JP2017174822A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2017174822A
JP2017174822A JP2017085070A JP2017085070A JP2017174822A JP 2017174822 A JP2017174822 A JP 2017174822A JP 2017085070 A JP2017085070 A JP 2017085070A JP 2017085070 A JP2017085070 A JP 2017085070A JP 2017174822 A JP2017174822 A JP 2017174822A
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
mass
active material
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017085070A
Other languages
Japanese (ja)
Other versions
JP6635346B2 (en
Inventor
賢治 山内
Kenji Yamauchi
賢治 山内
真観 京
Masaki Kyo
真観 京
賢 稲垣
Masaru Inagaki
賢 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Publication of JP2017174822A publication Critical patent/JP2017174822A/en
Application granted granted Critical
Publication of JP6635346B2 publication Critical patent/JP6635346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery excellent in life performance in an environment involving deep discharge such as PSOC, in which penetration short circuit due to graphite or carbon fibers is less likely to occur.SOLUTION: Negative electrode material of a negative electrode plate 4 of a lead acid battery contains graphite or carbon fibers, and barium sulphate, the ratio S/W of the average pole plate interval S' of the negative electrode plate 4 and a positive electrode plate 6, to the mass W of the negative electrode material 14 per negative electrode plate 4 is 0.01 mm/g or more, the average pole plate interval S' is 0.4-1.0 mm, and the negative electrode material contains 1.2 mass% or more of barium sulphate.SELECTED DRAWING: Figure 1

Description

この発明は鉛蓄電池に関し、特に深い放電を伴う環境で使用する鉛蓄電池に関する。   The present invention relates to a lead storage battery, and more particularly to a lead storage battery used in an environment with deep discharge.

アイドリングストップ車の登場により、鉛蓄電池は従来よりも深い放電が行われることが増した。例えばアイドリングストップ車の鉛蓄電池は、部分充電状態(PSOC:partial State of Charge)で使用されることを前提としている。またフォークリフト用のように、サイクル用途の鉛蓄電池は、従来から深い放電深さ(DOD:Depth of Discharge)で使用される。部分充電状態で使用されると、鉛蓄電池は、正極への硫酸鉛の蓄積、あるいは負極のサルフェーションにより、寿命が短くなる。そして、部分充電状態では、ガス発生による電解液の撹拌が不足するため電解液が成層化しやすくなり、鉛蓄電池の寿命はさらに短くなる。   With the advent of the idling stop vehicle, the lead-acid battery has been discharged more deeply than before. For example, a lead-acid battery for an idling stop vehicle is assumed to be used in a partial state of charge (PSOC). Further, as for forklifts, lead storage batteries for cycle use have been conventionally used at a deep depth of discharge (DOD). When used in a partially charged state, the lead-acid battery has a short life due to accumulation of lead sulfate on the positive electrode or sulfation of the negative electrode. And in a partially charged state, since stirring of the electrolyte solution due to gas generation is insufficient, the electrolyte solution is easily stratified, and the life of the lead storage battery is further shortened.

一方、車両が長期放置される等で鉛蓄電池が部分充電状態から過放電に陥ると、セパレータを金属鉛が貫通し正負の両極板が短絡する浸透短絡が生じやすくなる。過放電により電解液中の硫酸イオン濃度が低下し、これに伴って電解液中の鉛イオンの濃度が増す。この鉛イオンが充電時に負極板で還元され、セパレータ内部の孔を通じて金属鉛のデンドライトが成長し、セパレータを貫通して正極板と負極板とが短絡する。   On the other hand, when the lead storage battery falls into an overdischarge from a partially charged state because the vehicle is left for a long period of time, an infiltration short circuit in which the metallic lead penetrates the separator and the positive and negative bipolar plates are short-circuited easily occurs. The concentration of sulfate ions in the electrolytic solution decreases due to overdischarge, and the concentration of lead ions in the electrolytic solution increases accordingly. The lead ions are reduced by the negative electrode plate during charging, metal lead dendrites grow through the holes in the separator, and the positive electrode plate and the negative electrode plate are short-circuited through the separator.

出願人は、負極電極材料に黒鉛を含有させることにより、PSOCでの鉛蓄電池の寿命を向上させることを提案した。例えば特許文献1(WO2011/90113)は、負極電極材料に0.02-2.20mass%の黒鉛と、0.5mass%の硫酸バリウム、及び0.02-2.20mass%のカーボンブラックを含有させることを開示している。特許文献2(WO2011/52438)は、負極電極材料に0.5-3.0mass%の膨張化黒鉛と0.6mass%の硫酸バリウムを含有させることを開示している。出願人以外による文献では、例えば特許文献3(JP5584216B)は、1-3mass%の黒鉛と、0.8mass%の硫酸バリウム及び0.1-2mass%のカーボンブラックを、負極電極材料に含有させることを開示している。   The applicant has proposed to improve the life of the lead-acid battery in PSOC by including graphite in the negative electrode material. For example, Patent Document 1 (WO2011 / 90113) discloses that a negative electrode material contains 0.02-2.20 mass% graphite, 0.5 mass% barium sulfate, and 0.02-2.20 mass% carbon black. Patent Document 2 (WO2011 / 52438) discloses that negative electrode material contains 0.5-3.0 mass% expanded graphite and 0.6 mass% barium sulfate. In a document other than the applicant, for example, Patent Document 3 (JP5584216B) discloses that 1-3 mass% graphite, 0.8 mass% barium sulfate, and 0.1-2 mass% carbon black are contained in the negative electrode material. ing.

WO2011/90113WO2011 / 90113 WO2011/52438WO2011 / 52438 JP5584216BJP5584216B

黒鉛粒子は硫酸鉛への電子の通り道となることにより、負極の充電を容易にする。発明者は、PSOC寿命の向上を検討する過程で、負極電極材料中の黒鉛が、浸透短絡の原因となることを見出した。この原因として、黒鉛粒子が負極板表面に露出しあるいは表面から突き出していると、黒鉛粒子の露出部等が金属鉛の析出の中心となることが考えられる。その結果、露出した黒鉛粒子から金属鉛のデンドライトが成長し、セパレータを貫通して短絡を引き起こすと考えられる。負極電極材料中の黒鉛が浸透短絡の原因になることはこれまで知られておらず、発明者が初めて発見したものである。   The graphite particles facilitate the charging of the negative electrode by providing a path for electrons to lead sulfate. The inventor found that in the process of improving the PSOC life, graphite in the negative electrode material causes an infiltration short circuit. As a cause of this, if the graphite particles are exposed on the surface of the negative electrode plate or protrude from the surface, it is considered that the exposed portion of the graphite particles becomes the center of precipitation of metallic lead. As a result, it is believed that dendrites of metallic lead grow from the exposed graphite particles and penetrate the separator to cause a short circuit. It has not been known so far that graphite in the negative electrode material causes an infiltration short circuit, and the inventors have discovered for the first time.

この発明の課題は、
・ 黒鉛あるいはカーボンファイバによる浸透短絡が生じ難く、
・ PSOC等の深い放電を伴う環境での寿命性能に優れた鉛蓄電池を提供することにある。
The subject of this invention is
・ Penetration short circuit due to graphite or carbon fiber hardly occurs,
-To provide a lead-acid battery with excellent life performance in an environment with deep discharge such as PSOC.

この発明は、負極板と正極板と電解液とセパレータとを有する鉛蓄電池において、前記負極板の負極電極材料は、黒鉛あるいはカーボンファイバと、硫酸バリウムとを含有し、かつ、前記負極板と前記正極板との平均極板間隔Sと負極板1枚当たりの負極電極材料の質量Wとの比S/Wが0.01mm/g以上であることを特徴とする。   The present invention relates to a lead-acid battery having a negative electrode plate, a positive electrode plate, an electrolyte solution, and a separator, wherein the negative electrode material of the negative electrode plate contains graphite or carbon fiber, and barium sulfate, and the negative electrode plate and the The ratio S / W between the average electrode plate spacing S with respect to the positive electrode plate and the mass W of the negative electrode material per negative electrode plate is 0.01 mm / g or more.

黒鉛は、実施例の鱗片状黒鉛や膨張化黒鉛の他に、鱗状黒鉛、土状黒鉛などの天然黒鉛、あるいは人造黒鉛でも良く、また膨張黒鉛などでも良い。鱗片状黒鉛、膨張化黒鉛が好ましく、特に鱗片状黒鉛が好ましい。なお膨張化黒鉛は膨張済みの黒鉛である。カーボンファイバも黒鉛と同様の効果を有する。カーボンファイバは例えば長さが5μm以上で500μm以下のものを用いる。   The graphite may be natural graphite such as scaly graphite or earthy graphite, artificial graphite, or expanded graphite, in addition to the flaky graphite and expanded graphite of the examples. Scaly graphite and expanded graphite are preferable, and flaky graphite is particularly preferable. Expanded graphite is expanded graphite. Carbon fiber has the same effect as graphite. For example, a carbon fiber having a length of 5 μm or more and 500 μm or less is used.

黒鉛あるいはカーボンファイバ(以下、黒鉛等という)は負極電極材料中の硫酸鉛への電子の通り道となり、硫酸鉛の還元を容易にすることにより、鉛蓄電池のPSOC寿命など鉛蓄電池が完全には充電されない状態での寿命性能を向上させる。一方で、負極電極材料に黒鉛等を含有させると浸透短絡が発生しやすくなることが明らかになった。鉛蓄電池の負極電極材料に黒鉛等を含有させると浸透短絡が発生しやすくなることはこれまで知られていなかった。   Graphite or carbon fiber (hereinafter referred to as graphite, etc.) provides a path for electrons to lead sulfate in the negative electrode material, facilitating reduction of lead sulfate, so that the lead storage battery is fully charged, such as the PSOC life of the lead storage battery Improves life performance when not in use. On the other hand, it has been clarified that when the negative electrode material contains graphite or the like, an infiltration short circuit easily occurs. Until now, it has not been known that when a negative electrode material of a lead storage battery contains graphite or the like, an infiltration short circuit is likely to occur.

そこで、発明者は負極電極材料に黒鉛等を含有させてPSOC寿命を向上させつつ、浸透短絡の発生を抑制することを検討した。その結果、負極電極材料に黒鉛等を含有していても、負極電極材料に硫酸バリウムを含有し、負極板と正極板との平均極板間隔Sと、負極板1枚当たりの負極電極材料の質量Wとの比S/W(以下「極間比」という)を0.01mm/g以上とすると、PSOC寿命性能に優れ、かつ耐浸透短絡性能に優れた鉛蓄電池が得られることを見出した。   In view of this, the inventor studied to suppress the occurrence of an infiltration short circuit while improving the PSOC life by incorporating graphite or the like into the negative electrode material. As a result, even if the negative electrode material contains graphite or the like, the negative electrode material contains barium sulfate, the average electrode plate spacing S between the negative electrode plate and the positive electrode plate, and the negative electrode material per negative electrode plate It has been found that when the ratio S / W with respect to mass W (hereinafter referred to as “electrode ratio”) is 0.01 mm / g or more, a lead-acid battery having excellent PSOC life performance and excellent permeation short-circuit performance can be obtained.

なお、硫酸バリウムに替えて単体のバリウムや、炭酸バリウム等のバリウム化合物を用いてもよい。単体のバリウムやバリウム化合物を負極電極材料に添加しても、添加後に硫酸バリウムに変化するからである。   In addition, it may replace with barium sulfate and may use barium compounds, such as simple substance barium carbonate. This is because even if a single barium or barium compound is added to the negative electrode material, it changes to barium sulfate after the addition.

負極電極材料中の黒鉛等の含有量を0.5mass%以上にすると、PSOC寿命が大きく向上するので好ましい。また、負極電極材料中の黒鉛等の含有量を1.5mass%以上にすると、PSOC寿命が特に大きく向上するのでより好ましい。   If the content of graphite or the like in the negative electrode material is 0.5 mass% or more, the PSOC life is greatly improved, which is preferable. Further, if the content of graphite or the like in the negative electrode material is 1.5 mass% or more, the PSOC life is particularly improved, which is more preferable.

負極電極材料中の黒鉛等の含有量を2.5mass%未満にすると、浸透短絡を抑制できるので好ましい。また、負極電極材料中の黒鉛等の含有量を2.0mass%以下にすると、浸透短絡を一層抑制できるのでより好ましい。   When the content of graphite or the like in the negative electrode material is less than 2.5 mass%, it is preferable because the penetration short circuit can be suppressed. Moreover, when the content of graphite or the like in the negative electrode material is set to 2.0 mass% or less, it is more preferable because the penetration short circuit can be further suppressed.

負極電極材料中の硫酸バリウムの含有量を0.6mass%(バリウム元素換算では0.35mass%)以上にすると、浸透短絡の抑制効果が大きいので好ましい。また、負極電極材料中の硫酸バリウムの含有量を1.2mass%(バリウム元素換算では0.7mass%)以上にすると、浸透短絡の抑制効果が特に大きいのでより好ましい。   It is preferable that the content of barium sulfate in the negative electrode material is 0.6 mass% (0.35 mass% in terms of barium element) or more because the effect of suppressing penetration short circuit is large. In addition, it is more preferable that the content of barium sulfate in the negative electrode material is 1.2 mass% (0.7 mass% in terms of barium element) or more because the effect of suppressing the penetration short circuit is particularly large.

負極電極材料中の硫酸バリウムの含有量を3.5mass%以下とするとPSOC寿命が向上するので、負極電極材料中の硫酸バリウムの含有量は3.5mass%(バリウム元素換算では2.05mass%)以下とすることが好ましい。負極電極材料中の硫酸バリウムの含有量を3.0mass%以下とするとPSOC寿命が大きく向上するので、負極電極材料中の硫酸バリウムの含有量は3.0mass%(バリウム元素換算では1.75mass%)以下とすることがより好ましい。   PSOC life will be improved if the barium sulfate content in the negative electrode material is 3.5 mass% or less, so the barium sulfate content in the negative electrode material is 3.5 mass% (2.05 mass% in terms of barium element) or less. It is preferable. If the barium sulfate content in the negative electrode material is 3.0 mass% or less, the PSOC life will be greatly improved. Therefore, the barium sulfate content in the negative electrode material is 3.0 mass% (1.75 mass% in terms of barium element) or less. More preferably.

極間比S/Wを0.02mm/g以下とするとPSOC寿命が向上するので、極間比S/Wは0.02mm/g 以下が好ましい。極間比S/Wを0.016mm/g以下とすると、PSOC寿命が大きく向上するのでより好ましい。   Since the PSOC life is improved when the inter-electrode ratio S / W is 0.02 mm / g or less, the inter-electrode ratio S / W is preferably 0.02 mm / g or less. It is more preferable that the electrode-to-electrode ratio S / W is 0.016 mm / g or less because the PSOC life is greatly improved.

負極電極材料に黒鉛あるいはカーボンファイバと、硫酸バリウムとを含有し、極間比S/Wを0.01mm/g以上としても、浸透短絡を完全には抑制できない場合がある。そこで、発明者は浸透短絡をさらに抑制することを検討した。   Even if the negative electrode material contains graphite or carbon fiber and barium sulfate and the electrode-to-electrode ratio S / W is 0.01 mm / g or more, there are cases where the permeation short circuit cannot be completely suppressed. Therefore, the inventor studied to further suppress the penetration short circuit.

負極電極材料中の黒鉛等の、粉体での4端子法による電気抵抗率(以下単に「抵抗率」という)を0.01Ω・cm以下とすることによって浸透短絡がさらに抑制される。従って、負極電極材料中の黒鉛等の抵抗率は0.01Ω・cm以下とすることが好ましい。   The penetration short circuit is further suppressed by setting the electrical resistivity (hereinafter simply referred to as “resistivity”) of graphite or the like in the negative electrode material to 0.01 Ω · cm or less by a four-terminal method. Therefore, the resistivity of graphite or the like in the negative electrode material is preferably 0.01 Ω · cm or less.

負極電極材料中の黒鉛の平均粒子径を30μm以上にするとPSOC寿命が向上するので、黒鉛の平均粒子径は30μm以上が好ましい。黒鉛の平均粒子径を100μm以上にするとPSOC寿命が大きく向上するので、黒鉛の平均粒子径は100μm以上が好ましい。   When the average particle diameter of graphite in the negative electrode material is 30 μm or more, the PSOC life is improved. Therefore, the average particle diameter of graphite is preferably 30 μm or more. When the average particle diameter of graphite is 100 μm or more, the PSOC life is greatly improved. Therefore, the average particle diameter of graphite is preferably 100 μm or more.

黒鉛等と硫酸バリウムとを含有する負極電極材料に、さらにカーボンブラックを含有させると、浸透短絡をさらに抑制することができる。カーボンブラックが浸透短絡を抑制する効果は、負極電極材料中のカーボンブラック含有量が0.05mass%以上で顕著になるので、負極電極材料中のカーボンブラックの含有量は0.05mass%以上とすることが好ましい。一方、負極電極材料中のカーボンブラック含有量が1.0mass%を超えると負極電極材料のペーストが硬くなり過ぎて、集電体への充填が困難になる。従って、負極電極材料中のカーボンブラックの含有量は1.0mass%以下とすることが好ましい。   When carbon black is further contained in the negative electrode material containing graphite or the like and barium sulfate, the permeation short circuit can be further suppressed. The effect of carbon black suppressing penetration short circuit becomes significant when the carbon black content in the negative electrode material is 0.05 mass% or more, so the carbon black content in the negative electrode material may be 0.05 mass% or more. preferable. On the other hand, if the carbon black content in the negative electrode material exceeds 1.0 mass%, the paste of the negative electrode material becomes too hard and it becomes difficult to fill the current collector. Accordingly, the carbon black content in the negative electrode material is preferably 1.0 mass% or less.

負極電極材料中のカーボンブラック含有量を0.1mass%以上とすると、PSOC寿命の向上効果が大きくなる。従って、負極電極材料中のカーボンブラック含有量は0.1mass%以上とすることが好ましい。   When the carbon black content in the negative electrode material is 0.1 mass% or more, the effect of improving the PSOC life is increased. Therefore, the carbon black content in the negative electrode material is preferably 0.1 mass% or more.

負極電極材料中の硫酸バリウムの吸油量を12mL/100g以上とすると、浸透短絡をさらに抑制できる。従って、負極電極材料中の硫酸バリウムの吸油量を12mL/100g以上とすることが好ましい。負極電極材料中の硫酸バリウムの吸油量を12.5mL/100g以上とすると、浸透短絡を抑制する効果がより大きくなるので、負極電極材料中の硫酸バリウムの吸油量を12.5mL/100g以上とすることがより好ましい。 When the oil absorption of barium sulfate in the negative electrode material is 12 mL / 100 g or more, the osmotic short circuit can be further suppressed. Therefore, the oil absorption amount of barium sulfate in the negative electrode material is preferably 12 mL / 100 g or more. If the oil absorption of barium sulfate in the negative electrode material is 12.5 mL / 100 g or more, the effect of suppressing osmotic short-circuiting will be greater, so the oil absorption of barium sulfate in the negative electrode material should be 12.5 mL / 100 g or more. Is more preferable.

セパレータとしてポリオレフィン等の合成樹脂からなるセパレータを使用し、セパレータのシリカ(SiO2)含有量を60mass%以上とすると、浸透短絡をさらに抑制できる。従って、セパレータはシリカ(SiO2)含有量が60mass%以上である合成樹脂セパレータであることが好ましい。合成樹脂セパレータのシリカ(SiO2)含有量を70mass%以上とすると、浸透短絡を顕著に抑制できる。従って、セパレータはシリカ(SiO2)含有量が70mass%以上である合成樹脂セパレータであることがより好ましい。一方で、合成樹脂セパレータのシリカ(SiO2)含有量を80mass%超とするとPSOC寿命が低下するので、セパレータはシリカ(SiO2)含有量が80mass%以下である合成樹脂セパレータであることが好ましい。 When a separator made of a synthetic resin such as polyolefin is used as the separator, and the silica (SiO 2 ) content of the separator is 60 mass% or more, the permeation short circuit can be further suppressed. Therefore, the separator is preferably a synthetic resin separator having a silica (SiO 2 ) content of 60 mass% or more. When the silica (SiO 2 ) content of the synthetic resin separator is 70 mass% or more, the permeation short circuit can be remarkably suppressed. Therefore, the separator is more preferably a synthetic resin separator having a silica (SiO 2 ) content of 70 mass% or more. On the other hand, if the silica (SiO 2 ) content of the synthetic resin separator exceeds 80 mass%, the PSOC life will be reduced, so the separator is preferably a synthetic resin separator with a silica (SiO 2 ) content of 80 mass% or less. .

電解液にアルミニウムイオンを0.02mol/L以上含有させると、PSOC寿命が大きく向上するので、電解液中のアルミニウムイオンの濃度は0.02mol/L以上とすることが好ましい。電解液にアルミニウムイオンを0.03mol/L以上含有させると、PSOC寿命が顕著に向上するので、電解液中のアルミニウムイオンの濃度は0.03mol/L以上とすることが好ましい。   When the electrolytic solution contains aluminum ions in an amount of 0.02 mol / L or more, the PSOC life is greatly improved. Therefore, the concentration of aluminum ions in the electrolytic solution is preferably 0.02 mol / L or more. If the electrolytic solution contains aluminum ions in an amount of 0.03 mol / L or more, the PSOC life is remarkably improved. Therefore, the concentration of aluminum ions in the electrolytic solution is preferably 0.03 mol / L or more.

電解液にアルミニウムイオンを含有させると、浸透短絡をさらに抑制できる。電解液に0.06mol/L以上のアルミニウムイオンを含有させると、浸透短絡を顕著にできる。従って、電解液中のアルミニウムイオンの濃度は0.06mol/L以上とすることが好ましい。   When aluminum ions are contained in the electrolytic solution, the penetration short circuit can be further suppressed. When the electrolytic solution contains 0.06 mol / L or more of aluminum ions, a permeation short circuit can be made remarkable. Therefore, the concentration of aluminum ions in the electrolytic solution is preferably 0.06 mol / L or more.

電解液にアルミニウムイオンを0.15mol/L以下含有させると、PSOC寿命が大きく向上するので、電解液中のアルミニウムイオンの濃度は0.15mol/L以下とすることが好ましい。電解液にアルミニウムイオンを0.12mol/L以下含有させると、PSOC寿命が顕著に向上するので、電解液中のアルミニウムイオンの濃度は0.12mol/L以下とすることが好ましい。   If aluminum ions are contained in the electrolytic solution in an amount of 0.15 mol / L or less, the PSOC lifetime is greatly improved. Therefore, the concentration of aluminum ions in the electrolytic solution is preferably 0.15 mol / L or less. When aluminum ions are contained in the electrolytic solution in an amount of 0.12 mol / L or less, the PSOC life is remarkably improved. Therefore, the concentration of aluminum ions in the electrolytic solution is preferably 0.12 mol / L or less.

電解液にリチウムイオンを含有させると、浸透短絡をさらに抑制できる。また、電解液にリチウムイオンを0.01mol/L以上含有させると、浸透短絡を顕著に抑制できる。従って、電解液中のリチウムイオンの濃度は0.01mol/L以上とすることが好ましい。   When lithium ions are contained in the electrolytic solution, the osmotic short circuit can be further suppressed. Moreover, when lithium ions are contained in the electrolytic solution in an amount of 0.01 mol / L or more, the osmotic short circuit can be remarkably suppressed. Therefore, the concentration of lithium ions in the electrolytic solution is preferably 0.01 mol / L or more.

電解液のリチウムイオンの濃度を0.02mol/L以上とするとPSOC寿命が顕著に向上するので、電解液中のリチウムイオンの濃度は0.02mol/L以下とすることが好ましい。   When the concentration of lithium ions in the electrolytic solution is 0.02 mol / L or more, the PSOC life is remarkably improved. Therefore, the concentration of lithium ions in the electrolytic solution is preferably 0.02 mol / L or less.

電解液のリチウムイオンの濃度を0.22mol/L以下とするとPSOC寿命が大きく向上するので、電解液中のリチウムイオンの濃度は0.22mol/L以下とすることが好ましい。電解液のリチウムイオンの濃度を0.18mol/L以下とするとPSOC寿命が顕著に向上するので、電解液中のリチウムイオンの濃度は0.18mol/L以下とすることが好ましい。   If the concentration of lithium ions in the electrolytic solution is 0.22 mol / L or less, the PSOC life is greatly improved. Therefore, the concentration of lithium ions in the electrolytic solution is preferably 0.22 mol / L or less. When the concentration of lithium ions in the electrolytic solution is 0.18 mol / L or less, the PSOC life is remarkably improved. Therefore, the concentration of lithium ions in the electrolytic solution is preferably 0.18 mol / L or less.

この発明の鉛蓄電池はPSOC環境で使用する際に浸透短絡が発生しにくいので、PSOC環境で使用するアイドリングストップ車用などの他に、フォークリフト用などのサイクル用途にも使用できる。実施例では鉛蓄電池は液式であるが、制御弁式でも良い。この発明の鉛蓄電池は、好ましくは液式の鉛蓄電池である。また、この発明の鉛蓄電池は部分充電状態で使用されても浸透短絡を生じにくいため、部分充電状態で使用される鉛蓄電池に好適である。   Since the lead-acid battery according to the present invention is less likely to cause an osmotic short circuit when used in a PSOC environment, it can be used for cycle applications such as for forklifts as well as for idling stop vehicles used in a PSOC environment. In the embodiment, the lead storage battery is a liquid type, but may be a control valve type. The lead acid battery of the present invention is preferably a liquid type lead acid battery. Further, the lead storage battery of the present invention is suitable for a lead storage battery used in a partially charged state because it does not easily cause an infiltration short circuit even when used in a partially charged state.

実施例の鉛蓄電池の要部断面図Sectional drawing of the principal part of the lead acid battery of an Example 実施例でのPSOC寿命試験を示す図The figure which shows the PSOC life test in the execution example 黒鉛含有量の影響を示す特性図(表3の試料5−9)Characteristic chart showing the effect of graphite content (Sample 5-9 in Table 3) 極間比の影響を示す特性図(表3の試料5、15C、16-18)Characteristic diagram showing the effect of the gap ratio (Samples 5, 15C, 16-18 in Table 3) 極間比の影響を示す特性図(表3の試料5、19C、20、23、25)Characteristic diagram showing the effect of the electrode gap ratio (Samples 5, 19C, 20, 23, 25 in Table 3) 硫酸バリウム含有量の影響を示す特性図(表3の試料5、10C、11-14)Characteristic chart showing the effect of barium sulfate content (Samples 3, 10C and 11-14 in Table 3) 黒鉛の抵抗率の影響を示す特性図(表3の試料26、27、29)Characteristic diagram showing the effect of resistivity of graphite (Samples 26, 27 and 29 in Table 3) 黒鉛の粒子径の影響を示す特性図(表3の試料5、28-30)Characteristic diagram showing the effect of graphite particle size (Sample 5, 28-30 in Table 3) カーボンブラック含有量の影響を示す特性図(表3の試料5、41-43)Characteristic chart showing the effect of carbon black content (Sample 5, 41-43 in Table 3) 硫酸バリウムの吸油量の影響を示す特性図(表3の試料5、54、55)Characteristic chart showing the effect of oil absorption of barium sulfate (samples 5, 54 and 55 in Table 3) 合成樹脂セパレータ中の、シリカ(SiO2)含有量の影響を示す特性図(表3の試料5、48-51)Characteristic chart showing the effect of silica (SiO 2 ) content in synthetic resin separator (Sample 5, 48-51 in Table 3) アルミニウムイオン含有量の影響を示す特性図(表3の試料5、31-35)Characteristic chart showing the effect of aluminum ion content (Sample 5, Table 31-35 in Table 3) リチウムイオン含有量の影響を示す特性図(表3の試料5、36-40)Characteristic chart showing the effect of lithium ion content (Sample 5, 36-40 in Table 3)

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。また負極板は、負極集電体(負極格子)と負極活物質(負極電極材料)とから成り、正極板は、正極集電体(正極格子)と正極活物質(正極電極材料)とから成り、集電体以外の固形成分は活物質(電極材料)に属するものとする。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material. The negative electrode plate comprises a negative electrode current collector (negative electrode lattice) and a negative electrode active material (negative electrode material), and the positive electrode plate comprises a positive electrode current collector (positive electrode lattice) and a positive electrode active material (positive electrode material). The solid components other than the current collector belong to the active material (electrode material).

負極活物質ペーストは、ボールミル法による鉛粉に、黒鉛と硫酸バリウム及び防縮剤のリグニン、補強材の合成樹脂繊維を混合したものを用い、カーボンブラックをさらに含有させたものも作製した。以下、含有量は、既化成で満充電状態の負極活物質中のmass%濃度で示す。なお、満充電とは、15分ごとに測定した充電中の端子電圧が3回連続して一定値(±0.01V)を示すまで5時間率電流で充電した状態をいう。   The negative electrode active material paste was prepared by mixing lead powder by a ball mill method with graphite, barium sulfate, lignin as a shrink-preventing agent, and synthetic resin fibers as a reinforcing material, and further containing carbon black. Hereinafter, the content is indicated by a mass% concentration in a negative electrode active material that is already formed and is fully charged. In addition, a full charge means the state which charged with the 5-hour rate electric current until the terminal voltage during charge measured every 15 minutes showed the constant value (± 0.01V) 3 times continuously.

黒鉛含有量は満充電状態の負極活物質の質量に対して0mass%〜2.5mass%の範囲で変化させた。黒鉛として鱗片状黒鉛と膨張化黒鉛とを用いたが、土状黒鉛、人造黒鉛などの他の黒鉛でも良く、カーボンファイバでもよい。黒鉛及びカーボンファイバの中では鱗片状黒鉛又は膨張化黒鉛が好ましく、鱗片状黒鉛が特に好ましい。鱗片状黒鉛の平均粒子径は5μm〜300μmの範囲で変化させた。鱗片状黒鉛と膨張化黒鉛の4端子法による抵抗率は0.001Ω・cm〜0.012Ω・cm(2.5MPaの加圧下での抵抗率)の範囲で変化させた。   The graphite content was varied in the range of 0 mass% to 2.5 mass% with respect to the mass of the fully charged negative electrode active material. As the graphite, scaly graphite and expanded graphite are used, but other graphite such as earth graphite and artificial graphite may be used, and carbon fiber may be used. Of graphite and carbon fiber, scaly graphite or expanded graphite is preferable, and scaly graphite is particularly preferable. The average particle size of the flaky graphite was changed in the range of 5 μm to 300 μm. The resistivity of the scaly graphite and expanded graphite by the 4-terminal method was varied in the range of 0.001 Ω · cm to 0.012 Ω · cm (resistivity under 2.5 MPa pressure).

硫酸バリウム含有量は満充電状態の負極活物質の質量に対して0mass%〜3.5mass%の範囲で変化させた。硫酸バリウムの吸油量(JIS K-5101-13-2:2004に準拠する吸油量)は11.5mL/100g〜14.4mL/100gの範囲で変化させた。硫酸バリウムの平均1次粒子径は例えば0.3μm以上2.0μm以下、平均2次粒子径は例えば1.0μm以上10μm以下とする。リグニン含有量は0.2mass%としたが、含有量は任意で、リグニンに代えてスルホン化したビスフェノール類の縮合物等の合成防縮剤を用いても良い。補強材含有量は0.1mass%としたが、含有量及び合成樹脂繊維の種類は任意である。また鉛粉の製造方法、酸素含有量等は任意で、他の添加物、例えば水溶性の合成高分子等を含有させても良い。   The barium sulfate content was varied in the range of 0 mass% to 3.5 mass% with respect to the mass of the fully charged negative electrode active material. The oil absorption of barium sulfate (the oil absorption according to JIS K-5101-13-2: 2004) was varied in the range of 11.5 mL / 100 g to 14.4 mL / 100 g. The average primary particle diameter of barium sulfate is, for example, 0.3 μm to 2.0 μm, and the average secondary particle diameter is, for example, 1.0 μm to 10 μm. The lignin content is 0.2 mass%, but the content is arbitrary, and a synthetic anti-shrinkage agent such as a sulfonated bisphenol condensate may be used instead of lignin. The reinforcing material content is 0.1 mass%, but the content and the type of synthetic resin fiber are arbitrary. Moreover, the manufacturing method of lead powder, oxygen content, etc. are arbitrary, and you may contain other additives, for example, a water-soluble synthetic polymer.

前記の混合物を水と硫酸とでペースト化し、アンチモンフリーのPb-Ca-Sn系合金から成るエキスパンドタイプの負極格子(高さ110mm×幅100mm×厚さ1.0mm)に充填し、熟成、乾燥を施した。なお負極格子は鋳造格子、打ち抜き格子等でも良い。負極板1枚当たりの負極活物質の質量は30g以上80g以下の範囲で調整した。なお、化成後の負極活物質の密度は例えば3.6g/cm3以上4.0g/cm3以下であればよい。 Paste the above mixture with water and sulfuric acid, fill it into an expandable negative electrode grid (110mm high x 100mm wide x 1.0mm thick) made of an antimony-free Pb-Ca-Sn alloy, age and dry gave. The negative electrode lattice may be a cast lattice, a punched lattice, or the like. The mass of the negative electrode active material per negative electrode plate was adjusted in the range of 30 g to 80 g. The density of the negative electrode active material after chemical conversion may be, for example, 3.6 g / cm 3 or more and 4.0 g / cm 3 or less.

正極活物質ペーストは、ボールミル法による鉛粉に、既化成で満充電状態の正極活物質の質量に対し0.1mass%の補強材の合成樹脂繊維を混合し、水と硫酸とでペースト化したものを用いた。このペーストをアンチモンフリーのPb-Ca-Sn系合金から成るエキスパンドタイプの正極格子(高さ110mm×幅100mm×厚さ1.2mm)に充填し、熟成、乾燥を施した。鉛粉の種類と製造条件は任意である。なお正極格子は鋳造格子、打ち抜き格子等でも良い。   The positive electrode active material paste is made by mixing 0.1 mass% of the synthetic resin fiber of the reinforcing material with lead powder by ball mill method and the mass of the positive electrode active material that is already formed and fully charged, and paste it with water and sulfuric acid. Was used. This paste was filled in an expanded positive electrode grid (height 110 mm × width 100 mm × thickness 1.2 mm) made of an antimony-free Pb—Ca—Sn alloy, and aged and dried. The kind of lead powder and manufacturing conditions are arbitrary. The positive grid may be a cast grid, a punched grid, or the like.

未化成の負極板をベースからリブが突出したポリエチレンセパレータで包み、未化成の負極板7枚と未化成の正極板6枚とを交互に積層し、負極板、正極板それぞれをストラップで接続して極板群とした。セパレータのベース厚さは例えば0.15mm以上0.25mm以下であればよい。6個の極板群を直列に接続した状態で電槽のセル室に収容し、20℃で比重1.230の硫酸を加えて電槽中で化成し、B20サイズで5時間率容量が30Ahの液式鉛蓄電池とした。なお正極板と負極板との平均極板間隔S(以下では省略して「極間」ということがある)は0.3mm以上1.0mm以下の範囲で調整した。また、鉛蓄電池当たりの正極活物質の質量Pと負極活物質の質量Nの比N/Pは例えば0.62以上0.95以下であればよい。   The unformed negative electrode plate is wrapped in a polyethylene separator with ribs protruding from the base, and seven unformed negative electrode plates and six unformed positive electrode plates are alternately laminated, and the negative electrode plate and the positive electrode plate are connected with straps. Electrode plate group. The base thickness of the separator may be, for example, 0.15 mm or more and 0.25 mm or less. 6 electrode plates are connected in series and stored in the cell chamber of the battery case. At 20 ° C, sulfuric acid with a specific gravity of 1.230 is added and formed in the battery case. B20 size is a liquid with a 5 hour rate capacity of 30 Ah. A lead-acid battery was used. The average electrode plate spacing S between the positive electrode plate and the negative electrode plate (hereinafter abbreviated and sometimes referred to as “between electrodes”) was adjusted in the range of 0.3 mm to 1.0 mm. Further, the ratio N / P of the mass P of the positive electrode active material and the mass N of the negative electrode active material per lead storage battery may be, for example, 0.62 or more and 0.95 or less.

図1は、鉛蓄電池2の要部を示し、4は負極板、6は正極板、8はセパレータで、10は硫酸を主成分とする電解液である。負極板4は負極格子12と負極活物質14とから成り、正極板6は正極格子16と正極活物質18とから成る。セパレータ8はベース20とリブ22とを備える袋状で、袋の内部に負極が収納され、リブ22が正極板6側を向いている。ただしリブ22を正極板に向けてセパレータ8に正極板6を収納しても良い。また、セパレータは正極板と負極板を隔離していれば、袋状である必要はなく、例えばリーフレット状のガラスマットやリテーナマット等を用いても良い。S'は極板間の間隔(正極活物質面と負極活物質面の間隔)で、この平均値が平均極板間隔Sである。なお、正負極板の耳が突出する方向を上方向とした場合に、正負極板の活物質面の上端における極板間の間隔をS'とする。   FIG. 1 shows a main part of the lead storage battery 2, 4 is a negative electrode plate, 6 is a positive electrode plate, 8 is a separator, and 10 is an electrolyte containing sulfuric acid as a main component. The negative electrode plate 4 includes a negative electrode grid 12 and a negative electrode active material 14, and the positive electrode plate 6 includes a positive electrode grid 16 and a positive electrode active material 18. The separator 8 has a bag shape including a base 20 and a rib 22, and a negative electrode is accommodated in the bag, and the rib 22 faces the positive electrode plate 6 side. However, the positive electrode plate 6 may be accommodated in the separator 8 with the rib 22 facing the positive electrode plate. The separator need not be in the form of a bag as long as the positive electrode plate and the negative electrode plate are separated from each other. For example, a leaflet-shaped glass mat or a retainer mat may be used. S ′ is an interval between the electrode plates (interval between the positive electrode active material surface and the negative electrode active material surface), and this average value is the average electrode plate interval S. When the direction in which the ears of the positive and negative electrode plates protrude is the upward direction, the interval between the electrode plates at the upper end of the active material surface of the positive and negative electrode plates is S ′.

平均極板間隔(極間)Sは、極板群の厚さから負極板の厚さと正極板の厚さを除き、極板群当たりの極板の総枚数−1で割ることにより求める。極板群の厚さは極群の両端に位置する極板の積層方向外端間の長さ、言い換えれば、極群の両端に位置する極板の積層方向外側の活物質面の間の長さである。なお、極板群の厚さ、正極板の厚さ、負極板の厚さはいずれも正負極板の活物質面の上端において測定する。また、平均極板間隔S及び極板群の厚さは極板群が電槽に収納され、かつ、満充電された状態での寸法とする。   The average electrode plate interval (between electrodes) S is obtained by excluding the thickness of the negative electrode plate and the thickness of the positive electrode plate from the thickness of the electrode plate group, and dividing by the total number of electrode plates per electrode plate group. The thickness of the electrode plate group is the length between the outer ends in the stacking direction of the electrode plates located at both ends of the electrode group, in other words, the length between the active material surfaces on the outer sides in the stacking direction of the electrode plates positioned at both ends of the electrode group. That's it. The thickness of the electrode plate group, the thickness of the positive electrode plate, and the thickness of the negative electrode plate are all measured at the upper end of the active material surface of the positive and negative electrode plates. The average electrode plate interval S and the thickness of the electrode plate group are the dimensions when the electrode plate group is housed in the battery case and fully charged.

既化成の負極活物質に含まれるバリウム含有量は以下のようにして定量する。満充電状態の鉛蓄電池を解体し、負極板を水洗及び乾燥して硫酸分を除去し、負極活物質を採取する。負極活物質を粉砕し、300g/Lの過酸化水素水を、負極活物質100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈した(1+3)硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。さらに硫酸バリウムを溶解させ、その溶液中のバリウム濃度を原子吸光測定法により定量し、負極活物質中のバリウム含有量に換算する。さらに、負極活物質中のバリウム含有量から負極活物質中の硫酸バリウム含有量を求めることができる。   The barium content contained in the pre-formed negative electrode active material is quantified as follows. The fully charged lead-acid battery is disassembled, the negative electrode plate is washed with water and dried to remove sulfuric acid, and the negative electrode active material is collected. The negative electrode active material was crushed, 300 g / L of hydrogen peroxide water was added at 20 mL per 100 g of negative electrode active material, and 60 mass% concentrated nitric acid was diluted with 3 times its volume of ion-exchanged water (1 + 3) In addition, heat for 5 hours under stirring to dissolve lead as lead nitrate. Further, barium sulfate is dissolved, and the barium concentration in the solution is quantified by an atomic absorption measurement method and converted to the barium content in the negative electrode active material. Furthermore, the barium sulfate content in the negative electrode active material can be determined from the barium content in the negative electrode active material.

負極板1枚当たりの負極活物質の質量、既化成の負極活物質に含まれる黒鉛およびカーボンブラックの含有量は以下のようにして定量する。満充電状態の鉛蓄電池2を解体し、負極板4を水洗及び乾燥して硫酸分を除去し、負極活物質14を採取し、負極板1枚当たりの負極活物質の質量を測定する。負極活物質を粉砕し、300g/L濃度の過酸化水素水を、負極活物質100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈した(1+3)硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。さらに硫酸バリウムを溶解させ、次いで濾過により、黒鉛、カーボンブラック、補強材を分離する。   The mass of the negative electrode active material per negative electrode plate and the contents of graphite and carbon black contained in the already formed negative electrode active material are quantified as follows. The lead-acid battery 2 in a fully charged state is disassembled, the negative electrode plate 4 is washed and dried to remove sulfuric acid, the negative electrode active material 14 is collected, and the mass of the negative electrode active material per negative electrode plate is measured. The negative electrode active material was pulverized, 20 mL of 300 g / L hydrogen peroxide was added per 100 g of negative electrode active material, and 60 mass% concentrated nitric acid was diluted with 3 times its volume of ion-exchanged water (1 + 3) nitric acid And heat for 5 hours under stirring to dissolve lead as lead nitrate. Further, barium sulfate is dissolved, and then graphite, carbon black, and reinforcing material are separated by filtration.

濾過によって得られた固形分(黒鉛、カーボンブラック、補強材)を水中に分散させる。補強材が通らない篩い、例えば径が1.4mmの篩いを用い、分散液を2回篩いにかけ、水洗をおこない補強材を除去することで、カーボンブラックおよび黒鉛を分離する。   The solid content (graphite, carbon black, reinforcing material) obtained by filtration is dispersed in water. Carbon black and graphite are separated by using a sieve through which the reinforcing material does not pass, for example, a sieve having a diameter of 1.4 mm, sieving the dispersion twice, washing with water and removing the reinforcing material.

負極活物質用ペーストには、カーボンブラックおよび黒鉛はリグニンなどの有機防縮剤とともに添加され、化成後の負極活物質中においても、有機防縮剤の界面活性効果によって、カーボンブラックおよび黒鉛はその凝集体が崩れた状態で存在する。しかしながら、上記一連の分離操作において有機防縮剤は水中に溶出して失われていることから、カーボンブラックおよび黒鉛を水中に分散させた後、有機防縮剤を加えて撹拌し、カーボンブラックおよび黒鉛の凝集体を再び崩した状態で以下の分離操作を行う。   In the negative electrode active material paste, carbon black and graphite are added together with an organic shrinkage agent such as lignin. In the negative electrode active material after conversion, carbon black and graphite are aggregated due to the surface active effect of the organic shrinkage agent. Exists in a collapsed state. However, in the above series of separation operations, the organic shrunk agent is dissolved and lost in water, so after carbon black and graphite are dispersed in water, the organic shrunk agent is added and stirred, The following separation operation is performed in a state where the aggregate is broken again.

有機防縮剤は鉛蓄電池に添加されるものであればよく、実施例ではリグニンスルホン酸塩である日本製紙株式会社製バニレックスNを用いた。また、実施例では、水100mLに対して15gの有機防縮剤を添加して撹拌操作を実施した。   The organic shrunk agent may be any material that can be added to a lead-acid battery. In the examples, Vanillex N manufactured by Nippon Paper Industries Co., Ltd., which is a lignin sulfonate, was used. Further, in the examples, 15 g of the organic anti-shrink agent was added to 100 mL of water, and the stirring operation was performed.

上記操作の後、カーボンブラックと黒鉛を含む懸濁液を、黒鉛が実質的に通過せず、カーボンブラックが通過する篩いを通過させることで両者を分離する。実施例において、篩いは20μmのものを用いた。なお、これより粒子径の小さい黒鉛を用いた場合でも、3μm以上の粒子径の黒鉛であれば篩いの目詰まりにより黒鉛は実質的に篩いを通過しない。この操作で黒鉛は篩い上に残り、篩いを通過した液にカーボンブラックが含まれる。   After the above operation, the suspension containing carbon black and graphite is separated by passing through a sieve through which carbon black passes substantially without passing through the graphite. In the examples, a sieve having a size of 20 μm was used. Even when graphite having a smaller particle diameter is used, graphite having a particle diameter of 3 μm or more does not substantially pass through the sieve due to clogging of the sieve. By this operation, graphite remains on the sieve, and carbon black is contained in the liquid that has passed through the sieve.

上記一連の操作で分離した黒鉛、カーボンブラックを水洗乾燥した後にそれぞれの重量を秤量する。なお、カーボンファイバは黒鉛と同様にして分離できる。   After the graphite and carbon black separated by the above series of operations are washed and dried, their respective weights are weighed. Carbon fiber can be separated in the same manner as graphite.

黒鉛の平均粒子径(体積平均径)は光散乱法により測定し、粒径3μm未満の部分が存在すれば、カーボンブラック等の不純物として無視する。また黒鉛の抵抗率は、水洗乾燥した黒鉛粉体に2.5MPaの圧力を加え4端子法により測定する。   The average particle diameter (volume average diameter) of graphite is measured by a light scattering method, and if there is a part having a particle diameter of less than 3 μm, it is ignored as an impurity such as carbon black. The resistivity of graphite is measured by a four-terminal method by applying a pressure of 2.5 MPa to graphite powder that has been washed and dried.

負極活物質中の硫酸バリウムの吸油量は以下のようにして測定する。満充電状態の鉛蓄電池2を解体し、負極板4を水洗及び乾燥して硫酸分を除去し、負極活物質14を採取する。負極活物質を粉砕し、300g/L濃度の過酸化水素水を、負極活物質100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈した(1+3)硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。次いで濾過により、黒鉛、カーボンブラック、硫酸バリウム、補強材を分離する。   The oil absorption of barium sulfate in the negative electrode active material is measured as follows. The fully charged lead storage battery 2 is disassembled, the negative electrode plate 4 is washed with water and dried to remove sulfuric acid, and the negative electrode active material 14 is collected. The negative electrode active material was pulverized, 20 mL of 300 g / L hydrogen peroxide was added per 100 g of negative electrode active material, and 60 mass% concentrated nitric acid was diluted with 3 times its volume of ion-exchanged water (1 + 3) nitric acid And heat for 5 hours under stirring to dissolve lead as lead nitrate. Next, the graphite, carbon black, barium sulfate, and reinforcing material are separated by filtration.

濾過によって得られた固形分を水中に分散させる。補強材が通らない篩い、例えば径が1.4mmの篩いを用い、分散液を2回篩いにかけ、水洗をおこない補強材を除去する。次いで補強材を除去した分散液に対し3000rpmで5分の遠心分離を施す。上澄みおよび沈殿の上層部はカーボンブラックと黒鉛を含有するので除去し、沈殿の下層部から硫酸バリウムを抽出する。抽出した硫酸バリウムを水洗乾燥し、JIS K-5101-13-2:2004に準拠して吸油量を測定する。   The solid obtained by filtration is dispersed in water. Use a sieve that does not allow the reinforcement to pass through, for example, a sieve with a diameter of 1.4 mm. Sift the dispersion twice and wash with water to remove the reinforcement. Next, the dispersion from which the reinforcing material has been removed is centrifuged at 3000 rpm for 5 minutes. The supernatant and the upper layer of the precipitate contain carbon black and graphite and are removed, and barium sulfate is extracted from the lower layer of the precipitate. The extracted barium sulfate is washed with water and dried, and the oil absorption is measured according to JIS K-5101-13-2: 2004.

電解液中のアルミニウムイオンとリチウムイオンは、電解液を抽出しICP発光分光分析法により定量する。   Aluminum ions and lithium ions in the electrolyte are extracted from the electrolyte and quantified by ICP emission spectroscopy.

セパレータ中のシリカ(SiO2)含有量は以下のようにして定量する。まず、鉛蓄電池2を解体して取り出したセパレータを水洗・乾燥して乾燥重量を測定する。次にセパレータを完全燃焼し、燃焼後の残渣中のSi含有量をICP発光分光分析法により定量する。セパレータの乾燥重量と燃焼後の残渣中のSi含有量とから、セパレータ中のシリカ(SiO2)含有量を計算する。 The silica (SiO 2 ) content in the separator is quantified as follows. First, the separator taken out of the lead storage battery 2 is washed with water and dried, and the dry weight is measured. Next, the separator is completely burned, and the Si content in the residue after burning is quantified by ICP emission spectroscopy. The silica (SiO 2 ) content in the separator is calculated from the dry weight of the separator and the Si content in the residue after combustion.

満充電状態の鉛蓄電池2に対し、浸透短絡促進試験とPSOC寿命試験とを行った。PSOC寿命試験の内容を図2と、表1とに示す。1CAは例えば5時間率容量が30Ahの電池の場合は30Aで、40℃気は40℃の気槽中で試験したことを示す。表1の試験パターンで、端子電圧が1.2V/セルに到達するまでのサイクル数を、PSOC寿命とする。また、浸透短絡促進試験の内容を表2に示す。この試験は浸透短絡の発生を促進するような条件下で行う試験であり、実際の鉛蓄電池の使用条件下よりも浸透短絡の発生率が顕著に高くなる。表2に示す浸透短絡促進試験パターンを5サイクル行い、5サイクル後に鉛蓄電池を解体して、短絡が発生した鉛蓄電池の割合(浸透短絡の発生率)を調べた。なお、25℃水は25℃の水槽中で試験したことを示す。表1及び表2において、CC放電は定電流放電、CV充電は定電圧充電、CC充電は定電流充電を意味する。   The lead-acid battery 2 in a fully charged state was subjected to a penetration short circuit acceleration test and a PSOC life test. The contents of the PSOC life test are shown in FIG. 2 and Table 1. For example, 1CA is 30A in the case of a battery having a 5-hour rate capacity of 30 Ah, and 40 ° C. air is tested in a 40 ° C. air tank. In the test pattern of Table 1, the number of cycles until the terminal voltage reaches 1.2V / cell is defined as the PSOC life. Table 2 shows the contents of the penetration short circuit acceleration test. This test is a test performed under conditions that promote the occurrence of permeation shorts, and the incidence of permeation shorts is significantly higher than the actual use conditions of lead-acid batteries. 5 cycles of the penetration short circuit acceleration test pattern shown in Table 2 were taken, and the lead storage battery was disassembled after 5 cycles, and the ratio of lead storage batteries in which short circuit occurred (incidence rate of penetration short circuit) was examined. In addition, 25 degreeC water shows having tested in the 25 degreeC water tank. In Tables 1 and 2, CC discharge means constant current discharge, CV charge means constant voltage charge, and CC charge means constant current charge.

PSOC寿命試験と浸透短絡促進試験の結果を表3に示し、主な結果を図3〜図13に抽出する。PSOC寿命のデータは、試料1Cを1とする相対値で示す。なお表3で用いた黒鉛は以下の通りである。
黒鉛1:鱗片状黒鉛で平均粒子径は100μm、抵抗率は0.001Ω・cm、
黒鉛2:膨張化黒鉛で平均粒子径は30μm、抵抗率は0.01Ω・cm、
黒鉛3:膨張化黒鉛で平均粒子径は30μm、抵抗率は0.012Ω・cm、
黒鉛4:鱗片状黒鉛で平均粒子径は5μm、抵抗率は0.001Ω・cm、
黒鉛5:鱗片状黒鉛で平均粒子径は30μm、抵抗率は0.001Ω・cm、
黒鉛6:鱗片状黒鉛で平均粒子径は300μm、抵抗率は0.001Ω・cm。
The results of PSOC life test and penetration short circuit acceleration test are shown in Table 3, and the main results are extracted in FIGS. The PSOC lifetime data is shown as a relative value with Sample 1C as 1. The graphite used in Table 3 is as follows.
Graphite 1: flake graphite with an average particle size of 100 μm, resistivity of 0.001 Ω · cm,
Graphite 2: expanded graphite with an average particle size of 30 μm, resistivity of 0.01 Ω · cm,
Graphite 3: expanded graphite with an average particle size of 30 μm, resistivity of 0.012 Ω · cm,
Graphite 4: scale-like graphite with an average particle diameter of 5 μm, resistivity of 0.001 Ω · cm,
Graphite 5: flaky graphite with an average particle size of 30 μm, resistivity of 0.001 Ω · cm,
Graphite 6: scaly graphite with an average particle size of 300 μm and a resistivity of 0.001 Ω · cm.

※ ペーストが硬く、作製不可
1C、3C、4C、10C、15C、19C :比較例
* Paste is hard and cannot be prepared.
1C, 3C, 4C, 10C, 15C, 19C: Comparative examples

表3及び図3から、負極活物質に黒鉛を含有させるとPSOC寿命が向上し、黒鉛を0.5mass%以上含有させるとPSOC寿命が大きく向上し、黒鉛を1.5mass%以上含有させるとPSOC寿命が顕著に向上することがわかる。一方で、負極活物質に2.5mass%以上の黒鉛を含有させると浸透短絡が発生しやすくなり、負極活物質中の黒鉛の含有量を2.5mass%未満とすることによって、浸透短絡が抑制されることがわかる。負極活物質中の黒鉛の含有量を2.0mass%以下とすると、浸透短絡の抑制効果が特に大きい。負極活物質中の黒鉛が浸透短絡に関係していることはこれまで知られていないため、このような効果は予想できるものではない。   From Table 3 and Fig. 3, PSOC life is improved when graphite is contained in the negative electrode active material, PSOC life is greatly improved when graphite is contained at 0.5 mass% or more, and PSOC life is improved when graphite is contained at 1.5 mass% or more. It turns out that it improves notably. On the other hand, when 2.5 mass% or more of graphite is contained in the negative electrode active material, an infiltration short circuit is likely to occur, and by making the content of graphite in the negative electrode active material less than 2.5 mass%, the infiltration short circuit is suppressed. I understand that. When the content of graphite in the negative electrode active material is 2.0 mass% or less, the effect of suppressing penetration short circuit is particularly great. Since it has not been known so far that graphite in the negative electrode active material is related to the penetration short circuit, such an effect cannot be expected.

そこで、発明者は負極活物質に黒鉛を含有させてPSOC寿命を向上させつつ、浸透短絡の発生を抑制することを検討した。その結果、負極活物質に黒鉛と硫酸バリウムとを含有し、かつ極間比S/Wを0.01mm/g以上とすることで、耐浸透短絡性能に優れ、かつ負極活物質に黒鉛等を含有させない鉛蓄電池よりもPSOC寿命性能に優れた鉛蓄電池が得られることを見出した(表3の試料5-8など)。一般に平均極板間隔Sが小さいと正負極板の距離が近いため浸透短絡が発生しやすく浸透短絡抑制効果が低いと考えられるが、Sが小さくても負極板当たりの負極活物質量Wが小さければ浸透短絡抑制効果は大きい(表3の試料24)。一方、試料24よりもSが大きい場合でも、Wが大きければ浸透短絡抑制効果は小さい(表3の試料19C)。従って、浸透短絡抑制効果はS又はWのみによって決まるものではなく、SとWの両方が浸透短絡に関係しており、浸透短絡を抑制するためには、極間比S/Wを0.01mm/g以上とすることこそが重要である。   Therefore, the inventor studied to suppress the occurrence of the penetration short circuit while improving the PSOC life by adding graphite to the negative electrode active material. As a result, the negative electrode active material contains graphite and barium sulfate, and the electrode-to-electrode ratio S / W is 0.01 mm / g or more. It was found that a lead storage battery having better PSOC life performance than a lead storage battery that is not allowed to be obtained (Sample 5-8 in Table 3). In general, if the average electrode plate spacing S is small, the distance between the positive and negative electrode plates is short, so it is considered that the penetration short circuit is likely to occur and the effect of suppressing the penetration short circuit is low. In this case, the osmotic short-circuit suppression effect is large (Sample 24 in Table 3). On the other hand, even when S is larger than that of sample 24, if W is large, the permeation short-circuit suppressing effect is small (sample 19C in Table 3). Therefore, the permeation short circuit suppression effect is not determined only by S or W, both S and W are related to the permeation short circuit, in order to suppress the permeation short circuit, the electrode ratio S / W is 0.01 mm / It is important to make it g or more.

負極活物質に黒鉛を含有すること、負極活物質に硫酸バリウム含有すること、極間比S/Wを0.01mm/g以上とすること、のいずれか1つでも満たさなければ、PSOC寿命性能及び耐浸透短絡性能に優れた鉛蓄電池を得ることはできない。例えば、負極活物質に硫酸バリウムを含有し、かつ極間比S/Wを0.01mm/g以上としても、負極活物質に黒鉛を含有しないと、PSOC寿命性能が低い(表3の試料3C)。また、負極活物質に黒鉛を含有し、かつ極間比S/Wを0.01mm/g以上としても、負極活物質に硫酸バリウムを含有しないと、浸透短絡を十分には抑制できない(表3の試料10C)。同様に、負極活物質に黒鉛と硫酸バリウムを含有しても、極間比S/Wが0.01mm/g未満では、浸透短絡を十分には抑制できない(表3の試料15C、19C)。従って、負極活物質に黒鉛を含有することと、負極活物質に硫酸バリウムを含有することと、極間比S/Wを0.01mm/g以上とすることの3つの構成を組み合わせてはじめてPSOC寿命性能及び耐浸透短絡性能に優れた鉛蓄電池を得ることができるといえる。負極活物質中の硫酸バリウムが浸透短絡の発生に関係していることはこれまで知られていないため、浸透短絡を抑制するために負極活物質に硫酸バリウムを含有させることに当業者が想到することは容易ではない。また、極間比S/Wが浸透短絡の発生に関係していることもこれまで知られていないため、浸透短絡を抑制するために当業者が極間比S/Wを0.01mm/g以上とすることに想到することも容易ではない。さらに、負極活物質に黒鉛を含有させると浸透短絡が発生しやすくなることはこれまで知られていない。従って、負極活物質に黒鉛を含有することにより発生しやすくなる浸透短絡を抑制するために、負極活物質に硫酸バリウムを含有することと、極間比S/Wを0.01mm/g以上とすることとを組み合わせることに当業者が想到することは非常に困難である。   If any one of the following: graphite is included in the negative electrode active material, barium sulfate is included in the negative electrode active material, and the interelectrode ratio S / W is 0.01 mm / g or more, PSOC life performance and It is not possible to obtain a lead storage battery excellent in permeation resistance short circuit performance. For example, even if the negative electrode active material contains barium sulfate and the electrode ratio S / W is 0.01 mm / g or more, if the negative electrode active material does not contain graphite, the PSOC life performance is low (sample 3C in Table 3). . Moreover, even if graphite is contained in the negative electrode active material and the electrode-to-electrode ratio S / W is 0.01 mm / g or more, the penetration short circuit cannot be sufficiently suppressed unless the negative electrode active material contains barium sulfate (Table 3). Sample 10C). Similarly, even if graphite and barium sulfate are contained in the negative electrode active material, the penetration short circuit cannot be sufficiently suppressed when the electrode-to-electrode ratio S / W is less than 0.01 mm / g (samples 15C and 19C in Table 3). Therefore, the PSOC lifetime is not achieved unless the negative electrode active material contains graphite, the negative electrode active material contains barium sulfate, and the interelectrode ratio S / W is 0.01 mm / g or more. It can be said that a lead storage battery excellent in performance and permeation resistance short circuit performance can be obtained. Since it has not been known so far that barium sulfate in the negative electrode active material is related to the occurrence of permeation short circuit, those skilled in the art conceive of containing barium sulfate in the negative electrode active material in order to suppress permeation short circuit. It is not easy. Moreover, since it has not been known so far that the electrode-to-electrode ratio S / W is related to the occurrence of osmotic short-circuit, those skilled in the art have set the electrode-to-electrode ratio S / W to 0.01 mm / g or more to suppress the osmotic short-circuit. It is not easy to conceive. Furthermore, it has not been known so far that when the negative electrode active material contains graphite, an infiltration short circuit is likely to occur. Therefore, in order to suppress the penetration short circuit that is likely to occur when graphite is contained in the negative electrode active material, the negative electrode active material contains barium sulfate and the electrode ratio S / W is 0.01 mm / g or more. It is very difficult for those skilled in the art to conceive of this.

極間比S/Wの影響を図4、図5に示す。負極板一枚当りの負極活物質量Wを一定にして、極間(平均極板間隔)Sを変化させた場合の結果を図4に示す。また、極間Sを一定にして、負極板一枚当たりの負極活物質量Wを変化させた場合の結果を図5に示す。極間Sを変化させた場合も負極板一枚当たりの負極活物質量Wを変化させた場合も、結果は同様であった。Sを変化させることでS/Wを変化させても、Wを変化させることでS/Wを変化させても同様の結果になることからも、S又はWではなくS/Wが技術的意義を有するとわかる。また、図4及び図5から、負極活物質に黒鉛と硫酸バリウムを含有する場合に、極間比S/Wが0.01mm/g未満と0.01mm/gとでは浸透短絡の抑制効果が全く異なることがわかる。従って、極間比S/Wを0.01mm/g以上とすることには臨界的意義があるといえる。   The influence of the electrode-to-electrode ratio S / W is shown in FIGS. FIG. 4 shows the results when the amount of negative electrode active material per negative electrode plate W is constant and the distance between electrodes (average electrode plate interval) S is changed. Further, FIG. 5 shows the result when the gap S is kept constant and the negative electrode active material amount W per one negative electrode plate is changed. The results were the same when the gap S was changed and when the negative electrode active material amount W per negative electrode plate was changed. Even if S / W is changed by changing S and S / W is changed by changing W, the same result is obtained. It turns out that it has. 4 and 5, when the negative electrode active material contains graphite and barium sulfate, the effect of suppressing the penetration short circuit is completely different between the electrode ratio S / W of less than 0.01 mm / g and 0.01 mm / g. I understand that. Therefore, it can be said that there is a critical significance in setting the inter-electrode ratio S / W to 0.01 mm / g or more.

図4及び図5から、極間比S/Wを0.02mm/g以下とするとPSOC寿命性能が向上することがわかる。極間比S/Wを0.16mm/g以下とするとPSOC寿命性能が大きく向上する。   4 and 5, it can be seen that the PSOC life performance is improved when the electrode-to-electrode ratio S / W is 0.02 mm / g or less. PSOC life performance is greatly improved when the electrode-to-electrode ratio S / W is 0.16 mm / g or less.

図6から、負極活物質中の硫酸バリウムの含有量を0.6mass%以上とすると浸透短絡の抑制効果が大きいことがわかる。負極活物質中の硫酸バリウムが浸透短絡に関係していることはこれまで知られていないため、このような効果は予想できるものではない。また、負極活物質中の硫酸バリウムの含有量を1.2mass%以上とすると浸透短絡の抑制効果が特に大きく、硫酸バリウムの含有量が1.2mass%未満と1.2mass%以上とでは浸透短絡の抑制効果が全く異なる。従って、硫酸バリウムの含有量を1.2mass%以上とすることには臨界的意義があるといえる。   From FIG. 6, it can be seen that when the content of barium sulfate in the negative electrode active material is 0.6 mass% or more, the effect of suppressing the penetration short circuit is large. Since it has not been known so far that barium sulfate in the negative electrode active material is related to osmotic short-circuiting, such an effect cannot be expected. In addition, when the content of barium sulfate in the negative electrode active material is 1.2 mass% or more, the effect of suppressing the penetration short circuit is particularly large, and when the content of barium sulfate is less than 1.2 mass% and 1.2 mass% or more, the effect of suppressing the penetration short circuit Is completely different. Therefore, it can be said that it is critical to make the barium sulfate content 1.2 mass% or more.

図6から、負極活物質中の硫酸バリウムの含有量を3.5mass%以下とするとPSOC寿命性能が向上し、負極活物質中の硫酸バリウムの含有量を3.0mass%以下とするとPSOC寿命性能が大きく向上することがわかる。   From Fig. 6, PSOC life performance is improved when the content of barium sulfate in the negative electrode active material is 3.5 mass% or less, and PSOC life performance is increased when the content of barium sulfate in the negative electrode active material is 3.0 mass% or less. It turns out that it improves.

表3から、負極活物質に黒鉛を含有する場合、負極活物質に硫酸バリウムを含有し、極間比S/Wを0.01mm/g以上としても、浸透短絡を完全には抑制できない場合があることがわかる(表3の試料5など)。そこで、発明者はさらに浸透短絡を抑制することを検討した。   From Table 3, when the negative electrode active material contains graphite, even if the negative electrode active material contains barium sulfate and the electrode-to-electrode ratio S / W is 0.01 mm / g or more, the permeation short circuit may not be completely suppressed. (Sample 5 in Table 3 etc.) Therefore, the inventor further studied to suppress the penetration short circuit.

図7から、負極活物質中の黒鉛の抵抗率を0.01Ω・cm以下とすることによって、浸透短絡がさらに抑制されることがわかる。負極活物質中の黒鉛が浸透短絡に関係していることはこれまで知られていないため、負極活物質中の黒鉛の抵抗率を変化させることによって浸透短絡抑制効果が大きくなることは予想できるものではない。   FIG. 7 shows that the penetration short circuit is further suppressed when the resistivity of the graphite in the negative electrode active material is 0.01 Ω · cm or less. It has not been known so far that graphite in the negative electrode active material is related to penetration short circuit, so it can be expected that the penetration short circuit suppression effect will be increased by changing the resistivity of graphite in the negative electrode active material is not.

図8から、黒鉛の平均粒子径を30μm以上とすることによって、PSOC寿命が向上し、黒鉛の平均粒子径を100μm以上とすることによりPSOC寿命がさらに向上することがわかる。   FIG. 8 shows that the PSOC life is improved by setting the average particle diameter of graphite to 30 μm or more, and the PSOC life is further improved by setting the average particle diameter of graphite to 100 μm or more.

図9は負極活物質中のカーボンブラックの影響を示す。負極活物質にカーボンブラックを含有させると、浸透短絡の発生がさらに抑制されることがわかる。負極活物質中のカーボンブラックが浸透短絡に関係していることはこれまで知られていない。従って、負極活物質にカーボンブラックを含有させることにより、浸透短絡抑制効果が大きくなることは予想できるものではない。また、表3の試料1と試料3の比較から、負極活物質に黒鉛を含有しない場合には、負極活物質にカーボンブラックを含有させても浸透短絡抑制効果は得られないことがわかる。従って、カーボンブラックによる浸透短絡抑制の効果は、負極活物質に黒鉛を含有する場合にのみ得られるといえる。   FIG. 9 shows the influence of carbon black in the negative electrode active material. It can be seen that when carbon black is contained in the negative electrode active material, the occurrence of permeation short circuit is further suppressed. It has not been known so far that carbon black in the negative electrode active material is related to the penetration short circuit. Therefore, it cannot be expected that the penetration short-circuit suppressing effect is increased by adding carbon black to the negative electrode active material. Further, from comparison between Sample 1 and Sample 3 in Table 3, it can be seen that when the negative electrode active material does not contain graphite, the penetration short circuit suppressing effect cannot be obtained even if carbon black is contained in the negative electrode active material. Accordingly, it can be said that the effect of suppressing the penetration short circuit by the carbon black can be obtained only when the negative electrode active material contains graphite.

カーボンブラックによる浸透短絡抑制の効果は、負極活物質のカーボンブラック含有量が0.05mass%以上のときに顕著に認められる(図9)。また、負極活物質中のカーボンブラック含有量を0.1mass%以上とすると、負極電極材料中のカーボンブラック含有量が0.1mass%未満の場合と比較してPSOC寿命の向上効果が大きくなる(図9)。一方、負極活物質に1.0mass%を超えるカーボンブラックを含有させると、活物質ペーストが硬すぎて負極集電体への充填が困難になった。   The effect of suppressing the penetration short circuit by carbon black is noticeable when the carbon black content of the negative electrode active material is 0.05 mass% or more (FIG. 9). In addition, when the carbon black content in the negative electrode active material is 0.1 mass% or more, the effect of improving the PSOC life is greater than when the carbon black content in the negative electrode material is less than 0.1 mass% (FIG. 9). ). On the other hand, when the negative electrode active material contained carbon black exceeding 1.0 mass%, the active material paste was too hard and it was difficult to fill the negative electrode current collector.

図10は負極活物質中の硫酸バリウムの吸油量の影響を示す。図10から、負極活物質中の硫酸バリウムの吸油量を12mL/100g以上とすると、浸透短絡がさらに抑制されることがわかる。負極活物質中の硫酸バリウムが浸透短絡に関係することはこれまで知られていないため、負極活物質中の硫酸バリウムの吸油量を変化させることによって浸透短絡抑制効果が大きくなることは予想できるものではない。負極活物質中の硫酸バリウムの吸油量を12.5mL/100g以上とすると、浸透短絡の抑制効果が特に大きくなる。   FIG. 10 shows the influence of the oil absorption of barium sulfate in the negative electrode active material. FIG. 10 shows that the penetration short circuit is further suppressed when the oil absorption of barium sulfate in the negative electrode active material is 12 mL / 100 g or more. Since it has not been known so far that barium sulfate in the negative electrode active material is related to osmotic short circuit, it can be expected that the effect of suppressing osmotic short circuit will increase by changing the oil absorption of barium sulfate in the negative electrode active material is not. When the oil absorption of barium sulfate in the negative electrode active material is 12.5 mL / 100 g or more, the effect of suppressing the osmotic short circuit is particularly great.

ポリエチレンをはじめとするポリオレフィン等の合成樹脂からなるセパレータは多孔性を付与するためシリカ(SiO2)を含んでおり、他の合成樹脂セパレータでも同様である。図11はセパレータ中のシリカ(SiO2)含有量の影響を示す。図11から、セパレータ中のシリカ(SiO2)含有量を60mass%以上とすることにより、浸透短絡をさらに抑制できることがわかる。セパレータ中のシリカ(SiO2)含有量が浸透短絡に関係することはこれまで知られていないため、セパレータ中のシリカ(SiO2)含有量を変化させることによって浸透短絡抑制効果が大きくなることは予想できるものではない。セパレータ中のシリカ(SiO2)含有量を70mass%以上とすると、浸透短絡の抑制効果が特に大きくなる。また、セパレータ中のシリカ(SiO2)含有量が80mass%を超えるとPSOC寿命が低下する(図11)。 Separator made of synthetic resin such as polyolefin including polyethylene contains silica (SiO 2 ) to impart porosity, and the same applies to other synthetic resin separators. FIG. 11 shows the influence of the silica (SiO 2 ) content in the separator. From FIG. 11, it can be seen that the permeation short circuit can be further suppressed by setting the content of silica (SiO 2 ) in the separator to 60 mass% or more. Since the silica in the separator (SiO 2) content is related to penetration short has not been known so far, the permeation short suppressing effect by changing the silica (SiO 2) content in the separator is increased It ’s not something you can expect. When the content of silica (SiO 2 ) in the separator is 70 mass% or more, the effect of suppressing the penetration short circuit is particularly large. Further, when the silica (SiO 2 ) content in the separator exceeds 80 mass%, the PSOC life is reduced (FIG. 11).

図12は電解液中のアルミニウムイオンの影響を示す。電解液中のアルミニウムイオンにより、浸透短絡をさらに抑制できることがわかる。アルミニウムイオンによる浸透短絡抑制の効果は、その含有量が0.06mol/L以上のときに顕著に認められる。表3の試料1と試料4の比較から、負極活物質に黒鉛を含有しない場合には、電解液にアルミニウムイオンを含有させても浸透短絡抑制効果は得られないことがわかる。従って、アルミニウムイオンによる浸透短絡抑制の効果は、負極活物質に黒鉛を含有する場合にのみ得られるといえる。   FIG. 12 shows the influence of aluminum ions in the electrolyte. It can be seen that the osmotic short circuit can be further suppressed by the aluminum ions in the electrolytic solution. The effect of suppressing osmotic short-circuiting by aluminum ions is noticeable when the content is 0.06 mol / L or more. From comparison between Sample 1 and Sample 4 in Table 3, it can be seen that when the negative electrode active material does not contain graphite, the permeation short-circuit suppressing effect cannot be obtained even if aluminum ions are contained in the electrolytic solution. Therefore, it can be said that the effect of suppressing the osmotic short circuit by aluminum ions is obtained only when the negative electrode active material contains graphite.

電解液中のアルミニウムイオン濃度を0.02mol/L以上とするとPSOC寿命性能が大きく向上し、電解液中のアルミニウムイオン濃度を0.03mol/L以上とするとPSOC寿命性能が顕著に向上する(図12)。また、電解液中のアルミニウムイオン濃度を0.15mol/L以下とするとPSOC寿命性能が大きく向上し、電解液中のアルミニウムイオン濃度を0.12mol/L以下とするとPSOC寿命性能が顕著に向上する(図12)。   When the aluminum ion concentration in the electrolyte is 0.02 mol / L or more, the PSOC life performance is greatly improved, and when the aluminum ion concentration in the electrolyte is 0.03 mol / L or more, the PSOC life performance is significantly improved (FIG. 12). . In addition, when the aluminum ion concentration in the electrolyte is 0.15 mol / L or less, the PSOC life performance is greatly improved, and when the aluminum ion concentration in the electrolyte is 0.12 mol / L or less, the PSOC life performance is significantly improved (Fig. 12).

図13はリチウムイオンの影響を示す。電解液中のリチウムイオンにより、浸透短絡をさらに抑制できることがわかる。リチウムイオンによる浸透短絡抑制の効果は、その含有量が0.01mol/L以上のときに顕著に認められる。表3の試料1と試料4の比較から、負極活物質に黒鉛を含有しない場合には、電解液にリチウムイオンを含有させても浸透短絡抑制効果は得られないことがわかる。従って、リチウムイオンによる浸透短絡抑制の効果は、負極活物質に黒鉛を含有する場合にのみ得られるといえる。   FIG. 13 shows the effect of lithium ions. It can be seen that the osmotic short circuit can be further suppressed by the lithium ions in the electrolytic solution. The effect of suppressing osmotic short-circuiting by lithium ions is noticeable when the content is 0.01 mol / L or more. From the comparison of Sample 1 and Sample 4 in Table 3, it can be seen that when the negative electrode active material does not contain graphite, the penetration short circuit suppressing effect cannot be obtained even if lithium ions are contained in the electrolyte. Therefore, it can be said that the effect of suppressing the penetration short circuit by lithium ions is obtained only when the negative electrode active material contains graphite.

電解液中のリチウムイオン濃度を0.01mol/L以上とするとPSOC寿命性能が大きく向上し、電解液中のリチウムイオン濃度を0.02mol/L以上とするとPSOC寿命性能が顕著に向上する(図13)。また、電解液中のリチウムイオン濃度を0.22mol/L以下とするとPSOC寿命性能が大きく向上し、電解液中のリチウムイオン濃度を0.18mol/L以下とするとPSOC寿命性能が顕著に向上する(図13)。   When the lithium ion concentration in the electrolyte is 0.01 mol / L or more, the PSOC life performance is greatly improved, and when the lithium ion concentration in the electrolyte is 0.02 mol / L or more, the PSOC life performance is significantly improved (FIG. 13). . PSOC lifetime performance is greatly improved when the lithium ion concentration in the electrolyte is 0.22 mol / L or less, and PSOC lifetime performance is significantly improved when the lithium ion concentration in the electrolyte is 0.18 mol / L or less (Fig. 13).

実施例ではPSOC寿命に優れ、浸透短絡が少ない鉛蓄電池が得られるので、セパレータをガラスマット等として、制御弁式の鉛蓄電池としても良い。
In the embodiment, a lead storage battery having excellent PSOC life and less permeation short-circuit can be obtained. Therefore, a control valve type lead storage battery may be used as the separator.

2 鉛蓄電池
4 負極板
6 正極板
8 セパレータ
10 電解液
12 負極格子
14 負極活物質
16 正極格子
18 正極活物質
20 ベース
22 リブ

S' 極板間隔
2 Lead acid battery 4 Negative electrode plate 6 Positive electrode plate 8 Separator 10 Electrolytic solution 12 Negative electrode lattice 14 Negative electrode active material 16 Positive electrode lattice 18 Positive electrode active material 20 Base 22 Rib

S 'plate spacing

Claims (5)

負極板と正極板と電解液とセパレータとを有する鉛蓄電池において、
前記負極板の負極電極材料は、黒鉛あるいはカーボンファイバと、硫酸バリウムとを含有し、
かつ、前記負極板と前記正極板との平均極板間隔Sと前記負極板1枚当たりの負極電極材料の質量Wとの比S/Wが0.01mm/g以上であり、平均極板間隔Sは0.4mm以上1.0mm以下で、
前記負極電極材料は、1.2mass%以上の硫酸バリウムを含有することを特徴とする、鉛蓄電池。
In a lead storage battery having a negative electrode plate, a positive electrode plate, an electrolyte and a separator,
The negative electrode material of the negative electrode plate contains graphite or carbon fiber, and barium sulfate,
And, the ratio S / W of the average electrode plate interval S between the negative electrode plate and the positive electrode plate and the mass W of the negative electrode material per one negative electrode plate is 0.01 mm / g or more, and the average electrode plate interval S Is 0.4mm to 1.0mm,
The lead-acid battery, wherein the negative electrode material contains 1.2 mass% or more of barium sulfate.
前記負極電極材料は、カーボンブラックを含有することを特徴とする、請求項1の鉛蓄電池。   The lead acid battery according to claim 1, wherein the negative electrode material contains carbon black. 前記負極電極材料は、2.5mass%未満の黒鉛あるいは2.5mass%未満のカーボンファイバを含有することを特徴とする、請求項1または2の鉛蓄電池。   The lead-acid battery according to claim 1 or 2, wherein the negative electrode material contains less than 2.5 mass% graphite or less than 2.5 mass% carbon fiber. 前記電解液はアルミニウムイオンを含有することを特徴とする、請求項1〜3のいずれかの鉛蓄電池。   The lead acid battery according to claim 1, wherein the electrolytic solution contains aluminum ions. 前記セパレータはポリエチレンからなる袋状のセパレータであることを特徴とする、請求項1〜4のいずれかの鉛蓄電池。   The lead-acid battery according to claim 1, wherein the separator is a bag-like separator made of polyethylene.
JP2017085070A 2015-02-18 2017-04-24 Lead storage battery Active JP6635346B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015029556 2015-02-18
JP2015029556 2015-02-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015248242A Division JP6136080B2 (en) 2015-02-18 2015-12-21 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2017174822A true JP2017174822A (en) 2017-09-28
JP6635346B2 JP6635346B2 (en) 2020-01-22

Family

ID=56760603

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015248242A Active JP6136080B2 (en) 2015-02-18 2015-12-21 Lead acid battery
JP2017085070A Active JP6635346B2 (en) 2015-02-18 2017-04-24 Lead storage battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015248242A Active JP6136080B2 (en) 2015-02-18 2015-12-21 Lead acid battery

Country Status (5)

Country Link
JP (2) JP6136080B2 (en)
CN (1) CN105895911A (en)
AU (1) AU2016200591B2 (en)
BR (1) BR102016003138A2 (en)
TR (1) TR201807757T4 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528842B2 (en) * 2015-03-05 2019-06-12 日立化成株式会社 Lead storage battery
WO2016204049A1 (en) * 2015-06-18 2016-12-22 日立化成株式会社 Lead storage cell
WO2017212590A1 (en) * 2016-06-08 2017-12-14 日立化成株式会社 Lead acid storage battery
JPWO2018100635A1 (en) * 2016-11-29 2019-10-17 日立化成株式会社 Lead-acid battery and method for manufacturing the same
CN110754010B (en) * 2017-04-28 2022-09-23 株式会社杰士汤浅国际 Lead-acid battery
CN110546792B (en) * 2017-04-28 2023-03-14 株式会社杰士汤浅国际 Lead-acid battery
WO2018199053A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
CN110462899B (en) * 2017-04-28 2022-06-03 株式会社杰士汤浅国际 Lead-acid battery
WO2018199125A1 (en) * 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery
CN110603671B (en) * 2017-04-28 2023-05-05 株式会社杰士汤浅国际 Lead storage battery
JP7111099B2 (en) * 2017-07-24 2022-08-02 株式会社Gsユアサ lead acid battery
CN110959223B (en) * 2017-07-24 2023-09-15 株式会社杰士汤浅国际 Lead storage battery
JP6954353B2 (en) * 2017-07-24 2021-10-27 株式会社Gsユアサ Lead-acid battery
CN111316496A (en) * 2017-10-31 2020-06-19 株式会社杰士汤浅国际 Lead-acid battery
EP3683886A4 (en) * 2017-10-31 2021-07-07 GS Yuasa International Ltd. Lead storage battery
WO2019188056A1 (en) * 2018-03-29 2019-10-03 株式会社Gsユアサ Lead acid storage battery
WO2020066764A1 (en) * 2018-09-25 2020-04-02 株式会社Gsユアサ Negative electrode for lead battery, and lead battery
JP6958693B2 (en) * 2018-10-10 2021-11-02 昭和電工マテリアルズ株式会社 Lead-acid battery
JP6760347B2 (en) * 2018-10-10 2020-09-23 日立化成株式会社 Lead-acid battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436957A (en) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JPH06295718A (en) * 1993-04-05 1994-10-21 Japan Storage Battery Co Ltd Lead-acid battery separator
JP2008117587A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Control valve type lead acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
JP2012089310A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2012124096A (en) * 2010-12-10 2012-06-28 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2014063689A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Control valve type lead-acid battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243850A (en) * 1993-02-16 1994-09-02 Japan Storage Battery Co Ltd Retainer type sealed lead-acid battery
DE69736735T2 (en) * 1996-12-19 2007-01-11 Gs Yuasa Corp. Lead-acid battery and manufacturing process
JP2001283810A (en) * 2000-03-29 2001-10-12 Nippon Muki Co Ltd Separator for sealed lead storage battery
JP4250910B2 (en) * 2002-05-21 2009-04-08 パナソニック株式会社 Lead-acid battery separator and control valve type lead-acid battery using the same
JP4332783B2 (en) * 2003-09-25 2009-09-16 株式会社ジーエス・ユアサコーポレーション Sealed lead acid battery
JP2005294142A (en) * 2004-04-02 2005-10-20 Matsushita Electric Ind Co Ltd Lead storage battery
JP5012105B2 (en) * 2007-03-14 2012-08-29 パナソニック株式会社 Control valve type lead acid battery
US8637183B2 (en) * 2007-06-06 2014-01-28 Hammond Group, Inc. Expanders for lead-acid batteries
CN101281960A (en) * 2007-09-17 2008-10-08 杨秀宇 Silicon glass spacing plate for accumulator as well as preparing technique thereof
CN102104129A (en) * 2009-12-22 2011-06-22 华南师范大学 Micropore partition plate specially for colloid storage battery,
WO2012086186A1 (en) * 2010-12-21 2012-06-28 パナソニック株式会社 Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
PL3170871T3 (en) * 2011-12-22 2019-10-31 Cabot Corp Carbon blacks and use in electrodes for lead acid batteries
CN103794745A (en) * 2012-10-31 2014-05-14 蒋加祥 Manufacturing method for silicon carbon fiber diaphragm of lead-acid battery
GB201308654D0 (en) * 2013-05-14 2013-06-26 Faradion Ltd Metal-containing compounds

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436957A (en) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JPH06295718A (en) * 1993-04-05 1994-10-21 Japan Storage Battery Co Ltd Lead-acid battery separator
JP2008117587A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Control valve type lead acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
JP2012079432A (en) * 2010-09-30 2012-04-19 Gs Yuasa Corp Lead battery
JP2012089310A (en) * 2010-10-18 2012-05-10 Gs Yuasa Corp Lead storage battery
JP2012124096A (en) * 2010-12-10 2012-06-28 Shin Kobe Electric Mach Co Ltd Lead acid battery
JP2014063689A (en) * 2012-09-24 2014-04-10 Gs Yuasa Corp Control valve type lead-acid battery

Also Published As

Publication number Publication date
JP2016154131A (en) 2016-08-25
BR102016003138A2 (en) 2016-08-30
JP6136080B2 (en) 2017-05-31
AU2016200591A1 (en) 2016-09-01
CN105895911A (en) 2016-08-24
AU2016200591B2 (en) 2021-08-05
TR201807757T4 (en) 2018-06-21
JP6635346B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6136080B2 (en) Lead acid battery
JP6115796B2 (en) Lead acid battery
JP6202477B1 (en) Lead acid battery
US10003069B2 (en) Lead-acid battery
JP6458829B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP7355005B6 (en) lead acid battery
US20160240857A1 (en) Lead-acid battery
JP6339030B2 (en) Lead acid battery
JP6136079B2 (en) Lead acid battery
JP2016119294A (en) Lead-acid battery
JP5656116B2 (en) Lead acid battery
JP2017174821A (en) Lead acid battery
JP2012209084A (en) Liquid type lead storage battery
JP2016162612A (en) Control valve type lead storage battery
JP6607344B2 (en) Lead acid battery
JP6688491B2 (en) Lead acid battery
CN109565040B (en) Lead-acid battery
JP6164502B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6635346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150