JP2017179538A - Copper alloy sheet material and manufacturing method of copper alloy sheet material - Google Patents

Copper alloy sheet material and manufacturing method of copper alloy sheet material Download PDF

Info

Publication number
JP2017179538A
JP2017179538A JP2016071471A JP2016071471A JP2017179538A JP 2017179538 A JP2017179538 A JP 2017179538A JP 2016071471 A JP2016071471 A JP 2016071471A JP 2016071471 A JP2016071471 A JP 2016071471A JP 2017179538 A JP2017179538 A JP 2017179538A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
concentration
alloy sheet
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016071471A
Other languages
Japanese (ja)
Other versions
JP6324431B2 (en
Inventor
翔一 檀上
Shoichi Danjo
翔一 檀上
岳己 磯松
Takemi Isomatsu
岳己 磯松
幸寛 下野
Yukihiro Shimono
幸寛 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2016071471A priority Critical patent/JP6324431B2/en
Publication of JP2017179538A publication Critical patent/JP2017179538A/en
Application granted granted Critical
Publication of JP6324431B2 publication Critical patent/JP6324431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet material with enhancing especially properties strength, flexure processability, elongation and conductivity at good balance, or the like.SOLUTION: The copper alloy sheet has an alloy component containing 3.0 to 25.0 mass% of Ni and 3.0 to 9.0 mass% of Sn, at least one component selected from a group consisting of 0 to 0.2 mass% of Fe, 0 to 0.05 mass% of Si, 0 to 0.3 mass% of Mg, 0 to 0.5 mass% of Mn, 0 to 0.1 mass% of Zn, 0 to 0.15 mass% of Zr and 0 to 0.1 mas% or P of total 0 to 1.0 mass% and the balance Cu with inevitable impurities, a fine structure shape with varying concentration of solute atom Sn in cycle, difference between maximum and minimum of Sn concentration in a range of 4 to 18 mass% when Sn concentration in a base phase on a (001) surface of crystal particles is surface analyzed and measured, average wavelength of cyclic concentration fluctuation of Sn is 1 nm to 15 nm when measured along (001)[100] orientation and average crystal particle diameter of over 0.1 μm to 6 μm or less.SELECTED DRAWING: Figure 1

Description

本発明は、銅合金板材および銅合金板材の製造方法に関し、特に電気電子部品、例えばコネクタ、スイッチ、ソケット、時計用部品などに適用される銅合金板材の改良に関する。   The present invention relates to a copper alloy sheet and a method for producing the copper alloy sheet, and more particularly to an improvement in a copper alloy sheet applied to electrical and electronic parts such as connectors, switches, sockets, and watch parts.

例えばコネクタ、スイッチ、ソケット、時計用部品などの電気電子部品に使用される銅合金材料としては、りん青銅や黄銅等の固溶強化型合金が使用されていた。しかし、近年、電子部品の著しい軽薄・短小化に伴って、これらの材料では必要とされる強度を満足できない場合が多い。そのため、特に信頼性が要求される部品には、強度の高いベリリウム銅、チタン銅等の高強度型銅合金の需要が増えているが、ベリリウム銅は、ベリリウム化合物が毒性を有することや、コストが高いといった問題点があり、チタン銅は、耐食性が低く、塩水噴霧試験で容易に腐食するといった問題があり、例えば近年登場したスマートウォッチや眼鏡型端末といったウェアラブル機器などの、人体と接触し野外での使用が想定される製品の部品としては不適当である。従って毒性が無く、強度や耐食性に優れたCu−Ni−Sn系銅合金があらためて注目されている。また、Cu−Ni−Sn系の銅合金は、時効処理による第2相の析出によって強度を向上させる時効硬化型合金として知られている(例えば特許文献1〜5等)。   For example, solid solution strengthened alloys such as phosphor bronze and brass have been used as copper alloy materials used in electrical and electronic parts such as connectors, switches, sockets, and watch parts. However, in recent years, as electronic parts have become significantly lighter, thinner, and shorter, these materials often cannot satisfy the required strength. For this reason, there is an increasing demand for high-strength copper alloys such as high-strength beryllium copper and titanium copper, especially for parts that require high reliability. Titanium copper has low corrosion resistance and is easily corroded by the salt spray test. For example, wearable devices such as smart watches and eyeglass-type terminals that have recently appeared are in contact with the human body. It is unsuitable as a product part that is expected to be used in Japan. Therefore, a Cu—Ni—Sn copper alloy having no toxicity and excellent in strength and corrosion resistance has been attracting attention. Cu-Ni-Sn-based copper alloys are known as age-hardening alloys that improve strength by precipitation of a second phase by aging treatment (for example, Patent Documents 1 to 5).

特許文献1には、仕上げ加工前の組織調整を目的として、単相域となる800℃以上の温度での熱処理と、室温で2相の出現が可能となる600〜770℃の温度範囲での熱処理の2段熱処理で行うとともに、疲労特性をさらに向上させるために、加工率0〜60%の範囲で行なう仕上げ加工後に、350〜500℃の温度範囲で時効熱処理を行い、常温状態でマトリックス(第1相)中に第2相を均一に分散させた組織を得ることで、機械的特性および導電性を実用レベルに保ちながら、安価に成形性が良好で疲れ特性に優れたCu−Ni−Sn合金の製造方法が記載されている。   In Patent Document 1, for the purpose of adjusting the structure before finishing, a heat treatment at a temperature of 800 ° C. or more that becomes a single phase region and a temperature range of 600 to 770 ° C. at which two phases can appear at room temperature are disclosed. In order to further improve the fatigue characteristics, the heat treatment is performed in a temperature range of 350 to 500 ° C. after the finishing process in the range of 0 to 60%, and the matrix ( By obtaining a structure in which the second phase is uniformly dispersed in the first phase), Cu—Ni— has good formability at low cost and excellent fatigue properties while maintaining mechanical properties and conductivity at a practical level. A method for producing a Sn alloy is described.

特許文献2には、最終仕上げ加工前に、730〜770℃の熱処理と、急冷処理と、55〜70%の冷間加工と、400〜500℃の熱処理とを順次施し、2相領域となる温度で熱処理を行うことで、引張強度、0.2%耐力、硬度および疲労強度のいずれの特性とも改善したCu−Ni−Sn系合金が記載されている。   In Patent Document 2, before final finishing, heat treatment at 730 to 770 ° C., rapid cooling, cold work at 55 to 70%, and heat treatment at 400 to 500 ° C. are sequentially performed to form a two-phase region. It describes a Cu—Ni—Sn-based alloy that has been improved in all the properties of tensile strength, 0.2% yield strength, hardness and fatigue strength by heat treatment at temperature.

特許文献3には、最終冷間圧延前の溶体化処理において、結晶粒径を微細化しつつ、第2相粒子の析出を抑えることにより、高強度で、良好な曲げ加工性を有するNi−Sn系銅合金が記載されている。   Patent Document 3 discloses Ni-Sn having high strength and good bending workability by suppressing the precipitation of second phase particles while reducing the crystal grain size in the solution treatment before the final cold rolling. A copper alloy is described.

特許文献4には、圧延材を780〜900℃で加熱して急冷する溶体化処理を行う工程と、加工率6〜12%で圧延加工する工程と、270〜400℃で加熱する時効処理を行う工程とを備え、溶体化処理後の所定の断面における圧延材の平均結晶粒径を6μm未満とすることにより、高い強度と優れた曲げ加工性を同時に得ることができる銅合金が記載されている。   Patent Document 4 includes a step of performing a solution treatment for heating a rolled material at 780 to 900 ° C. and quenching, a step of rolling at a processing rate of 6 to 12%, and an aging treatment for heating at 270 to 400 ° C. And a copper alloy capable of simultaneously obtaining high strength and excellent bending workability by setting the average crystal grain size of the rolled material in a predetermined cross section after solution treatment to less than 6 μm. Yes.

特許文献5には、溶体化処理材を、300℃以上500℃以下の温度範囲で時効処理を行った後に、加工率が60%を超え99%以下の冷間加工を行ない、その後、300℃以上500℃以下の温度範囲で時効処理を行うことで、高密度の転位を固定化させ、機械的強度をより高め、耐熱性の劣化を抑制したCu−Ni−Sn系合金が記載されている。   In Patent Document 5, a solution treatment material is subjected to an aging treatment in a temperature range of 300 ° C. or more and 500 ° C. or less, and then cold working is performed with a processing rate exceeding 60% and 99% or less, and then 300 ° C. A Cu—Ni—Sn alloy in which high-density dislocations are fixed, mechanical strength is further increased, and heat resistance deterioration is suppressed by performing an aging treatment in a temperature range of 500 ° C. or lower is described. .

特開平2−88750号公報JP-A-2-88750 特開2002−266058号公報JP 2002-266058 A 特開2009−242895号公報JP 2009-242895 A 国際公開第2014/016934号パンフレットInternational Publication No. 2014/016934 Pamphlet 国際公開第2014/196563A1号パンフレットInternational Publication No. 2014/196563 A1 Pamphlet

ところで、近年は、腕時計の方式で手首に装着できるウェアラブルデバイス(いわゆるスマートウォッチ)や、モバイル機器の小型化・高機能化に伴って、使用部品についても小型化するとともに使用個数も増加する傾向にあり、従来から、Cu−Ni−Sn合金が用いられている部品にも、省スペース化のため薄板化が求められるようになり、より高強度で曲げ加工性に優れた材料を開発することが必要になってきた。従来技術によれば、熱処理過程において、粒径微細化および第2相粒子の個数を規定することで、高強度化や曲げ加工性の向上を図っているが、強化機構の主体であるスピノーダル変調構造、すなわち固溶元素濃度が母相内で周期的に変動する変調構造の制御に関しては考慮が払われていなかったため、特許文献1〜4に記載のCu−Ni−Sn合金では、適正な変調構造を有していなかった。より詳細に述べると、変調構造の適正化を図るには、溶体化工程でSnおよびNiを十分に固溶する必要があるが、従来技術では十分な固溶をさせるほど高温にすると、粒径が粗大化して曲げ加工性が低下するという問題があった。   By the way, in recent years, along with wearable devices (so-called smart watches) that can be worn on the wrist using a wristwatch system, and mobile devices that are becoming smaller and more functional, parts used are also becoming smaller and the number of parts used is also increasing. There is a need to reduce the thickness of parts that have conventionally used Cu-Ni-Sn alloys to save space, and to develop materials with higher strength and superior bending workability. It has become necessary. According to the prior art, in the heat treatment process, the refinement of the particle size and the number of second phase particles are defined to increase the strength and improve the bending workability. However, the spinodal modulation that is the main component of the strengthening mechanism Since no consideration has been given to the control of the structure, that is, the modulation structure in which the solid solution element concentration periodically varies in the matrix phase, the Cu—Ni—Sn alloy described in Patent Documents 1 to 4 has an appropriate modulation. It did not have a structure. More specifically, in order to optimize the modulation structure, it is necessary to sufficiently dissolve Sn and Ni in the solution forming step. However, in the conventional technique, if the temperature is high enough to sufficiently dissolve, the particle size There is a problem that the bendability is reduced due to coarsening.

特許文献1および2は、曲げ加工性に関する開示や示唆がなく、また、特許文献3は、溶体化工程でSnおよびNiの析出を抑制することで、時効前の曲げ加工性の改善を図っているが、時効後の曲げ加工性に関する記載はない。また、特許文献4では、溶体化工程でSnおよびNiを十分固溶させていないため、時効後に適正な変調構造になっていない可能性が高く、結果として、十分な強度が得られておらず、加えて、伸びに関する記載がないため、強度と伸びの双方のバランス特性、特に十分な伸び(特に10%以上)を具備しているかについては開示がない。さらに、特許文献5では、スピノーダル変調構造に関する検討を行っているが、周期性の制御は行っていないため、適正な変調構造が得られているとは考えにくく、また、2回の時効処理と高加工率の冷間加工を行っているため、引張強さや0.2%耐力は高いものの、伸びが5〜6%と低く、曲げ加工性も低くなるという問題がある。さらに、特許文献1〜5に記載されたCu−Ni−Sn合金材は、いずれも、高強度(例えば引張強度が900MPa以上)と高伸び(例えば10%以上)のバランス特性に関し、何ら考慮が払われていないため、強度が高くても伸びが小さければ、部品加工時の成形性が低下するという問題点もある。   Patent Documents 1 and 2 do not disclose or suggest bending workability, and Patent Document 3 aims to improve the bending workability before aging by suppressing the precipitation of Sn and Ni in the solution treatment process. However, there is no description on bending workability after aging. Further, in Patent Document 4, since Sn and Ni are not sufficiently dissolved in the solution treatment step, there is a high possibility that an appropriate modulation structure is not obtained after aging, and as a result, sufficient strength is not obtained. In addition, since there is no description about elongation, there is no disclosure as to whether it has a balance characteristic between strength and elongation, particularly whether it has sufficient elongation (especially 10% or more). Furthermore, Patent Document 5 examines a spinodal modulation structure, but since periodicity control is not performed, it is unlikely that an appropriate modulation structure is obtained, and two aging treatments are performed. Since cold working is performed at a high working rate, the tensile strength and the 0.2% yield strength are high, but there is a problem that the elongation is low at 5 to 6% and the bending workability is low. Furthermore, all the Cu—Ni—Sn alloy materials described in Patent Documents 1 to 5 have any consideration regarding the balance characteristics between high strength (for example, tensile strength of 900 MPa or more) and high elongation (for example, 10% or more). Since it is not paid, there is a problem that if the elongation is small even if the strength is high, the moldability at the time of processing the parts is lowered.

本発明は、変調構造の周期性と結晶粒の適正化を図り、変調構造の特性を有効に発揮させることで、特に強度、曲げ加工性、伸びおよび導電率の特性をバランスよく向上させた銅合金板材およびコネクタならびに銅合金板材の製造方法を提供することを目的とする。   The present invention aims to optimize the periodicity and crystal grains of the modulation structure, and to effectively exhibit the characteristics of the modulation structure, thereby improving the strength, bending workability, elongation, and conductivity characteristics in a well-balanced manner. An object of the present invention is to provide an alloy plate material, a connector, and a method for producing a copper alloy plate material.

Cu−Ni−Sn系合金は、スピノーダル分解によるSnの変調構造の形成にて強度を向上させる時効硬化型合金である。本発明者らが鋭意検討を行ったところ、中間熱処理、溶体化熱処理、時効熱処理、およびこれら熱処理の間で行う冷間圧延の各条件を適正に制御することによって、時効後に強固なスピノーダル変調構造を適正な構造に発達させることができるという知見を得た。また、発達させた変調構造は、特定方向に固溶した溶質原子であるSnの濃度が周期性を持っており、前記特定方向に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が数nm〜数十nm程度であることを見出した。さらに、時効温度が高くなるにつれて前記Sn濃度の周期も増大して強度が増加する傾向にあるが、前記Snの周期的な濃度ゆらぎの平均波長を1nm以上15nm以下の範囲に限定するとともに、Sn濃度の最大値と最小値の差を4〜18質量%の範囲に限定することによって、組織形態が適正に保たれ強度が高くなり、加えて、平均結晶粒径が0.1μm超え6μm以下とすることによって、特に曲げ加工性が向上し、その結果、強度、伸び、曲げ加工性および導電率をバランスよく向上させることができることを見出し、本発明を完成させるに至った。   A Cu—Ni—Sn alloy is an age-hardening type alloy that improves strength by forming a Sn modulation structure by spinodal decomposition. As a result of intensive studies by the present inventors, a strong spinodal modulation structure after aging is achieved by appropriately controlling each condition of intermediate heat treatment, solution heat treatment, aging heat treatment, and cold rolling performed between these heat treatments. Obtained the knowledge that can be developed into an appropriate structure. Further, the developed modulation structure has a periodicity in the concentration of Sn, which is a solute atom dissolved in a specific direction, and the average wavelength of the periodic concentration fluctuation of Sn when measured along the specific direction. Has been found to be about several nanometers to several tens of nanometers. Further, as the aging temperature increases, the Sn concentration period also increases and the intensity tends to increase, but the average wavelength of the periodic concentration fluctuation of Sn is limited to a range of 1 nm to 15 nm, and Sn By limiting the difference between the maximum value and the minimum value to the range of 4 to 18% by mass, the structure morphology is properly maintained and the strength is increased. In addition, the average crystal grain size is more than 0.1 μm and less than 6 μm. As a result, it was found that bending workability was improved, and as a result, the strength, elongation, bending workability and electrical conductivity could be improved in a balanced manner, and the present invention was completed.

すなわち、本発明の要旨構成は以下のとおりである。
(1)3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有し、ならびに0〜0.2質量%Fe、0〜0.05質量%Si、0〜0.3質量%Mg、0〜0.5質量%Mn、0〜0.1質量%Zn、0〜0.15質量%Zrおよび0〜0.1質量%Pからなる群から選ばれる少なくとも1成分を合計で0〜1.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、溶質原子Snの濃度が周期的に変動する微細な構造形態を持ち、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差が、4〜18質量%の範囲であり、(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が、1nm以上15nm以下であり、かつ平均結晶粒径が0.1μm超6μm以下であることを特徴とする銅合金板材。
That is, the gist configuration of the present invention is as follows.
(1) Containing 3.0 to 25.0 mass% Ni and 3.0 to 9.0 mass% Sn, and 0 to 0.2 mass% Fe, 0 to 0.05 mass% Si, 0 to 0 .3 mass% Mg, 0-0.5 mass% Mn, 0-0.1 mass% Zn, 0-0.15 mass% Zr and at least one component selected from the group consisting of 0-0.1 mass% P Is a copper alloy sheet having an alloy composition consisting of Cu and unavoidable impurities, and has a fine structure form in which the concentration of solute atoms Sn periodically varies, The difference between the maximum value and the minimum value of the Sn concentration measured by surface analysis of the Sn concentration in the matrix at the (001) plane of the crystal grains is in the range of 4 to 18% by mass, and (001) [ 100] The average wavelength of periodic concentration fluctuations of Sn when measured along the direction is 1 nm or more and 15 nm. Copper alloy sheet, characterized in that a lower and an average grain diameter of 0.1μm ultra 6μm or less.

(2)結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の標準偏差が1〜4質量%である、上記(1)に記載の銅合金板材。 (2) The copper alloy according to (1) above, wherein the standard deviation of the Sn concentration is 1 to 4% by mass when the Sn concentration in the matrix is measured by plane analysis at the (001) plane of the crystal grains. Board material.

(3)0.02〜0.20質量%Fe、0.01〜0.05質量%Si、0.01〜0.30質量%Mg、0.01〜0.50質量%Mn、0.01〜0.10質量%Zn、0.01〜0.15質量%Zrおよび0.01〜0.10質量%Pからなる群から選ばれる少なくとも1成分を合計で1.0質量%以下含有する、上記(1)または(2)に記載の銅合金板材。 (3) 0.02 to 0.20 mass% Fe, 0.01 to 0.05 mass% Si, 0.01 to 0.30 mass% Mg, 0.01 to 0.50 mass% Mn, 0.01 Containing at least one component selected from the group consisting of ˜0.10 mass% Zn, 0.01 to 0.15 mass% Zr, and 0.01 to 0.10 mass% P in total of 1.0 mass% or less, The copper alloy sheet according to (1) or (2) above.

(4)引張強度が900MPa以上でかつ伸びが10%以上である、上記(1)〜(3)のいずれか1項に記載の銅合金板材。 (4) The copper alloy sheet according to any one of (1) to (3), wherein the tensile strength is 900 MPa or more and the elongation is 10% or more.

(5)上記(1)〜(4)のいずれか1項に記載の銅合金板材からなるコネクタ。 (5) The connector which consists of a copper alloy board | plate material of any one of said (1)-(4).

(6)上記(1)〜(4)のいずれか1項に記載の銅合金板材を用いた時計用部品。 (6) A timepiece part using the copper alloy sheet according to any one of (1) to (4) above.

(7)上記(1)〜(4)のいずれか1項に記載の銅合金板材を製造する方法であって、前記銅合金板材を与える合金成分組成からなる銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、熱間加工[工程3]、面削[工程4]、第1冷間加工[工程5]、中間熱処理[工程6]、第2冷間加工[工程7]、溶体化熱処理[工程8]、第3冷間加工[工程9]、時効処理[工程10]をこの順に施し、前記中間熱処理は、加熱温度が300℃〜850℃、該加熱温度での保持時間が10〜300秒間および平均冷却速度が100℃/秒以上であり、前記第2冷間加工は、総加工率が50〜90%であり、前記溶体化熱処理は、溶体化温度が650〜850℃、該溶体化温度での保持時間が10〜300秒間および平均冷却速度が100℃/秒以上であり、前記第3冷間加工は、総加工率が5〜70%であり、および、前記時効処理は、時効処理温度が300〜500℃および該時効処理温度での保持時間が0.1〜15時間であることを特徴とする銅合金板材の製造方法。 (7) A method for producing a copper alloy sheet according to any one of (1) to (4) above, wherein the copper alloy sheet is cast into a copper alloy material having an alloy component composition that gives the copper alloy sheet (Step 1). ], Homogenization heat treatment [Step 2], Hot working [Step 3], Face milling [Step 4], First cold working [Step 5], Intermediate heat treatment [Step 6], Second cold working [Step 7] ], Solution heat treatment [Step 8], third cold working [Step 9], and aging treatment [Step 10] are performed in this order, and the intermediate heat treatment is performed at a heating temperature of 300 ° C. to 850 ° C. The holding time is 10 to 300 seconds, the average cooling rate is 100 ° C./second or more, the second cold working has a total working rate of 50 to 90%, and the solution heat treatment has a solution temperature of 650. ˜850 ° C., retention time at the solution temperature of 10 to 300 seconds, and average cooling rate of 100 ° C. The third cold working has a total working rate of 5 to 70%, and the aging treatment has an aging treatment temperature of 300 to 500 ° C. and a holding time at the aging treatment temperature. It is 0.1 to 15 hours, The manufacturing method of the copper alloy board | plate material characterized by the above-mentioned.

本発明によれば、3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有し、ならびに0〜0.2質量%Fe、0〜0.05質量%Si、0〜0.3質量%Mg、0〜0.5質量%Mn、0〜0.1質量%Zn、0〜0.15質量%Zrおよび0〜0.1質量%Pからなる群から選ばれる少なくとも1成分を合計で0〜1.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、溶質原子Snの濃度が周期的に変動する微細な構造形態を持ち、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差が、4〜18質量%の範囲であり、(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が、1nm以上15nm以下であり、かつ平均結晶粒径が0.1μm超6μm以下であることによって、特に強度、曲げ加工性、伸びおよび導電率の特性をバランスよく向上させた銅合金板材を提供することが可能になった。この銅合金板材は、電気電子部品や、例えばコネクタ、スイッチ、ソケット、時計用部品などの部品に使用するのに適している。特にスマートウォッチなどの軽量かつ耐腐食性を求められる機器の部品に使用するのに適している。また、本発明に従う銅合金板材の製造方法によれば、上記銅合金板材を好適に製造することができる。   According to the present invention, it contains 3.0-25.0 mass% Ni and 3.0-9.0 mass% Sn, and 0-0.2 mass% Fe, 0-0.05 mass% Si, Selected from the group consisting of 0-0.3 wt% Mg, 0-0.5 wt% Mn, 0-0.1 wt% Zn, 0-0.15 wt% Zr and 0-0.1 wt% P A copper alloy sheet containing at least one component in a total amount of 0 to 1.0 mass%, the balance being an alloy composition composed of Cu and inevitable impurities, and having a fine structure in which the concentration of solute atoms Sn varies periodically And the difference between the maximum value and the minimum value of the Sn concentration when the Sn concentration in the matrix is measured by plane analysis on the (001) plane of the crystal grains is in the range of 4 to 18% by mass ( 001) The average wavelength of periodic concentration fluctuations of Sn when measured along the [100] direction is 1 nm or less. By being 15 nm or less and having an average crystal grain size of more than 0.1 μm and not more than 6 μm, it is possible to provide a copper alloy sheet having particularly improved strength, bending workability, elongation and conductivity characteristics in a well-balanced manner. Became. This copper alloy sheet is suitable for use in electrical and electronic parts and parts such as connectors, switches, sockets, and watch parts. It is particularly suitable for use in parts of devices that require lightweight and corrosion resistance such as smart watches. Moreover, according to the manufacturing method of the copper alloy sheet according to the present invention, the copper alloy sheet can be preferably manufactured.

図1は、本発明の銅合金板材から採取した試験片の表面をバフ研磨して酸化膜を除去した後、硝酸20%のメタノール溶液にて電解研磨することで観察用試料を作製し、透過型電子顕微鏡(TEM)を用いて結晶粒の(001)面を観察したときのものであって、図1(a)が回折パターン、図1(b)がTEM写真である。FIG. 1 shows an observation sample prepared by buffing the surface of a test piece taken from the copper alloy sheet of the present invention to remove an oxide film, and then electropolishing with a 20% nitric acid methanol solution. FIG. 1A shows a diffraction pattern and FIG. 1B shows a TEM photograph when the (001) plane of a crystal grain is observed using a scanning electron microscope (TEM). 図2は、(200)面のX線回折チャートであって、サイドバンドのピークの主回折線からの角度の変位Δθ(Δθ、Δθ)を示す。FIG. 2 is an X-ray diffraction chart of the (200) plane, and shows the displacement Δθ (Δθ 1 , Δθ 2 ) of the angle from the main diffraction line of the sideband peak.

以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
本発明に従う銅合金板材は、3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有し、ならびに0〜0.2質量%Fe、0〜0.05質量%Si、0〜0.3質量%Mg、0〜0.5質量%Mn、0〜0.1質量%Zn、0〜0.15質量%Zrおよび0〜0.1質量%Pからなる群から選ばれる少なくとも1成分を合計で0〜1.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、溶質原子Snの濃度が周期的に変動する微細な構造形態を持ち、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差が、4〜18質量%の範囲であり、(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が、1nm以上15nm以下であり、かつ平均結晶粒径が0.1μm超6μm以下である。
Hereinafter, preferred embodiments of the copper alloy sheet of the present invention will be described in detail.
The copper alloy sheet according to the present invention contains 3.0-25.0 mass% Ni and 3.0-9.0 mass% Sn, and 0-0.2 mass% Fe, 0-0.05 mass%. From the group consisting of Si, 0-0.3 wt% Mg, 0-0.5 wt% Mn, 0-0.1 wt% Zn, 0-0.15 wt% Zr and 0-0.1 wt% P A copper alloy sheet material having an alloy composition of 0 to 1.0% by mass in total with at least one component selected, with the balance being Cu and inevitable impurities, wherein the concentration of solute atoms Sn varies periodically The difference between the maximum value and the minimum value of the Sn concentration is 4 to 18% by mass when it has a structural form and is measured by surface analysis of the Sn concentration in the matrix at the (001) plane of the crystal grains. , The average wavelength of the periodic concentration fluctuation of Sn when measured along the (001) [100] direction is And a 1nm or 15nm or less and an average crystal grain diameter of 0.1μm ultra 6μm or less.

ここで、本発明でいう「銅合金板材」とは、(加工前であって所定の合金組成を有する)銅合金素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されたものであって、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含む意味である。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.05〜1.0mm、さらに好ましくは0.1〜0.8mmである。   Here, the “copper alloy sheet” in the present invention means that a copper alloy material (having a predetermined alloy composition before processing) has a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, etc.). It is a processed product, has a specific thickness, is stable in shape and has a spread in the surface direction, and in a broad sense, includes a strip. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.05 to 1.0 mm, and more preferably 0.1 to 0.8 mm.

<成分組成>
本発明の銅合金板材の成分組成とその作用について示す。
<Ingredient composition>
It shows about a component composition and its effect | action of the copper alloy board | plate material of this invention.

(必須添加成分)
本発明の銅合金板材は、3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有している。
(Essential additive ingredients)
The copper alloy sheet of the present invention contains 3.0 to 25.0 mass% Ni and 3.0 to 9.0 mass% Sn.

[3.0〜25.0質量%Ni]
Niは、Snとともにスピノーダル分解を生じさせて強度を向上させるための作用を有する重要な元素である。かかる作用を発揮するには、Ni含有量は3.0質量%以上含有することが必要である。一方、Ni含有量が25.0質量%よりも多いと、金属間化合物が生成しやすくなり、生成した金属間化合物が残存すると、それが起点となって冷間加工時に割れが生じ、冷間加工性が著しく劣化する。このため、Ni含有量は、3.0〜25.0質量%の範囲とし、好ましくは9〜20質量%とした。
[3.0 to 25.0 mass% Ni]
Ni is an important element having the effect of causing spinodal decomposition together with Sn to improve the strength. In order to exhibit such an effect, the Ni content must be 3.0% by mass or more. On the other hand, if the Ni content is more than 25.0% by mass, an intermetallic compound is likely to be generated, and if the generated intermetallic compound remains, it becomes a starting point and cracks occur during cold working. Workability is significantly deteriorated. For this reason, Ni content was made into the range of 3.0-25.0 mass%, Preferably it was 9-20 mass%.

[3.0〜9.0質量%Sn]
Snは、Niとともにスピノーダル分解を生じさせて強度を向上させるための作用を有する重要な元素である。かかる作用を発揮するには、Sn含有量は3.0質量%以上含有することが必要である。一方、Sn含有量が9.0質量%よりも多いと、金属間化合物が生成しやすくなり、生成した金属間化合物が残存すると、それが起点となって冷間加工時に割れが生じ、冷間加工性が著しく劣化する。このため、Sn含有量は、3.0〜9.0質量%の範囲とし、好ましくは5〜8質量%とした。
[3.0 to 9.0% by mass Sn]
Sn is an important element having the effect of causing spinodal decomposition together with Ni to improve the strength. In order to exhibit such an effect, the Sn content must be 3.0% by mass or more. On the other hand, if the Sn content is more than 9.0% by mass, an intermetallic compound is likely to be formed, and if the generated intermetallic compound remains, it becomes a starting point and cracks occur during cold working. Workability is significantly deteriorated. For this reason, Sn content was made into the range of 3.0-9.0 mass%, Preferably it was 5-8 mass%.

(任意添加成分)
本発明の銅合金板材は、NiおよびSnの必須の添加成分に加えて、さらに、任意添加元素として、0.02〜0.20質量%Fe、0.01〜0.05質量%Si、0.01〜0.30質量%Mg、0.01〜0.50質量%Mn、0.01〜0.10質量%Zn、0.01〜0.15質量%Zrおよび0.01〜0.10質量%Pからなる群から選ばれる少なくとも1成分を合計で1.0質量%以下含有させることができる。
(Optional additive)
In addition to the essential additive components of Ni and Sn, the copper alloy sheet of the present invention further includes 0.02 to 0.20 mass% Fe, 0.01 to 0.05 mass% Si, 0 as optional additional elements. 0.01 to 0.30 wt% Mg, 0.01 to 0.50 wt% Mn, 0.01 to 0.10 wt% Zn, 0.01 to 0.15 wt% Zr and 0.01 to 0.10 At least one component selected from the group consisting of mass% P can be contained in a total of 1.0 mass% or less.

[0.02〜0.20質量%Fe]
Feは、導電率、強度、応力緩和特性、めっき性等の製品特性を改善する作用を有する元素である。かかる作用を発揮させるには、Fe含有量を0.02%以上とすることが必要である。しかしながら、Fe含有量が0.20質量%を超えると、導電率の低下が大きく、効果も飽和する。このため、Fe含有量は、0.02〜0.20質量%とする。
[0.02 to 0.20 mass% Fe]
Fe is an element having an effect of improving product characteristics such as conductivity, strength, stress relaxation characteristics, and plating properties. In order to exert such an effect, the Fe content needs to be 0.02% or more. However, when the Fe content exceeds 0.20% by mass, the conductivity is greatly reduced and the effect is saturated. For this reason, Fe content shall be 0.02-0.20 mass%.

[0.01〜0.05質量%Si]
Siは、半田付け時の耐熱剥離性や耐マイグレーション性を向上させる作用を有する元素である。かかる作用を発揮させるには、Si含有量を0.01質量%以上とすることが必要である。しかしながら、Si含有量が0.05質量%超えだと、効果が飽和する上、Niとの強度に寄与しない粗大な析出粒子を形成して強度が低下するおそれがある。このため、Si含有量は、0.01〜0.05質量%とする。
[0.01-0.05 mass% Si]
Si is an element having an effect of improving the heat-resistant peelability and migration resistance during soldering. In order to exert such an effect, it is necessary to make the Si content 0.01% by mass or more. However, if the Si content exceeds 0.05% by mass, the effect is saturated, and coarse precipitated particles that do not contribute to the strength with Ni may be formed and the strength may be lowered. For this reason, Si content shall be 0.01-0.05 mass%.

[0.01〜0.30質量%Mg]
Mgは、応力緩和特性を向上させる作用を有する元素である。かかる作用を発揮させるには、Mg含有量を0.01質量%以上とすることが必要である。しかしながら、Mg含有量が0.30質量%を超えると、導電率が大きく低下するおそれがあるため好ましくない。このため、Mg含有量は、0.01〜0.30質量%とする。
[0.01-0.30 mass% Mg]
Mg is an element having an effect of improving stress relaxation characteristics. In order to exert such an effect, it is necessary to make the Mg content 0.01% by mass or more. However, if the Mg content exceeds 0.30% by mass, the electrical conductivity may be greatly reduced, such being undesirable. For this reason, Mg content shall be 0.01-0.30 mass%.

[0.01〜0.50質量%Mn]
Mnは、母相に固溶して圧延加工性を向上させると共に、粒界反応型析出を抑制する効果を有する元素である。かかる作用を発揮させるには、Mn含有量を0.01質量%以上、好ましくは0.10〜0.30質量%とすることが好ましい。また、Mnを0.50質量%よりも多く含有させても、効果の向上が期待できないだけではなく、導電率を低下や曲げ加工性への悪影響を及ぼす傾向がある。このため、Mn含有量は、0.01〜0.50質量%とする。
[0.01-0.50 mass% Mn]
Mn is an element having an effect of suppressing the grain boundary reaction type precipitation while improving the rolling workability by dissolving in the matrix. In order to exert such an effect, the Mn content is preferably 0.01% by mass or more, and preferably 0.10 to 0.30% by mass. Further, if Mn is contained in an amount of more than 0.50% by mass, not only the improvement of the effect cannot be expected, but also the conductivity tends to be lowered and the bending workability is adversely affected. For this reason, Mn content shall be 0.01-0.50 mass%.

[0.01〜0.10質量%Zn]
Znは、曲げ加工性を改善するとともに、Snめっきやはんだめっきの密着性やマイグレーション特性を改善する作用を有する元素である。かかる作用を発揮させるには、Zn含有量を0.01質量%以上とすることが好ましい。また、Znを0.10質量%よりも多く含有させると、導電性を低下させる傾向がある。このため、Zn含有量は、0.01〜0.10質量%とする。
[0.01-0.10 mass% Zn]
Zn is an element that has the effect of improving the bending workability and improving the adhesion and migration characteristics of Sn plating and solder plating. In order to exert such an effect, the Zn content is preferably 0.01% by mass or more. Moreover, when Zn is contained more than 0.10 mass%, there exists a tendency for electroconductivity to fall. For this reason, Zn content shall be 0.01-0.10 mass%.

[0.01〜0.15質量%Zr]
Zrは、主に結晶粒を微細化させて、銅合金板材の強度や曲げ加工性を向上させる作用を有する元素である。かかる作用を発揮させるには、Zr含有量を0.01質量以上とすることが好ましい。また、Zrを0.15質量%よりも多く含有させると、化合物を形成し、導電率及び銅合金板の圧延などの加工性が著しく低下する傾向がある。このため、Zr含有量は、0.01〜0.15質量%とする。
[0.01-0.15 mass% Zr]
Zr is an element having an effect of mainly refining crystal grains and improving the strength and bending workability of the copper alloy sheet. In order to exert such an effect, the Zr content is preferably 0.01 mass or more. Moreover, when Zr is contained more than 0.15% by mass, a compound is formed, and there is a tendency that the conductivity and workability such as rolling of a copper alloy sheet are remarkably lowered. For this reason, Zr content shall be 0.01-0.15 mass%.

[0.01〜0.10質量%P]
Pは、0.01質量%以上の含有で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善する作用を有する元素である。しかしながら、Pを0.10質量%よりも多く含有させても、特性を改善する効果の向上が期待できないだけではなく、化合物を成形して、熱間加工性が低下する傾向がある。このため、P含有量は、0.01〜0.10質量%とする。
[0.01-0.10 mass% P]
P is an element having a content of 0.01% by mass or more and having an effect of improving product characteristics such as strength and stress relaxation characteristics without impairing electrical conductivity. However, even if P is contained in an amount of more than 0.10% by mass, not only the effect of improving the properties cannot be expected, but also the compound is molded and the hot workability tends to be lowered. For this reason, P content shall be 0.01-0.10 mass%.

[Fe、Si、Mg、Mn、Zn、ZrおよびPからなる群から選ばれる少なくとも1成分を合計で1.0質量%以下]
Fe、Si、Mg、Mn、Zn、ZrおよびPからなる群から選ばれる少なくとも1成分の含有量は、合計で1.0質量%以下であることが好ましい。
上記任意添加成分の少なくとも1成分の含有量が合計で1.0質量%以下であれば、加工性や導電率の低下が生じにくいことから、上記任意添加成分の含有量は、合計で1.0質量%以下とする。
[At least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and P is 1.0% by mass or less in total]
The content of at least one component selected from the group consisting of Fe, Si, Mg, Mn, Zn, Zr and P is preferably 1.0% by mass or less in total.
If the content of at least one of the optional addition components is 1.0% by mass or less in total, it is difficult for the workability and conductivity to decrease, so the content of the optional addition component is 1. 0 mass% or less.

<銅合金板材中の溶質原子Snの存在状態(スピノーダル変調構造)>
本発明の銅合金板材は、溶質原子Snの濃度が周期的に変動する微細な構造形態を持ち、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差が、4〜18質量%の範囲であり、かつ(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が、1nm以上15nm以下であり、かつ平均結晶粒径が0.1μm超6μm以下である。
<Existence state of solute atoms Sn in the copper alloy sheet (spinodal modulation structure)>
The copper alloy sheet material of the present invention has a fine structure form in which the concentration of solute atoms Sn periodically varies, and the Sn concentration in the matrix is measured by surface analysis at the (001) plane of the crystal grains. The difference between the maximum value and the minimum value of the Sn concentration is in the range of 4 to 18% by mass, and the average wavelength of the periodic concentration fluctuation of Sn when measured along the (001) [100] direction is 1 nm. The average crystal grain size is more than 0.1 μm and not more than 6 μm.

本発明者らは、Cu−Ni−Sn系合金に関し、強度、伸び、曲げ加工性および導電率をバランスよく向上させるため鋭意検討を行なったところ、(I)中間熱処理、溶体化熱処理、時効熱処理、およびこれら熱処理の間で行う冷間圧延の各条件を適正に制御することによって、平均結晶粒径が微細でかつ、時効後に強固なスピノーダル変調構造を適正な構造に発達させることができること、(II)発達させた変調構造は、特定方向に固溶した溶質原子であるSnの濃度が周期性を持っており、前記特定方向に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が数nm〜数十nm程度であること、および(III)時効温度が高くなるにつれて前記Snの周期的な濃度ゆらぎの平均波長も増大して強度が増加する傾向があること、については既に前述した。   The inventors of the present invention have made extensive studies to improve the strength, elongation, bending workability and electrical conductivity in a well-balanced manner with respect to Cu—Ni—Sn-based alloys. (I) Intermediate heat treatment, solution heat treatment, aging heat treatment And by appropriately controlling each condition of the cold rolling performed between these heat treatments, the average crystal grain size is fine and a strong spinodal modulation structure after aging can be developed into an appropriate structure. II) In the developed modulation structure, the concentration of Sn, which is a solute atom dissolved in a specific direction, has periodicity, and the average wavelength of the periodic concentration fluctuation of Sn when measured along the specific direction Is about several nanometers to several tens of nanometers, and (III) as the aging temperature increases, the average wavelength of the periodic concentration fluctuations of Sn tends to increase and the intensity tends to increase. Already mentioned above for.

そして、本発明者らがさらに検討を行なった結果、平均結晶粒径が0.1μm超6μm以下である金属組織において、(001)[100]方位に沿って測定したときの前記Snの周期的な濃度ゆらぎの平均波長を1nm以上15nm以下の範囲に限定することによって、強度を有効に向上させることができ、また、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差を4〜18質量%の範囲に限定することによって、組織形態が適正に保たれる結果、高強度および高伸びを具備するだけではなく、曲げ加工性および導電率もバランスよく向上させることができることを見出した。なお、ここでいう適正な組織形態とは、平均結晶粒径が0.1μm超6μm以下と微細であるため曲げ加工性に優れており、Sn濃度を測定した時の最大値と最小値の差が4〜18質量%となる範囲で、結晶粒界を起点にNi―Sn析出物が存在することで、導電率が向上している金属組織を示す。   As a result of further studies by the present inventors, the periodicity of Sn when measured along the (001) [100] direction in a metal structure having an average crystal grain size of more than 0.1 μm and not more than 6 μm. By limiting the average wavelength of the concentration fluctuation to the range of 1 nm or more and 15 nm or less, the strength can be effectively improved, and the Sn concentration in the parent phase is analyzed in the (001) plane of the crystal grains. By limiting the difference between the maximum value and the minimum value of the Sn concentration when measured in the range of 4 to 18% by mass, it is possible to maintain not only high strength and high elongation as a result of maintaining the tissue form properly. It was also found that bending workability and electrical conductivity can be improved in a balanced manner. In addition, the appropriate structure form mentioned here is excellent in bending workability because the average crystal grain size is as fine as more than 0.1 μm and not more than 6 μm, and the difference between the maximum value and the minimum value when the Sn concentration is measured. In the range of 4 to 18% by mass, the presence of Ni—Sn precipitates starting from the grain boundaries indicates a metal structure with improved conductivity.

なお、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差の測定方法は、以下の方法で行うことができる。すなわち、各試験片について、硝酸20%のメタノール溶液にて電解研磨することで観察用試料を作製し、結晶粒の(001)面を観察した。観察には透過型電子顕微鏡(TEM)を用い、検出(Sn濃度の分析)は、エネルギー分散形X線分光器(EDS)を用い、電子線のスポット径20nmで行った。観察は観察倍率を200,000倍で行い、(001)[100]方向、及び(001)[010]方向に、それぞれ100nm間隔で5点ずつ測定を行い、計25点の測定箇所におけるSn濃度を分析した。なお、析出物の影響による測定誤差を防ぐため、析出物が存在しない位置を測定箇所として選択した。そして、25点の測定箇所で測定したSn濃度のデータから、最小値および最大値を求め、その差を算出した。同様の分析を異なる観察視野で3回繰り返し、それらの平均を算出してSn濃度の最大値と最小値の差の測定値とした。図1(a)および(b)は、本発明の銅合金板材から観察用試料を作製し、結晶粒の(001)面を、透過型電子顕微鏡(TEM)で観察したときのものであって、図1(a)が回折パターン、図2(b)がTEM写真を示したものである。図1(b)を見ると、(001)[100]方向に、スピノーダル変調構造特有の周期的な濃淡が存在しているのがわかる。本発明では、この濃淡の周期性を規定することで強度、伸び、曲げ加工性および導電率をバランスよく向上させた銅合金板材を得ることができる。   In addition, the measuring method of the difference of the maximum value of Sn density | concentration when measuring the Sn density | concentration in a parent phase by surface analysis in the (001) plane of a crystal grain can be performed with the following method. That is, for each test piece, an observation sample was prepared by electropolishing with a methanol solution of 20% nitric acid, and the (001) plane of the crystal grains was observed. Observation was performed using a transmission electron microscope (TEM), and detection (analysis of Sn concentration) was performed using an energy dispersive X-ray spectrometer (EDS) at an electron beam spot diameter of 20 nm. Observation was performed at an observation magnification of 200,000 times, and 5 points were measured at 100 nm intervals in the (001) [100] direction and (001) [010] direction, respectively, and the Sn concentration at a total of 25 points was measured. Was analyzed. In addition, in order to prevent the measurement error by the influence of a precipitate, the position where a precipitate does not exist was selected as a measurement location. And the minimum value and the maximum value were calculated | required from the data of Sn density | concentration measured at 25 measurement locations, and the difference was computed. The same analysis was repeated three times in different observation fields, and the average of them was calculated as a measured value of the difference between the maximum value and the minimum value of the Sn concentration. FIGS. 1A and 1B show an observation sample prepared from the copper alloy sheet of the present invention, and the (001) plane of the crystal grain is observed with a transmission electron microscope (TEM). 1A shows a diffraction pattern, and FIG. 2B shows a TEM photograph. From FIG. 1 (b), it can be seen that there are periodic shades specific to the spinodal modulation structure in the (001) [100] direction. In the present invention, a copper alloy sheet having improved strength, elongation, bending workability, and electrical conductivity in a well-balanced manner can be obtained by defining this light and shade periodicity.

また、Snの周期的な濃度ゆらぎの平均波長の測定方法は、X線回折法や電子線回折法により求めることができる。一例として、Snの周期的な濃度ゆらぎの平均波長をX線回折法により測定する場合について以下で説明する。観察用試料としては、端子等の利用状態での特性を反映するために時効処理後の材料を用いて組織観察を実施した。板材から10mm×10mmの試料を切り出し、軽くバフ研磨して表面の酸化層を取り除き、X線回折装置を用いて(200)回折のサイドバンドを観察した。その回折線を模式的に示した回折チャートの一例を図2に示す。図2に示したように、主回折線(200)とその両側のサイドバンドについて、主回折線の回折角θ、回折線のミラー指数h、k、l、格子定数a、サイドバンドのピークの主回折線からの角度の変位をΔθとし、得られたX線サイドバンドに対して、下記(1)式に示すDaniel-Lipsonの式を用いて、変調構造の波長λ(すなわちSnの周期的な濃度ゆらぎの平均波長)を得た。なお、本発明では、Snの濃度が周期的に変動する微細な構造形態を取っており、これに起因してX線回折の主回折線(基本反射)に近接して両側に副極大を持つ回折強度が現れている。これを本発明の合金に現れるX線サイドバンドとした。   Moreover, the measuring method of the average wavelength of the periodic concentration fluctuation of Sn can be obtained by an X-ray diffraction method or an electron beam diffraction method. As an example, a case where the average wavelength of the periodic concentration fluctuation of Sn is measured by an X-ray diffraction method will be described below. As the observation sample, the structure was observed using the material after the aging treatment in order to reflect the characteristics in the usage state of the terminal or the like. A 10 mm × 10 mm sample was cut from the plate material, lightly buffed to remove the surface oxide layer, and (200) diffraction sidebands were observed using an X-ray diffractometer. An example of a diffraction chart schematically showing the diffraction lines is shown in FIG. As shown in FIG. 2, for the main diffraction line (200) and the sidebands on both sides thereof, the diffraction angle θ of the main diffraction line, the Miller indices h, k, l of the diffraction line, the lattice constant a, the peak of the sideband. The angle displacement from the main diffraction line is Δθ, and the obtained X-ray sideband is converted to the wavelength λ of the modulation structure (that is, the Sn periodicity) using the Daniel-Lipson equation shown in the following equation (1). Average wavelength of the concentration fluctuation). In the present invention, the Sn structure has a fine structure in which the concentration of Sn periodically varies, and due to this, there is a submaximal on both sides in the vicinity of the main diffraction line (basic reflection) of X-ray diffraction. Diffraction intensity appears. This was used as the X-ray sideband appearing in the alloy of the present invention.

λ=(h・a・tanθ)/{(h+k+l)・Δθ} ・・(1) λ = (h · a · tan θ) / {(h 2 + k 2 + l 2 ) · Δθ} (1)

なお、図2に示したようにサイドバンドが非対称である場合は、高角度側のピークから求めたΔθを上記(1)式に代入して算出したSnの周期的な濃度ゆらぎの波長λ2と、低角度側のピークから求めたΔθを上記(1)式に代入して算出したSnの周期的な濃度ゆらぎの波長λ1とを平均したλをSnの周期的な濃度ゆらぎの平均波長とする。例えば、図2から求められるSnの周期的な濃度ゆらぎの平均波長λは、低角度側が7.1nm、高角度側が8.5nmであった場合、7.8nmとなる。 In the case a sideband asymmetry as shown in FIG. 2, the wavelength of the periodic density fluctuation of Sn to the [Delta] [theta] 2 obtained from the peak of the high angle side is calculated by substituting the above equation (1) λ2 And λ obtained by substituting Δθ 1 obtained from the peak on the low angle side into the above formula (1) and the wavelength λ1 of the periodic concentration fluctuation of Sn is the average wavelength of the periodic concentration fluctuation of Sn And For example, the average wavelength λ of Sn periodic concentration fluctuations obtained from FIG. 2 is 7.8 nm when the low angle side is 7.1 nm and the high angle side is 8.5 nm.

加えて、Snの周期的な濃度ゆらぎの平均波長を電子線回折法により測定する場合には、X線サイドバンドの場合と同様に、Daniel-Lipsonの式を用いて、電子線サテライトからSnの周期的な濃度ゆらぎの平均波長λを算出してもよい。   In addition, when measuring the average wavelength of the Sn periodic concentration fluctuations by the electron diffraction method, as in the case of the X-ray sideband, the Daniel-Lipson equation is used to calculate the Sn from the electron beam satellite. The average wavelength λ of periodic concentration fluctuations may be calculated.

また、本発明では、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の標準偏差が1〜4質量%であることが好ましい。Sn濃度の標準偏差が1質量%未満だと、Sn濃度の変化が小さすぎるため、強度向上の効果が発揮されず、4質量%超えだと、Sn濃度の変化が大きくなりすぎ、粗大な第2相粒子が析出しやすくなるため、逆に強度や曲げ加工性が低下する恐れがある。なお、Sn濃度の標準偏差の算出方法は、上述した測定条件より得られた計25点のSn濃度のデータより算出することによって行なうことができる。   Moreover, in this invention, it is preferable that the standard deviation of Sn density | concentration when the Sn density | concentration in a parent phase is measured by surface analysis in the (001) plane of a crystal grain is 1-4 mass%. If the standard deviation of the Sn concentration is less than 1% by mass, the change in the Sn concentration is too small, so that the effect of improving the strength is not exhibited. If the Sn deviation exceeds 4% by mass, the change in the Sn concentration becomes too large and the coarse Since the two-phase particles are likely to precipitate, the strength and bending workability may be reduced. In addition, the calculation method of the standard deviation of Sn concentration can be performed by calculating from the data of Sn concentration of 25 points obtained from the measurement conditions described above.

銅合金板材の平均結晶粒径は0.1μm超6μm以下であることが必要である。平均結晶粒径が0.1μm以下だと、再結晶組織が混粒(大きさの異なる結晶粒が混在した組織)と成り易く、曲げ加工性並びに応力緩和特性が低下する傾向があり、また、6μmよりも大きいと、曲げ加工性が低下する傾向があるからである。なお、結晶粒径はJIS H0501−1986に規定されている結晶粒度の測定方法(切断法)に基づいて測定し、任意に選択した3箇所を写真撮影し、1000倍の写真上から算出した結晶粒径の平均値である。   The average crystal grain size of the copper alloy sheet is required to be more than 0.1 μm and not more than 6 μm. If the average crystal grain size is 0.1 μm or less, the recrystallized structure tends to be a mixed grain (a structure in which crystal grains having different sizes are mixed), and there is a tendency for bending workability and stress relaxation characteristics to decrease, This is because if it is larger than 6 μm, the bending workability tends to decrease. The crystal grain size was measured based on the crystal grain size measurement method (cutting method) defined in JIS H0501-1986, and three arbitrarily selected locations were photographed, and the crystal was calculated from a 1000 × photograph. Average value of particle diameter.

[銅合金板材の製造方法]
次に、本発明の銅合金板材の好ましい製造方法について説明する。
本発明の銅合金板材は、3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有させ、さらに必要に応じて、任意添加成分であるFe、Si、Mg、Mn、Zn、ZrおよびPについては適宜含有させ、残部がCuと不可避不純物から成る合金組成を有する銅合金素材を用意し、この銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、熱間加工[工程3]、面削[工程4]、第1冷間加工[工程5]、中間熱処理[工程6]、第2冷間加工[工程7]、溶体化熱処理[工程8]、第3冷間加工[工程9]、時効処理[工程10]をこの順に施すことによって製造される。特に本発明の銅合金板材を製造するには、中間熱処理[工程6]、第2冷間加工[工程7]、溶体化熱処理[工程8]、第3冷間加工[工程9]および時効処理[工程10]の各条件を厳しく管理することが好ましい。
[Method for producing copper alloy sheet]
Next, the preferable manufacturing method of the copper alloy sheet | seat material of this invention is demonstrated.
The copper alloy plate material of the present invention contains 3.0 to 25.0 mass% Ni and 3.0 to 9.0 mass% Sn, and further optionally contains Fe, Si, Mg, Mn, Zn, Zr and P are appropriately contained, and a copper alloy material having an alloy composition consisting of Cu and inevitable impurities is prepared, and this copper alloy material is cast [step 1], homogenized heat treatment [step 2]. ], Hot working [step 3], chamfering [step 4], first cold working [step 5], intermediate heat treatment [step 6], second cold working [step 7], solution heat treatment [step 8]. ], 3rd cold work [process 9], and an aging treatment [process 10] are performed in this order. In particular, for producing the copper alloy sheet of the present invention, intermediate heat treatment [Step 6], second cold working [Step 7], solution heat treatment [Step 8], third cold working [Step 9] and aging treatment It is preferable to strictly manage each condition of [Step 10].

Cu、NiおよびSnの原料を、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する[工程1]。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やアップキャスト法などを用いることができる。そして、鋳塊時に生じた凝固偏析や晶出物は粗大なので均質化熱処理[工程2]でできるだけ母相に固溶させて小さくし、可能な限り無くすことが望ましい。これは曲げ割れの防止に効果があるからである。具体的には、鋳造工程の後に、800〜1000℃に加熱して1〜24時間均質化熱処理を行い、続いて熱間加工[工程3]を実施するのが好ましい。均質化熱処理後の熱間加工は省略可能であるが、例えば、処理温度850℃程度、加工度50%以上で行ってもよい。面削工程は、銅合金板材の表皮の酸化皮膜や変質層を除去するために行う。これは通常公知の方法により行うことができる。なお、熱間加工については、圧延加工、もしくは押出加工のどちらでも特に制限は無い。   The raw materials of Cu, Ni, and Sn are melted and cast in a caster, for example, a carbon crucible (inner wall), preferably made of carbon [step 1]. The atmosphere inside the casting machine when melting is preferably a vacuum or an inert gas atmosphere such as nitrogen or argon in order to prevent the formation of oxides. There is no restriction | limiting in particular in a casting method, For example, a horizontal type continuous casting machine, an up-cast method, etc. can be used. Since the solidified segregation and crystallized matter generated during the ingot is coarse, it is desirable to make it as small as possible by dissolving it in the parent phase as much as possible by the homogenization heat treatment [Step 2]. This is because it is effective in preventing bending cracks. Specifically, after the casting process, it is preferable to heat to 800 to 1000 ° C. and perform a homogenization heat treatment for 1 to 24 hours, and then perform hot working [step 3]. Although the hot working after the homogenization heat treatment can be omitted, for example, it may be performed at a processing temperature of about 850 ° C. and a processing degree of 50% or more. The chamfering step is performed in order to remove the oxide film and the altered layer on the skin of the copper alloy sheet. This can be done by a generally known method. In addition, about hot processing, there is no restriction | limiting in particular in either rolling processing or extrusion processing.

熱間加工後、表面を面削[工程4]し、第1冷間加工[工程5]を行う。この第1冷間加工の加工率は70%以上であることが好ましい。なお、加工方法が圧延である場合、加工率R(%)は下記(2)式で定義される。
R=(t0−t)/t0×100 ・・(2)
なお、式中、t0は圧延前の板厚であり、tは圧延後の板厚である。
After the hot working, the surface is chamfered [Step 4], and the first cold working [Step 5] is performed. The processing rate of the first cold processing is preferably 70% or more. When the processing method is rolling, the processing rate R (%) is defined by the following equation (2).
R = (t 0 −t) / t 0 × 100 (2)
In the formula, t 0 is a plate thickness before rolling, and t is a plate thickness after rolling.

本発明の銅合金板材は、第1冷間加工と溶体化熱処理の間に、加熱温度が300〜850℃、保持時間が10〜300秒間および平均冷却速度が100℃/秒以上の中間熱処理[工程6]に続いて、総加工率が50〜90%の第2冷間加工[工程7]を行なう。中間熱処理は、溶体化熱処理温度より低い温度で熱処理を行うことにより、材料を完全に再結晶させず、部分的に再結晶させた亜焼鈍組織を得ることができる。第2冷間加工では、加工率90%以下の圧延によって、微視的に不均一な歪みを材料に導入することができる。これら二つの工程を導入することによって、溶体化熱処理時にSnを十分に固溶させるとともに、再結晶粒成長を抑制することが可能になり、時効処理で微細な結晶粒を維持しつつ、十分に固溶したSnによる変調構造が形成される結果、高い強度を得ることができる。中間熱処理のより好ましい範囲は、加熱温度が600〜750℃、保持時間が15〜45秒間である。第2冷間加工の総加工率のより好ましい範囲は55〜85%、更に好ましい範囲は60〜80%である。   The copper alloy sheet of the present invention is an intermediate heat treatment in which the heating temperature is 300 to 850 ° C., the holding time is 10 to 300 seconds, and the average cooling rate is 100 ° C./second or more between the first cold working and the solution heat treatment [ Subsequent to step 6], the second cold working [step 7] with a total working rate of 50 to 90% is performed. In the intermediate heat treatment, by performing the heat treatment at a temperature lower than the solution heat treatment temperature, it is possible to obtain a subannealed structure in which the material is not completely recrystallized but partially recrystallized. In the second cold working, microscopically non-uniform strain can be introduced into the material by rolling at a working rate of 90% or less. By introducing these two steps, it is possible to sufficiently dissolve Sn at the time of solution heat treatment and to suppress recrystallized grain growth, while maintaining fine crystal grains sufficiently by aging treatment. As a result of the formation of a modulation structure of solid solution Sn, high strength can be obtained. A more preferable range of the intermediate heat treatment is a heating temperature of 600 to 750 ° C. and a holding time of 15 to 45 seconds. A more preferable range of the total processing rate of the second cold processing is 55 to 85%, and a more preferable range is 60 to 80%.

従来、上記中間熱処理のような熱処理は、次工程の加工での荷重を低減するために材料を再結晶させて強度を落とすために行われていた。また、圧延は板厚を薄くすることが目的であり、通常の圧延機の能力であれば90%を超える加工率を採用するのが一般的である。本発明における中間熱処理および第2冷間加工を行なう目的は、これら一般的な内容とは異なり、Snの濃度分布の有意な変調構造の周期性を持たせるためである。   Conventionally, heat treatment such as the intermediate heat treatment has been performed in order to reduce the strength by recrystallizing the material in order to reduce the load in the next process. The purpose of rolling is to reduce the plate thickness, and if the capability of a normal rolling mill, it is common to employ a processing rate exceeding 90%. The purpose of performing the intermediate heat treatment and the second cold working in the present invention is to have a significant modulation structure periodicity of the Sn concentration distribution, unlike these general contents.

次いで、第2冷間加工後に、溶体化温度が650〜850℃、該溶体化温度での保持時間が10〜300秒間および平均冷却速度が100℃/秒以上である溶体化熱処理[工程8]を行う。溶体化熱処理では、NiやSnの濃度によって必要な温度条件が変わるため、NiおよびSnの濃度に応じて適切な温度条件を選択する必要がある。溶体化温度が650℃以上であると、時効処理工程において十分な強度が得られ、また、溶体化温度が850℃以下であれば、材料が必要以上に軟化せず形状制御が適正に行うことができる。   Next, after the second cold working, a solution heat treatment having a solution temperature of 650 to 850 ° C., a holding time at the solution temperature of 10 to 300 seconds, and an average cooling rate of 100 ° C./second or more [Step 8] I do. In the solution heat treatment, necessary temperature conditions vary depending on the concentrations of Ni and Sn. Therefore, it is necessary to select appropriate temperature conditions according to the concentrations of Ni and Sn. When the solution temperature is 650 ° C. or higher, sufficient strength is obtained in the aging treatment step, and when the solution temperature is 850 ° C. or lower, the material is not softened more than necessary and the shape control is appropriately performed. Can do.

溶体化処理の後、5〜70%の第3冷間加工[工程9]を行う。この第3冷間加工は、加工による転位の導入で強度を高くするとともに、時効後の強度も高くするために行い、この加工率の冷間加工を施すとSn濃度分布が本発明の範囲内となり好ましい。第3冷間加工は、加工硬化により強度の向上にも寄与する。5%未満だと時効後に所望の強度が得られず、加工率70%を超えると更なる強度が望めない一方、曲げ加工性が劣化する問題点がある。   After the solution treatment, 5 to 70% of the third cold working [Step 9] is performed. This third cold working is performed in order to increase the strength by introducing dislocations by working and also to increase the strength after aging. When cold working at this working rate is performed, the Sn concentration distribution is within the scope of the present invention. It is preferable. The third cold working also contributes to the improvement of strength by work hardening. If it is less than 5%, the desired strength cannot be obtained after aging, and if the processing rate exceeds 70%, no further strength can be expected, but the bending workability deteriorates.

第3冷間加工後に、時効処理温度が300〜500℃および該時効処理温度での保持時間が0.1〜15時間である時効処理[工程10]を行う。時効処理温度が300℃以上であると、スピノーダル分解を促進されて十分な強度が得られ、また、時効処理温度が500℃以下であると、析出物が粗大化せず、強度が維持される。本発明においては、従来の技術とは異なり、溶体化処理で結晶粒径が微細かつ、Snを十分に固溶させているため、時効によってスピノーダル分解を促進させて、得られる銅合金板材の強度を向上させることができる。   After the third cold working, an aging treatment [Step 10] is performed in which the aging treatment temperature is 300 to 500 ° C. and the holding time at the aging treatment temperature is 0.1 to 15 hours. When the aging treatment temperature is 300 ° C. or higher, spinodal decomposition is promoted and sufficient strength is obtained, and when the aging treatment temperature is 500 ° C. or less, precipitates are not coarsened and the strength is maintained. . In the present invention, unlike the prior art, since the crystal grain size is fine by solution treatment and Sn is sufficiently dissolved, the spinodal decomposition is promoted by aging, and the strength of the obtained copper alloy sheet material Can be improved.

さらに、時効処理後に、必要に応じて、仕上げ冷間加工および低温焼鈍を行ってもよい。この場合、仕上げ冷間加工は、加工率を0〜20%以下とするのが好ましく、低温焼鈍は、200〜400℃で5秒〜3時間とするのが好ましい。   Further, after the aging treatment, finish cold working and low temperature annealing may be performed as necessary. In this case, the finish cold working is preferably performed at a working rate of 0 to 20% or less, and the low temperature annealing is preferably performed at 200 to 400 ° C. for 5 seconds to 3 hours.

<銅合金板材の特性>
本発明の銅合金板材は、例えばコネクタのような電気電子部品として使用する場合には、引張強度が900MPa以上でかつ伸びが10%以上であることが好ましい。
<Characteristics of copper alloy sheet>
When the copper alloy sheet of the present invention is used as an electrical / electronic component such as a connector, it is preferable that the tensile strength is 900 MPa or more and the elongation is 10% or more.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜13および比較例1〜17)
まず、DC(Direct Chill)法により、表1に示す合金組成を有する銅合金を溶解して、これを鋳造して、厚さ30mm、幅100mm、長さ150mmの鋳塊を得た。次にこれら鋳塊を900℃に加熱し均質化処理を行い、この温度に1時間保持後、厚さ14mmに熱間圧延し、速やかに冷却した。次いで両面を各1mmずつ面削して酸化被膜を除去した後、第1冷間加工として加工率90〜98%の冷間圧延を施した。この後、表2に示す条件で中間熱処理を行い、第2冷間加工として加工率80%の冷間圧延を実施した。その後、表2に示す条件で溶体化熱処理を行った。次いで、第3冷間加工として表2に示す加工率で冷間圧延を施した。次に、不活性ガス雰囲気中で、表2に示す条件で時効処理を施して作製した銅合金板材を用いて、各種特性評価を行った。
(Examples 1-13 and Comparative Examples 1-17)
First, a copper alloy having the alloy composition shown in Table 1 was melted by a DC (Direct Chill) method and cast to obtain an ingot having a thickness of 30 mm, a width of 100 mm, and a length of 150 mm. Next, these ingots were heated to 900 ° C. for homogenization treatment, maintained at this temperature for 1 hour, hot-rolled to a thickness of 14 mm, and quickly cooled. Next, both sides were chamfered by 1 mm each to remove the oxide film, and then cold rolled at a processing rate of 90 to 98% as the first cold working. Thereafter, an intermediate heat treatment was performed under the conditions shown in Table 2, and cold rolling with a processing rate of 80% was performed as the second cold working. Thereafter, solution heat treatment was performed under the conditions shown in Table 2. Next, cold rolling was performed at a processing rate shown in Table 2 as the third cold processing. Next, various characteristics evaluations were performed using a copper alloy sheet material that was produced by aging treatment under the conditions shown in Table 2 in an inert gas atmosphere.

このようにして製造した銅合金板に対して、各実施例および各比較例とも、時効処理後に銅合金板から切り出した試料を使用し、以下に示す試験及び評価を実施した。なお、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差、(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の標準偏差および平均結晶粒径の測定、ならびに銅合金板材の強度、伸び、曲げ特性および導電率に関する特性評価については、以下の方法で行なった。   With respect to the copper alloy plate thus produced, the following tests and evaluations were carried out using samples cut from the copper alloy plate after the aging treatment in both the examples and the comparative examples. In addition, when measuring along the (001) [100] direction, the difference between the maximum value and the minimum value of the Sn concentration when the Sn concentration in the matrix is measured by plane analysis at the (001) plane of the crystal grain The average wavelength of the periodic fluctuations of the Sn concentration, the standard deviation of the Sn concentration and the measurement of the average crystal grain size when the Sn concentration in the parent phase is measured on the (001) plane of the crystal grains, and About the characteristic evaluation regarding the intensity | strength of a copper alloy board | plate material, elongation, a bending characteristic, and electrical conductivity, it performed by the following method.

1.結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差および標準偏差の算出方法
各試験片について、硝酸20%のメタノール溶液にて電解研磨することで観察用試料を作製し、結晶粒の(001)面を観察した。観察には透過型電子顕微鏡(TEM)を用い、検出(Sn濃度の分析)は、エネルギー分散形X線分光器(EDS)を用い、電子線のスポット径20nmで行った。観察は観察倍率を200,000倍で行い、(001)[100]方向、及び(001)[010]方向に、それぞれ100nm間隔で5点ずつ測定を行い、計25点の測定箇所におけるSn濃度を分析した。なお、析出物の影響による測定誤差を防ぐため、析出物が存在しない位置を測定箇所として選択した。そして、25点の測定箇所で測定したSn濃度のデータから、最小値および最大値を求め、その差を算出した。同様の分析を異なる観察視野で3回繰り返し、それらの平均を算出してSn濃度の最大値と最小値の差の測定値とした。また、Sn濃度の標準偏差は、上述した測定条件より得られた75点(3つの観察視野で各々25点)のSn濃度のデータより算出した。表1に、Sn濃度の最大値と最小値の差の測定値と標準偏差の算出値を表1に示す。
1. Calculation method of difference and standard deviation of maximum and minimum values of Sn concentration measured by surface analysis of Sn concentration in parent phase on (001) plane of crystal grains Methanol with 20% nitric acid for each test piece An observation sample was prepared by electrolytic polishing with a solution, and the (001) plane of the crystal grains was observed. Observation was performed using a transmission electron microscope (TEM), and detection (analysis of Sn concentration) was performed using an energy dispersive X-ray spectrometer (EDS) at an electron beam spot diameter of 20 nm. Observation was performed at an observation magnification of 200,000 times, and 5 points were measured at 100 nm intervals in the (001) [100] direction and (001) [010] direction, respectively, and the Sn concentration at a total of 25 points was measured. Was analyzed. In addition, in order to prevent the measurement error by the influence of a precipitate, the position where a precipitate does not exist was selected as a measurement location. And the minimum value and the maximum value were calculated | required from the data of Sn density | concentration measured at 25 measurement locations, and the difference was computed. The same analysis was repeated three times in different observation fields, and the average of them was calculated as a measured value of the difference between the maximum value and the minimum value of the Sn concentration. The standard deviation of the Sn concentration was calculated from the Sn concentration data of 75 points (25 points in each of three observation fields) obtained from the measurement conditions described above. Table 1 shows the measured value of the difference between the maximum value and the minimum value of the Sn concentration and the calculated value of the standard deviation.

2.(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長の測定
Snの周期的な濃度ゆらぎの平均波長の測定方法は、X線回折法や電子線回折法により求めることができる。例えば、Snの周期的な濃度ゆらぎの平均波長をX線回折法により測定する場合について以下で説明する。観察用試料としては、端子等の利用状態での特性を反映するために時効処理後の材料を用いて組織観察を実施した。板材から10mm×10mmの試料を切出し、軽くバフ研磨して表面の酸化層を取り除き、X線回折装置を用いて(200)回折のサイドバンドを観察した。その回折線を模式的に示した回折チャートの一例を図2に示す。図2に示したように、主回折線(200)とその両側のサイドバンドについて、主回折線の回折角θ、回折線のミラー指数h、k、l、格子定数a、サイドバンドのピークの主回折線からの角度の変位をΔθとし、得られたX線サイドバンドに対して、下記(1)式に示すDaniel-Lipsonの式を用いて、変調構造の波長λ(すなわちSnの周期的な濃度ゆらぎの平均波長)を得た。Snの周期的な濃度ゆらぎの平均波長を表1に示す。
λ=(h・a・tanθ)/{(h+k+l)・Δθ} ・・(1)
2. (001) Measurement of average wavelength of periodic concentration fluctuation of Sn when measured along [100] direction The measurement method of the average wavelength of periodic concentration fluctuation of Sn is an X-ray diffraction method or an electron beam diffraction method. It can ask for. For example, the case where the average wavelength of the periodic fluctuation of the Sn concentration is measured by the X-ray diffraction method will be described below. As the observation sample, the structure was observed using the material after the aging treatment in order to reflect the characteristics in the usage state of the terminal or the like. A 10 mm × 10 mm sample was cut from the plate material, lightly buffed to remove the surface oxide layer, and a (200) diffraction sideband was observed using an X-ray diffractometer. An example of a diffraction chart schematically showing the diffraction lines is shown in FIG. As shown in FIG. 2, for the main diffraction line (200) and the sidebands on both sides thereof, the diffraction angle θ of the main diffraction line, the Miller indices h, k, l of the diffraction line, the lattice constant a, the peak of the sideband. The angle displacement from the main diffraction line is Δθ, and the obtained X-ray sideband is converted to the wavelength λ of the modulation structure (that is, the Sn periodicity) using the Daniel-Lipson equation shown in the following equation (1). Average wavelength of the concentration fluctuation). Table 1 shows the average wavelength of the periodic concentration fluctuation of Sn.
λ = (h · a · tan θ) / {(h 2 + k 2 + l 2 ) · Δθ} (1)

3.結晶粒径測定法
試験片の圧延方向に垂直な断面を湿式研磨、バフ研磨により鏡面に仕上げた後、クロム酸:水=1:1の液で数秒間、研磨面を腐食した後、SEMの二次電子像を用いて400〜1000倍の倍率で写真をとり、断面の平均結晶粒径(μm)をJIS H0501−1986の切断法に準じて測定した。断面は、圧延方向横断面で測定した。平均結晶粒径を表1に示す。
3. Grain size measurement method After the cross section perpendicular to the rolling direction of the test piece was polished into a mirror surface by wet polishing and buffing, the polished surface was corroded with a solution of chromic acid: water = 1: 1 for several seconds, A photograph was taken at a magnification of 400 to 1000 times using a secondary electron image, and the average crystal grain size (μm) of the cross section was measured according to the cutting method of JIS H0501-1986. The cross section was measured by a cross section in the rolling direction. Table 1 shows the average crystal grain size.

4.引張強度
供試材(試験片)の圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241:2011に準じて3本測定しその平均値を表3に示す。
4). Tensile strength Three test pieces of JIS Z2201-13B cut out in the rolling parallel direction of the test material (test piece) were measured according to JIS Z2241: 2011, and the average value is shown in Table 3.

5.伸び
JIS Z 2241:2011に準じて3本測定し、その平均値(%)を表3に示す。
5). Elongation Three were measured according to JIS Z 2241: 2011, and the average value (%) is shown in Table 3.

6.曲げ加工性
試料のB.W.方向に幅10mm、長さ50mmの短冊形試料を作製し、W曲げ試験(JIS H3130:2012)を曲げ半径R(mm)と板厚t(mm)の比(R/t)=1となる条件で行い、曲げ凸面外観を日本伸銅協会標準JBMA T307:1999による評価基準と比較し、割れが生じない場合を良好であるとして「〇」、割れが生じた場合を不良であるとして「×」として表3に示す。
6). Bending workability W. A strip sample having a width of 10 mm and a length of 50 mm is prepared in the direction, and the ratio of the bending radius R (mm) to the thickness t (mm) (R / t) = 1 in the W bending test (JIS H3130: 2012). The appearance of the bent convex surface is compared with the evaluation standard according to Japan Copper and Brass Association Standard JBMA T307: 1999, and “O” indicates that no cracks occur, and “X” indicates that cracks occur as “bad”. Is shown in Table 3.

7.導電率
導電率は、JIS H0505−1975に基づく四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均値(%IACS)を表3に示す。このとき端子間距離は100mmとした。
7). Conductivity Conductivity is measured by measuring the conductivity of two test pieces in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.) using a four-terminal method based on JIS H0505-1975. Values (% IACS) are shown in Table 3. At this time, the distance between terminals was set to 100 mm.

表3に示す結果から、実施例1〜13はいずれも、合金組成、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差、および(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が適正範囲内であるため、引張強度が1039〜1423MPaと900MPa以上であり、伸びが10〜30%の10%以上であり、導電率が5.4〜14.1%IACSであり、曲げ加工性も良好であることから、引張強度、伸び、導電率および曲げ加工性の全ての特性をバランスよく高いレベルで満足しているのが分かる。   From the results shown in Table 3, in each of Examples 1 to 13, the maximum value and the minimum value of the Sn concentration when the Sn concentration in the parent phase was measured by surface analysis on the (001) plane of the alloy composition and crystal grains. Since the average wavelength of the difference in value and the periodic concentration fluctuation of Sn when measured along the (001) [100] direction is within the appropriate range, the tensile strength is 1039 to 1423 MPa and 900 MPa or more, and the elongation is Is 10% or more of 10 to 30%, the conductivity is 5.4 to 14.1% IACS, and the bending workability is also good, all of tensile strength, elongation, conductivity and bending workability It can be seen that the above characteristics are satisfied at a high level in a balanced manner.

これに対し、比較例1〜17はいずれも、合金組成、結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差、および(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長のうち、少なくとも一つが適正範囲外であるため、引張強度が490〜883MPaと900MPa未満と低く、また、比較例4〜9、11、13および16はいずれも、伸びが10%未満と低く、さらに、比較例1、2、5、6、8、9、11、14および16はいずれも、曲げ加工性が劣っていることから、比較例1〜17はいずれも、引張強度、伸び、導電率および曲げ加工性の全ての特性をバランスよく高いレベルで満足させることができないことがわかる。   On the other hand, in all of Comparative Examples 1 to 17, the difference between the maximum value and the minimum value of the Sn concentration when the alloy composition and the Sn concentration in the parent phase were measured by plane analysis on the (001) plane of the crystal grains. , And the average wavelength of the periodic concentration fluctuation of Sn when measured along the (001) [100] orientation, since at least one is outside the proper range, the tensile strength is as low as 490-883 MPa and less than 900 MPa. Moreover, all of Comparative Examples 4 to 9, 11, 13, and 16 have a low elongation of less than 10%, and Comparative Examples 1, 2, 5, 6, 8, 9, 11, 14, and 16 are all From the fact that bending workability is inferior, it can be seen that none of Comparative Examples 1 to 17 can satisfy all properties of tensile strength, elongation, conductivity and bending workability at a high level in a balanced manner.

本発明によれば、特に強度、曲げ加工性、伸びおよび導電率の特性をバランスよく向上させた銅合金板材を提供することが可能になった。特に、この銅合金板材は、電気電子部品や、例えばコネクタ、スイッチ、ソケット、時計用部品などの部品に使用するのに適している。特にスマートウォッチなどの軽量かつ耐腐食性を求められる機器の部品に使用するのに適している。また、本発明に従う銅合金板材の製造方法によれば、上記銅合金板材を好適に製造することができる。   According to the present invention, it has become possible to provide a copper alloy sheet having improved strength, bending workability, elongation and electrical conductivity in a well-balanced manner. In particular, this copper alloy sheet is suitable for use in electrical and electronic parts and parts such as connectors, switches, sockets, and watch parts. It is particularly suitable for use in parts of devices that require lightweight and corrosion resistance such as smart watches. Moreover, according to the manufacturing method of the copper alloy sheet according to the present invention, the copper alloy sheet can be preferably manufactured.

Claims (7)

3.0〜25.0質量%Niおよび3.0〜9.0質量%Snを含有し、ならびに0〜0.2質量%Fe、0〜0.05質量%Si、0〜0.3質量%Mg、0〜0.5質量%Mn、0〜0.1質量%Zn、0〜0.15質量%Zrおよび0〜0.1質量%Pからなる群から選ばれる少なくとも1成分を合計で0〜1.0質量%含有し、残部がCuおよび不可避不純物からなる合金組成を有する銅合金板材であって、
溶質原子Snの濃度が周期的に変動する微細な構造形態を持ち、
結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の最大値と最小値の差が、4〜18質量%の範囲であり、
(001)[100]方位に沿って測定したときのSnの周期的な濃度ゆらぎの平均波長が、1nm以上15nm以下であり、かつ
平均結晶粒径が0.1μm超6μm以下であることを特徴とする銅合金板材。
Contains 3.0 to 25.0 mass% Ni and 3.0 to 9.0 mass% Sn, and 0 to 0.2 mass% Fe, 0 to 0.05 mass% Si, 0 to 0.3 mass % Mg, 0 to 0.5 mass% Mn, 0 to 0.1 mass% Zn, 0 to 0.15 mass% Zr and 0 to 0.1 mass% P. It is a copper alloy plate material having an alloy composition containing 0 to 1.0 mass%, the balance being Cu and inevitable impurities,
It has a fine structural form in which the concentration of solute atoms Sn varies periodically,
The difference between the maximum value and the minimum value of the Sn concentration when the Sn concentration in the matrix is measured by plane analysis at the (001) plane of the crystal grains is in the range of 4 to 18% by mass,
(001) The average wavelength of Sn periodic concentration fluctuation when measured along the [100] orientation is 1 nm or more and 15 nm or less, and the average crystal grain size is more than 0.1 μm and 6 μm or less. Copper alloy sheet material.
結晶粒の(001)面にて母相中のSn濃度を面分析して測定したときのSn濃度の標準偏差が1〜4質量%である、請求項1に記載の銅合金板材。   2. The copper alloy sheet according to claim 1, wherein the standard deviation of the Sn concentration is 1 to 4 mass% when the Sn concentration in the matrix is measured by surface analysis at the (001) plane of the crystal grains. 0.02〜0.20質量%Fe、0.01〜0.05質量%Si、0.01〜0.30質量%Mg、0.01〜0.50質量%Mn、0.01〜0.10質量%Zn、0.01〜0.15質量%Zrおよび0.01〜0.10質量%Pからなる群から選ばれる少なくとも1成分を合計で1.0質量%以下含有する、請求項1または2に記載の銅合金板材。   0.02 to 0.20 mass% Fe, 0.01 to 0.05 mass% Si, 0.01 to 0.30 mass% Mg, 0.01 to 0.50 mass% Mn, 0.01 to 0. 0. The composition contains at least one component selected from the group consisting of 10 mass% Zn, 0.01-0.15 mass% Zr, and 0.01-0.10 mass% P in total of 1.0 mass% or less. Or the copper alloy plate material of 2. 引張強度が900MPa以上でかつ伸びが10%以上である、請求項1〜3のいずれか1項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, wherein the tensile strength is 900 MPa or more and the elongation is 10% or more. 請求項1〜4のいずれか1項に記載の銅合金板材からなるコネクタ。   The connector which consists of a copper alloy board | plate material of any one of Claims 1-4. 請求項1〜4のいずれか1項に記載の銅合金板材を用いた時計用部品。   A timepiece part using the copper alloy sheet according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の銅合金板材を製造する方法であって、
前記銅合金板材を与える合金成分組成からなる銅合金素材に、鋳造[工程1]、均質化熱処理[工程2]、熱間加工[工程3]、面削[工程4]、第1冷間加工[工程5]、中間熱処理[工程6]、第2冷間加工[工程7]、溶体化熱処理[工程8]、第3冷間加工[工程9]、時効処理[工程10]をこの順に施し、
前記中間熱処理は、加熱温度が300℃〜850℃、該加熱温度での保持時間が10〜300秒間および平均冷却速度が100℃/秒以上であり、
前記第2冷間加工は、総加工率が50〜90%であり、
前記溶体化熱処理は、溶体化温度が650〜850℃、該溶体化温度での保持時間が10〜300秒間および平均冷却速度が100℃/秒以上であり、
前記第3冷間加工は、総加工率が5〜70%であり、および、
前記時効処理は、時効処理温度が300〜500℃および該時効処理温度での保持時間が0.1〜15時間であることを特徴とする銅合金板材の製造方法。
A method for producing a copper alloy sheet according to any one of claims 1 to 4,
Casting [Step 1], homogenization heat treatment [Step 2], hot working [Step 3], chamfering [Step 4], first cold working to a copper alloy material having an alloy component composition that gives the copper alloy sheet material [Step 5], intermediate heat treatment [Step 6], second cold working [Step 7], solution heat treatment [Step 8], third cold working [Step 9], and aging treatment [Step 10] are performed in this order. ,
The intermediate heat treatment has a heating temperature of 300 ° C. to 850 ° C., a holding time at the heating temperature of 10 to 300 seconds, and an average cooling rate of 100 ° C./second or more,
The second cold working has a total working rate of 50 to 90%,
The solution heat treatment has a solution temperature of 650 to 850 ° C., a holding time at the solution temperature of 10 to 300 seconds, and an average cooling rate of 100 ° C./second or more,
The third cold working has a total working rate of 5 to 70%, and
In the aging treatment, the aging treatment temperature is 300 to 500 ° C., and the holding time at the aging treatment temperature is 0.1 to 15 hours.
JP2016071471A 2016-03-31 2016-03-31 Copper alloy sheet and method for producing copper alloy sheet Active JP6324431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016071471A JP6324431B2 (en) 2016-03-31 2016-03-31 Copper alloy sheet and method for producing copper alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071471A JP6324431B2 (en) 2016-03-31 2016-03-31 Copper alloy sheet and method for producing copper alloy sheet

Publications (2)

Publication Number Publication Date
JP2017179538A true JP2017179538A (en) 2017-10-05
JP6324431B2 JP6324431B2 (en) 2018-05-16

Family

ID=60003793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071471A Active JP6324431B2 (en) 2016-03-31 2016-03-31 Copper alloy sheet and method for producing copper alloy sheet

Country Status (1)

Country Link
JP (1) JP6324431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885938A (en) * 2019-12-04 2020-03-17 中色奥博特铜铝业有限公司 Cu-Ni-Sn alloy strip foil for 5G communication and preparation method thereof
CN115141954A (en) * 2021-03-31 2022-10-04 日本碍子株式会社 Copper alloy and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022181803A (en) * 2021-05-27 2022-12-08 日本碍子株式会社 Copper alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294366A (en) * 2001-03-30 2002-10-09 Nippon Mining & Metals Co Ltd Phosphor bronze strip having stably excellent bendability with respect to limiting bend radius
JP2009242895A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd High-strength copper alloy of excellent bending processability
WO2014016934A1 (en) * 2012-07-26 2014-01-30 三菱電機株式会社 Copper alloy and production method thereof
WO2014196563A1 (en) * 2013-06-04 2014-12-11 日本碍子株式会社 Copper-alloy production method, and copper alloy
JP2016125126A (en) * 2015-01-08 2016-07-11 古河電気工業株式会社 Copper alloy sheet material and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294366A (en) * 2001-03-30 2002-10-09 Nippon Mining & Metals Co Ltd Phosphor bronze strip having stably excellent bendability with respect to limiting bend radius
JP2009242895A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd High-strength copper alloy of excellent bending processability
WO2014016934A1 (en) * 2012-07-26 2014-01-30 三菱電機株式会社 Copper alloy and production method thereof
WO2014196563A1 (en) * 2013-06-04 2014-12-11 日本碍子株式会社 Copper-alloy production method, and copper alloy
JP2016125126A (en) * 2015-01-08 2016-07-11 古河電気工業株式会社 Copper alloy sheet material and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110885938A (en) * 2019-12-04 2020-03-17 中色奥博特铜铝业有限公司 Cu-Ni-Sn alloy strip foil for 5G communication and preparation method thereof
CN115141954A (en) * 2021-03-31 2022-10-04 日本碍子株式会社 Copper alloy and method for producing same
CN115141954B (en) * 2021-03-31 2024-05-31 日本碍子株式会社 Copper alloy and method for producing same

Also Published As

Publication number Publication date
JP6324431B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5391169B2 (en) Copper alloy material for electrical and electronic parts and method for producing the same
JP5448763B2 (en) Copper alloy material
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5400877B2 (en) Copper alloy sheet and manufacturing method thereof
JP5619389B2 (en) Copper alloy material
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
KR20190018661A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
WO2012132937A1 (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
JP5065478B2 (en) Copper alloy material for electric and electronic parts and manufacturing method
JPWO2010016428A1 (en) Copper alloy material for electrical and electronic parts
TWI429764B (en) Cu-Co-Si alloy for electronic materials
US9076569B2 (en) Cu—Co—Si alloy material and manufacturing method thereof
JP5468798B2 (en) Copper alloy sheet
JP6324431B2 (en) Copper alloy sheet and method for producing copper alloy sheet
JP6265651B2 (en) Copper alloy sheet, connector using the same, and method for producing the copper alloy sheet
JP6210572B1 (en) Copper alloy wire rod and method for producing the same
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JP6210573B1 (en) Copper alloy wire rod and method for producing the same
KR20210149830A (en) Copper alloys having high strength and high conductivity and methods for producing such copper alloys
US20130284323A1 (en) Cu-Co-Si-Zr ALLOY MATERIAL AND MANUFACTURING METHOD THEREOF
TWI818122B (en) Copper alloy plate and manufacturing method thereof
JP2012046804A (en) Copper alloy material and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R151 Written notification of patent or utility model registration

Ref document number: 6324431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350