WO2018199125A1 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
WO2018199125A1
WO2018199125A1 PCT/JP2018/016697 JP2018016697W WO2018199125A1 WO 2018199125 A1 WO2018199125 A1 WO 2018199125A1 JP 2018016697 W JP2018016697 W JP 2018016697W WO 2018199125 A1 WO2018199125 A1 WO 2018199125A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon material
mass
lead
electrode plate
Prior art date
Application number
PCT/JP2018/016697
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 國澤
朋子 松村
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2019514556A priority Critical patent/JP7099451B2/en
Priority to CN201880027240.7A priority patent/CN110546793B/en
Publication of WO2018199125A1 publication Critical patent/WO2018199125A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery.
  • the lead acid battery includes a negative electrode plate including a negative electrode material.
  • the lead acid battery manufacturing process includes, for example, a process of forming an unformed negative electrode plate, then washing with water and drying to obtain an already formed (charged) negative electrode plate (negative electrode active material).
  • the negative electrode active material contained in the negative electrode material deteriorates due to oxidation during the period from the preparation of the formed negative electrode plate to the assembly of the lead storage battery using the negative electrode plate and the injection of the electrolyte into the lead storage battery. To do.
  • the ready-made lead-acid storage battery in which the formed positive and negative electrode plates are stored in a dry state in the battery case during battery storage, and the electrolyte is injected when the battery is used, the period during which the negative electrode plate is exposed to the atmosphere. Since it is long, the oxidative deterioration of the negative electrode active material tends to proceed. Due to the oxidative deterioration of the negative electrode active material, the initial discharge performance of the lead-acid battery decreases. Therefore, oil is included in the negative electrode material in order to prevent oxidation of the negative electrode active material (Patent Document 1).
  • Lead-acid batteries are sometimes used in an undercharged state called partially charged state (PSOC).
  • PSOC partially charged state
  • lead-acid batteries are used as industrial power storage devices such as start-up power sources for automobiles or motorcycles, such as charge control vehicles and idling stop (IS) vehicles, or storage of natural energy such as sunlight and wind power. In many cases, it is used in the PSOC state. Therefore, the lead storage battery is required to have high life performance in the PSOC cycle.
  • One aspect of the present invention is a lead acid battery, wherein the lead acid battery includes a negative electrode plate and a positive electrode plate, and the negative electrode plate includes a negative electrode material containing a carbon material and oil, and the carbon material Includes a first carbon material having a particle diameter of 32 ⁇ m or more and a second carbon material having a particle diameter of less than 32 ⁇ m, and the powder of the second carbon material against the powder resistance R1 of the first carbon material Ratio of body resistance R2: R2 / R1 is 15 or more and 155 or less, and the content of the oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less.
  • life performance in the PSOC cycle can be enhanced without impairing initial discharge performance and charge acceptance performance.
  • FIG. 1 is an exploded perspective view with a part cut away showing an external appearance and an internal structure of a lead storage battery according to an embodiment of the invention.
  • the lead acid battery includes a negative electrode plate and a positive electrode plate
  • the negative electrode plate includes a negative electrode material containing a carbon material and oil.
  • the negative electrode material includes a first carbon material having a particle diameter of 32 ⁇ m or more and a second carbon material having a particle diameter of less than 32 ⁇ m.
  • the ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 is 15 or more and 155 or less.
  • the content of oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less.
  • PSOC life performance By using two types of carbon materials having different particle diameters with a powder resistance ratio in a specific range together with a small amount of oil, the life performance in the PSOC cycle (hereinafter also referred to as PSOC life performance) can be enhanced. .
  • PSOC life performance By using a combination of two types of carbon materials having a powder resistance ratio in a specific range and different particle diameters, even if the amount of oil added is 0.05% to 1% by mass, Oxidation is sufficiently suppressed, and high initial discharge performance is obtained. Since the amount of oil added is as small as 1% by mass or less, a decrease in charge acceptance performance due to an increase in the amount of oil added is avoided.
  • Carbon materials having various powder resistances are known. It is known that the powder resistance of a powder material varies depending on the shape of the particle, the particle diameter, the internal structure of the particle, and / or the crystallinity of the particle. In the conventional technical common sense, the powder resistance of the carbon material is not directly related to the resistance of the negative electrode plate, and is not considered to affect the PSOC life performance and the initial discharge performance.
  • the powder resistance ratio is in a specific range, together with a small amount of oil, Discharge performance is improved. This is considered to be due to the fact that the adsorption of oil to the second carbon material is suppressed and the effect of the oil is sufficiently exhibited even with a small amount of oil.
  • oils examples include paraffinic oil, naphthenic oil, olefinic oil, aromatic oil, and silicone oil.
  • Commercial oils contain various additives such as antioxidants. As the various additives, those contained in appropriate amounts within the range usually used can be used.
  • the content of oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less. In this case, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained.
  • the content of oil in the negative electrode material is less than 0.05% by mass, the initial discharge performance is degraded.
  • the content of oil in the negative electrode material is more than 1% by mass, the charge acceptance performance is degraded.
  • the oil content in the negative electrode material is preferably 0.05% by mass or more and 0.5% by mass or less. In this case, PSOC life performance and charge acceptance performance are further improved.
  • content of the oil in said negative electrode material accounts to the negative electrode material contained in the already formed negative electrode plate (before inject
  • the oil in the negative electrode plate hardly flows into the electrolyte.
  • the state of the battery (negative electrode plate) may change. Therefore, the unused battery is a battery immediately after manufacture (within one month from manufacture).
  • the carbon material includes a first carbon material having a particle diameter of 32 ⁇ m or more and a second carbon material having a particle diameter of less than 32 ⁇ m.
  • a 1st carbon material and a 2nd carbon material are isolate
  • each carbon material examples include carbon black, graphite, hard carbon, and soft carbon.
  • Examples of carbon black include acetylene black, ketjen black, furnace black, and lamp black.
  • As the graphite any carbon material including a graphite type crystal structure may be used, and any of artificial graphite and natural graphite may be used.
  • the intensity of a peak appearing in 1300 cm -1 or 1350 cm -1 or less in the range of the Raman spectrum (D band) and 1550 cm -1 or 1600 cm -1 peak appearing in the range (G band) of the first carbon material Graphite having a ratio I D / I G of 0 or more and 0.9 or less is defined as graphite.
  • the first carbon material and the second carbon material have a ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 of 15 to 155.
  • the type may be selected or the particle diameter, specific surface area, and / or aspect ratio of each carbon material may be adjusted.
  • the first carbon material is preferably at least one selected from the group consisting of graphite, hard carbon, and soft carbon, for example.
  • the first carbon material preferably contains at least graphite.
  • the second carbon material preferably contains at least carbon black. When these carbon materials are used, it is easy to adjust the powder resistance ratio R2 / R1.
  • the powder resistance ratio R2 / R1 is 15 or more and 155 or less, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained.
  • the powder resistance ratio R2 / R1 is preferably 55 or more and 155 or less, more preferably 55 or more and 130 or less. In this case, excellent PSOC life performance, initial performance, and charge acceptance performance can be obtained with a better balance.
  • the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is, for example, 10 or more and 550 or less.
  • the specific surface area ratio S2 / S1 is preferably 20 or more and 240 or less. In this case, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained with a good balance.
  • S2 / S1 is 20 or more, the adsorption of oil is further suppressed when the specific surface area of each carbon material is in an appropriate range. As a result, the initial discharge performance is further improved.
  • S2 / S1 is 240 or less, the lead sulfate reduction reaction easily proceeds, so that the charge acceptance performance is further improved while ensuring high PSOC life performance.
  • the average aspect ratio of the first carbon material is, for example, 1 or more and 200 or less.
  • the average aspect ratio of the first carbon material is preferably 1 or more, and more preferably 1.5 or more. Moreover, Preferably it is 100 or less, More preferably, it is 35 or less, More preferably, it is 30 or less. These upper and lower limits can be arbitrarily combined.
  • PSOC life performance can be further enhanced while maintaining good initial discharge performance and charge acceptance performance. This is considered to be because when the average aspect ratio is in such a range, a conductive network is easily formed in the negative electrode material, and the formed conductive network is easily maintained.
  • the average aspect ratio of the first carbon material is 1.5 or more, since the outflow of the carbon material to the electrolytic solution due to repeated charge and discharge is suppressed, the effect of improving the PSOC life performance is further increased. be able to.
  • the average aspect ratio of the first carbon material is 30 or less, it becomes easy to ensure the adhesion between the active material particles, so that the generation of cracks in the negative electrode plate is suppressed, and the deterioration of the life performance can be suppressed.
  • the average aspect ratio of the first carbon material is more preferably 5 or more and 30 or less, and further preferably 10 or more and 30 or less, from the viewpoint that excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained in a balanced manner.
  • the content of the first carbon material in the negative electrode material is, for example, 0.05% by mass or more and 3.0% by mass or less. Preferably it is 0.1 mass% or more, More preferably, it is 0.4 mass% or more. Moreover, Preferably it is 2.0 mass% or less, More preferably, it is 2.0 mass% or less. These upper and lower limits can be combined arbitrarily. When the content of the first carbon material in the negative electrode material is 0.05% by mass or more, the effect of improving the PSOC life performance can be further enhanced.
  • the content of the first carbon material in the negative electrode material is 3.0% by mass or less, it becomes easy to ensure the adhesion between the active material particles, so that the generation of cracks in the negative electrode plate is suppressed, and the high PSOC lifetime is achieved. Ensuring performance is even easier.
  • the content of the second carbon material in the negative electrode material is, for example, 0.03% by mass or more and 3.0% by mass or less. Preferably it is 0.05 mass% or more. Moreover, it is 1.0 mass% or less preferably, More preferably, it is 0.5 mass% or less. These upper and lower limits can be combined arbitrarily.
  • the content of the second carbon material in the negative electrode material is 0.03% by mass or more, the PSOC life performance can be further improved.
  • the content of the second carbon material in the negative electrode material is 3.0% by mass or less, the initial discharge performance can be further improved by further suppressing the adsorption of oil.
  • the content of each carbon material in the negative electrode material is obtained by the procedure (B-1) described later.
  • B-1 Separation of carbon material
  • B-1 Separation of carbon material
  • the battery is disassembled and dried Take out the negative electrode plate.
  • the chemical conversion negative electrode plate is taken out, and the sulfuric acid is removed by washing with water, followed by vacuum drying (drying under a pressure lower than atmospheric pressure). Next, the negative electrode material is collected from the dried negative electrode plate and pulverized.
  • aqueous nitric acid solution To 5 g of the crushed sample, 30 mL of a 60% strength by weight aqueous nitric acid solution is added and heated at 70 ° C. Further, 10 g of disodium ethylenediaminetetraacetate, 30 mL of 28 mass% ammonia water, and 100 mL of water are added, and heating is continued to dissolve soluble components.
  • the sample thus pretreated is collected by filtration.
  • the collected sample is passed through a sieve having an opening of 500 ⁇ m, components having a large size such as a reinforcing material are removed, and the component that has passed through the sieve is collected as a carbon material.
  • the first carbon material remains on the sieve without passing through the sieve eyes, and passes through the sieve eyes.
  • JIS Z8815: 1994 can be referred to.
  • a carbon material is placed on a sieve having an opening of 32 ⁇ m, and screened by gently shaking the sieve for 5 minutes while sprinkling ion-exchanged water.
  • the first carbon material remaining on the sieve is collected from the sieve by pouring ion-exchanged water, and separated from the ion-exchanged water by filtration.
  • the 2nd carbon material which passed the sieve is collect
  • the recovered first carbon material and second carbon material are each dried at a temperature of 110 ° C. for 2 hours.
  • a sieve having a sieve mesh having a nominal mesh opening of 32 ⁇ m as defined in JIS Z 8801-1: 2006 is used.
  • content of each carbon material in a negative electrode material measures the mass of each carbon material isolate
  • (B-2) Powder Resistance of Carbon Material The powder resistance R1 of the first carbon material and the powder resistance R2 of the second carbon material are the first carbon material and the second carbon material separated in the procedure of (B-1).
  • a powder resistance measurement system manufactured by Mitsubishi Chemical Analytech Co., Ltd., MCP-PD51 type
  • a pressure of 3.18 MPa, JIS K 7194: 1994 This is a value measured by a four-probe method using a compliant low resistance meter (Loresta-GX MCP-T700, manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the specific surface area S1 of the first carbon material and the specific surface area S2 of the second carbon material are the BET specific surface areas of the first carbon material and the second carbon material, respectively.
  • the BET specific surface area is determined by the gas adsorption method using the BET equation using each of the first carbon material and the second carbon material separated by the procedure (B-1).
  • Each carbon material is pretreated by heating for 1 hour at a temperature of 150 ° C. in a nitrogen flow. Using the pretreated carbon material, the BET specific surface area of each carbon material is determined under the following conditions using the following apparatus.
  • Measuring device TriStar3000 manufactured by Micromeritics
  • Adsorption gas Nitrogen gas with a purity of 99.99% or more
  • Adsorption temperature Liquid nitrogen boiling point temperature (77K)
  • BET specific surface area calculation method Conforms to 7.2 of JIS Z 8830: 2013
  • (B-4) Average aspect ratio of first carbon material The first carbon material separated by the procedure of (B-1) is observed with an optical microscope or an electron microscope, and 10 or more arbitrary particles are selected. Take a magnified photo of it. Next, the photograph of each particle is image-processed to determine the maximum diameter d1 of the particle and the maximum diameter d2 in the direction orthogonal to the maximum diameter d1, and the aspect ratio of each particle is determined by dividing d1 by d2. Ask. The average aspect ratio is calculated by averaging the obtained aspect ratios.
  • the negative electrode plate of the lead storage battery includes a negative electrode material.
  • the negative electrode plate can usually be composed of a negative electrode grid (negative electrode current collector) and a negative electrode material.
  • the negative electrode material is obtained by removing the negative electrode current collector from the negative electrode plate.
  • members such as a mat and pasting paper may be attached to the negative electrode plate.
  • the negative electrode plate includes such a member (sticking member)
  • the negative electrode material is obtained by removing the negative electrode current collector and the sticking member.
  • the thickness of the electrode plate includes the mat. When the mat is attached to the separator, the thickness of the mat is included in the thickness of the separator.
  • the negative electrode material preferably contains a negative electrode active material (lead or lead sulfate) that develops capacity by oxidation-reduction reaction.
  • the negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually produced using lead powder.
  • the negative electrode material includes the above-described carbon material and oil.
  • the negative electrode material may further contain an organic shrinking agent, barium sulfate, and the like, and may contain other additives as necessary. Lignin (lignin sulfonic acid or a salt thereof) or the like is used as the organic shrinking agent.
  • the content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more. On the other hand, 1.0 mass% or less is preferable, 0.8 mass% or less is more preferable, and 0.5 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from a lead-acid battery in a fully formed state.
  • the content of barium sulfate in the negative electrode material is, for example, preferably 0.1% by mass or more, more preferably 0.2% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, It may be 1.3% by mass or more. On the other hand, 3.0 mass% or less is preferable, 2.5 mass% or less is more preferable, and 2 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined.
  • the organic shrinkage agent contained in the negative electrode material and the determination method of barium sulfate will be described.
  • the formed lead-acid battery Prior to quantitative analysis, the formed lead-acid battery is fully charged and then disassembled to obtain the negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate, and an unground initial sample is obtained.
  • Organic shrinkage agent The unpulverized initial sample is pulverized, and the pulverized initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic antishrink agent. Insoluble components are removed by filtration from the aqueous NaOH solution containing the extracted organic shrinking agent.
  • the obtained filtrate (hereinafter also referred to as “analyte filtrate”) is desalted, concentrated and dried to obtain an organic shrunk agent powder (hereinafter also referred to as “analyte powder”). Desalting may be performed by placing the filtrate in a dialysis tube and immersing it in distilled water.
  • Infrared spectrum of the analysis target powder UV-visible absorption spectrum of the solution obtained by dissolving the analysis target powder in distilled water, etc., NMR spectrum of the solution obtained by dissolving the analysis target powder in a solvent such as heavy water,
  • the organic shrinking agent is specified.
  • the content of the organic shrinkage agent in the negative electrode material is quantified using the spectral intensity and a calibration curve prepared in advance. If the structural formula of the organic pre-shrinking agent to be analyzed cannot be strictly specified and the same organic pre-shrinking agent calibration curve cannot be used, the UV-visible absorption spectrum, infrared spectroscopic spectrum similar to the organic pre-shrinking agent to be analyzed, A calibration curve is created using an available organic shrinkage agent, such as an NMR spectrum.
  • the obtained solid content is dispersed in water to obtain a dispersion
  • components other than the carbonaceous material and barium sulfate for example, reinforcing material
  • the dispersion liquid is subjected to suction filtration using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C.
  • the sample separated by filtration is a mixed sample of a carbonaceous material and barium sulfate.
  • the mass (A) of the mixed sample is measured by subtracting the mass of the membrane filter from the total mass of the mixed sample and the membrane filter after drying.
  • the mixed sample after drying is put into a crucible together with a membrane filter, and ashed at 700 ° C. or higher.
  • the remaining residue is barium oxide.
  • the mass (B) of barium sulfate is determined by converting the mass of barium oxide into the mass of barium sulfate.
  • the negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include an expanding process and a punching process.
  • the lead alloy used for the negative electrode current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These lead or lead alloy may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element.
  • the negative electrode plate can be formed by filling a negative electrode paste into a negative electrode current collector, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. Sponge-like lead is generated by chemical conversion.
  • the negative electrode paste is prepared by adding water and sulfuric acid to a lead powder, an organic shrinking agent, and various additives as necessary, and kneading them. When aging, it is preferable to age the unformed negative electrode plate at a temperature higher than room temperature and high humidity.
  • the paste type positive electrode plate includes a positive electrode current collector and a positive electrode material.
  • the positive electrode material is held by the positive electrode current collector.
  • the positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
  • the clad positive electrode plate includes a plurality of porous tubes, a core metal inserted into each tube, a current collector for connecting the metal cores, and a positive electrode material filled in the tube in which the metal core is inserted And a joint for connecting a plurality of tubes.
  • the metal core and the current collector that connects the metal cores are collectively referred to as a positive electrode current collector.
  • the lead alloy used for the positive electrode current collector a Pb—Ca alloy and a Pb—Ca—Sn alloy are preferable in terms of corrosion resistance and mechanical strength.
  • the positive electrode current collector may have lead alloy layers having different compositions, and a plurality of alloy layers may be provided.
  • a Pb—Ca alloy, a Pb—Sb alloy, or the like is used for the core metal.
  • the positive electrode material includes a positive electrode active material (lead dioxide or lead sulfate) that develops capacity by oxidation-reduction reaction.
  • the positive electrode material may contain other additives as necessary.
  • An unformed paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying in the same manner as in the case of a negative electrode plate. Thereafter, an unformed positive electrode plate is formed.
  • the positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid. When aging, it is preferable to age the unformed positive electrode plate at a temperature higher than room temperature and high humidity.
  • the clad type positive electrode plate is formed by filling a tube in which a metal core is inserted with lead powder or slurry-like lead powder and joining a plurality of tubes in a row.
  • a separator is disposed between the negative electrode plate and the positive electrode plate.
  • a nonwoven fabric, a microporous film, etc. are used for a separator.
  • the thickness and number of separators interposed between the negative electrode plate and the positive electrode plate may be selected according to the distance between the electrodes.
  • the nonwoven fabric is a mat in which fibers are entangled without being woven, and mainly includes fibers. For example, 60% by mass or more of the separator is formed of fibers.
  • the fiber glass fiber, polymer fiber (polyolefin fiber, acrylic fiber, polyester fiber such as polyethylene terephthalate fiber), pulp fiber, or the like can be used. Among these, glass fiber is preferable.
  • the nonwoven fabric may contain components other than fibers, such as acid-resistant inorganic powder, a polymer as a binder, and the like.
  • the microporous membrane is a porous sheet mainly composed of components other than the fiber component.
  • a composition containing a pore forming agent polymer powder and / or oil
  • the microporous membrane is preferably composed of a material having acid resistance, and is preferably composed mainly of a polymer component.
  • the polymer component polyolefins such as polyethylene and polypropylene are preferable.
  • the separator may be composed of, for example, only a non-woven fabric or a microporous film.
  • the separator may be a laminate of a nonwoven fabric and a microporous film, a product obtained by bonding different types or the same types of materials, or a type obtained by engaging unevenness in different types or the same types of materials, if necessary.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary.
  • the specific gravity at 20 ° C. of the electrolyte in a fully charged lead storage battery after formation is, for example, 1.10 to 1.35 g / cm 3 , and preferably 1.20 to 1.35 g / cm 3 .
  • an electrolyte is injected into the battery case to form an unformed positive and negative electrode plate.
  • an electrode plate group is configured using positive and negative electrodes formed in advance, and stored in a battery case. Since the positive and negative electrode plates already formed in the battery case are stored in a dry state when the battery is stored, the battery is used by injecting an electrolyte into the battery case. The oil contained in the negative electrode material suppresses oxidative degradation of the negative electrode active material that occurs during the storage period until the electrolyte is injected.
  • the lead storage battery 1 includes a battery case 12 that houses an electrode plate group 11 and an electrolytic solution (not shown).
  • the battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13. Each cell chamber 14 accommodates one electrode group 11.
  • the opening of the battery case 12 is sealed with a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid plug 18 for each cell chamber. At the time of refilling, the refilling liquid is replenished by removing the liquid stopper 18.
  • the liquid spout 18 may have a function of discharging gas generated in the cell chamber 14 to the outside of the battery.
  • the electrode plate group 11 is configured by laminating a plurality of negative plates 2 and positive plates 3 with a separator 4 interposed therebetween.
  • a separator 4 which accommodates the negative electrode plate 2
  • the form of a separator is not specifically limited.
  • the negative electrode shelf 6 that connects the ears 2 a of the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8, and the ears of the plurality of positive electrode plates 3.
  • a positive electrode shelf 5 that connects 3 a in parallel is connected to the positive pole 7.
  • the positive pole 7 is connected to a positive terminal 17 outside the lid 15.
  • each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of the adjacent cell chambers 14 in series.
  • the negative electrode plate for a lead storage battery is a lead acid battery
  • the lead storage battery includes a negative electrode plate and a positive electrode plate
  • the negative electrode plate includes a negative electrode material containing a carbon material and oil
  • the carbon material includes a first carbon material having a particle diameter of 32 ⁇ m or more, and a second carbon material having a particle diameter of less than 32 ⁇ m
  • the ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 is 15 or more and 155 or less
  • the content of the oil in the negative electrode material is a lead storage battery that is 0.05% by mass or more and 1% by mass or less.
  • the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is preferably 20 or more.
  • the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is preferably 240 or less.
  • the average aspect ratio of the first carbon material is preferably 1.5 or more.
  • the average aspect ratio of the first carbon material is preferably 30 or less.
  • the content of the first carbon material in the negative electrode material is preferably 0.05% by mass or more.
  • the content of the first carbon material in the negative electrode material is preferably 3.0% by mass or less.
  • the content of the second carbon material in the negative electrode material is preferably 0.03% by mass or more.
  • the content of the second carbon material in the negative electrode material is preferably 1.0% by mass or less.
  • Electrode plate Lead powder, water, dilute sulfuric acid, barium sulfate, organic anti-shrink agent, carbon material, and oil are mixed to obtain a negative electrode paste.
  • the negative electrode paste is filled in a network portion of an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried to obtain an unformed negative electrode plate.
  • carbon material carbon black (average particle diameter D 50 : 40 nm) and graphite (average particle diameter D 50 : 110 ⁇ m) are used.
  • An unformed negative electrode plate is formed, then washed with water and dried to obtain an already formed negative electrode plate.
  • paraffin oil as the oil.
  • the oil is blended in the negative electrode paste by adjusting the addition amount so that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is 0.5% by mass.
  • the addition amount is adjusted in consideration of a small amount of oil flowing out from the negative electrode plate in the chemical conversion and subsequent water washing steps.
  • a positive electrode paste is prepared by kneading lead powder, water, and sulfuric acid.
  • the positive electrode paste is filled in a network portion of an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried to obtain an unformed positive electrode plate.
  • An unformed positive electrode plate is formed, and then washed and dried to obtain an already formed positive electrode plate.
  • the pre-formed negative electrode plate is accommodated in a bag-like separator formed of a polyethylene microporous film, and is composed of five pre-formed negative electrode plates and four pre-formed positive electrode plates per cell.
  • An electrode plate group is formed.
  • the electrode plate group is inserted into a battery case made of polypropylene to produce a lead storage battery having a nominal voltage of 12V.
  • the produced battery is stored for one month. Thereafter, an electrolytic solution is injected into the battery, and supplementary charging is performed at 0.2 CA for 2 hours.
  • the nominal capacity of the lead acid battery is 30 Ah (5 hour rate).
  • the content of the first carbon material in the negative electrode material is 1.5 mass%, and the content of the second carbon material is 0.3 mass%.
  • these values are obtained when the negative electrode plate of the produced lead storage battery is taken out and the carbon material contained in the negative electrode material is separated into the first carbon material and the second carbon material by the procedure described above. It is a value calculated
  • the ratio R2 / R1 is 57.
  • the powder resistance R2 / R1 ratio is also obtained by the procedure described above. Furthermore, the specific surface area ratio S2 / S1 obtained by the above-described procedure is 30.
  • the average aspect ratio of the first carbon material determined by the procedure described above is 23.
  • the carbon material only carbon black (average particle diameter D 50 : 40 nm) is used, and the content of the second carbon material is 0.3% by mass. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
  • Lead storage battery A4 Only carbon black (average particle diameter D 50 : 40 nm) is used as the carbon material, and the content of the second carbon material is 1.0 mass%. The content of oil contained in 100% by mass of the negative electrode material of the pre-formed negative electrode plate is 1% by mass. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
  • the carbon material only carbon black (average particle diameter D 50 : 40 nm) is used, and the content of the second carbon material is 0.3% by mass. Do not add oil to the negative electrode paste. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
  • the carbon material only graphite (average particle diameter D 50 : 110 ⁇ m) is used, and the content of the first carbon material is 1.5 mass%. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
  • the carbon material only graphite (average particle diameter D 50 : 110 ⁇ m) is used, and the content of the first carbon material is 1.5 mass%. Do not add oil to the negative electrode paste. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1. The following evaluation is performed for each lead-acid battery.
  • the PSOC life performance is improved as compared with the case of only the second carbon material, but the initial discharge performance and the regenerative acceptance performance are reduced (A2, A7).
  • the initial discharge performance is greatly reduced (A5, A6, A8).
  • the initial discharge performance improves when the oil content increases to 1.0% by mass, compared with the case where the oil content is 0.5% by mass. Performance decreases (A3, A4).
  • Lead storage battery D1 A lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is 32.
  • a lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is 83.
  • Lead is the same as lead storage battery A1 except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 103. A storage battery is made and evaluated.
  • a lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is set to 127.
  • Lead is the same as lead acid battery A1 except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 152. A storage battery is made and evaluated.
  • the PSOC life performance and the regenerative acceptance performance are further improved while maintaining the initial discharge performance (K3 to K11).
  • the PSOC life performance and the regenerative acceptance performance are further improved while maintaining the initial discharge performance (L3 to L11).
  • the PSOC life performance, initial discharge performance, and charge acceptance performance are more balanced when the average aspect ratio of the first carbon material is in the range of 5 to 30. Is obtained (L5, L6, L8, L10).
  • the lead acid battery according to one aspect of the present invention can be applied to control valve type and liquid type lead acid batteries, and is suitably used as an industrial power storage device such as a power source for starting an automobile or a motorcycle or a natural energy storage application. Available.

Abstract

[Solution] A lead acid battery provided with a negative pole plate and a positive pole plate. The negative pole plate includes a negative pole electrode material containing a carbon material and an oil. The carbon material includes a first carbon material having a particle size of not less than 32 μm and a second carbon material having a particle size of less than 32 μm. The ratio R2/R1 of a powder resistance R2 of the second carbon material to a powder resistance R1 of the first carbon material is not less than 15 and not more than 155. The negative pole electrode material has an oil content of not less than 0.05 mass% and not more than 1 mass%.

Description

鉛蓄電池Lead acid battery
 本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極電極材料を含む負極板を備える。鉛蓄電池の製造工程は、例えば、未化成の負極板を化成し、その後、水洗し、乾燥して、既化成(充電状態)の負極板(負極活物質)を得る工程を含む。しかし、既化成の負極板を作製してから、当該負極板を用いて鉛蓄電池を組み立て、鉛蓄電池に電解液を注入するまでの間に、負極電極材料に含まれる負極活物質が酸化により劣化する。特に、電池保管時には電槽内で既化成の正負極板が乾燥状態で保存され、電池使用の際に電解液を注入する即用式鉛蓄電池では、負極板が大気中に曝される期間が長いため、負極活物質の酸化劣化が進行しやすい。負極活物質の酸化劣化により、鉛蓄電池の初期放電性能が低下する。そこで、負極活物質の酸化を防ぐため、負極電極材料にオイルを含ませている(特許文献1)。 Lead acid batteries are used for various purposes in addition to automotive and industrial use. The lead acid battery includes a negative electrode plate including a negative electrode material. The lead acid battery manufacturing process includes, for example, a process of forming an unformed negative electrode plate, then washing with water and drying to obtain an already formed (charged) negative electrode plate (negative electrode active material). However, the negative electrode active material contained in the negative electrode material deteriorates due to oxidation during the period from the preparation of the formed negative electrode plate to the assembly of the lead storage battery using the negative electrode plate and the injection of the electrolyte into the lead storage battery. To do. In particular, the ready-made lead-acid storage battery in which the formed positive and negative electrode plates are stored in a dry state in the battery case during battery storage, and the electrolyte is injected when the battery is used, the period during which the negative electrode plate is exposed to the atmosphere. Since it is long, the oxidative deterioration of the negative electrode active material tends to proceed. Due to the oxidative deterioration of the negative electrode active material, the initial discharge performance of the lead-acid battery decreases. Therefore, oil is included in the negative electrode material in order to prevent oxidation of the negative electrode active material (Patent Document 1).
特開平11-354123号公報JP-A-11-354123
 鉛蓄電池は、部分充電状態(PSOC)と呼ばれる充電不足状態で使用されることがある。例えば、鉛蓄電池は、充電制御車やアイドリングストップ(IS)車などの、自動車もしくはバイクの始動用電源、または太陽光や風力のような自然エネルギーの貯蔵用途などの産業用蓄電装置として使用される場合は、PSOC状態で使用されることが多い。そのため、鉛蓄電池には、PSOCサイクルにおける高い寿命性能が求められる。 Lead-acid batteries are sometimes used in an undercharged state called partially charged state (PSOC). For example, lead-acid batteries are used as industrial power storage devices such as start-up power sources for automobiles or motorcycles, such as charge control vehicles and idling stop (IS) vehicles, or storage of natural energy such as sunlight and wind power. In many cases, it is used in the PSOC state. Therefore, the lead storage battery is required to have high life performance in the PSOC cycle.
 このような寿命性能の改善には、負極電極材料に添加されるカーボンブラックを増量することが効果的である。しかし、オイルは、カーボンブラックに吸着されるため、カーボンブラックを多量に添加すると、負極電極材料に含まれる負極活物質の酸化劣化が生じやすくなり、初期放電性能が低下する。初期放電性能の低下を抑制するためには、オイルを増量することが考えられる。しかし、オイルを多量に添加すると、充電受入性能が低下する。 In order to improve such life performance, it is effective to increase the amount of carbon black added to the negative electrode material. However, since oil is adsorbed by carbon black, if a large amount of carbon black is added, the negative electrode active material contained in the negative electrode material is likely to be oxidized and deteriorated, and the initial discharge performance is lowered. In order to suppress the deterioration of the initial discharge performance, it is conceivable to increase the amount of oil. However, when a large amount of oil is added, the charge acceptance performance decreases.
 このように、初期放電性能および充電受入性能を損なうことなく、PSOCサイクルにおける寿命性能を高めることは困難である。 Thus, it is difficult to improve the life performance in the PSOC cycle without impairing the initial discharge performance and the charge acceptance performance.
 本発明の一側面は、鉛蓄電池であって、前記鉛蓄電池は、負極板と、正極板とを備え、前記負極板は、炭素材料とオイルとを含有する負極電極材料を含み、前記炭素材料は、32μm以上の粒子径を有する第1炭素材料と、32μm未満の粒子径を有する第2炭素材料と、を含み、前記第1炭素材料の粉体抵抗R1に対する、前記第2炭素材料の粉体抵抗R2の比:R2/R1が、15以上155以下であり、前記負極電極材料中の前記オイルの含有量は、0.05質量%以上1質量%以下である。 One aspect of the present invention is a lead acid battery, wherein the lead acid battery includes a negative electrode plate and a positive electrode plate, and the negative electrode plate includes a negative electrode material containing a carbon material and oil, and the carbon material Includes a first carbon material having a particle diameter of 32 μm or more and a second carbon material having a particle diameter of less than 32 μm, and the powder of the second carbon material against the powder resistance R1 of the first carbon material Ratio of body resistance R2: R2 / R1 is 15 or more and 155 or less, and the content of the oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less.
 本発明によれば、鉛蓄電池において、初期放電性能および充電受入性能を損なうことなく、PSOCサイクルにおける寿命性能を高めることができる。 According to the present invention, in a lead-acid battery, life performance in the PSOC cycle can be enhanced without impairing initial discharge performance and charge acceptance performance.
本発明の実施形態に係る鉛蓄電池の外観と内部構造を示す、一部を切り欠いた分解斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view with a part cut away showing an external appearance and an internal structure of a lead storage battery according to an embodiment of the invention.
 本発明の一側面は、鉛蓄電池であって、鉛蓄電池は、負極板と、正極板とを備え、負極板は、炭素材料とオイルとを含有する負極電極材料を含む。負極電極材料は、32μm以上の粒子径を有する第1炭素材料と、32μm未満の粒子径を有する第2炭素材料とを含む。第1炭素材料の粉体抵抗R1に対する、第2炭素材料の粉体抵抗R2の比:R2/R1が、15以上155以下である。負極電極材料中のオイルの含有量は、0.05質量%以上1質量%以下である。 One aspect of the present invention is a lead acid battery, the lead acid battery includes a negative electrode plate and a positive electrode plate, and the negative electrode plate includes a negative electrode material containing a carbon material and oil. The negative electrode material includes a first carbon material having a particle diameter of 32 μm or more and a second carbon material having a particle diameter of less than 32 μm. The ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 is 15 or more and 155 or less. The content of oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less.
 少量のオイルとともに、粉体抵抗比が特定の範囲である、粒子径の異なる2種類の炭素材料を用いることで、PSOCサイクルにおける寿命性能(以下、PSOC寿命性能とも称する。)を高めることができる。粉体抵抗比が特定の範囲である、粒子径の異なる2種類の炭素材料を組み合わせて用いることで、オイルの添加量が0.05質量%以上1質量%以下の少量でも、負極活物質の酸化が十分に抑制され、高い初期放電性能が得られる。オイルの添加量が1質量%以下と少量であるため、オイル添加量の増大による充電受入性能の低下が回避される。 By using two types of carbon materials having different particle diameters with a powder resistance ratio in a specific range together with a small amount of oil, the life performance in the PSOC cycle (hereinafter also referred to as PSOC life performance) can be enhanced. . By using a combination of two types of carbon materials having a powder resistance ratio in a specific range and different particle diameters, even if the amount of oil added is 0.05% to 1% by mass, Oxidation is sufficiently suppressed, and high initial discharge performance is obtained. Since the amount of oil added is as small as 1% by mass or less, a decrease in charge acceptance performance due to an increase in the amount of oil added is avoided.
 炭素材料には、様々な粉体抵抗を有するものが知られている。粉末材料の粉体抵抗は、粒子の形状、粒子径、粒子の内部構造、および/または粒子の結晶性などにより変化することが知られている。従来の技術常識では、炭素材料の粉体抵抗は、負極板の抵抗には直接的な関係はなく、PSOC寿命性能および初期放電性能に対して影響を及ぼすとは考えられていない。 Carbon materials having various powder resistances are known. It is known that the powder resistance of a powder material varies depending on the shape of the particle, the particle diameter, the internal structure of the particle, and / or the crystallinity of the particle. In the conventional technical common sense, the powder resistance of the carbon material is not directly related to the resistance of the negative electrode plate, and is not considered to affect the PSOC life performance and the initial discharge performance.
 それに対し、本発明の上記側面によれば、少量のオイルとともに、粉体抵抗比が特定の範囲である、粒子径の異なる第1炭素材料と第2炭素材料とを組み合わせて用いることで、初期放電性能が高められる。これは、第2炭素材料へのオイルの吸着が顕在化することが抑制され、オイルが少量でも、オイルによる効果が十分に発揮されることによるものと考えられる。 On the other hand, according to the above aspect of the present invention, by using a combination of the first carbon material and the second carbon material having different particle diameters, the powder resistance ratio is in a specific range, together with a small amount of oil, Discharge performance is improved. This is considered to be due to the fact that the adsorption of oil to the second carbon material is suppressed and the effect of the oil is sufficiently exhibited even with a small amount of oil.
 本発明の上記側面では、負極板に含まれる第1炭素材料と第2炭素材料との粉体抵抗比R2/R1を15~155の範囲に制御することで、高いPSOC寿命性能を得ることができる。これは、次のような理由によるものと推測される。まず、粉体抵抗比R2/R1を上記の範囲に制御することで、負極電極材料中に導電ネットワークが形成され易くなる。さらに、オイル含有量を0.05質量%以上1質量%以下に制御することで、導電ネットワークの形成に悪影響を及ぼすことなく、負極活物質の酸化が抑制される。負極活物質の酸化が抑制されるため、導電ネットワークの機能が十分に発揮される。また、オイルが少量であるため、導電ネットワークの形成に悪影響を及ぼすことがなく、形成された導電ネットワークが、PSOCサイクルを行なっても維持され易くなる。 In the above aspect of the present invention, by controlling the powder resistance ratio R2 / R1 between the first carbon material and the second carbon material contained in the negative electrode plate in the range of 15 to 155, high PSOC life performance can be obtained. it can. This is presumably due to the following reasons. First, by controlling the powder resistance ratio R2 / R1 within the above range, a conductive network is easily formed in the negative electrode material. Furthermore, by controlling the oil content to 0.05 mass% or more and 1 mass% or less, oxidation of the negative electrode active material is suppressed without adversely affecting the formation of the conductive network. Since the oxidation of the negative electrode active material is suppressed, the function of the conductive network is sufficiently exhibited. Further, since the amount of oil is small, the formation of the conductive network is not adversely affected, and the formed conductive network is easily maintained even after the PSOC cycle.
(オイル)
 オイルとしては、パラフィン系オイル、ナフテン系オイル、オレフィン系オイル、芳香族系オイル、シリコーン系オイルなどを例示することができる。市販のオイルは、酸化防止剤などの各種添加剤を含む。各種添加剤は、通常用いられている範囲内で適量含まれているものを用いることができる。
(oil)
Examples of the oil include paraffinic oil, naphthenic oil, olefinic oil, aromatic oil, and silicone oil. Commercial oils contain various additives such as antioxidants. As the various additives, those contained in appropriate amounts within the range usually used can be used.
 負極電極材料中のオイルの含有量は、0.05質量%以上1質量%以下である。この場合、優れたPSOC寿命性能、初期放電性能、および充電受入性能が得られる。負極電極材料中のオイルの含有量が0.05質量%未満である場合、初期放電性能が低下する。負極電極材料中のオイルの含有量が1質量%超である場合、充電受入性能が低下する。負極電極材料中のオイルの含有量は、0.05質量%以上0.5質量%以下であることが好ましい。この場合、PSOC寿命性能および充電受入性能が、さらに向上する。 The content of oil in the negative electrode material is 0.05% by mass or more and 1% by mass or less. In this case, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained. When the content of oil in the negative electrode material is less than 0.05% by mass, the initial discharge performance is degraded. When the content of oil in the negative electrode material is more than 1% by mass, the charge acceptance performance is degraded. The oil content in the negative electrode material is preferably 0.05% by mass or more and 0.5% by mass or less. In this case, PSOC life performance and charge acceptance performance are further improved.
 なお、上記の負極電極材料中のオイルの含有量は、化成、水洗、乾燥の工程を経た後の既化成の負極板(鉛蓄電池に電解液を注入する前)に含まれる負極電極材料に占めるオイルの質量割合である。即用式鉛蓄電池の場合、電池保管時における負極電極材料中のオイル含有量である。 In addition, content of the oil in said negative electrode material accounts to the negative electrode material contained in the already formed negative electrode plate (before inject | pouring electrolyte solution into a lead storage battery) after passing through the process of chemical conversion, water washing, and drying. It is the mass ratio of oil. In the case of a ready-to-use lead storage battery, this is the oil content in the negative electrode material during battery storage.
 以下、負極電極材料中のオイルの含有量の測定について説明する。
(A)オイルの含有量の測定
 化成、水洗、乾燥の工程を経た後の既化成の負極板から負極電極材料を分離する。または、電解液を注入する前の鉛蓄電池を分解して既化成の負極板を取り出し、当該負極板から負極電極材料を分離する。負極電極材料を粉砕して、質量Maの試料粉末を得る。試料粉末にノルマルヘキサンを加えて試料液を得る。試料液を65℃で1時間加熱する。その後、試料液をろ過し、ろ液を得る。ろ液を65℃で1時間加熱し、残渣を得る。残渣を秤量し、これをオイルの質量Mbとする。上記のMa、Mbを用いて、下記式より、負極電極材料中のオイルの含有量を求める。
 負極電極材料中のオイルの含有量(%)=(質量Mb/質量Ma)×100
Hereinafter, the measurement of the oil content in the negative electrode material will be described.
(A) Measurement of oil content The negative electrode material is separated from the already formed negative electrode plate after the steps of chemical conversion, water washing and drying. Or the lead acid battery before inject | pouring electrolyte solution is decomposed | disassembled, an already-formed negative electrode plate is taken out, and negative electrode material is isolate | separated from the said negative electrode plate. The negative electrode material is pulverized to obtain a sample powder having a mass Ma. A sample solution is obtained by adding normal hexane to the sample powder. The sample solution is heated at 65 ° C. for 1 hour. Thereafter, the sample solution is filtered to obtain a filtrate. The filtrate is heated at 65 ° C. for 1 hour to give a residue. The residue is weighed, and this is the oil mass Mb. Using the above Ma and Mb, the oil content in the negative electrode material is obtained from the following formula.
Oil content (%) in negative electrode material = (mass Mb / mass Ma) × 100
 また、電解液が注入された鉛蓄電池(即用式鉛蓄電池以外)であっても、未使用の鉛蓄電池である場合は、以下の手順により負極電極材料中のオイルの含有量を求める。
 電解液が注入された鉛蓄電池から負極板を取り出し、水洗により硫酸分を除去し、真空乾燥(大気圧より低い圧力下で乾燥)する。その後、負極板から負極電極材料を分離し、既述の手法で、負極電極材料中のオイル含有量を求める。
Moreover, even if it is a lead storage battery (other than an immediate use lead storage battery) in which electrolyte solution was inject | poured, when it is an unused lead storage battery, content of the oil in negative electrode material is calculated | required with the following procedures.
The negative electrode plate is taken out from the lead-acid battery into which the electrolytic solution has been injected, and the sulfuric acid content is removed by washing with water, followed by vacuum drying (drying under a pressure lower than atmospheric pressure). Thereafter, the negative electrode material is separated from the negative electrode plate, and the oil content in the negative electrode material is determined by the method described above.
 上記の未使用の電池では、負極板中のオイルは電解液中にほとんど流出しない。ただし、電池を長期間放置する場合、電池(負極板)の状態が変わる可能性があるため、上記の未使用の電池は、製造直後(製造から1か月以内)の電池とする。 In the above unused batteries, the oil in the negative electrode plate hardly flows into the electrolyte. However, when the battery is left for a long period of time, the state of the battery (negative electrode plate) may change. Therefore, the unused battery is a battery immediately after manufacture (within one month from manufacture).
(炭素材料)
 炭素材料は、32μm以上の粒子径を有する第1炭素材料と、32μm未満の粒子径を有する第2炭素材料と、を含む。第1炭素材料と第2炭素材料とは、後述する手順で分離され、区別される。
(Carbon material)
The carbon material includes a first carbon material having a particle diameter of 32 μm or more and a second carbon material having a particle diameter of less than 32 μm. A 1st carbon material and a 2nd carbon material are isolate | separated and distinguished in the procedure mentioned later.
 各炭素材料としては、例えば、カーボンブラック、黒鉛、ハードカーボン、ソフトカーボンなどが挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラックなどが例示される。黒鉛としては、黒鉛型の結晶構造を含む炭素材料であればよく、人造黒鉛、天然黒鉛のいずれであってもよい。 Examples of each carbon material include carbon black, graphite, hard carbon, and soft carbon. Examples of carbon black include acetylene black, ketjen black, furnace black, and lamp black. As the graphite, any carbon material including a graphite type crystal structure may be used, and any of artificial graphite and natural graphite may be used.
 なお、第1炭素材料のうち、ラマンスペクトルの1300cm-1以上1350cm-1以下の範囲に現れるピーク(Dバンド)と1550cm-1以上1600cm-1以下の範囲に現れるピーク(Gバンド)との強度比I/Iが、0以上0.9以下であるものを、黒鉛とする。 The intensity of a peak appearing in 1300 cm -1 or 1350 cm -1 or less in the range of the Raman spectrum (D band) and 1550 cm -1 or 1600 cm -1 peak appearing in the range (G band) of the first carbon material Graphite having a ratio I D / I G of 0 or more and 0.9 or less is defined as graphite.
 第1炭素材料および第2炭素材料は、第1炭素材料の粉体抵抗R1に対する、第2炭素材料の粉体抵抗R2の比:R2/R1が15~155となるように、各炭素材料の種類を選択したり、各炭素材料の粒子径、比表面積、および/またはアスペクト比などを調節したりすればよい。 The first carbon material and the second carbon material have a ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 of 15 to 155. The type may be selected or the particle diameter, specific surface area, and / or aspect ratio of each carbon material may be adjusted.
 第1炭素材料としては、例えば、黒鉛、ハードカーボン、およびソフトカーボンからなる群より選択される少なくとも一種が好ましい。特に、第1炭素材料は、少なくとも黒鉛を含むことが好ましい。第2炭素材料は、少なくともカーボンブラックを含むことが好ましい。これらの炭素材料を用いると、粉体抵抗比R2/R1を調節しやすい。 The first carbon material is preferably at least one selected from the group consisting of graphite, hard carbon, and soft carbon, for example. In particular, the first carbon material preferably contains at least graphite. The second carbon material preferably contains at least carbon black. When these carbon materials are used, it is easy to adjust the powder resistance ratio R2 / R1.
 粉体抵抗比R2/R1が15以上155以下である場合、優れたPSOC寿命性能、初期放電性能、および充電受入性能が得られる。粉体抵抗比R2/R1は、好ましくは55以上155以下であり、より好ましくは55以上130以下である。この場合、優れたPSOC寿命性能、初期性能、および充電受入性能がよりバランス良く得られる。 When the powder resistance ratio R2 / R1 is 15 or more and 155 or less, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained. The powder resistance ratio R2 / R1 is preferably 55 or more and 155 or less, more preferably 55 or more and 130 or less. In this case, excellent PSOC life performance, initial performance, and charge acceptance performance can be obtained with a better balance.
 第1炭素材料の比表面積S1に対する、第2炭素材料の比表面積S2の比:S2/S1は、例えば、10以上であり、550以下である。比表面積比S2/S1は、20以上240以下であることが好ましい。この場合、優れたPSOC寿命性能、初期放電性能、および充電受入性能がバランス良く得られる。S2/S1が20以上である場合、各炭素材料の比表面積が適度な範囲であることで、オイルの吸着がさらに抑制される。その結果、初期放電性能がさらに向上する。S2/S1が240以下である場合、硫酸鉛の還元反応が進行し易いため、高いPSOC寿命性能を確保しつつ、充電受入性能がさらに向上する。 The ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is, for example, 10 or more and 550 or less. The specific surface area ratio S2 / S1 is preferably 20 or more and 240 or less. In this case, excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained with a good balance. When S2 / S1 is 20 or more, the adsorption of oil is further suppressed when the specific surface area of each carbon material is in an appropriate range. As a result, the initial discharge performance is further improved. When S2 / S1 is 240 or less, the lead sulfate reduction reaction easily proceeds, so that the charge acceptance performance is further improved while ensuring high PSOC life performance.
 第1炭素材料の平均アスペクト比は、例えば、1以上であり、200以下である。第1炭素材料の平均アスペクト比は、好ましくは1以上であり、さらに好ましくは1.5以上である。また、好ましくは100以下であり、より好ましくは35以下、さらに好ましくは30以下である。これらの上限、下限は任意に組み合わせできる。
第1炭素材料の平均アスペクト比が1.5以上30以下である場合、良好な初期放電性能および充電受入性能を維持しつつ、PSOC寿命性能をさらに高めることができる。これは、平均アスペクト比がこのような範囲である場合、負極電極材料中で導電ネットワークが形成され易くなるとともに、形成された導電ネットワークが維持され易いことによるものと考えられる。
The average aspect ratio of the first carbon material is, for example, 1 or more and 200 or less. The average aspect ratio of the first carbon material is preferably 1 or more, and more preferably 1.5 or more. Moreover, Preferably it is 100 or less, More preferably, it is 35 or less, More preferably, it is 30 or less. These upper and lower limits can be arbitrarily combined.
When the average aspect ratio of the first carbon material is 1.5 or more and 30 or less, PSOC life performance can be further enhanced while maintaining good initial discharge performance and charge acceptance performance. This is considered to be because when the average aspect ratio is in such a range, a conductive network is easily formed in the negative electrode material, and the formed conductive network is easily maintained.
 また、第1炭素材料の平均アスペクト比が1.5以上の場合には、充放電の繰り返しに伴う炭素材料の電解液への流出が抑制されるため、PSOC寿命性能の向上効果をさらに大きくすることができる。また、第1炭素材料の平均アスペクト比が30以下の場合には、活物質粒子同士の密着性を確保し易くなるため、負極板におけるひびの発生が抑制され、寿命性能の低下を抑制できる。 Further, when the average aspect ratio of the first carbon material is 1.5 or more, since the outflow of the carbon material to the electrolytic solution due to repeated charge and discharge is suppressed, the effect of improving the PSOC life performance is further increased. be able to. In addition, when the average aspect ratio of the first carbon material is 30 or less, it becomes easy to ensure the adhesion between the active material particles, so that the generation of cracks in the negative electrode plate is suppressed, and the deterioration of the life performance can be suppressed.
 優れたPSOC寿命性能、初期放電性能、および充電受入性能がバランス良く得られる観点から、第1炭素材料の平均アスペクト比は、より好ましくは5以上30以下、さらに好ましくは10以上30以下である。 The average aspect ratio of the first carbon material is more preferably 5 or more and 30 or less, and further preferably 10 or more and 30 or less, from the viewpoint that excellent PSOC life performance, initial discharge performance, and charge acceptance performance can be obtained in a balanced manner.
 負極電極材料中の第1炭素材料の含有量は、例えば、0.05質量%以上3.0質量%以下である。好ましくは0.1質量%以上であり、さらに好ましくは0.4質量%以上である。また、好ましくは2.0質量%以下であり、さらに好ましくは2.0質量%以下である。これらの上限、下限は任意に組み合わせられる。負極電極材料中の第1炭素材料の含有量が0.05質量%以上である場合、PSOC寿命性能の向上効果をさらに高めることができる。負極電極材料中の第1炭素材料の含有量が3.0質量%以下である場合、活物質粒子同士の密着性を確保し易くなるため、負極板におけるひびの発生が抑制され、高いPSOC寿命性能の確保がさらに容易になる。 The content of the first carbon material in the negative electrode material is, for example, 0.05% by mass or more and 3.0% by mass or less. Preferably it is 0.1 mass% or more, More preferably, it is 0.4 mass% or more. Moreover, Preferably it is 2.0 mass% or less, More preferably, it is 2.0 mass% or less. These upper and lower limits can be combined arbitrarily. When the content of the first carbon material in the negative electrode material is 0.05% by mass or more, the effect of improving the PSOC life performance can be further enhanced. When the content of the first carbon material in the negative electrode material is 3.0% by mass or less, it becomes easy to ensure the adhesion between the active material particles, so that the generation of cracks in the negative electrode plate is suppressed, and the high PSOC lifetime is achieved. Ensuring performance is even easier.
 負極電極材料中の第2炭素材料の含有量は、例えば、0.03質量%以上3.0質量%以下である。好ましくは0.05質量%以上である。また、好ましくは1.0質量%以下であり、さらに好ましくは0.5質量%以下である。これらの上限、下限は任意に組み合わせられる。負極電極材料中の第2炭素材料の含有量が0.03質量%以上である場合、PSOC寿命性能をさらに高めることができる。負極電極材料中の第2炭素材料の含有量が3.0質量%以下である場合、オイルの吸着がさらに抑制されることで、初期放電性能をさらに高めることができる。
 負極電極材料中の各炭素材料の含有量は、後述の(B-1)の手順で求められる。
The content of the second carbon material in the negative electrode material is, for example, 0.03% by mass or more and 3.0% by mass or less. Preferably it is 0.05 mass% or more. Moreover, it is 1.0 mass% or less preferably, More preferably, it is 0.5 mass% or less. These upper and lower limits can be combined arbitrarily. When the content of the second carbon material in the negative electrode material is 0.03% by mass or more, the PSOC life performance can be further improved. When the content of the second carbon material in the negative electrode material is 3.0% by mass or less, the initial discharge performance can be further improved by further suppressing the adsorption of oil.
The content of each carbon material in the negative electrode material is obtained by the procedure (B-1) described later.
 炭素材料の物性の決定方法または分析方法について以下に説明する。
(B)炭素材料の分析
 (B-1)炭素材料の分離
 既化成の正負極板を備えた、電解液を注入する前の鉛蓄電池である場合、当該電池を解体し、乾燥状態の既化成の負極板を取り出す。また、既化成の正負極板を備えた、電解液を注入した鉛蓄電池であって、製造直後(製造から1か月以内)の未使用の鉛蓄電池である場合、当該電池を解体し、既化成の負極板を取り出し、水洗により硫酸を除去し、真空乾燥(大気圧より低い圧力下で乾燥)する。次に、乾燥した負極板から負極電極材料を採取し、粉砕する。5gの粉砕試料に、60質量%濃度の硝酸水溶液30mLを加えて、70℃で加熱する。さらに、エチレンジアミン四酢酸二ナトリウム10g、28質量%濃度のアンモニア水30mL、および水100mLを加えて、加熱を続け、可溶分を溶解させる。このようにして前処理を行なった試料を、ろ過により回収する。回収した試料を、目開き500μmのふるいにかけて、補強材などのサイズが大きな成分を除去して、ふるいを通過した成分を炭素材料として回収する。
A method for determining or analyzing the physical properties of the carbon material will be described below.
(B) Analysis of carbon material (B-1) Separation of carbon material In the case of a lead storage battery equipped with a pre-formed positive and negative electrode plate before injecting the electrolyte, the battery is disassembled and dried Take out the negative electrode plate. In addition, in the case of a lead-acid battery that is provided with a pre-formed positive and negative electrode plate and into which an electrolytic solution has been injected, The chemical conversion negative electrode plate is taken out, and the sulfuric acid is removed by washing with water, followed by vacuum drying (drying under a pressure lower than atmospheric pressure). Next, the negative electrode material is collected from the dried negative electrode plate and pulverized. To 5 g of the crushed sample, 30 mL of a 60% strength by weight aqueous nitric acid solution is added and heated at 70 ° C. Further, 10 g of disodium ethylenediaminetetraacetate, 30 mL of 28 mass% ammonia water, and 100 mL of water are added, and heating is continued to dissolve soluble components. The sample thus pretreated is collected by filtration. The collected sample is passed through a sieve having an opening of 500 μm, components having a large size such as a reinforcing material are removed, and the component that has passed through the sieve is collected as a carbon material.
 回収した炭素材料を、目開き32μmのふるいを用いて湿式にて篩ったときに、ふるいの目を通過せずに、ふるい上に残るものを第1炭素材料とし、ふるいの目を通過するものを第2炭素材料とする。つまり、各炭素材料の粒子径は、ふるいの目開きのサイズを基準とするものである。湿式のふるい分けについては、JIS Z8815:1994を参照できる。 When the collected carbon material is sieved by a wet method using a sieve having an opening of 32 μm, the first carbon material remains on the sieve without passing through the sieve eyes, and passes through the sieve eyes. This is the second carbon material. That is, the particle diameter of each carbon material is based on the size of the sieve opening. For wet sieving, JIS Z8815: 1994 can be referred to.
 具体的には、炭素材料を、目開き32μmのふるい上に載せ、イオン交換水を散水しながら、5分間ふるいを軽く揺らして篩い分けする。ふるい上に残った第1炭素材料は、イオン交換水を流しかけてふるいから回収し、ろ過によりイオン交換水から分離する。ふるいを通過した第2炭素材料は、ニトロセルロース製のメンブランフィルター(目開き0.1μm)を用いてろ過により回収する。回収された第1炭素材料および第2炭素材料は、それぞれ、110℃の温度で2時間乾燥させる。目開き32μmのふるいとしては、JIS Z 8801-1:2006に規定される、公称目開きが32μmであるふるい網を備えるものを使用する。 Specifically, a carbon material is placed on a sieve having an opening of 32 μm, and screened by gently shaking the sieve for 5 minutes while sprinkling ion-exchanged water. The first carbon material remaining on the sieve is collected from the sieve by pouring ion-exchanged water, and separated from the ion-exchanged water by filtration. The 2nd carbon material which passed the sieve is collect | recovered by filtration using the membrane filter (aperture 0.1 micrometer) made from nitrocellulose. The recovered first carbon material and second carbon material are each dried at a temperature of 110 ° C. for 2 hours. As the sieve having a mesh opening of 32 μm, a sieve having a sieve mesh having a nominal mesh opening of 32 μm as defined in JIS Z 8801-1: 2006 is used.
 なお、負極電極材料中の各炭素材料の含有量は、上記の手順で分離した各炭素材料の質量を測り、この質量の、5gの粉砕試料中に占める比率(質量%)を算出することにより求める。 In addition, content of each carbon material in a negative electrode material measures the mass of each carbon material isolate | separated in said procedure, and calculates the ratio (mass%) which occupies for 5 g of pulverized samples of this mass. Ask.
 (B-2)炭素材料の粉体抵抗
 第1炭素材料の粉体抵抗R1および第2炭素材料の粉体抵抗R2は、上記(B-1)の手順で分離された第1炭素材料および第2炭素材料のそれぞれについて、粉体抵抗測定システム((株)三菱化学アナリテック製、MCP-PD51型)に、試料を0.5g投入し、圧力3.18MPa下で、JIS K 7194:1994に準拠した低抵抗抵抗率計((株)三菱化学アナリテック製、ロレスタ-GX MCP-T700)を用いて、四探針法により測定される値である。
(B-2) Powder Resistance of Carbon Material The powder resistance R1 of the first carbon material and the powder resistance R2 of the second carbon material are the first carbon material and the second carbon material separated in the procedure of (B-1). For each of the two carbon materials, 0.5 g of the sample was put into a powder resistance measurement system (manufactured by Mitsubishi Chemical Analytech Co., Ltd., MCP-PD51 type), and under a pressure of 3.18 MPa, JIS K 7194: 1994 This is a value measured by a four-probe method using a compliant low resistance meter (Loresta-GX MCP-T700, manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
 (B-3)炭素材料の比表面積
 第1炭素材料の比表面積S1および第2炭素材料の比表面積S2は、第1炭素材料および第2炭素材料のそれぞれのBET比表面積である。BET比表面積は、上記(B-1)の手順で分離された第1炭素材料および第2炭素材料のそれぞれを用いて、ガス吸着法により、BET式を用いて求められる。各炭素材料は、窒素フロー中、150℃の温度で、1時間加熱することにより前処理される。前処理した炭素材料を用いて、下記の装置にて、下記の条件により、各炭素材料のBET比表面積が求められる。
 測定装置:マイクロメリティックス社製 TriStar3000
 吸着ガス:純度99.99%以上の窒素ガス
 吸着温度:液体窒素沸点温度(77K)
 BET比表面積の計算方法:JIS Z 8830:2013の7.2に準拠
(B-3) Specific surface area of carbon material The specific surface area S1 of the first carbon material and the specific surface area S2 of the second carbon material are the BET specific surface areas of the first carbon material and the second carbon material, respectively. The BET specific surface area is determined by the gas adsorption method using the BET equation using each of the first carbon material and the second carbon material separated by the procedure (B-1). Each carbon material is pretreated by heating for 1 hour at a temperature of 150 ° C. in a nitrogen flow. Using the pretreated carbon material, the BET specific surface area of each carbon material is determined under the following conditions using the following apparatus.
Measuring device: TriStar3000 manufactured by Micromeritics
Adsorption gas: Nitrogen gas with a purity of 99.99% or more Adsorption temperature: Liquid nitrogen boiling point temperature (77K)
BET specific surface area calculation method: Conforms to 7.2 of JIS Z 8830: 2013
 (B-4)第1炭素材料の平均アスペクト比
 上記(B-1)の手順で分離された第1炭素材料を、光学顕微鏡または電子顕微鏡で観察し、任意の粒子を10個以上選択して、その拡大写真を撮影する。次に、各粒子の写真を画像処理して、粒子の最大径d1、およびこの最大径d1と直交する方向における最大径d2を求め、d1をd2で除することにより、各粒子のアスペクト比を求める。得られたアスペクト比を、平均化することにより平均アスペクト比を算出する。
(B-4) Average aspect ratio of first carbon material The first carbon material separated by the procedure of (B-1) is observed with an optical microscope or an electron microscope, and 10 or more arbitrary particles are selected. Take a magnified photo of it. Next, the photograph of each particle is image-processed to determine the maximum diameter d1 of the particle and the maximum diameter d2 in the direction orthogonal to the maximum diameter d1, and the aspect ratio of each particle is determined by dividing d1 by d2. Ask. The average aspect ratio is calculated by averaging the obtained aspect ratios.
 以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
 鉛蓄電池の負極板は、負極電極材料を含む。負極板は、通常、負極格子(負極集電体)と、負極電極材料とで構成できる。なお、負極電極材料は、負極板から負極集電体を除いたものである。
 なお、負極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。負極板がこのような部材(貼付部材)を含む場合には、負極電極材料は、負極集電体および貼付部材を除いたものである。ただし、電極板の厚みはマットを含む厚みとする。セパレータにマットが貼りつけられている場合は、マットの厚みはセパレータの厚みに含まれる。
Hereinafter, although the lead storage battery which concerns on embodiment of this invention is demonstrated for every main component requirement, this invention is not limited to the following embodiment.
(Negative electrode plate)
The negative electrode plate of the lead storage battery includes a negative electrode material. The negative electrode plate can usually be composed of a negative electrode grid (negative electrode current collector) and a negative electrode material. The negative electrode material is obtained by removing the negative electrode current collector from the negative electrode plate.
Note that members such as a mat and pasting paper may be attached to the negative electrode plate. When the negative electrode plate includes such a member (sticking member), the negative electrode material is obtained by removing the negative electrode current collector and the sticking member. However, the thickness of the electrode plate includes the mat. When the mat is attached to the separator, the thickness of the mat is included in the thickness of the separator.
 負極電極材料は、好ましくは酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を含む。充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。負極電極材料は、既述の炭素材料とオイルとを含む。負極電極材料は、さらに、有機防縮剤、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。有機防縮剤には、リグニン(リグニンスルホン酸またはその塩)などが用いられる。 The negative electrode material preferably contains a negative electrode active material (lead or lead sulfate) that develops capacity by oxidation-reduction reaction. The negative electrode active material in the charged state is spongy lead, but the unformed negative electrode plate is usually produced using lead powder. The negative electrode material includes the above-described carbon material and oil. The negative electrode material may further contain an organic shrinking agent, barium sulfate, and the like, and may contain other additives as necessary. Lignin (lignin sulfonic acid or a salt thereof) or the like is used as the organic shrinking agent.
 負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましい。一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.5質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。 The content of the organic shrinking agent contained in the negative electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and further preferably 0.05% by mass or more. On the other hand, 1.0 mass% or less is preferable, 0.8 mass% or less is more preferable, and 0.5 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined. Here, the content of the organic shrinking agent contained in the negative electrode material is a content in the negative electrode material collected by a method described later from a lead-acid battery in a fully formed state.
負極電極材料中の硫酸バリウムの含有量は、例えば0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上でもよく、1.0質量%以上でもよく、1.3質量%以上でもよい。一方、3.0質量%以下が好ましく、2.5質量%以下がより好ましく、2質量%以下が更に好ましい。これらの下限値と上限値とは任意に組み合わせることができる。 The content of barium sulfate in the negative electrode material is, for example, preferably 0.1% by mass or more, more preferably 0.2% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, It may be 1.3% by mass or more. On the other hand, 3.0 mass% or less is preferable, 2.5 mass% or less is more preferable, and 2 mass% or less is still more preferable. These lower limit values and upper limit values can be arbitrarily combined.
 以下、負極電極材料に含まれる有機防縮剤、および硫酸バリウムの定量方法について記載する。定量分析に先立ち、化成後の鉛蓄電池を満充電してから解体して分析対象の負極板を入手する。入手した負極板に水洗と乾燥とを施して負極板中の電解液を除く。次に、負極板から負極電極材料を分離して未粉砕の初期試料を入手する。 Hereinafter, the organic shrinkage agent contained in the negative electrode material and the determination method of barium sulfate will be described. Prior to quantitative analysis, the formed lead-acid battery is fully charged and then disassembled to obtain the negative electrode plate to be analyzed. The obtained negative electrode plate is washed with water and dried to remove the electrolyte in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate, and an unground initial sample is obtained.
[有機防縮剤]
 未粉砕の初期試料を粉砕し、粉砕された初期試料を1mol/LのNaOH水溶液に浸漬し、有機防縮剤を抽出する。抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で除く。得られた濾液(以下、分析対象濾液とも称する。)を脱塩した後、濃縮し、乾燥すれば、有機防縮剤の粉末(以下、分析対象粉末とも称する。)が得られる。脱塩は、濾液を透析チューブに入れて蒸留水中に浸して行えばよい。
[Organic shrinkage agent]
The unpulverized initial sample is pulverized, and the pulverized initial sample is immersed in a 1 mol / L NaOH aqueous solution to extract the organic antishrink agent. Insoluble components are removed by filtration from the aqueous NaOH solution containing the extracted organic shrinking agent. The obtained filtrate (hereinafter also referred to as “analyte filtrate”) is desalted, concentrated and dried to obtain an organic shrunk agent powder (hereinafter also referred to as “analyte powder”). Desalting may be performed by placing the filtrate in a dialysis tube and immersing it in distilled water.
 分析対象粉末の赤外分光スペクトル、分析対象粉末を蒸留水等に溶解して得られる溶液の紫外可視吸収スペクトル、分析対象粉末を重水等の溶媒に溶解して得られる溶液のNMRスペクトル、物質を構成している個々の化合物の情報を得ることができる熱分解GC-MSなどから情報を得ることで、有機防縮剤を特定する。 Infrared spectrum of the analysis target powder, UV-visible absorption spectrum of the solution obtained by dissolving the analysis target powder in distilled water, etc., NMR spectrum of the solution obtained by dissolving the analysis target powder in a solvent such as heavy water, By obtaining information from pyrolysis GC-MS or the like that can obtain information on the individual compounds constituting the organic compound, the organic shrinking agent is specified.
 上記分析対象濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量する。分析対象の有機防縮剤の構造式の厳密な特定ができず、同一の有機防縮剤の検量線を使用できない場合は、分析対象の有機防縮剤と類似の紫外可視吸収スペクトル、赤外分光スペクトル、NMRスペクトルなどを示す、入手可能な有機防縮剤を使用して検量線を作成する。 Measure the UV-visible absorption spectrum of the above filtrate. The content of the organic shrinkage agent in the negative electrode material is quantified using the spectral intensity and a calibration curve prepared in advance. If the structural formula of the organic pre-shrinking agent to be analyzed cannot be strictly specified and the same organic pre-shrinking agent calibration curve cannot be used, the UV-visible absorption spectrum, infrared spectroscopic spectrum similar to the organic pre-shrinking agent to be analyzed, A calibration curve is created using an available organic shrinkage agent, such as an NMR spectrum.
[硫酸バリウム]
 未粉砕の初期試料を粉砕し、粉砕された初期試料10gに対し、(1+2)硝酸を50ml加え、約20分加熱し、鉛成分を硝酸鉛として溶解させる。次に、硝酸鉛を含む溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
[Barium sulfate]
The unpulverized initial sample is pulverized, and 50 ml of (1 + 2) nitric acid is added to 10 g of the pulverized initial sample and heated for about 20 minutes to dissolve the lead component as lead nitrate. Next, the solution containing lead nitrate is filtered to separate carbonaceous material, barium sulfate and other solid contents.
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から炭素質材料および硫酸バリウム以外の成分(例えば補強材)を除去する。次に、分散液に対し、予め質量を測定したメンブレンフィルターを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルターを110℃の乾燥器で乾燥する。濾別された試料は、炭素質材料と硫酸バリウムとの混合試料である。乾燥後の混合試料とメンブレンフィルターとの合計質量からメンブレンフィルターの質量を差し引いて、混合試料の質量(A)を測定する。その後、乾燥後の混合試料をメンブレンフィルターとともに坩堝に入れ、700℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量(B)を求める。 After the obtained solid content is dispersed in water to obtain a dispersion, components other than the carbonaceous material and barium sulfate (for example, reinforcing material) are removed from the dispersion using a sieve. Next, the dispersion liquid is subjected to suction filtration using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. The sample separated by filtration is a mixed sample of a carbonaceous material and barium sulfate. The mass (A) of the mixed sample is measured by subtracting the mass of the membrane filter from the total mass of the mixed sample and the membrane filter after drying. Thereafter, the mixed sample after drying is put into a crucible together with a membrane filter, and ashed at 700 ° C. or higher. The remaining residue is barium oxide. The mass (B) of barium sulfate is determined by converting the mass of barium oxide into the mass of barium sulfate.
 負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。 The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include an expanding process and a punching process.
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。 The lead alloy used for the negative electrode current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These lead or lead alloy may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element.
 負極板は、負極集電体に負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。化成により、海綿状鉛が生成する。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成する際には、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode paste into a negative electrode current collector, aging and drying to produce an unformed negative electrode plate, and then forming an unformed negative electrode plate. Sponge-like lead is generated by chemical conversion. The negative electrode paste is prepared by adding water and sulfuric acid to a lead powder, an organic shrinking agent, and various additives as necessary, and kneading them. When aging, it is preferable to age the unformed negative electrode plate at a temperature higher than room temperature and high humidity.
(正極板)
 鉛蓄電池の正極板には、ペースト式とクラッド式がある。
 ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
(Positive electrode plate)
There are a paste type and a clad type in the positive electrode plate of the lead storage battery.
The paste type positive electrode plate includes a positive electrode current collector and a positive electrode material. The positive electrode material is held by the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or lead alloy sheet.
 クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金を連結する集電部と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。芯金と芯金を連結する集電部とを合わせて正極集電体と呼ぶ。 The clad positive electrode plate includes a plurality of porous tubes, a core metal inserted into each tube, a current collector for connecting the metal cores, and a positive electrode material filled in the tube in which the metal core is inserted And a joint for connecting a plurality of tubes. The metal core and the current collector that connects the metal cores are collectively referred to as a positive electrode current collector.
 正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。芯金には、Pb-Ca系合金、Pb-Sb系合金などが用いられる。 As the lead alloy used for the positive electrode current collector, a Pb—Ca alloy and a Pb—Ca—Sn alloy are preferable in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and a plurality of alloy layers may be provided. For the core metal, a Pb—Ca alloy, a Pb—Sb alloy, or the like is used.
 正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。 The positive electrode material includes a positive electrode active material (lead dioxide or lead sulfate) that develops capacity by oxidation-reduction reaction. The positive electrode material may contain other additives as necessary.
 未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製される。熟成する際には、室温より高温かつ高湿度で、未化成の正極板を熟成させることが好ましい。 An unformed paste-type positive electrode plate is obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying in the same manner as in the case of a negative electrode plate. Thereafter, an unformed positive electrode plate is formed. The positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid. When aging, it is preferable to age the unformed positive electrode plate at a temperature higher than room temperature and high humidity.
 クラッド式正極板は、芯金が挿入されたチューブに鉛粉または、スラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。 The clad type positive electrode plate is formed by filling a tube in which a metal core is inserted with lead powder or slurry-like lead powder and joining a plurality of tubes in a row.
(セパレータ)
 負極板と正極板との間には、通常、セパレータが配置される。セパレータには、不織布、微多孔膜などが用いられる。負極板と正極板との間に介在させるセパレータの厚さや枚数は、極間距離に応じて選択すればよい。
 不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする。例えば、セパレータの60質量%以上が繊維で形成されている。繊維としては、ガラス繊維、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維などを用いることができる。中でも、ガラス繊維が好ましい。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。
(Separator)
Usually, a separator is disposed between the negative electrode plate and the positive electrode plate. A nonwoven fabric, a microporous film, etc. are used for a separator. The thickness and number of separators interposed between the negative electrode plate and the positive electrode plate may be selected according to the distance between the electrodes.
The nonwoven fabric is a mat in which fibers are entangled without being woven, and mainly includes fibers. For example, 60% by mass or more of the separator is formed of fibers. As the fiber, glass fiber, polymer fiber (polyolefin fiber, acrylic fiber, polyester fiber such as polyethylene terephthalate fiber), pulp fiber, or the like can be used. Among these, glass fiber is preferable. The nonwoven fabric may contain components other than fibers, such as acid-resistant inorganic powder, a polymer as a binder, and the like.
 一方、微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末および/またはオイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。微多孔膜は、耐酸性を有する材料で構成することが好ましく、ポリマー成分を主体とするものが好ましい。ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。 On the other hand, the microporous membrane is a porous sheet mainly composed of components other than the fiber component. For example, after a composition containing a pore forming agent (polymer powder and / or oil) is extruded into a sheet shape, It is obtained by removing the agent to form pores. The microporous membrane is preferably composed of a material having acid resistance, and is preferably composed mainly of a polymer component. As the polymer component, polyolefins such as polyethylene and polypropylene are preferable.
 セパレータは、例えば、不織布のみで構成してもよく、微多孔膜のみで構成してもよい。また、セパレータは、必要に応じて、不織布と微多孔膜との積層物、異種または同種の素材を貼り合わせた物、または異種または同種の素材において凹凸をかみ合わせた物などであってもよい。 The separator may be composed of, for example, only a non-woven fabric or a microporous film. In addition, the separator may be a laminate of a nonwoven fabric and a microporous film, a product obtained by bonding different types or the same types of materials, or a type obtained by engaging unevenness in different types or the same types of materials, if necessary.
(電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。化成後で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10~1.35g/cm3であり、1.20~1.35g/cm3であることが好ましい。
(Electrolyte)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled as necessary. The specific gravity at 20 ° C. of the electrolyte in a fully charged lead storage battery after formation is, for example, 1.10 to 1.35 g / cm 3 , and preferably 1.20 to 1.35 g / cm 3 .
 一般的には、未化成の正負極板を用いて極板群を構成し、電槽内に収納した後、電槽内に電解液を注入し、未化成の正負極板を化成する。一方、即用式鉛蓄電池の場合、既化成の正負極板を用いて極板群を構成し、電槽内に収納する。電池保管時には電槽内で既化成の正負極板が乾燥状態で保存されているので、電槽内に電解液を注入して電池を使用する。負極電極材料に含まれるオイルにより、電解液を注入するまでの保存期間に生じる負極活物質の酸化劣化が抑制される。 Generally, after forming an electrode plate group using unformed positive and negative electrode plates and storing them in a battery case, an electrolyte is injected into the battery case to form an unformed positive and negative electrode plate. On the other hand, in the case of a ready-to-use lead-acid battery, an electrode plate group is configured using positive and negative electrodes formed in advance, and stored in a battery case. Since the positive and negative electrode plates already formed in the battery case are stored in a dry state when the battery is stored, the battery is used by injecting an electrolyte into the battery case. The oil contained in the negative electrode material suppresses oxidative degradation of the negative electrode active material that occurs during the storage period until the electrolyte is injected.
 図1に、本発明の実施形態に係る鉛蓄電池の一例の外観を示す。
 鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で密閉されている。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
In FIG. 1, the external appearance of an example of the lead acid battery which concerns on embodiment of this invention is shown.
The lead storage battery 1 includes a battery case 12 that houses an electrode plate group 11 and an electrolytic solution (not shown). The battery case 12 is partitioned into a plurality of cell chambers 14 by partition walls 13. Each cell chamber 14 accommodates one electrode group 11. The opening of the battery case 12 is sealed with a lid 15 having a negative electrode terminal 16 and a positive electrode terminal 17. The lid 15 is provided with a liquid plug 18 for each cell chamber. At the time of refilling, the refilling liquid is replenished by removing the liquid stopper 18. The liquid spout 18 may have a function of discharging gas generated in the cell chamber 14 to the outside of the battery.
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状セパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2の耳部2aを並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3の耳部3aを並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。 The electrode plate group 11 is configured by laminating a plurality of negative plates 2 and positive plates 3 with a separator 4 interposed therebetween. Here, although the bag-shaped separator 4 which accommodates the negative electrode plate 2 is shown, the form of a separator is not specifically limited. In the cell chamber 14 located at one end of the battery case 12, the negative electrode shelf 6 that connects the ears 2 a of the plurality of negative electrode plates 2 in parallel is connected to the through connection body 8, and the ears of the plurality of positive electrode plates 3. A positive electrode shelf 5 that connects 3 a in parallel is connected to the positive pole 7. The positive pole 7 is connected to a positive terminal 17 outside the lid 15. In the cell chamber 14 located at the other end of the battery case 12, the negative electrode column 9 is connected to the negative electrode shelf 6, and the through connector 8 is connected to the positive electrode shelf 5. The negative pole 9 is connected to the negative terminal 16 outside the lid 15. Each through-connector 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plate groups 11 of the adjacent cell chambers 14 in series.
 本発明の一側面に係る鉛蓄電池用負極板を以下にまとめて記載する。
 (1)本発明の一側面は、鉛蓄電池であって、
 前記鉛蓄電池は、負極板と、正極板と、を備え、
 前記負極板は、炭素材料とオイルとを含有する負極電極材料を含み、
 前記炭素材料は、32μm以上の粒子径を有する第1炭素材料と、32μm未満の粒子径を有する第2炭素材料と、を含み、
 前記第1炭素材料の粉体抵抗R1に対する、前記第2炭素材料の粉体抵抗R2の比:R2/R1が、15以上155以下であり、
 前記負極電極材料中の前記オイルの含有量は、0.05質量%以上1質量%以下である、鉛蓄電池である。
The negative electrode plate for a lead storage battery according to one aspect of the present invention will be described collectively below.
(1) One aspect of the present invention is a lead acid battery,
The lead storage battery includes a negative electrode plate and a positive electrode plate,
The negative electrode plate includes a negative electrode material containing a carbon material and oil,
The carbon material includes a first carbon material having a particle diameter of 32 μm or more, and a second carbon material having a particle diameter of less than 32 μm,
The ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 is 15 or more and 155 or less,
The content of the oil in the negative electrode material is a lead storage battery that is 0.05% by mass or more and 1% by mass or less.
 (2)上記(1)において、前記第1炭素材料の比表面積S1に対する、前記第2炭素材料の比表面積S2の比:S2/S1は、20以上であることが好ましい。 (2) In the above (1), the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is preferably 20 or more.
 (3)上記(1)または(2)において、前記第1炭素材料の比表面積S1に対する、前記第2炭素材料の比表面積S2の比:S2/S1は、240以下であることが好ましい。 (3) In the above (1) or (2), the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is preferably 240 or less.
 (4)上記(1)~(3)のいずれか1つにおいて、前記第1炭素材料の平均アスペクト比は、1.5以上であることが好ましい。
 (5)上記(1)~(4)のいずれか1つにおいて、前記第1炭素材料の平均アスペクト比は、30以下であることが好ましい。
(4) In any one of the above (1) to (3), the average aspect ratio of the first carbon material is preferably 1.5 or more.
(5) In any one of the above (1) to (4), the average aspect ratio of the first carbon material is preferably 30 or less.
 (6)上記(1)~(5)のいずれか1つにおいて、前記負極電極材料中の前記第1炭素材料の含有量は、0.05質量%以上であることが好ましい。
 (7)上記(1)~(6)のいずれか1つにおいて、前記負極電極材料中の前記第1炭素材料の含有量は、3.0質量%以下であることが好ましい。
 (8)上記(1)~(7)のいずれか1つにおいて、前記負極電極材料中の前記第2炭素材料の含有量は、0.03質量%以上であることが好ましい。
 (9)上記(1)~(8)のいずれか1つにおいて、前記負極電極材料中の前記第2炭素材料の含有量は、1.0質量%以下であることが好ましい。
 (10)上記(1)~(9)のいずれか1つにおいて、前記第1炭素材料は、少なくとも黒鉛を含み、前記第2炭素材料は、少なくともカーボンブラックを含むことが好ましい。
(6) In any one of the above (1) to (5), the content of the first carbon material in the negative electrode material is preferably 0.05% by mass or more.
(7) In any one of the above (1) to (6), the content of the first carbon material in the negative electrode material is preferably 3.0% by mass or less.
(8) In any one of the above (1) to (7), the content of the second carbon material in the negative electrode material is preferably 0.03% by mass or more.
(9) In any one of the above (1) to (8), the content of the second carbon material in the negative electrode material is preferably 1.0% by mass or less.
(10) In any one of the above (1) to (9), it is preferable that the first carbon material includes at least graphite, and the second carbon material includes at least carbon black.
 以下に、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
《鉛蓄電池A1》
(1)負極板の作製
 鉛粉、水、希硫酸、硫酸バリウム、有機防縮剤、炭素材料、およびオイルを混合して、負極ペーストを得る。負極ペーストを、Pb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の負極板を得る。炭素材料としては、カーボンブラック(平均粒子径D50:40nm)および黒鉛(平均粒子径D50:110μm)を用いる。未化成の負極板を化成し、その後、水洗および乾燥して、既化成の負極板を得る。
<< Lead storage battery A1 >>
(1) Preparation of negative electrode plate Lead powder, water, dilute sulfuric acid, barium sulfate, organic anti-shrink agent, carbon material, and oil are mixed to obtain a negative electrode paste. The negative electrode paste is filled in a network portion of an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried to obtain an unformed negative electrode plate. As the carbon material, carbon black (average particle diameter D 50 : 40 nm) and graphite (average particle diameter D 50 : 110 μm) are used. An unformed negative electrode plate is formed, then washed with water and dried to obtain an already formed negative electrode plate.
 オイルには、パラフィン系オイルを用いる。オイルは、既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量が0.5質量%となるように、添加量を調整して、負極ペーストに配合する。なお、添加量の調整は、化成およびその後の水洗工程で、負極板からオイルが少量流出することを考慮して行う。 パ ラ フ ィ ン Use paraffin oil as the oil. The oil is blended in the negative electrode paste by adjusting the addition amount so that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is 0.5% by mass. The addition amount is adjusted in consideration of a small amount of oil flowing out from the negative electrode plate in the chemical conversion and subsequent water washing steps.
(2)正極板の作製
 鉛粉と、水と、硫酸とを混練させて、正極ペーストを作製する。正極ペーストを、Pb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得る。未化成の正極板を化成し、その後、水洗および乾燥して、既化成の正極板を得る。
(2) Preparation of positive electrode plate A positive electrode paste is prepared by kneading lead powder, water, and sulfuric acid. The positive electrode paste is filled in a network portion of an expanded lattice made of a Pb—Ca—Sn alloy, and aged and dried to obtain an unformed positive electrode plate. An unformed positive electrode plate is formed, and then washed and dried to obtain an already formed positive electrode plate.
(3)鉛蓄電池の作製
 既化成の負極板を、ポリエチレン製の微多孔膜で形成された袋状セパレータに収容し、セル当たり既化成の負極板5枚と既化成の正極板4枚とで極板群を形成する。極板群をポリプロピレン製の電槽に挿入し、公称電圧が12Vの鉛蓄電池を作製する。オイルによる負極活物質の酸化劣化の抑制効果(初期放電性能)を評価するため、作製した電池を1ヵ月保管する。その後、電池内に電解液を注入し、0.2CAで2時間補充電する。鉛蓄電池の公称容量は30Ah(5時間率)である。
(3) Production of lead-acid battery The pre-formed negative electrode plate is accommodated in a bag-like separator formed of a polyethylene microporous film, and is composed of five pre-formed negative electrode plates and four pre-formed positive electrode plates per cell. An electrode plate group is formed. The electrode plate group is inserted into a battery case made of polypropylene to produce a lead storage battery having a nominal voltage of 12V. In order to evaluate the effect of suppressing the oxidative deterioration of the negative electrode active material by oil (initial discharge performance), the produced battery is stored for one month. Thereafter, an electrolytic solution is injected into the battery, and supplementary charging is performed at 0.2 CA for 2 hours. The nominal capacity of the lead acid battery is 30 Ah (5 hour rate).
 本鉛蓄電池では、負極電極材料中の第1炭素材料の含有量は1.5質量%とし、第2炭素材料の含有量は0.3質量%とする。ただし、これらの値は、作製された鉛蓄電池の負極板を取り出し、既述の手順で、負極電極材料に含まれる炭素材料を第1炭素材料と第2炭素材料とに分離したときに、負極電極材料(100質量%)中に含まれる各炭素材料の含有量として求められる値である。また、R2/R1比は57とする。粉体抵抗R2/R1比も既述の手順で求められる。さらに、既述の手順で求められる比表面積比S2/S1は30である。既述の手順で求められる第1炭素材料の平均アスペクト比は23である。 In this lead-acid battery, the content of the first carbon material in the negative electrode material is 1.5 mass%, and the content of the second carbon material is 0.3 mass%. However, these values are obtained when the negative electrode plate of the produced lead storage battery is taken out and the carbon material contained in the negative electrode material is separated into the first carbon material and the second carbon material by the procedure described above. It is a value calculated | required as content of each carbon material contained in an electrode material (100 mass%). The ratio R2 / R1 is 57. The powder resistance R2 / R1 ratio is also obtained by the procedure described above. Furthermore, the specific surface area ratio S2 / S1 obtained by the above-described procedure is 30. The average aspect ratio of the first carbon material determined by the procedure described above is 23.
《鉛蓄電池A2》
 炭素材料として、カーボンブラック(平均粒子径D50:40nm)のみを用い、第2炭素材料の含有量は0.3質量%とする。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<Lead storage battery A2>
As the carbon material, only carbon black (average particle diameter D 50 : 40 nm) is used, and the content of the second carbon material is 0.3% by mass. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A3》
 炭素材料として、カーボンブラック(平均粒子径D50:40nm)のみを用い、第2炭素材料の含有量は1.0質量%とする。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<Lead storage battery A3>
Only carbon black (average particle diameter D 50 : 40 nm) is used as the carbon material, and the content of the second carbon material is 1.0 mass%. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A4》
 炭素材料として、カーボンブラック(平均粒子径D50:40nm)のみを用い、第2炭素材料の含有量は1.0質量%とする。既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量は1質量%とする。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<< Lead storage battery A4 >>
Only carbon black (average particle diameter D 50 : 40 nm) is used as the carbon material, and the content of the second carbon material is 1.0 mass%. The content of oil contained in 100% by mass of the negative electrode material of the pre-formed negative electrode plate is 1% by mass. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A5》
 炭素材料として、カーボンブラック(平均粒子径D50:40nm)のみを用い、第2炭素材料の含有量は0.3質量%とする。負極ペーストにオイルを添加しない。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<Lead storage battery A5>
As the carbon material, only carbon black (average particle diameter D 50 : 40 nm) is used, and the content of the second carbon material is 0.3% by mass. Do not add oil to the negative electrode paste. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A6》
 炭素材料として、カーボンブラック(平均粒子径D50:40nm)のみを用い、第2炭素材料の含有量は1.0質量%とする。負極ペーストにオイルを添加しない。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<Lead storage battery A6>
Only carbon black (average particle diameter D 50 : 40 nm) is used as the carbon material, and the content of the second carbon material is 1.0 mass%. Do not add oil to the negative electrode paste. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A7》
 炭素材料として、黒鉛(平均粒子径D50:110μm)のみを用い、第1炭素材料の含有量は1.5質量%とする。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
<Lead storage battery A7>
As the carbon material, only graphite (average particle diameter D 50 : 110 μm) is used, and the content of the first carbon material is 1.5 mass%. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
《鉛蓄電池A8》
 炭素材料として、黒鉛(平均粒子径D50:110μm)のみを用い、第1炭素材料の含有量は1.5質量%とする。負極ペーストにオイルを添加しない。上記以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製する。
 各鉛蓄電池について、以下の評価を行う。
<Lead storage battery A8>
As the carbon material, only graphite (average particle diameter D 50 : 110 μm) is used, and the content of the first carbon material is 1.5 mass%. Do not add oil to the negative electrode paste. Except for the above, a lead storage battery is fabricated in the same manner as the lead storage battery A1.
The following evaluation is performed for each lead-acid battery.
[評価1:PSOC寿命性能]
 25℃で、第1電流で59秒間の第1放電と、第2電流で1秒間の第2放電とを行った後、14Vの電圧で60秒間の充電(最大電流100A)を行う。第1電流は、0.05CAに18.3を乗じた値とする。第2電流は300Aとする。これを1サイクルとして充放電を繰り返し行う。3600サイクル毎に40~48時間休止する。第2放電における放電終期の端子電圧を測定し、端子電圧が7.2V未満となった時を寿命に至ったと判断し、その時のサイクル数を求める。鉛蓄電池A2の結果を100としたときの比率で表す。
[Evaluation 1: PSOC life performance]
After performing a first discharge for 59 seconds with a first current and a second discharge for 1 second with a second current at 25 ° C., a charge for 60 seconds (maximum current 100 A) is performed with a voltage of 14V. The first current is a value obtained by multiplying 0.05CA by 18.3. The second current is 300A. Charging / discharging is repeated with this as one cycle. Pause for 40-48 hours every 3600 cycles. The terminal voltage at the end of discharge in the second discharge is measured, and when the terminal voltage becomes less than 7.2 V, it is determined that the life has been reached, and the number of cycles at that time is obtained. It represents with the ratio when the result of lead acid battery A2 is set to 100.
[評価2:初期放電性能]
 25℃で、端子電圧が単セル当たり1.7Vに到達するまで0.2CAで放電し、このときの放電時間を求める。この放電時間を初期放電性能の指標とする。鉛蓄電池A2の結果を100としたときの比率で表す。
[Evaluation 2: Initial discharge performance]
At 25 ° C., discharge is performed at 0.2 CA until the terminal voltage reaches 1.7 V per unit cell, and the discharge time at this time is determined. This discharge time is used as an index of initial discharge performance. It represents with the ratio when the result of lead acid battery A2 is set to 100.
[評価3:回生(充電)受入性能]
 満充電状態の鉛蓄電池を、25℃で、0.2CAで、公称容量の10%分だけ放電した後、12時間室温で放置する。次いで、単セル当たり2.42Vで定電圧充電し、このときの最初の10秒間の電気量を求め、回生受入性能の指標とする。鉛蓄電池A2の結果を100としたときの比率で表す。
 評価結果を表1に示す。
[Evaluation 3: Regeneration (charging) acceptance performance]
A fully charged lead acid battery is discharged at 25 ° C., 0.2 CA, and 10% of its nominal capacity, and then left at room temperature for 12 hours. Next, the battery is charged at a constant voltage of 2.42 V per unit cell, and the amount of electricity for the first 10 seconds at this time is obtained and used as an index of regenerative acceptance performance. It represents with the ratio when the result of lead acid battery A2 is set to 100.
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2炭素材料のみの場合には、第2炭素材料の含有量が0.3質量%の場合と比べて、第2炭素材料の含有量が1.0質量%と多くなると、オイルを用いても、初期放電性能が低下する(A2、A3)。それに対して、第1炭素材料と第2炭素材料とを併用する場合に、粉体抵抗比R2/R1を特定の範囲とすることで、PSOC寿命性能が得られるとともに、0.05質量%以上1.0質量%以下の少量のオイル添加量で優れた初期放電性能が得られる(A1)。オイル添加量が1.0質量%以下と少量でよいため、高い回生受入性能が確保される(A1)。 In the case of only the second carbon material, when the content of the second carbon material increases to 1.0% by mass compared to the case where the content of the second carbon material is 0.3% by mass, oil is used. However, the initial discharge performance is reduced (A2, A3). On the other hand, when the first carbon material and the second carbon material are used in combination, by setting the powder resistance ratio R2 / R1 within a specific range, PSOC life performance can be obtained and 0.05% by mass or more Excellent initial discharge performance can be obtained with a small amount of oil addition of 1.0% by mass or less (A1). Since the oil addition amount may be as small as 1.0% by mass or less, high regeneration acceptance performance is ensured (A1).
 第1炭素材料のみの場合には、第2炭素材料のみの場合と比べて、PSOC寿命性能が向上するが、初期放電性能および回生受入性能が低下する(A2、A7)。オイルを添加しない場合、初期放電性能が大幅に低下する(A5、A6、A8)。第2炭素材料のみの場合には、オイルの含有量が0.5質量%の場合と比べて、オイルの含有量が1.0質量%と多くなると、初期放電性能が改善するが、回生受入性能が低下する(A3、A4)。 In the case of only the first carbon material, the PSOC life performance is improved as compared with the case of only the second carbon material, but the initial discharge performance and the regenerative acceptance performance are reduced (A2, A7). When no oil is added, the initial discharge performance is greatly reduced (A5, A6, A8). In the case of only the second carbon material, the initial discharge performance improves when the oil content increases to 1.0% by mass, compared with the case where the oil content is 0.5% by mass. Performance decreases (A3, A4).
《鉛蓄電池B1~B5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を11とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
《Lead storage batteries B1 to B5》
In the same manner as lead acid battery A1, except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 11, A storage battery is made and evaluated.
《鉛蓄電池C1~C5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を15とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
《Lead storage batteries C1 to C5》
In the same manner as lead acid battery A1, except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is set to the value shown in Table 2 and the powder resistance ratio R2 / R1 is set to 15. A storage battery is made and evaluated.
《鉛蓄電池D1》
 粉体抵抗比R2/R1を32とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
<< Lead storage battery D1 >>
A lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is 32.
《鉛蓄電池E1~E5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を57とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
《Lead storage batteries E1 to E5》
In the same manner as lead acid battery A1, except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2, and the powder resistance ratio R2 / R1 is 57, lead A storage battery is made and evaluated.
《鉛蓄電池F1》
 粉体抵抗比R2/R1を83とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
《Lead battery F1》
A lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is 83.
《鉛蓄電池G1~G5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を103とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
<Lead storage batteries G1-G5>
Lead is the same as lead storage battery A1 except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 103. A storage battery is made and evaluated.
《鉛蓄電池H1》
 粉体抵抗比R2/R1を127とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
《Lead battery H1》
A lead storage battery is produced and evaluated in the same manner as the lead storage battery A1, except that the powder resistance ratio R2 / R1 is set to 127.
《鉛蓄電池I1~I5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を152とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
<Lead storage batteries I1-I5>
Lead is the same as lead acid battery A1 except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 152. A storage battery is made and evaluated.
《鉛蓄電池J1~J5》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表2に示す値とし、粉体抵抗比R2/R1を169とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
 評価結果を表2に示す。なお、表2中の鉛蓄電池E3は、鉛蓄電池A1である。
<Lead storage batteries J1-J5>
In the same manner as lead acid battery A1, except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 2 and the powder resistance ratio R2 / R1 is 169, lead A storage battery is made and evaluated.
The evaluation results are shown in Table 2. In addition, the lead storage battery E3 in Table 2 is the lead storage battery A1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 オイル含有量が0.05質量%以上1.0質量%以下の範囲内、かつ、粉体抵抗比R2/R1が15以上155以下の範囲内では、優れたPSOC寿命性能、初期放電性能、および回生受入性能が得られる(C2~C4、D1、E2~E4、F1、G2~G4、H1、I2~I4)。オイル含有量は0.05質量%以上0.5質量%以下の範囲内では、PSOC寿命性能および回生受入性能が、さらに向上する(C2、C3、E2、E3、G2、G3、I2、I3)。オイル含有量が0.5質量%である実施例を対比すると、粉体抵抗比R2/R1が55以上130以下の範囲内では、PSOC寿命性能、初期放電性能、および回生受入性能がよりバランス良く得られる(E3、F1、G3、H1)。 When the oil content is in the range of 0.05 to 1.0% by mass and the powder resistance ratio R2 / R1 is in the range of 15 to 155, excellent PSOC life performance, initial discharge performance, and Regenerative acceptance performance is obtained (C2-C4, D1, E2-E4, F1, G2-G4, H1, I2-I4). When the oil content is in the range of 0.05% by mass or more and 0.5% by mass or less, PSOC life performance and regenerative acceptance performance are further improved (C2, C3, E2, E3, G2, G3, I2, I3). . In contrast to the example in which the oil content is 0.5% by mass, the PSOC life performance, initial discharge performance, and regenerative acceptance performance are more balanced when the powder resistance ratio R2 / R1 is in the range of 55 to 130. Is obtained (E3, F1, G3, H1).
《鉛蓄電池K1~K13》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表3に示す値とし、比表面積比S2/S1を表3に示す値とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
 評価結果を表3に示す。なお、表3中の鉛蓄電池K3は、鉛蓄電池A1である。
<Lead storage batteries K1-K13>
Except that the content of oil contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 3, and the specific surface area ratio S2 / S1 is the value shown in Table 3, the same as the lead storage battery A1. Then, make and evaluate a lead-acid battery.
The evaluation results are shown in Table 3. In addition, the lead storage battery K3 in Table 3 is the lead storage battery A1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比表面積比S2/S1が20以上240以下の範囲内では、初期放電性能を維持しつつ、PSOC寿命性能および回生受入性能がさらに向上する(K3~K11)。 When the specific surface area ratio S2 / S1 is in the range of 20 to 240, the PSOC life performance and the regenerative acceptance performance are further improved while maintaining the initial discharge performance (K3 to K11).
《鉛蓄電池L1~L13》
 既化成の負極板の負極電極材料100質量%に含まれるオイルの含有量を表4に示す値とし、第1炭素材料の平均アスペクト比を表4に示す値とする以外は、鉛蓄電池A1と同様にして、鉛蓄電池を作製し、評価する。
 評価結果を表4に示す。表4中の鉛蓄電池L8は、鉛蓄電池A1である。
<Lead storage batteries L1 to L13>
The lead-acid battery A1 and the lead-acid battery A1 except that the oil content contained in 100% by mass of the negative electrode material of the formed negative electrode plate is the value shown in Table 4 and the average aspect ratio of the first carbon material is the value shown in Table 4. Similarly, a lead storage battery is produced and evaluated.
The evaluation results are shown in Table 4. Lead storage battery L8 in Table 4 is lead storage battery A1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 第1炭素材料の平均アスペクト比が1.5以上30以下の範囲内では、初期放電性能を維持しつつ、PSOC寿命性能および回生受入性能がさらに向上する(L3~L11)。オイル含有量が0.5質量%の鉛蓄電池を対比すると、第1炭素材料の平均アスペクト比が5以上30以下の範囲内では、PSOC寿命性能、初期放電性能、および充電受入性能がよりバランス良く得られる(L5、L6、L8、L10)。 When the average aspect ratio of the first carbon material is in the range of 1.5 to 30, the PSOC life performance and the regenerative acceptance performance are further improved while maintaining the initial discharge performance (L3 to L11). When comparing the lead storage battery with an oil content of 0.5% by mass, the PSOC life performance, initial discharge performance, and charge acceptance performance are more balanced when the average aspect ratio of the first carbon material is in the range of 5 to 30. Is obtained (L5, L6, L8, L10).
 本発明の一側面に係る鉛蓄電池は、制御弁式および液式の鉛蓄電池に適用可能であり、自動車もしくはバイクなどの始動用の電源や、自然エネルギー貯蔵用途などの産業用蓄電装置として好適に利用できる。 The lead acid battery according to one aspect of the present invention can be applied to control valve type and liquid type lead acid batteries, and is suitably used as an industrial power storage device such as a power source for starting an automobile or a motorcycle or a natural energy storage application. Available.
 1 鉛蓄電池
 2 負極板
 2a 負極板の耳部
 3 正極板
 4 セパレータ
 5 正極棚部
 6 負極棚部
 7 正極柱
 8 貫通接続体
 9 負極柱
 11 極板群
 12 電槽
 13 隔壁
14 セル室
15 蓋
16 負極端子
17 正極端子
18 液口栓
DESCRIPTION OF SYMBOLS 1 Lead storage battery 2 Negative electrode plate 2a Negative electrode ear | edge part 3 Positive electrode plate 4 Separator 5 Positive electrode shelf part 6 Negative electrode shelf part 7 Positive electrode pillar 8 Through-connection body 9 Negative electrode pillar 11 Electrode board group 12 Battery case 13 Partition 14 Cell chamber 15 Cover 16 Negative terminal 17 Positive terminal 18 Liquid spout

Claims (10)

  1.  鉛蓄電池であって、
     前記鉛蓄電池は、負極板と、正極板とを備え、
     前記負極板は、炭素材料とオイルとを含有する負極電極材料を含み、
     前記炭素材料は、32μm以上の粒子径を有する第1炭素材料と、32μm未満の粒子径を有する第2炭素材料と、を含み、
     前記第1炭素材料の粉体抵抗R1に対する、前記第2炭素材料の粉体抵抗R2の比:R2/R1が、15以上155以下であり、
     前記負極電極材料中の前記オイルの含有量は、0.05質量%以上1質量%以下である、鉛蓄電池。
    A lead acid battery,
    The lead storage battery includes a negative electrode plate and a positive electrode plate,
    The negative electrode plate includes a negative electrode material containing a carbon material and oil,
    The carbon material includes a first carbon material having a particle diameter of 32 μm or more, and a second carbon material having a particle diameter of less than 32 μm,
    The ratio of the powder resistance R2 of the second carbon material to the powder resistance R1 of the first carbon material: R2 / R1 is 15 or more and 155 or less,
    Content of the said oil in the said negative electrode material is a lead acid battery which is 0.05 mass% or more and 1 mass% or less.
  2.  前記第1炭素材料の比表面積S1に対する、前記第2炭素材料の比表面積S2の比:S2/S1は、20以上である、請求項1に記載の鉛蓄電池。 The ratio of specific surface area S2 of said 2nd carbon material with respect to specific surface area S1 of said 1st carbon material: Lead acid battery of Claim 1 whose S2 / S1 is 20 or more.
  3.  前記第1炭素材料の比表面積S1に対する、前記第2炭素材料の比表面積S2の比:S2/S1は、240以下である、請求項1または2に記載の鉛蓄電池 The lead acid battery according to claim 1 or 2, wherein the ratio of the specific surface area S2 of the second carbon material to the specific surface area S1 of the first carbon material: S2 / S1 is 240 or less.
  4.  前記第1炭素材料の平均アスペクト比は、1.5以上である、請求項1~3のいずれか1項に記載の鉛蓄電池。 The lead storage battery according to any one of claims 1 to 3, wherein an average aspect ratio of the first carbon material is 1.5 or more.
  5.  前記第1炭素材料の平均アスペクト比は、30以下である、請求項1~4のいずれか1項に記載の鉛蓄電池。 The lead storage battery according to any one of claims 1 to 4, wherein an average aspect ratio of the first carbon material is 30 or less.
  6.  前記負極電極材料中の前記第1炭素材料の含有量は、0.05質量%以上である、請求項1~5のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 5, wherein the content of the first carbon material in the negative electrode material is 0.05 mass% or more.
  7.  前記負極電極材料中の前記第1炭素材料の含有量は、3.0質量%以下である、請求項1~6のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 6, wherein a content of the first carbon material in the negative electrode material is 3.0 mass% or less.
  8.  前記負極電極材料中の前記第2炭素材料の含有量は、0.03質量%以上である、請求項1~7のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 7, wherein a content of the second carbon material in the negative electrode material is 0.03% by mass or more.
  9.  前記負極電極材料中の前記第2炭素材料の含有量は、1.0質量%以下である、請求項1~8のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 8, wherein a content of the second carbon material in the negative electrode material is 1.0 mass% or less.
  10.  前記第1炭素材料は、少なくとも黒鉛を含み、前記第2炭素材料は、少なくともカーボンブラックを含む、請求項1~9のいずれか1項に記載の鉛蓄電池。 The lead acid battery according to any one of claims 1 to 9, wherein the first carbon material includes at least graphite, and the second carbon material includes at least carbon black.
PCT/JP2018/016697 2017-04-28 2018-04-25 Lead acid battery WO2018199125A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019514556A JP7099451B2 (en) 2017-04-28 2018-04-25 Lead-acid battery
CN201880027240.7A CN110546793B (en) 2017-04-28 2018-04-25 Lead-acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090845 2017-04-28
JP2017-090845 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199125A1 true WO2018199125A1 (en) 2018-11-01

Family

ID=63919176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016697 WO2018199125A1 (en) 2017-04-28 2018-04-25 Lead acid battery

Country Status (3)

Country Link
JP (1) JP7099451B2 (en)
CN (1) CN110546793B (en)
WO (1) WO2018199125A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997229A (en) * 1973-01-24 1974-09-13
JPH10208745A (en) * 1997-01-20 1998-08-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
CN101937991A (en) * 2010-05-07 2011-01-05 张家口保胜新能源科技有限公司 High-energy lead-acid storage battery cathode plate diachylon and preparation method thereof
WO2012017702A1 (en) * 2010-08-05 2012-02-09 新神戸電機株式会社 Lead-acid battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
JP2016154131A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396527B2 (en) * 2005-01-11 2010-01-13 新神戸電機株式会社 Lead acid battery
CN100590913C (en) * 2007-06-08 2010-02-17 风帆股份有限公司 Lead-acid battery cathode lead paste for motorcycle and its preparing method
KR20130130751A (en) 2010-12-21 2013-12-02 신코베덴키 가부시키가이샤 Lead storage battery
US9735409B2 (en) 2011-05-13 2017-08-15 Hitachi Chemical Company, Ltd. Lead acid battery
CN102903910B (en) * 2012-10-18 2014-09-17 双登集团股份有限公司 High-temperature-resistant lead-acid battery cathode active substance and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997229A (en) * 1973-01-24 1974-09-13
JPH10208745A (en) * 1997-01-20 1998-08-07 Japan Storage Battery Co Ltd Sealed lead-acid battery
CN101937991A (en) * 2010-05-07 2011-01-05 张家口保胜新能源科技有限公司 High-energy lead-acid storage battery cathode plate diachylon and preparation method thereof
WO2012017702A1 (en) * 2010-08-05 2012-02-09 新神戸電機株式会社 Lead-acid battery
WO2012042917A1 (en) * 2010-09-30 2012-04-05 新神戸電機株式会社 Lead storage battery
JP2016154131A (en) * 2015-02-18 2016-08-25 株式会社Gsユアサ Lead acid storage battery

Also Published As

Publication number Publication date
CN110546793B (en) 2022-11-15
CN110546793A (en) 2019-12-06
JP7099451B2 (en) 2022-07-12
JPWO2018199125A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2019188056A1 (en) Lead acid storage battery
JP6756182B2 (en) Lead-acid battery
JP6954353B2 (en) Lead-acid battery
JP2018018803A (en) Lead-acid battery
JP7099450B2 (en) Lead-acid battery
JP7099448B2 (en) Lead-acid battery
JP7099452B2 (en) Lead-acid battery
WO2018199125A1 (en) Lead acid battery
JP7111099B2 (en) lead acid battery
JP6900769B2 (en) Lead-acid battery
JP7180591B2 (en) lead acid battery
JP2018018800A (en) Lead-acid battery
JP7127529B2 (en) lead acid battery
WO2019225161A1 (en) Lead-acid battery
JP6756181B2 (en) Lead-acid battery
JP2023094127A (en) Lead storage battery
JP2024029809A (en) lead acid battery
JP2024029810A (en) lead acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789971

Country of ref document: EP

Kind code of ref document: A1