装置70を用いても放射伝熱面28Aの防食層28Bの剥離を防止することが可能であり、ボイラ20の収熱量を維持して、水噴射装置70を用いる場合に生じる問題を防ぐことができる。従って、運転中にボイラ内壁に付着したダストを効率的に除去することが可能になり、ボイラの収熱量を維持することができる。又、付着したダスト中に含まれる重金属類、塩類などによるボイラ内壁面、廃熱回収管表面の腐食進行を防止することでメンテナンス費を下げ、運転管理も容易な焼却施設操業が可能になる。   In this way, according to the present invention, it is possible to prevent the anticorrosion layer 28B from peeling off the radiation heat transfer surface 28A even if the water jet device 70 for dust removal is used, and to maintain the heat collection amount of the boiler 20. Thus, problems that occur when the water injection device 70 is used can be prevented. Therefore, it becomes possible to efficiently remove dust adhering to the boiler inner wall during operation, and the amount of heat collected by the boiler can be maintained. Further, by preventing the corrosion of the boiler inner wall surface and the waste heat recovery pipe surface due to heavy metals and salts contained in the attached dust, the maintenance cost can be reduced and the operation of the incineration facility with easy operation management becomes possible.

前記実施形態では、本発明による防食層28Bが第2放射室28の放射伝熱面28Aに形成されていたが、防食層の形成対象はこれに限定されない。   In the said embodiment, although the anticorrosion layer 28B by this invention was formed in 28A of radiation | emission heat transfer surfaces of the 2nd radiation chamber 28, the formation object of an anticorrosion layer is not limited to this.

又、前記実施形態では、本発明を都市ごみ焼却炉に連設されたボイラに適用していたが、本発明の適用対象はこれに限定されない。   Moreover, in the said embodiment, although this invention was applied to the boiler connected with the municipal waste incinerator, the application object of this invention is not limited to this.

10…焼却炉
20…ボイラ
21、22…変向部
26…第1放射室
28…第2放射室
28A…放射伝熱面
28B…防食層
30…対流伝熱室
32…スクリーン管
34…2次過熱器
38…1次過熱器
42…エコノマイザ
44…水平蒸発管
70…水噴射装置
71…水噴射ノズル
72…給水管
73…昇降機構
DESCRIPTION OF SYMBOLS 10 ... Incinerator 20 ... Boiler 21, 22 ... Turning part 26 ... 1st radiation chamber 28 ... 2nd radiation chamber 28A ... Radiation heat transfer surface 28B ... Anticorrosion layer 30 ... Convection heat transfer chamber 32 ... Screen tube 34 ... Secondary Superheater 38 ... Primary superheater 42 ... Economizer 44 ... Horizontal evaporation pipe 70 ... Water injection device 71 ... Water injection nozzle 72 ... Water supply pipe 73 ... Elevating mechanism

Claims (6)

廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる変向部により区分され、排ガス流れ方向の上流側から排ガスの放射熱を受けて蒸気を発生させる放射伝熱面を備えた放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備えるボイラにおいて、
前記放射伝熱面に付着したダストを除去するために水噴射装置から水を噴射する前記放射室の前記放射伝熱面に、ステンレス鋼又はNi−Cr−Mo合金の肉盛溶接により防食層を形成することを特徴とするボイラの放射伝熱面の防食方法。
Radiation transmission that generates steam by receiving the radiant heat of the exhaust gas from the upstream side in the exhaust gas flow direction, separated by a turning section that bends the exhaust gas flow path and is connected to the waste incinerator to recover heat from the exhaust gas. In a boiler having a radiant chamber having a hot surface and a convective heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube and further overheats,
In order to remove dust adhering to the radiant heat transfer surface, an anticorrosion layer is formed on the radiant heat transfer surface of the radiant chamber through which water is injected from a water injection device by overlay welding of stainless steel or Ni-Cr-Mo alloy An anticorrosion method for a radiant heat transfer surface of a boiler, characterized by forming.
前記ステンレス鋼がSUS309であることを特徴とする請求項1に記載のボイラの放射伝熱面の防食方法。   The said stainless steel is SUS309, The corrosion prevention method of the radiation heat-transfer surface of the boiler of Claim 1 characterized by the above-mentioned. 前記Ni−Cr−Mo合金がインコネル625、ハステロイC276及びハステロイC22であることを特徴とする請求項1に記載のボイラの放射伝熱面の防食方法。   The said Ni-Cr-Mo alloy is Inconel 625, Hastelloy C276, and Hastelloy C22, The corrosion prevention method of the radiation heat-transfer surface of the boiler of Claim 1 characterized by the above-mentioned. 廃棄物焼却炉に連設され排ガスから熱回収するための、排ガスの流通路を屈曲せしめる変向部により区分され、排ガス流れ方向の上流側から排ガスの放射熱を受けて蒸気を発生させる放射伝熱面を備えた放射室、及び、排ガスと伝熱管の対流伝熱面との熱交換により蒸気を発生して更に過熱する対流伝熱室を備えるボイラにおいて、
前記放射室に水を噴射して前記放射伝熱面に付着したダストを除去するための水噴射装置を備え、
前記放射伝熱面には、ステンレス鋼又はNi−Cr−Mo合金の肉盛溶接による防食層が形成されていることを特徴とするボイラ。
Radiation transmission that generates steam by receiving the radiant heat of the exhaust gas from the upstream side in the exhaust gas flow direction, separated by a turning section that bends the exhaust gas flow path and is connected to the waste incinerator to recover heat from the exhaust gas. In a boiler having a radiant chamber having a hot surface and a convective heat transfer chamber that generates steam by heat exchange between the exhaust gas and the convective heat transfer surface of the heat transfer tube and further overheats,
A water injection device for removing dust adhering to the radiation heat transfer surface by injecting water into the radiation chamber;
A boiler having a corrosion prevention layer formed by overlay welding of stainless steel or Ni—Cr—Mo alloy on the radiation heat transfer surface.
前記ステンレス鋼がSUS309であることを特徴とする請求項4に記載のボイラ。   The boiler according to claim 4, wherein the stainless steel is SUS309. 前記Ni−Cr−Mo合金がインコネル625、ハステロイC276及びハステロイC22であることを特徴とする請求項4に記載のボイラ。   The boiler according to claim 4, wherein the Ni—Cr—Mo alloy is Inconel 625, Hastelloy C276, and Hastelloy C22.
JP2018041340A 2018-03-07 2018-03-07 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler Pending JP2019158167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018041340A JP2019158167A (en) 2018-03-07 2018-03-07 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018041340A JP2019158167A (en) 2018-03-07 2018-03-07 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler

Publications (1)

Publication Number Publication Date
JP2019158167A true JP2019158167A (en) 2019-09-19

Family

ID=67995202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018041340A Pending JP2019158167A (en) 2018-03-07 2018-03-07 Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler

Country Status (1)

Country Link
JP (1) JP2019158167A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396852A (en) * 2020-04-12 2020-07-10 南通中意锅炉设备有限公司 Cleaning process for furnace pipe of industrial boiler

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317903A (en) * 2001-02-16 2002-10-31 Nkk Corp Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2007155233A (en) * 2005-12-06 2007-06-21 Babcock Hitachi Kk Boiler furnace and manufacturing method of panel for boiler furnace
JP2007169733A (en) * 2005-12-22 2007-07-05 Dai Ichi High Frequency Co Ltd Alloy for corrosion resistant coating and member coated therewith
JP2007178104A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Heat transfer tube, method of manufacturing heat transfer tube, and fluidized bed furnace
JP2008093732A (en) * 2006-09-12 2008-04-24 Fujikoo:Kk Build-up welding method and build-up welded portion formed by the method
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
JP2016000411A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding body
JP2016150376A (en) * 2015-02-19 2016-08-22 大同特殊鋼株式会社 Padding material and build-up metal material
JP2017181008A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Dust removing device and dust removing method for boiler
JP2017187267A (en) * 2016-03-31 2017-10-12 Jfeエンジニアリング株式会社 Boiler anticorrosive device and anticorrosive method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317903A (en) * 2001-02-16 2002-10-31 Nkk Corp Boiler equipped with corrosion resistant heat transfer pipe for heat exchange
JP2007155233A (en) * 2005-12-06 2007-06-21 Babcock Hitachi Kk Boiler furnace and manufacturing method of panel for boiler furnace
JP2007169733A (en) * 2005-12-22 2007-07-05 Dai Ichi High Frequency Co Ltd Alloy for corrosion resistant coating and member coated therewith
JP2007178104A (en) * 2005-12-28 2007-07-12 Dowa Holdings Co Ltd Heat transfer tube, method of manufacturing heat transfer tube, and fluidized bed furnace
JP2008093732A (en) * 2006-09-12 2008-04-24 Fujikoo:Kk Build-up welding method and build-up welded portion formed by the method
US20120214017A1 (en) * 2011-02-22 2012-08-23 Pourin Welding Engineering Co., Ltd. Weld Overlay Structure and a Method of Providing a Weld Overlay Structure
JP2016000411A (en) * 2014-06-11 2016-01-07 株式会社神戸製鋼所 Padding body
JP2016150376A (en) * 2015-02-19 2016-08-22 大同特殊鋼株式会社 Padding material and build-up metal material
JP2017181008A (en) * 2016-03-31 2017-10-05 Jfeエンジニアリング株式会社 Dust removing device and dust removing method for boiler
JP2017187267A (en) * 2016-03-31 2017-10-12 Jfeエンジニアリング株式会社 Boiler anticorrosive device and anticorrosive method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396852A (en) * 2020-04-12 2020-07-10 南通中意锅炉设备有限公司 Cleaning process for furnace pipe of industrial boiler

Similar Documents

Publication Publication Date Title
JP6693239B2 (en) Boiler dust removing device and dust removing method
CN104412060B (en) Heat exchanger with enhanced corrosion resistance
JP2017187267A (en) Boiler anticorrosive device and anticorrosive method
JP2017181007A (en) Blockage suppression device and blockage suppression method for boiler
CN101310147B (en) A boiler producing steam from flue gases under optimised conditions
US20200208833A1 (en) Systems and methods for utilizing flue gas
JP2019158167A (en) Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
JP5971438B1 (en) Boiler dust removing device and dust removing method
DE102008060918A1 (en) Steam generator for generating superheated steam in a waste incineration plant
TWI595148B (en) Hybrid water treatment for high temperature steam generators
US20200200047A1 (en) Waste-to-energy plant
JP2007155233A (en) Boiler furnace and manufacturing method of panel for boiler furnace
JP2019158166A (en) Corrosion prevention metho on radiant heat transfer surface of boiler, and boiler
KR20210041590A (en) High pressure heating equipment including advanced panel design and its cladding
JP5843391B2 (en) Waste power generation system
CN111678114B (en) Method for enabling high-frequency remelting structure of water-cooled wall tube bank coating to be heated uniformly
JP2019105394A (en) Method for suppressing blockage and corrosion in waste incinerator boiler
EP2816565B1 (en) Sludge-reduction steam generator
JP2016041939A (en) Waste power generation system
JP2018162917A (en) Method for operating gas preheating device
JP2019082283A (en) Member for protecting boiler heat transfer pipe from corrosion and wear
JP2018063072A (en) Heat exchanger
JP5701311B2 (en) Alloy coated boiler parts
JP2019045104A (en) Waste incinerator boiler
CN209763081U (en) High-temperature high-pressure vertical boiler for waste incineration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210824