JP2017186997A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2017186997A
JP2017186997A JP2016078082A JP2016078082A JP2017186997A JP 2017186997 A JP2017186997 A JP 2017186997A JP 2016078082 A JP2016078082 A JP 2016078082A JP 2016078082 A JP2016078082 A JP 2016078082A JP 2017186997 A JP2017186997 A JP 2017186997A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust gas
lean
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016078082A
Other languages
English (en)
Inventor
大志 ▲高▼橋
大志 ▲高▼橋
Hiroshi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016078082A priority Critical patent/JP2017186997A/ja
Publication of JP2017186997A publication Critical patent/JP2017186997A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、内燃機関の実際の運転状態をストイキ運転状態からリーン運転状態へより速やかに移行させることを課題とする。【解決手段】本発明の制御装置は、内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、NSR触媒の流入排気温度がリーン復帰許可温度より高ければ、内燃機関をストイキ運転させつつ、窒素富化装置により吸気の窒素濃度を高める処理である排気温度低下処理を実行し、且つその後においてNSR触媒の流入排気温度が前記上限値以下に低下したときに前記排気温度低下処理を終了させて、内燃機関の実際の運転状態をストイキ運転からリーン運転へ切り替えるようにした。【選択図】図3

Description

本発明は、窒素富化装置を具備する内燃機関に適用される制御装置に関する。
車両に搭載される内燃機関として、理論空燃比の混合気を燃焼させる運転であるストイキ運転とリーン空燃比の混合気を燃焼させる運転であるリーン運転とを切り替え可能な内燃機関が知られている(例えば、特許文献1を参照)。
特開2015−145652号公報 特開2007−218093号公報 特開平08−254161号公報 特開2013−029094号公報
ここで、上記したような内燃機関がリーン運転されているときに、該内燃機関から排出されるNOを効率的に浄化する方法として、排気の空燃比がリーン空燃比であるときは排気中のNOを吸蔵し、且つ排気の空燃比がリッチ空燃比であるときは吸蔵していたNOを浄化するNO吸蔵還元型触媒(NSR(NOX Storage Reduction)触媒)を、内
燃機関の排気通路に配置する方法が知られている。
ところで、内燃機関がストイキ運転されているときはリーン運転されているときに比べ、排気温度が高くなる。そのため、内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、内燃機関の排気温度がNSR触媒の温度浄化ウインドより高くなっている可能性がある。そのような場合は、NSR触媒の温度も該NSR触媒の温度浄化ウインドより高くなっている可能性が高い。よって、内燃機関の排気温度がNSR触媒の温度浄化ウインドより高い状況下において、内燃機関の運転状態がストイキ運転状態からリーン運転状態へ切り替えられると、排気温度がNSR触媒の温度浄化ウインド内へ直ちに低下する可能性はあるものの、NSR触媒の温度が温度浄化ウインド内へ直ちに低下しない虞がある。内燃機関の運転状態がストイキ運転状態からリーン運転状態へ切り替えられたときに、NSR触媒の温度が温度浄化ウインドより高ければ、内燃機関から排出されるNOの少なくとも一部がNSR触媒によって浄化されないことになるため、排気エミッションの悪化を招く可能性がある。
上記した問題に対し、ストイキ運転からリーン運転への切り替え要求が発生してから、内燃機関の排気温度がNSR触媒の温度浄化ウインドの上限値以下へ低下するまでの期間において、内燃機関のストイキ運転を継続させる方法が考えられる。しかしながら、ストイキ運転からリーン運転への切り替え要求が発生してから、内燃機関の実際の運転状態がストイキ運転状態からリーン運転状態へ切り替えられるまでに時間がかかる可能性がある。その場合、内燃機関の燃料消費率が悪化する可能性がある。
本発明は、上記したような種々の実情に鑑みてなされたものであり、その目的は、ストイキ運転とリーン運転とを切り替え可能な内燃機関において、内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、内燃機関の実際の運転状態をストイキ運転状態からリーン運転状態へより速やかに移行させることができる
技術の提供にある。
本発明は、上記した課題を解決するために、以下のような手段を採用した。すなわち、本発明は、理論空燃比の混合気を燃焼させる運転であるストイキ運転とリーン空燃比の混合気を燃焼させる運転であるリーン運転とを切り替え可能な内燃機関の排気通路に配置されるNSR触媒と、前記内燃機関の気筒内に吸入されるガスである吸気の窒素濃度を高める窒素富化装置とを備えた内燃機関に適用される制御装置である。そして、前記制御装置は、前記NO吸蔵還元型触媒へ流入する排気の温度である流入排気温度を取得する取得手段と、前記内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、前記取得手段により取得される流入排気温度が前記NO吸蔵還元型触媒の温度浄化ウインドの上限値より高ければ、前記内燃機関をストイキ運転させつつ、前記窒素富化装置により吸気の窒素濃度を高める処理である排気温度低下処理を実行し、且つその後において前記取得手段により取得される流入排気温度が前記上限値以下に低下したときに前記排気温度低下処理を終了させて、前記内燃機関の運転状態をストイキ運転からリーン運転へ切り替える制御手段と、を備えるようにした。
本発明によれば、内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、内燃機関の実際の運転状態をストイキ運転状態からリーン運転状態へより速やかに移行させることができる。
本発明を適用する内燃機関の概略構成を示す図である。 リーン運転領域のうち内燃機関の要求出力が比較的大きくなる運転領域、及びストイキ運転領域における、内燃機関の要求出力PWtrgとNSR触媒の流入排気温度Texとの関係を示す図である。 排気温度低下処理が実行される際にECUによって実行される処理ルーチンを示すフローチャートである。
以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は、本発明を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、ストイキ運転とリーン運転とを切り替え可能な4ストローク・サイクルの火花点火式の内燃機関(ガソリンエンジン)である。なお、図1に示す例では、内燃機関1が4つの気筒2を有しているが、内燃機関1の気筒数は3つ以下であってもよく、又は5つ以上であってもよい。内燃機関1の各気筒2には、気筒2内に火花を発生させるための点火プラグ3と、気筒2内へ燃料を噴射するための燃料噴射弁4とが取り付けられている。なお、燃料噴射弁4は、図示しない吸気ポート内へ燃料を噴射するものであってもよい。
内燃機関1は、吸気通路5と接続されている。吸気通路5は、大気中から取り込まれた空気を各気筒2へ導くための通路である。吸気通路5の上流側端部の近傍には、空気中の塵等を捕集するためのエアクリーナボックス50が取り付けられている。エアクリーナボックス50より下流の吸気通路5には、該吸気通路5内を流れる空気量を調整するためのスロットル弁51が取り付けられている。このスロットル弁51と前記エアクリーナボックス50との間の吸気通路5には、該吸気通路5内を流れる空気量(吸入空気量)に相関した電気信号を出力するエアフローメータ52が取り付けられている。また、エアフロー
メータ52とスロットル弁51との間の吸気通路5には、窒素富化装置53が取り付けられている。窒素富化装置53は、吸気通路5を流れるガス(吸気)の窒素濃度を高める装置である。詳細には、窒素富化装置53は、図示しないタンクに貯蔵されている窒素ガスを吸気通路5に導入することで、吸気の窒素濃度を高める装置である。なお、窒素富化装置53は、空気中の酸素(O)と窒素(N)とを分離する膜分離式の窒素ガス発生器を用いて、吸気の窒素濃度を高める装置であってもよい。
内燃機関1は、排気通路6と接続されている。排気通路6は、気筒2内で燃焼された既燃ガス(排気)を流通させるための通路である。排気通路6の途中には、三元触媒60が配置される。三元触媒60は、該三元触媒60へ流入する排気の空燃比が理論空燃比近傍にあるときに、排気中に含まれる炭化水素(HC)、一酸化炭素(CO)、及び窒素酸化物(NO)を浄化する。三元触媒60より下流の排気通路6には、NO吸蔵還元型触媒(NSR触媒)61が配置される。NSR触媒61は、該NSR触媒61へ流入する排気の空燃比がリーン空燃比であるときは、排気中のNOを吸蔵し、且つ該NSR触媒61へ流入する排気の空燃比がリッチ空燃比であるときは、排気中の未燃燃料成分(例えば、炭化水素(HC)や一酸化炭素(CO))を還元剤として用いることで、吸蔵していたNOを窒素(N)に還元及び浄化する。また、三元触媒60より上流の排気通路6には、三元触媒60へ流入する排気の空燃比に相関する電気信号を出力するA/Fセンサ62が取り付けられる。三元触媒60とNSR触媒61との間の排気通路6には、三元触媒60から流出する排気の温度に相関する電気信号を出力する第一温度センサ63が配置される。NSR触媒61より下流の排気通路6には、NSR触媒61から流出する排気の温度に相関する第二温度センサ64が配置される。
内燃機関1は、排気の熱エネルギを利用して吸気を圧縮する排気タービン過給機(ターボチャージャ)7を備えている。ターボチャージャ7は、三元触媒60より上流の排気通路6に配置されるタービン70と、窒素富化装置53とスロットル弁51との間の吸気通路5に配置されるコンプレッサ71と、を備えている。タービン70は、排気の熱エネルギを運動エネルギに変換するものである。コンプレッサ71は、タービン70から出力される運動エネルギにより駆動されて、吸気を圧縮する遠心式圧縮機である。なお、コンプレッサ71によって圧縮されることで高温になった吸気は、該コンプレッサ71とスロットル弁51との間の吸気通路5に配置されるインタークーラ54によって冷却されるようになっている。なお、インタークーラ54は、吸気の熱エネルギを外気又は冷却水へ伝導させる熱交換器である。
上記したように構成される内燃機関1には、本発明に係わる「制御装置」としてのECU(Electronic Control Unit)8が併設されている。ECU8は、CPU、ROM、R
AM、バックアップRAM等から構成される。このように構成されるECU8は、前述したエアフローメータ52、A/Fセンサ62、第一温度センサ63、及び第二温度センサ64に加え、アクセルポジションセンサ9やクランクポジションセンサ10等の各種センサと電気的に接続されている。なお、アクセルポジションセンサ9は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力するセンサである。クランクポジションセンサ10は、内燃機関1の機関出力軸(クランクシャフト)の回転位置に相関する電気信号を出力するセンサである。
ECU8は、前述した点火プラグ3、燃料噴射弁4、スロットル弁51、窒素富化装置53等の各種機器とも電気的に接続され、それら各種機器の作動状態を制御することができるようになっている。例えば、ECU8は、エアフローメータ52の出力信号(吸入空気量)に基づいて演算される機関負荷と、クランクポジションセンサ10の出力信号に基づいて演算される機関回転速度と、に基づいて混合気の目標空燃比を演算する。ECU8は、目標空燃比とエアフローメータ52の出力信号とに基づいて目標燃料噴射量(燃料噴
射期間)を演算し、その目標燃料噴射量に従って燃料噴射弁4を作動させる。その際、ECU8は、低回転・低負荷運転領域、及び中回転・中負荷運転領域のように要求出力が所定の閾値以下であるときは、目標空燃比を理論空燃比より高いリーン空燃比に設定する。また、ECU8は、高回転・高負荷運転領域のように要求出力が前記所定の閾値より大きいときは、目標空燃比を理論空燃比に設定する。このように、内燃機関1の要求出力が前記所定の閾値以下となる運転領域(以下、「リーン運転領域」と称する)に属するときに、目標空燃比がリーン空燃比に設定されることで、内燃機関1が希薄燃焼運転されると、燃料消費量を少なく抑えることができる。一方、内燃機関1の要求出力が前記所定の閾値より大きくなる運転領域(以下、「ストイキ運転領域」と称する)に属するときに、目標空燃比が理論空燃比に設定されると、内燃機関1の熱効率を高めることができる。
ところで、内燃機関1がストイキ運転されているときはリーン運転されているときに比べ、内燃機関1の排気温度が高くなる。特に、内燃機関1がストイキ運転される運転領域は、高回転・高負荷運転領域のように要求出力が前記所定の閾値より大きくなる運転領域であるため、内燃機関1がストイキ運転されているときにNSR触媒61へ流入する排気の温度(流入排気温度)がNSR触媒61の温度浄化ウインドより高くなり易く、それに伴ってNSR触媒61の温度も温度浄化ウインドより高くなり易い。そのため、内燃機関1がストイキ運転されている状態においてリーン運転への切り替え要求が発生したとき(要求出力が前記所定の閾値より大きな値から前記所定の閾値以下の値へ変化したとき)に、NSR触媒61の温度が温度浄化ウインドより高くなっている可能性がある。その際、内燃機関1の実際の運転状態がストイキ運転状態からリーン運転状態へ直ちに切り替えられると、流入排気温度が直ちに低下するものの、NSR触媒61の温度が直ちに低下しない可能性がある。その結果、NSR触媒61の温度が温度浄化ウインドより高い状態で、内燃機関1がリーン運転される虞がある。NSR触媒61の温度が温度浄化ウインドより高い状態で内燃機関1がリーン運転されると、内燃機関1から排出されるNOの少なくとも一部が三元触媒60及びNSR触媒61の何れにおいても浄化されなくなるため、排気エミッションの悪化を招くことになる。これに対し、ストイキ運転からリーン運転への切り替え要求が発生してから、流入排気温度がNSR触媒61の温度浄化ウインドの上限値(以下、「リーン復帰許可温度」と称する)以下に低下するまでの期間において、内燃機関1のストイキ運転を継続させる方法が考えられる。しかしながら、ストイキ運転からリーン運転への切り替え要求が発生してから、内燃機関1の実際の運転状態がストイキ運転状態からリーン運転状態へ切り替えられるまでにかかる時間が長くなる可能性があり、それに伴って内燃機関1の燃料消費率が悪化する可能性がある。
そこで、本実施形態においては、内燃機関1がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、流入排気温度が前記リーン復帰許可温度より高ければ、内燃機関1のストイキ運転を継続させつつ、前記窒素富化装置53から吸気中へ窒素ガスを供給する処理である排気温度低下処理を開始し、且つその後において流入排気温度が前記リーン復帰許可温度以下に低下したときに排気温度低下処理を終了させて、内燃機関1の運転状態をストイキ運転状態からリーン運転状態へ切り替えるようにした。
上記した排気温度低下処理が実行された場合は実行されない場合に比べ、内燃機関1の気筒2内で燃焼に供されるガス(以下、「燃焼ガス」と称する)の量が多くなるとともに、該燃焼ガス中における窒素濃度が高くなる。燃焼ガスの量が多くなると、単位量あたりの排気が持つ熱エネルギの量が少なくなるため、流入排気温度が低下する。また、窒素ガスは不活性ガスであるため、燃焼ガス中の窒素濃度が高くなると、燃焼ガスの燃焼温度が低くなり、それに伴って流入排気温度も低くなる。よって、排気温度低下処理が実行された場合は実行されない場合に比べ、流入排気温度が低くなる。
ここで、リーン運転領域のうち内燃機関1の要求出力が比較的大きくなる運転領域、及びストイキ運転領域における、内燃機関1の要求出力とNSR触媒61の流入排気温度との関係を図2に示す。図2中の横軸に示すPWtrgは、内燃機関1の要求出力を示す。図2中の縦軸に示すTexは、NSR触媒61の流入排気温度を示す。なお、図2中のTexlmtは、前述したリーン復帰許可温度を示す。また、図2中の実線は、内燃機関1がストイキ運転されているときの流入排気温度を示し、図2中の一点鎖線は、排気温度低下処理が実行されているときの流入排気温度を示す。
図2に示すように、排気温度低下処理が実行されている場合において流入排気温度Texがリーン復帰許可温度Texlmtと等しくなる要求出力(図2中のPW2)は、内燃機関1がストイキ運転されている場合において流入排気温度Texがリーン復帰許可温度Texlmtと等しくなる要求出力(図2中のPW1)より大きくなる。よって、流入排気温度Texがリーン復帰許可温度Texlmt以下となる運転領域の範囲は、内燃機関1がストイキ運転されている場合(図2中のA)に比べ、排気温度低下処理が実行されている場合(図2中のB)の方が広くなる。その結果、ストイキ運転からリーン運転への切り替え要求が発生してから、内燃機関1の実際の運転状態がストイキ運転状態からリーン運転状態へ切り替えられるまでにかかる時間は、内燃機関1がストイキ運転される場合に比べ、排気温度低下処理が実行される場合の方が短くなり易い。
以下、本実施形態における排気温度低下処理の実行手順について図3に沿って説明する。図3は、排気温度低下処理が実行される際にECU8によって実行される処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROMに記憶されており、内燃機関1がストイキ運転されているときに所定の周期で繰り返し実行される処理ルーチンである。
図3の処理ルーチンでは、ECU8は、先ずS101の処理において、内燃機関1の要求出力PWtrgを演算する。具体的には、ECU8は、エアフローメータ52の出力信号から演算される機関負荷とクランクポジションセンサ10の出力信号から演算される機関回転速度とを乗算して、内燃機関1の要求出力PWtrgを演算する。
S102の処理では、ECU8は、前記S101の処理で算出された要求出力PWtrgが前述した所定の閾値PWref以下であるか否かを判別する。すなわち、ECU8は、ストイキ運転からリーン運転への切り替え要求が発生しているか否かを判別する。ここで、要求出力PWtrgが前記所定の閾値PWrefより大きければ、ストイキ運転からリーン運転への切り替え要求が発生していないことになる。そのため、前記S102の処理において否定判定された場合は、ECU8は、本処理ルーチンの実行を一旦終了する。一方、要求出力PWtrgが前記所定の閾値PWref以下であれば、ストイキ運転からリーン運転への切り替え要求が発生していることになる。そのため、前記S102の処理において肯定判定された場合は、ECU8は、S103以降の処理へ進む。
S103の処理では、ECU8は、NSR触媒61へ流入する排気の温度である流入排気温度Texが前記リーン復帰許可温度Texlmt以下であるか否かを判別する。具体的には、ECU8は、第一温度センサ63の出力信号を読み込み、その出力信号が前記リーン復帰許可温度Texlmt以下であるか否かを判別する。なお、NSR触媒61へ流入する排気の温度を検出するためのセンサ(この場合は、第一温度センサ63)が設けられていない場合は、ECU8は、内燃機関1の運転状態(吸入空気量や燃料噴射量等)や三元触媒60の状態等から流入排気温度Texを推定し、その推定温度が前記リーン復帰許可温度Texlmt以下であるか否かを判別してもよい。このように、流入排気温度Texが検出、又は推定されることにより、本発明に係わる「取得手段」が実現される。なお、流入排気温度Texが前記リーン復帰許可温度Texlmt以下であるか否かを判別
する別法として、内燃機関1の要求出力PWtrgが前述した図2中のPW1以下であるか否かを判別する方法を用いることもできる。
ここで、流入排気温度Texが前記リーン復帰許可温度Texlmt以下であれば、NSR触媒61の温度もリーン復帰許可温度Texlmt以下であると推定することができるため、内燃機関1の運転状態がストイキ運転状態からリーン運転状態へ直ちに切り替えられても、リーン空燃比の排気に含まれるNOがNSR触媒61において好適に浄化されることになる。よって、前記S103の処理において肯定判定された場合は、ECU8は、S104の処理へ進み、内燃機関1の運転状態をストイキ運転状態からリーン運転状態へ切り替える。
一方、流入排気温度Texが前記リーン復帰許可温度Texlmtより高ければ、NSR触媒61の温度もリーン復帰許可温度Texlmtより高いと推定することができるため、内燃機関1の運転状態がストイキ運転状態からリーン運転状態へ直ちに切り替えられると、リーン空燃比の排気に含まれるNOの少なくとも一部がNSR触媒61において浄化されないことになる。よって、前記S103の処理において否定判定された場合は、ECU8は、S105の処理へ進み、排気温度低下処理を実行する。具体的には、ECU8は、内燃機関1のストイキ運転を継続させつつ、窒素富化装置53から吸気中へ窒素ガスを供給させる。その際に窒素富化装置53から供給される窒素ガスの量は、燃焼ガスを安定して燃焼させることができる範囲内において窒素富化割合(窒素富化装置53による窒素ガス供給前における吸気の窒素濃度に対して、窒素富化装置53による窒素ガス供給後における吸気の窒素濃度の比)が最も大きくなるように定められるものとする。このように、内燃機関1がストイキ運転された状態で窒素富化装置53から吸気中へ窒素ガスが供給されると、燃焼ガスの窒素濃度が高められるため、前述した図2の説明で述べたように、流入排気温度Texが低下する。
ECU8は、前記S105の処理を実行した後に、S106の処理へ進み、流入排気温度Texが前記リーン復帰許可温度Texlmt以下に低下したか否かを判別する。その際、ECU8は、第一温度センサ63により検出された流入排気温度、又は内燃機関1の運転状態から推定された流入排気温度が前記リーン復帰許可温度Texlmt以下であるか否かを判別してもよく、又は内燃機関1の要求出力PWtrgが前述した図2中のPW2以下であるか否かを判別してもよい。S106の処理において否定判定された場合は、ECU8は、S106の処理を再度実行する。その場合、排気温度低下処理が継続して実行されることになる。一方、S106の処理において肯定判定された場合は、ECU8は、S107の処理へ進む。
S107の処理では、ECU8は、排気温度低下処理を終了させる。続いて、ECU8は、S104の処理へ進み、内燃機関1の運転状態をストイキ運転状態からリーン運転状態へ切り替える。
以上述べたようにECU8が図3の処理ルーチンを実行することにより、本発明に係わる「制御手段」が実現される。その結果、ストイキ運転からリーン運転への切り替え要求が発生した後に、内燃機関1がストイキ運転される期間を短くすることができる。よって、リーン運転領域において内燃機関1がストイキ運転されることに起因する、燃料消費率の悪化を少なく抑えることができる。
なお、上記した実施形態では、NSR触媒61の温度に相関するパラメータとして、流入排気温度Texを用いているが、第一温度センサ63の出力信号と第二温度センサ64の出力信号との差から推定されるNSR触媒61の温度を用いてもよい。
また、上記した実施形態では、内燃機関1の要求出力PWtrgをパラメータとして、ストイキ運転領域とリーン運転領域とを区別する例について述べたが、機関負荷と機関回転速度とをパラメータとして、ストイキ運転領域とリーン運転領域とを区別してもよい。
1 内燃機関
2 気筒
3 点火プラグ
4 燃料噴射弁
5 吸気通路
6 排気通路
7 ターボチャージャ
8 ECU
9 アクセルポジションセンサ
10 クランクポジションセンサ
52 エアフローメータ
53 窒素富化装置
54 インタークーラ
60 三元触媒
61 NSR触媒
63 第一温度センサ
64 第二温度センサ
70 タービン
71 コンプレッサ

Claims (1)

  1. 理論空燃比の混合気を燃焼させる運転であるストイキ運転とリーン空燃比の混合気を燃焼させる運転であるリーン運転とを切り替え可能な内燃機関の排気通路に配置されるNO吸蔵還元型触媒と、
    前記内燃機関の気筒内に吸入されるガスである吸気の窒素濃度を高める窒素富化装置と、
    を備えた内燃機関に適用される制御装置であって、
    前記制御装置は、
    前記NO吸蔵還元型触媒へ流入する排気の温度である流入排気温度を取得する取得手段と、
    前記内燃機関がストイキ運転されている状態においてリーン運転への切り替え要求が発生したときに、前記取得手段により取得される流入排気温度が前記NO吸蔵還元型触媒の温度浄化ウインドの上限値より高ければ、前記内燃機関をストイキ運転させつつ、前記窒素富化装置により吸気の窒素濃度を高める処理である排気温度低下処理を開始し、且つその後において前記取得手段により取得される流入排気温度が前記上限値以下に低下したときに前記排気温度低下処理を終了させて、前記内燃機関の運転状態をストイキ運転からリーン運転へ切り替える制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
JP2016078082A 2016-04-08 2016-04-08 内燃機関の制御装置 Pending JP2017186997A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078082A JP2017186997A (ja) 2016-04-08 2016-04-08 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078082A JP2017186997A (ja) 2016-04-08 2016-04-08 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2017186997A true JP2017186997A (ja) 2017-10-12

Family

ID=60045423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078082A Pending JP2017186997A (ja) 2016-04-08 2016-04-08 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2017186997A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178617A (ja) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN113803185A (zh) * 2020-06-15 2021-12-17 丰田自动车株式会社 发动机装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178617A (ja) * 2018-03-30 2019-10-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
CN113803185A (zh) * 2020-06-15 2021-12-17 丰田自动车株式会社 发动机装置

Similar Documents

Publication Publication Date Title
JP4711233B2 (ja) 水素エンジンの排気ガス浄化システム
JP5967296B2 (ja) 内燃機関の制御装置
JP2007239600A (ja) 多種燃料エンジン
US20140208722A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2007315353A (ja) 内燃機関の排気浄化触媒暖機システム
JP2004324538A (ja) エンジンの制御装置
JP4905327B2 (ja) 内燃機関の排気浄化システム
JP2017186997A (ja) 内燃機関の制御装置
US20080120969A1 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JPWO2004097200A1 (ja) 内燃機関の制御装置
JP2006207487A (ja) 内燃機関の排ガス浄化装置
JP4357241B2 (ja) 排気浄化装置
JP2017115632A (ja) 内燃機関の燃料噴射制御装置
JP4468287B2 (ja) 内燃機関の排ガス浄化装置
JP2018178981A (ja) 内燃機関の排気処理装置
JP2017115634A (ja) 内燃機関の燃料噴射制御装置
KR20180067898A (ko) 엔진의 소기 제어 시의 배기 가스 저감 방법
JP4063743B2 (ja) 内燃機関の燃料噴射時期制御装置
JP2013068210A (ja) エンジンの制御装置
JP4725573B2 (ja) 内燃機関の燃焼制御システム
JP4154589B2 (ja) 内燃機関の燃焼制御装置
JP2010265802A (ja) 内燃機関の排ガス浄化装置
JP2009156153A (ja) 内燃機関の燃料噴射制御システム
JP2010059879A (ja) 内燃機関の排気還流装置
JP4936067B2 (ja) 水素エンジンの排気浄化装置