JP2017171773A - Foamed particle molding - Google Patents

Foamed particle molding Download PDF

Info

Publication number
JP2017171773A
JP2017171773A JP2016058938A JP2016058938A JP2017171773A JP 2017171773 A JP2017171773 A JP 2017171773A JP 2016058938 A JP2016058938 A JP 2016058938A JP 2016058938 A JP2016058938 A JP 2016058938A JP 2017171773 A JP2017171773 A JP 2017171773A
Authority
JP
Japan
Prior art keywords
foamed
particles
molded body
radio wave
foamed particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016058938A
Other languages
Japanese (ja)
Other versions
JP6706108B2 (en
Inventor
泰三 北原
Taizo Kitahara
泰三 北原
和男 鶴飼
Kazuo Tsurugai
和男 鶴飼
一男 石塚
Kazuo Ishizuka
一男 石塚
利文 九岡
Toshifumi Kuoka
利文 九岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Riken Environmental System Co Ltd
Original Assignee
JSP Corp
Riken Environmental System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, Riken Environmental System Co Ltd filed Critical JSP Corp
Priority to JP2016058938A priority Critical patent/JP6706108B2/en
Priority to CN201710160614.XA priority patent/CN107226922B/en
Publication of JP2017171773A publication Critical patent/JP2017171773A/en
Application granted granted Critical
Publication of JP6706108B2 publication Critical patent/JP6706108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foamed particle molding which can be suitably used for a radio wave absorber exhibiting an excellent radio wave absorption performance.SOLUTION: A foamed particle molding is provided, which is a thermoplastic resin foamed particle molding including: foamed particles A with a conductive material of 3-30 mass% dispersed therein; and foamed particles B with the content of the conductive material of less than 3 mass% (including 0) as the foamed particles constituting the foamed particle molding, in which the average value of an area ratio (S1/S2) of the total area (S1) of the foamed particles A to the total area (S2) of the foamed particles B in the section of the foamed particle molding is within a range of 0.05-1.0, and a coefficient of variation of the area ratio is 20% or less.SELECTED DRAWING: None

Description

本発明は、電波吸収体として好適に利用可能な発泡粒子成形体に関する。   The present invention relates to a foamed particle molded body that can be suitably used as a radio wave absorber.

電子機器から放射される電波について実施される妨害電波に関する規格適合性の評価試験や、アンテナなどの通信機器についての電波の受信特性を評価するための試験などといった電波に関する様々な試験を実施するために、電波暗室と呼ばれる電波隔離空間を備える施設が使用される。   To conduct various tests related to radio waves, such as evaluation tests for conformity to radio waves radiated from electronic equipment, tests for evaluating radio wave reception characteristics of communication equipment such as antennas, etc. In addition, a facility having an electromagnetic wave isolation space called an anechoic chamber is used.

妨害電波に関する規格では、所定の電波の周波数帯での妨害電波の許容値が規定されることが多く、従来、こうした規格に使用される電波の周波数帯は、テレビ、ラジオ、携帯電話等で使用される周波数帯である30MHz〜1GHzの周波数帯を主とするものであった。ところが、近年の無線LAN、ETC、スマートフォン等の発達に伴い、規格に使用される電波の周波数帯は、30MHz〜18GHzの範囲に広がっている。   Standards related to jamming radio waves often specify the allowable value of jamming radio waves in a predetermined radio frequency band. Conventionally, radio wave frequency bands used for such standards are used in televisions, radios, mobile phones, etc. The main frequency band is 30 MHz to 1 GHz. However, with the recent development of wireless LANs, ETCs, smartphones, etc., the frequency band of radio waves used for standards has expanded to a range of 30 MHz to 18 GHz.

また電波の受信特性評価に関しては、光通信設備や自動車衝突防止用レーダーなどの10GHz以上のマイクロ波帯やミリ波帯の電波を利用した設備や通信機器が発展してきていることから、こうした設備や通信機器の電波の受信特性を評価することができるような電波暗室が求められてきている。   Regarding the evaluation of radio wave reception characteristics, equipment and communication equipment using microwave and millimeter wave radio waves of 10 GHz or higher such as optical communication equipment and radar for preventing car collisions have been developed. There is a need for an anechoic chamber that can evaluate the radio wave reception characteristics of communication devices.

したがって電波暗室には、1GHz未満、すなわちMHz程度の低周波数帯の電波から、1GHz以上のマイクロ波帯、ミリ波帯などの高周波数帯の電波まで、広範囲に電波を測定することができることが要請されている。   Therefore, the anechoic chamber is required to be able to measure radio waves in a wide range from radio waves in a low frequency band of less than 1 GHz, that is, in the order of MHz, to radio waves in a high frequency band such as a microwave band and millimeter wave band of 1 GHz or more. Has been.

ところで、電波暗室には、電波に関する様々な試験を適切に実施するべく、空間内への外部電波の侵入を遮断して空間内を外部電波から隔離された状態とするだけでなく、空間内での測定対象電波とその反射波の干渉による悪影響を抑止するように構成されることが要請される。こうした要請を考慮して、電波暗室内には、通常、天面や周囲の壁面、必要に応じて床面などに、電波吸収体と呼ばれる構造体が配備されており、電波吸収体が空間内で測定対象電波が壁面で反射して反射波が生じてしまう虞を抑制している。   By the way, in the anechoic chamber, in order to properly perform various tests related to radio waves, not only does the external radio waves enter the space and the space is isolated from the external radio waves, It is required to be configured to suppress the adverse effects caused by interference between the measurement target radio wave and the reflected wave. In consideration of these demands, a structure called a radio wave absorber is usually provided in the anechoic chamber on the top surface, the surrounding wall surface, and the floor surface as necessary. Therefore, the possibility that the measurement target radio wave is reflected by the wall surface and a reflected wave is generated is suppressed.

電波吸収体としては、例えば、導電性カーボン等の導電性材料を充填させた発泡粒子である導電性発泡粒子や、樹脂発泡粒子の表面をグラファイト系導電塗料からなる塗膜で被覆してなる導電性発泡粒子を所定形状に成形してなる発泡粒子成形体が使用されている。このような成形体から構成される電波吸収体は、比較的高周波数である1GHz以上のいわゆるGHz帯の高周波数帯の電波をより効果的に吸収する電波吸収性能に優れている。   Examples of the radio wave absorber include conductive foam particles, which are foam particles filled with a conductive material such as conductive carbon, and a conductive film obtained by coating the surface of resin foam particles with a coating film made of a graphite-based conductive paint. Expanded particle molded bodies formed by molding expandable expanded particles into a predetermined shape are used. A radio wave absorber composed of such a molded body is excellent in radio wave absorption performance for more effectively absorbing radio waves in a so-called GHz band high frequency band of 1 GHz or higher, which is a relatively high frequency.

このような電波吸収体には、高周波数帯として区分されうる1GHz以上の周波数帯の電波吸収性能は優れているものの、低周波数帯として区分されうる1GHz未満の周波数帯いわゆるMHz帯の電波吸収性能に劣り、既述したような広範囲の周波数帯の電波測定には対応することが難しいという課題がある。この課題に対しては、電波吸収体を形成する発泡粒子成形体の長さ寸法を大きくすることでMHz帯の電波吸収特性を得ることが試みられている。しかしながら、発泡粒子成形体の寸法自体を大きくしてしまうと電波暗室内の電波吸収体の空間占有率が大きくなり、限られた空間を有効に活用できなくなるといった問題が生じてしまう。   Such a radio wave absorber has excellent radio wave absorption performance in a frequency band of 1 GHz or higher that can be classified as a high frequency band, but radio wave absorption performance in a frequency band of less than 1 GHz that can be classified as a low frequency band. There is a problem that it is difficult to cope with radio wave measurement in a wide frequency band as described above. In response to this problem, attempts have been made to obtain a radio wave absorption characteristic in the MHz band by increasing the length of the foamed particle molded body forming the radio wave absorber. However, if the size of the foamed particle molded body itself is increased, the space occupancy rate of the wave absorber in the anechoic chamber increases, resulting in a problem that the limited space cannot be effectively used.

この問題に対し、電波吸収体として、グラファイト系導電塗料で表面を被覆処理された導電性発泡粒子とそのような被覆処理を施されていない非導電性発泡粒子との混合物を型内形成して得られた発泡粒子成形体(例えば、特許文献1、2を参照)を用いることが提案されている。このような電波吸収体は、数百MHz前後の周波数帯の電波吸収性能を有するものでもある。更に、電波吸収体をフェライトタイル等の他の低周波数帯の電波吸収性能を有する部材と組み合わせてユニットを調製し、そのユニットを電波暗室内に取り付けられることで、電波吸収体の寸法を大きくせずとも、MHz帯の電波吸収性能を向上させた電波暗室を実現することができる。   To solve this problem, as a radio wave absorber, a mixture of conductive foam particles whose surface was coated with a graphite-based conductive paint and non-conductive foam particles not subjected to such a coating treatment was formed in the mold. It has been proposed to use the obtained expanded particle molded body (see, for example, Patent Documents 1 and 2). Such a radio wave absorber also has a radio wave absorption performance in a frequency band around several hundred MHz. In addition, the unit can be prepared by combining the wave absorber with other low frequency band electromagnetic wave absorbers such as ferrite tiles, and the unit can be installed in the anechoic chamber to increase the size of the wave absorber. At least, an anechoic chamber with improved radio wave absorption performance in the MHz band can be realized.

特開平10−41674号公報Japanese Patent Laid-Open No. 10-41684 特開平11−209505号公報JP-A-11-209505

しかしながら、特許文献1、2に記載の電波吸収体単独では、数百MHz帯の電波吸収性能を多少改善させることができるにとどまる。特許文献1、2に記載の電波吸収体は、MHz帯からGHz帯において電波吸収性の弱い周波数帯が生じてしまう虞もあり、改善の余地を有するものであった。   However, the radio wave absorbers alone described in Patent Documents 1 and 2 can only slightly improve the radio wave absorption performance in the several hundred MHz band. The radio wave absorbers described in Patent Documents 1 and 2 have room for improvement because there is a risk that a frequency band having a low radio wave absorbability may be generated from the MHz band to the GHz band.

本発明は、上記の問題点に鑑みてなされたものであり、優れた電波吸収性能を発揮可能な電波吸収体に好適に利用できる発泡粒子成形体を提供するという課題を解決することを目的する。   The present invention has been made in view of the above problems, and an object thereof is to solve the problem of providing a foamed particle molded body that can be suitably used for a radio wave absorber capable of exhibiting excellent radio wave absorption performance. .

本発明は、
(1)熱可塑性樹脂発泡粒子成形体であって、
前記発泡粒子成形体を構成している熱可塑性樹脂発泡粒子として、導電性材料が3〜30質量%分散している発泡粒子A、及び、導電性材料含有量が3質量%未満(0を含む)の発泡粒子Bを含み、
前記発泡粒子成形体の断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、
前記面積比の変動係数が20%以下であることを特徴とする発泡粒子成形体、
(2)前記発泡粒子Aと前記発泡粒子Bの各々における平均粒子径が2〜8mmであることを特徴とする上記(1)に記載の発泡粒子成形体。
(3)前記発泡粒子成形体の密度が15〜90g/Lであることを特徴とする上記(1)又は上記(2)に記載の発泡粒子成形体。
(4)前記導電性材料が導電性カーボンブラックであることを特徴とする上記(1)から上記(3)のいずれか一項に記載の発泡粒子成形体。
(5)前記熱可塑性樹脂発泡粒子を形成する樹脂がポリオレフィン系樹脂であることを特徴とする上記(1)から上記(4)のいずれか一項に記載の発泡粒子成形体。
(6)前記熱可塑性樹脂発泡粒子を形成する樹脂がポリスチレン系樹脂であることを特徴とする上記(1)から上記(4)のいずれか一項に記載の発泡粒子成形体、
を要旨とする。
The present invention
(1) A thermoplastic resin foam particle molded body,
As the thermoplastic resin foam particles constituting the foamed particle molded body, the foamed particles A in which the conductive material is dispersed in an amount of 3 to 30% by mass, and the content of the conductive material is less than 3% by mass (including 0). ) Expanded particles B,
The average value of the area ratio (S1 / S2) of the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in the cross section of the expanded particle molded body is 0.05 to 1.0. Range,
The expanded particle molded article, wherein the variation coefficient of the area ratio is 20% or less,
(2) The foamed particle molded article according to (1), wherein an average particle diameter of each of the foamed particles A and the foamed particles B is 2 to 8 mm.
(3) The expanded particle molded body according to (1) or (2) above, wherein the expanded particle molded body has a density of 15 to 90 g / L.
(4) The foamed particle molded body according to any one of (1) to (3), wherein the conductive material is conductive carbon black.
(5) The expanded particle molded article according to any one of (1) to (4) above, wherein the resin forming the thermoplastic resin expanded particles is a polyolefin resin.
(6) The expanded particle molded body according to any one of (1) to (4) above, wherein the resin forming the thermoplastic resin expanded particles is a polystyrene-based resin.
Is the gist.

本発明の発泡粒子成形体は、発泡粒子成形体を複数調製した場合における発泡粒子成形体間での導電性能のバラツキが小さいものであり、発泡粒子A、Bの混合比率を変更することにより発泡粒子成形体の導電性能の変更が容易である。   The foamed particle molded body of the present invention has a small variation in conductive performance between the foamed particle molded bodies when a plurality of foamed particle molded bodies are prepared, and foaming is achieved by changing the mixing ratio of the foamed particles A and B. It is easy to change the conductive performance of the particle compact.

特に、本発明の発泡粒子成形体を電波吸収体として利用した場合には、発泡粒子成形体が導電性材料を特定量含んだ複数種類の発泡粒子A、Bを含む混合成形体であることにより、発泡粒子A、Bの混合比率を変更することにより電波吸収体の誘電率の変更が容易であり、優れた電波吸収性能を有する電波吸収体となる。また、発泡粒子成形体を複数製造した場合における発泡粒子成形体間での電波吸収性能のバラツキも小さいものである。更に、本発明の発泡粒子成形体からなる電波吸収体と低周波吸収体とを組み合わせたものは、例えばMHz帯からGHz帯の幅広い周波数領域にわたって特に優れた電波吸収性能を発揮可能なものとなる。   In particular, when the foamed particle molded body of the present invention is used as a radio wave absorber, the foamed particle molded body is a mixed molded body including a plurality of types of foamed particles A and B containing a specific amount of a conductive material. By changing the mixing ratio of the expanded particles A and B, it is easy to change the dielectric constant of the radio wave absorber, and the radio wave absorber has excellent radio wave absorption performance. In addition, when a plurality of foamed particle molded bodies are manufactured, the variation in radio wave absorption performance between the foamed particle molded bodies is also small. Furthermore, the combination of the radio wave absorber formed of the foamed particle molded body of the present invention and the low frequency absorber can exhibit particularly excellent radio wave absorption performance over a wide frequency range from, for example, the MHz band to the GHz band. .

図1Aは、本発明における発泡粒子成形体がピラミッド形状(四角錐体形状)に形成されている場合にあって、発泡粒子成形体を電波吸収体として利用する場合の実施例の1つを模式的に説明するための概略斜視模式図である。図1Bは、本発明における発泡粒子成形体が、ピラミッド形状の成形部の傾斜面部分を発泡粒子成形体の底面から所定の高さの位置まで切り欠いた形状に形成した場合にあって、その発泡粒子成形体を複数組み合わせた構造体を電波吸収体として利用する場合の実施例の1つを模式的に説明するための概略斜視模式図である。FIG. 1A schematically shows one of the embodiments in the case where the foamed particle molded body in the present invention is formed in a pyramid shape (square pyramid shape) and the foamed particle molded body is used as a radio wave absorber. It is a schematic perspective schematic diagram for explaining in detail. FIG. 1B shows a case where the foamed particle molded body according to the present invention is formed in a shape in which the inclined surface portion of the pyramid-shaped molded part is cut out from the bottom surface of the foamed particle molded body to a predetermined height. It is a schematic perspective schematic diagram for demonstrating typically one of the Examples in the case of utilizing as a radio wave absorber the structure which combined two or more foamed particle compacts. 図2Aは、本発明における発泡粒子成形体がウェッジ形状(楔形状)に形成されている場合であって、発泡粒子成形体を電波吸収体として利用する場合の実施例の1つを模式的に説明するための概略斜視模式図である。図2Bは、本発明における発泡粒子成形体が、ウェッジ形状の成形部の傾斜面部分を発泡粒子成形体の底面から所定の高さの位置まで切り欠いた形状に形成した場合にあって、その発泡粒子成形体を複数組み合わせた構造体を電波吸収体として利用する場合の実施例の1つを模式的に説明するための概略斜視模式図である。FIG. 2A schematically shows one of the embodiments when the foamed particle molded body in the present invention is formed in a wedge shape (wedge shape) and the foamed particle molded body is used as a radio wave absorber. It is a schematic perspective schematic diagram for demonstrating. FIG. 2B shows a case where the foamed particle molded body according to the present invention is formed in a shape in which the inclined surface portion of the wedge-shaped molded part is cut out from the bottom surface of the foamed particle molded body to a predetermined height. It is a schematic perspective schematic diagram for demonstrating typically one of the Examples in the case of utilizing as a radio wave absorber the structure which combined two or more foamed particle compacts. 図3Aは、本発明における発泡粒子成形体がピラミッド形状に形成されている場合にあって、発泡粒子成形体を用いた複合型電波吸収体の実施例の1つを模式的に説明するための概略斜視模式図である。図3Bは、本発明における発泡粒子成形体がピラミッド形状に形成されている場合にあって、発泡粒子成形体を用いた複合型電波吸収体の他の実施例の1つを模式的に説明するための概略斜視模式図である。FIG. 3A schematically illustrates one example of a composite wave absorber using a foamed particle molded body when the foamed particle molded body of the present invention is formed in a pyramid shape. It is a schematic perspective schematic diagram. FIG. 3B schematically illustrates another example of the composite wave absorber using the foamed particle molded body when the foamed particle molded body of the present invention is formed in a pyramid shape. FIG. 図4Aは、本発明における発泡粒子成形体がウェッジ形状に形成されている場合にあって、発泡粒子成形体を用いた複合型電波吸収体の実施例の1つを模式的に説明するための概略斜視模式図である。図4Bは、本発明における発泡粒子成形体がウェッジ形状に形成されている場合にあって、発泡粒子成形体を用いた複合型電波吸収体の他の実施例の1つを模式的に説明するための概略斜視模式図である。FIG. 4A is a view for schematically explaining one example of a composite wave absorber using a foamed particle molded body when the foamed particle molded body in the present invention is formed in a wedge shape. It is a schematic perspective schematic diagram. FIG. 4B schematically illustrates another example of the composite wave absorber using the foamed particle molded body when the foamed particle molded body of the present invention is formed in a wedge shape. FIG. 図5Aは、本発明における電波吸収に関する電気的等価回路を簡略化して説明するための回路図である。図5Bは、本発明における発泡粒子A及び発泡粒子Bから成る発泡粒子成形体内において、発生する誘電損失及び導電損失を簡略化して説明するための模式図である。FIG. 5A is a circuit diagram for simplifying and explaining an electrical equivalent circuit relating to radio wave absorption in the present invention. FIG. 5B is a schematic diagram for simplifying and explaining the dielectric loss and the conductive loss generated in the foamed particle molded body composed of the foamed particles A and the foamed particles B in the present invention. 図6は、発泡粒子A,Bを含む混合成形体である混合発泡粒子成形体(型内成形体)と発泡粒子Aのみからなる成形体(型内成形体)のそれぞれにおける導電性カーボン添加量(質量%)と静電容量(pF)との関係を示すグラフである。FIG. 6 shows the amount of conductive carbon added to each of a mixed foamed particle molded body (in-mold molded body), which is a mixed molded body including the foamed particles A and B, and a molded body consisting only of the foamed particles A (in-mold molded body). It is a graph which shows the relationship between (mass%) and an electrostatic capacitance (pF). 図7は、実施例及び比較例において、電波吸収性能を測定するために調製された電波吸収体の形状を表す概略斜視模式図である。FIG. 7 is a schematic perspective schematic view showing the shape of a radio wave absorber prepared for measuring radio wave absorption performance in Examples and Comparative Examples. 図8Aは、発泡粒子成形体の断面画像である。図8Bは、図8Aの断面画像にモノトーン化処理を施して得られた処理画像である。FIG. 8A is a cross-sectional image of a foamed particle molded body. FIG. 8B is a processed image obtained by performing monotone processing on the cross-sectional image of FIG. 8A. 図9Aは、実施例1で得られた発泡粒子成形体の表面写真である。図9Bは、比較例2で得られた発泡粒子成形体の表面写真である。図9Cは、比較例5で得られた発泡粒子成形体の表面写真である。FIG. 9A is a surface photograph of the expanded particle molded body obtained in Example 1. FIG. FIG. 9B is a surface photograph of the foamed particle molded body obtained in Comparative Example 2. FIG. 9C is a surface photograph of the foamed particle molded body obtained in Comparative Example 5. 図10は、発泡粒子Aを構成している樹脂内に導電性材料が分散した状態を示すTEM写真である。FIG. 10 is a TEM photograph showing a state in which the conductive material is dispersed in the resin constituting the expanded particles A.

(発泡粒子成形体)
本発明の熱可塑性樹脂発泡粒子成形体は、熱可塑性樹脂を基材樹脂とするとともに導電性材料が3〜30質量%分散している第1の発泡粒子(熱可塑性樹脂発泡粒子A)と熱可塑性樹脂を基材樹脂とするとともに導電性材料含有量が3質量%未満(0を含む)の第2の発泡粒子(熱可塑性樹脂発泡粒子B)とを含む発泡粒子混合物を型内成形してなる発泡粒子型内成形体である。熱可塑性樹脂発泡粒子A,Bを以下それぞれ単に発泡粒子A,Bとよぶ。この型内成形体である発泡粒子成形体においては、発泡粒子成形体断面における発泡粒子Aの合計面積(S1)と発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、且つ、前記面積比の変動係数が20%以下である。なお、本明細書において、本発明の発泡粒子成形体を、熱可塑性樹脂発泡粒子成形体又は単に成形体と呼ぶことがある。また、発泡粒子Aと発泡粒子Bをまとめて発泡粒子と呼ぶことがある。
(Foamed particle molding)
The molded article of the thermoplastic resin foamed particles of the present invention comprises a first foamed particle (thermoplastic resin foamed particle A) in which 3 to 30% by mass of a conductive material is dispersed while using a thermoplastic resin as a base resin and heat. In-mold molding of a foamed particle mixture comprising a plastic resin as a base resin and a second foamed particle (thermoplastic resin foamed particle B) having a conductive material content of less than 3% by mass (including 0) The foamed particle in-mold product. The thermoplastic resin expanded particles A and B are hereinafter simply referred to as expanded particles A and B, respectively. In the foamed particle molded body which is this in-mold molded body, the average of the area ratio (S1 / S2) of the total area (S1) of the foamed particles A and the total area (S2) of the foamed particles B in the cross section of the foamed particle molded body. The value is in the range of 0.05 to 1.0, and the variation coefficient of the area ratio is 20% or less. In the present specification, the foamed particle molded body of the present invention may be referred to as a thermoplastic resin foamed particle molded body or simply a molded body. In addition, the expanded particles A and the expanded particles B may be collectively referred to as expanded particles.

(分散)
本明細書において、導電性材料が分散している発泡粒子Aにおける分散とは、後述する数式(2)、(3)に示す数学用語上の分散の意味とは必ずしも一致するものではなく、導電性材料が発泡粒子を構成している樹脂中に分かれ散らばっていることを意味している。具体的には、図10に示す透過型電子顕微鏡の写真上で、粒状の黒点にて示される導電性カーボンが分かれ散らばっている状態が例示される。
(dispersion)
In the present specification, the dispersion in the expanded particles A in which the conductive material is dispersed does not necessarily coincide with the meaning of dispersion in mathematical terms shown in mathematical formulas (2) and (3) described later. This means that the functional material is scattered and dispersed in the resin constituting the expanded particles. Specifically, a state in which conductive carbon indicated by granular black dots is scattered and scattered on the photograph of the transmission electron microscope shown in FIG.

(発泡粒子成形体密度)
発泡粒子成形体の密度は、軽量性と剛性とのバランスの観点から、15〜180g/L、更に15〜90g/Lであることが好ましい。発泡粒子成形体を電波吸収体として利用する場合には、上記バランスの観点に加えて、前記発泡粒子混合物を使用して得られる発泡粒子成形体において優れた電波吸収性能が発揮される観点から、15〜90g/L、更に20〜60g/L、特に25〜50g/Lがより好ましい。
(Foamed particle density)
The density of the foamed particle molded body is preferably 15 to 180 g / L, more preferably 15 to 90 g / L, from the viewpoint of the balance between lightness and rigidity. When using the foamed particle molded body as a radio wave absorber, in addition to the above viewpoint of balance, from the viewpoint of exhibiting excellent radio wave absorption performance in the foamed particle molded body obtained using the foamed particle mixture, 15 to 90 g / L, more preferably 20 to 60 g / L, and particularly preferably 25 to 50 g / L.

(発泡粒子成形体密度の測定)
発泡粒子成形体の密度は、成形体試料の質量(g)を成形体試料の体積(L)で除することにより求めることができる。なお、成形体試料の体積は、成形体から直方体形状に切り出した成形体試料の外形寸法(縦、横、高さ)に基づき縦寸法、横寸法、高さ寸法の積を求め単位換算して当該体積(L)とする。
(Measurement of density of molded foam particles)
The density of the foamed particle molded body can be obtained by dividing the mass (g) of the molded body sample by the volume (L) of the molded body sample. In addition, the volume of the molded body sample is calculated by converting the product of the vertical dimension, horizontal dimension, and height dimension based on the external dimensions (vertical, horizontal, height) of the molded body sample cut out from the molded body into a rectangular parallelepiped shape. The volume (L).

(発泡粒子成形体形状)
発泡粒子成形体の形状は、目的に応じて板状や柱状、種々の立体形状に適宜設定が可能であり、特に限定されるものではないが、発泡粒子成形体を電波吸収体として利用する場合、すなわち、本発明によって発泡粒子成形体製電波吸収体を調製する場合には、発泡粒子成形体は、電波の吸収をより効果的に実現可能な形状に形成されていることが好ましい。この点を考慮して、本発明の発泡粒子成形体は、電波到来側の端部から他方の端部に向かう方向にそった直線を法線とする平面を想定した場合に、その平面で発泡粒子成形体を切断した場合に認められる切断面の面積(切断面が複数存在する場合には、切断面の総面積)が、法線にそって電波到来側の端部から他方の端部に向かうにつれて、大きくなる形状であることが好ましい。
(Foamed particle shape)
The shape of the foamed particle molded body can be appropriately set to a plate shape, a columnar shape, and various three-dimensional shapes according to the purpose, and is not particularly limited, but when the foamed particle molded body is used as a radio wave absorber That is, when preparing a foamed particle molded body radio wave absorber according to the present invention, the foamed particle molded body is preferably formed in a shape that can more effectively realize radio wave absorption. Considering this point, the foamed particle molded body of the present invention is foamed on the plane when assuming a plane having a normal line along the direction from the end on the radio wave arrival side to the other end. The area of the cut surface recognized when the particle compact is cut (the total area of the cut surfaces when there are multiple cut surfaces) is from the end on the radio wave arrival side to the other end along the normal. It is preferable that the shape becomes larger as it goes.

具体的に図1Aや図2Aに例示するように、発泡粒子成形体2aは、ピラミッド形状若しくはウェッジ形状などの多角錘形状、多角錘台形状或いは楔形状を有することが好ましい。このように成形体2aを形成することで、図1に示したピラミッド形状の電波吸収体1、図2に示したウェッジ形状の電波吸収体1を得ることができる。たとえば、図1に示したピラミッド形状の電波吸収体1では、ピラミッド形状の頂部を電波到来側の端部としてピラミッド形状の底面部を他方の端部とし、その頂部から底面部に向かう方向に沿った法線を有する平面で発泡粒子成形体を切断して切断面を見た場合に、切断面の面積がその頂部から底面部に向かうにつれて大きくなる。図2に示したウェッジ形状の電波吸収体1についても同様である。また、発泡粒子成形体2aは、図1Bや図2Bに示すような突出端を有する形状に形成されていてもよい。図1Bや図2Bの発泡粒子成形体2aは、例えば、ピラミッド形状若しくはウェッジ形状の成形体の傾斜面を底面位置から所定の高さより上の部分を切り欠く形状とすることで形成することができる。   As specifically illustrated in FIGS. 1A and 2A, the foamed particle molded body 2a preferably has a polygonal pyramid shape such as a pyramid shape or a wedge shape, a polygonal frustum shape, or a wedge shape. By forming the molded body 2a in this way, the pyramid-shaped wave absorber 1 shown in FIG. 1 and the wedge-shaped wave absorber 1 shown in FIG. 2 can be obtained. For example, in the pyramid-shaped wave absorber 1 shown in FIG. 1, the pyramid-shaped top is the end on the radio wave arrival side, the pyramid-shaped bottom is the other end, and the direction from the top to the bottom is along the direction. When the foamed particle molded body is cut on a plane having a normal line and the cut surface is viewed, the area of the cut surface increases from the top to the bottom. The same applies to the wedge-shaped electromagnetic wave absorber 1 shown in FIG. Further, the foamed particle molded body 2a may be formed in a shape having a protruding end as shown in FIGS. 1B and 2B. 1B or 2B can be formed by, for example, forming the inclined surface of a pyramid-shaped or wedge-shaped molded body into a shape in which a portion above a predetermined height from the bottom surface is cut out. .

(発泡粒子Aおよび発泡粒子B)
発泡粒子Aは、導電性材料が3〜30質量%の範囲で分散している樹脂粒子の発泡物である。更に加工性や電波吸収性能の観点から、5〜25質量%、更に7〜20質量%が好ましく、特に10〜17質量%がより好ましい。発泡粒子Bは、導電性材料を含有させずに形成された樹脂粒子、又は導電性材料が3質量%未満の範囲で含有されている樹脂粒子(導電性材料により被覆されているものを含む)の発泡物、或いは、樹脂粒子の発泡物に導電性材料を3質量%未満の範囲で含有されているもの(発泡粒子Bには導電性材料により被覆されているものを含む)である。したがって、本発明において発泡粒子Aは熱可塑性樹脂と導電性材料を含む樹脂組成物から形成され、発泡粒子Bは熱可塑性樹脂と必要に応じて用いられる導電性材料を含む樹脂組成物から形成されている。また、発泡粒子Aおよび発泡粒子Bのいずれについても、導電性材料以外にその他の添加剤が適宜含有されてもよい。なお、前記添加剤としては、着色剤、難燃剤、帯電防止剤、気泡調整剤などを例示することができる。
(Foamed particles A and B)
Foamed particles A are foamed resin particles in which a conductive material is dispersed in the range of 3 to 30% by mass. Furthermore, from the viewpoint of workability and radio wave absorption performance, 5 to 25% by mass, further 7 to 20% by mass is preferable, and 10 to 17% by mass is more preferable. The expanded particles B are resin particles formed without containing a conductive material, or resin particles containing a conductive material in a range of less than 3% by mass (including those coated with a conductive material). Or a resin particle foam containing a conductive material in an amount of less than 3% by mass (the foamed particles B include those coated with a conductive material). Therefore, in the present invention, the foamed particles A are formed from a resin composition containing a thermoplastic resin and a conductive material, and the foamed particles B are formed from a resin composition containing a thermoplastic resin and a conductive material used as necessary. ing. Moreover, about any of the foamed particle A and the foamed particle B, other additives other than an electroconductive material may contain suitably. Examples of the additive include a colorant, a flame retardant, an antistatic agent, and a bubble regulator.

発泡粒子Aおよび発泡粒子Bのいずれにおいても、上記の導電性材料が分散された樹脂粒子は、基材樹脂と導電性材料を押出機やニーダー等の従来公知の混練機を使用して樹脂中に導電性材料を分散させ、導電性材料が分散された樹脂組成物をペレタイザー等で造粒することにより得ることができる。また、樹脂粒子の発泡物である発泡粒子は従来公知の押出発泡粒子製造方法やオートクレーブから発泡剤を含有する発泡性樹脂粒子を放出して発泡する方法、発泡剤を含有する発泡性樹脂粒子を加熱軟化させて発泡する方法等の従来公知の発泡方法により製造することができる。また、発泡粒子Bに関して、導電性材料が被覆された樹脂粒子や発泡粒子は、スプレーコーター等のコーティング装置を使用して導電性塗料等の導電性材料を樹脂粒子や発泡粒子に塗布することにより得ることができる。   In both the foamed particles A and the foamed particles B, the resin particles in which the conductive material is dispersed are contained in the resin using a conventionally known kneader such as an extruder or a kneader. It can be obtained by dispersing a conductive material and granulating the resin composition in which the conductive material is dispersed with a pelletizer or the like. In addition, foamed particles, which are foamed resin particles, can be obtained by a conventionally known method for producing extruded foam particles, a method of foaming by releasing foamable resin particles containing a foaming agent from an autoclave, and foaming resin particles containing a foaming agent. It can be produced by a conventionally known foaming method such as a method of foaming by heat softening. Regarding the expanded particles B, resin particles and expanded particles coated with a conductive material can be obtained by applying a conductive material such as conductive paint to the resin particles and expanded particles using a coating device such as a spray coater. Can be obtained.

(熱可塑性樹脂)
本発明の発泡粒子成形体、該成形体を構成する発泡粒子、および該発泡粒子を形成する樹脂粒子を構成する熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂や、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリ塩化ビニル樹脂、ポリメタクリル系樹脂、アクリロニトリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂およびこれらのブレンド物、或いは共重合体等からなる熱可塑性樹脂が挙げられる。なお、熱可塑性樹脂としてポリオレフィン系樹脂とその他樹脂との混合樹脂が用いられる場合、混合樹脂は、ポリオレフィン系樹脂を50質量%以上含有するものであることが好ましく、ポリオレフィン系樹脂を70質量%以上含有するものであることがより好ましく、ポリオレフィン系樹脂を90質量%以上含有することがさらに好ましい。
(Thermoplastic resin)
Examples of the foamed particle molded body of the present invention, the foamed particles constituting the molded body, and the thermoplastic resin constituting the resin particles forming the foamed particles include polyolefin resins such as polyethylene resins and polypropylene resins, polystyrene Resin, polycarbonate resin, polyvinyl chloride resin, polymethacrylic resin, acrylonitrile resin, polyester resin, polyamide resin, polyurethane resin and their blends or copolymers, etc. It is done. When a mixed resin of a polyolefin resin and other resin is used as the thermoplastic resin, the mixed resin preferably contains 50% by mass or more of the polyolefin resin, and 70% by mass or more of the polyolefin resin. More preferably, it is more preferably 90% by mass or more of polyolefin resin.

上述した熱可塑性樹脂として利用可能なポリエチレン系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、エチレン−メタクリル酸共重合体やその分子間を金属イオンで架橋したアイオノマー系樹脂等が挙げられる。   Examples of the polyethylene resin that can be used as the thermoplastic resin described above include low density polyethylene, high density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-vinyl acetate copolymer, and ethylene-methyl methacrylate copolymer. Examples thereof include a polymer, an ethylene-methacrylic acid copolymer, and an ionomer resin in which the molecules are crosslinked with metal ions.

上述した熱可塑性樹脂として利用可能なポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレンに由来する構造単位が50質量%以上のプロピレン系共重合体が挙げられ、該共重合体としては、エチレン−プロピレン共重合体、プロピレン−ブテン共重合体、プロピレン−エチレン−ブテン共重合体などのプロピレンとエチレン又は炭素数4以上のαオレフィンとの共重合体や、プロピレン−アクリル酸共重合体、プロピレン−無水マレイン酸共重合体等が例示できる。なお、これらの共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。   Examples of the polypropylene resin that can be used as the thermoplastic resin described above include a propylene homopolymer, and a propylene copolymer having a structural unit derived from propylene of 50% by mass or more. Propylene copolymers, propylene-butene copolymers, propylene-ethylene-butene copolymers and other propylene and ethylene or α-olefins having 4 or more carbon atoms, propylene-acrylic acid copolymers, propylene- Examples thereof include a maleic anhydride copolymer. These copolymers may be block copolymers, random copolymers, or graft copolymers.

上述の熱可塑性樹脂の例示のなかでも、靭性に優れる点でポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂を用いることが特に好ましい。また、脆性改善、軽量性と剛性とのバランスに優れる観点からは、基材樹脂を構成する熱可塑性樹脂として、ポリスチレン系樹脂を主体としポリオレフィン系樹脂にスチレンモノマーを含浸、重合してなる改質ポリスチレン系樹脂が選択されることが好ましい。   Among the examples of the thermoplastic resin described above, a polyolefin resin is preferable in terms of excellent toughness, and a polypropylene resin is particularly preferable. In addition, from the viewpoint of improving brittleness and having a good balance between lightness and rigidity, as a thermoplastic resin that constitutes the base resin, it is a modification made by impregnating and polymerizing a polyolefin resin mainly with a polystyrene resin. A polystyrene resin is preferably selected.

また、上述の熱可塑性樹脂は、リサイクル性の観点からは無架橋(架橋されていない)であることが好ましい。   Moreover, it is preferable that the above-mentioned thermoplastic resin is non-crosslinked (not crosslinked) from the viewpoint of recyclability.

(導電性材料)
発泡粒子Aに分散されている導電性材料は、特に限定されるものではなく、無機材料、有機材料を用いることができる。
(Conductive material)
The conductive material dispersed in the expanded particles A is not particularly limited, and an inorganic material or an organic material can be used.

本発明の発泡粒子成形体を電波吸収体として利用する場合は、導電性材料は、それを含有する発泡粒子成形体において電波吸収性能を発現する材料であればよい。例えば、電波吸収性能を発現する無機材料としては、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等のカーボン類、金属繊維、カーボン繊維等の繊維、酸化鉄、酸化スズ、酸化チタン、酸化亜鉛、酸化カドミウム、酸化イリジウム等の無機酸化物が挙げられる。これらの中でも、高い電波吸収性能を発現する材料として、カーボン類、金属酸化物が好ましく、その中でも電波吸収性の観点から、カーボン類を好適に用いることができ、具体的には、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等が挙げられる。   When the foamed particle molded body of the present invention is used as a radio wave absorber, the conductive material may be any material that exhibits radio wave absorption performance in a foamed particle molded body containing the conductive material. For example, as an inorganic material that exhibits radio wave absorption performance, conductive carbon black, graphite, graphene, carbon nanotubes, carbon nanofibers, carbon microfibers, carbon microcoils, carbon nanocoils and other carbons, metal fibers, carbon fibers And inorganic oxides such as iron oxide, tin oxide, titanium oxide, zinc oxide, cadmium oxide and iridium oxide. Among these, carbons and metal oxides are preferable as materials that exhibit high radio wave absorption performance. Among them, carbons can be preferably used from the viewpoint of radio wave absorption, and specifically, conductive carbon. Examples thereof include black, graphite, graphene, carbon nanotube, carbon nanofiber, carbon microfiber, carbon microcoil, and carbon nanocoil.

さらに、導電性材料としては、カーボン類のなかでも、導電性カーボンブラックを好適に用いることができる。この導電性カーボンブラックは、製造法や組成が限定されるものではなく、オイルファーネスブラックやアセチレンブラック、中空構造を有するカーボンブラック等も含まれ、それらのカーボンブラックを親水化、疎水化、酸化、還元、酸性化、塩基性化、有機化処理したものなども含まれる。なお、導電性カーボンブラックとしては、JIS6217−4:2008に基づいて測定されるDBP吸収量が150〜700cm/100gのものが好ましい。 Furthermore, as the conductive material, conductive carbon black can be suitably used among carbons. This conductive carbon black is not limited in production method or composition, and includes oil furnace black, acetylene black, carbon black having a hollow structure, etc., and these carbon blacks are hydrophilized, hydrophobized, oxidized, Reduction, acidification, basification, and organic treatment are also included. In addition, as electroconductive carbon black, the DBP absorption amount measured based on JIS6217-4: 2008 has a preferable thing of 150-700 cm < 3 > / 100g.

導電性材料は、上記した電波吸収性能を発現する材料から選択された1種類を使用してもよいし、2種類以上を選択して併用して使用することもできる。なお、発泡粒子Bが導電性材料を含有する場合は、該導電性材料として上記の導電性材料が例示できる。   As the conductive material, one type selected from the above-described materials that exhibit radio wave absorption performance may be used, or two or more types may be selected and used in combination. In addition, when foamed particle B contains a conductive material, said conductive material can be illustrated as this conductive material.

(導電性材料の配合量)
発泡粒子Aを得るための導電性材料が練り込まれた樹脂粒子においては、導電性材料の含有量が3〜30質量%となるように基材樹脂中に導電性材料が分散されていればよく、この導電性材料が練り込まれた樹脂粒子を発泡させることにより導電性材料の含有量が同様に3〜30質量%の発泡粒子Aを得ることができる。発泡粒子A中に含まれる導電性材料の含有量は、電波吸収体においては、一般に吸収しようとする電波の周波数帯およびその電波吸収性能に応じて決定すべきであるが、本発明においては発泡粒子A100質量%に対して3〜30質量%、好ましくは7〜20質量%、更に好ましくは10〜17質量%である。
(Amount of conductive material)
In the resin particles in which the conductive material for obtaining the foamed particles A is kneaded, if the conductive material is dispersed in the base resin so that the content of the conductive material is 3 to 30% by mass. The foamed particles A having a conductive material content of 3 to 30% by mass can be obtained by foaming the resin particles kneaded with the conductive material. In the radio wave absorber, the content of the conductive material contained in the foam particles A should generally be determined according to the frequency band of the radio wave to be absorbed and the radio wave absorption performance. 3-30 mass% with respect to 100 mass% of particle | grains A, Preferably it is 7-20 mass%, More preferably, it is 10-17 mass%.

発泡粒子A中の導電性材料の含有量が少なすぎる場合は、それを用いて発泡粒子成形体としても所望の導電性能や電波吸収性能を得ることが困難となる虞がある。なお、導電性材料の含有量が少ない導電性発泡粒子であっても発泡粒子Bに対する発泡粒子Aの割合を多くする対策も想定されるが、導電性材料にて被覆された導電性発泡粒子を使用する場合と同様に電波吸収体においては十分なMHz帯の電波吸収性能は得られない。一方、該導電性材料の含有量が多すぎる場合は、導電性材料を基材樹脂に混合する工程の実施自体が困難となり樹脂粒子自体を得ることが困難となる虞がある。また、導電性材料の含有量が多すぎる場合において、仮に、樹脂粒子を得ることができたとしても、良好な発泡粒子を得ることが難しく、独立気泡率の低い発泡粒子や収縮の大きな発泡粒子となり、型内成形性の良好な発泡粒子を得ることが難しくなる虞も生じる。一方、上記の発泡粒子Bを得るための樹脂粒子においては、必要に応じて導電性材料が3質量%未満の範囲で含有される。   When the content of the conductive material in the foamed particles A is too small, it may be difficult to obtain desired conductive performance and radio wave absorption performance as a foamed particle molded body using the content. Although measures to increase the ratio of the foamed particles A to the foamed particles B even for the conductive foamed particles with a low content of the conductive material are envisaged, the conductive foamed particles coated with the conductive material are As in the case of using the radio wave absorber, a sufficient radio wave absorption performance in the MHz band cannot be obtained. On the other hand, when there is too much content of this electroconductive material, implementation of the process which mixes an electroconductive material with base resin itself becomes difficult, and there exists a possibility that it may become difficult to obtain resin particle itself. In addition, when the content of the conductive material is too large, even if resin particles can be obtained, it is difficult to obtain good expanded particles, and expanded particles with low closed cell ratio or large shrinkage. As a result, it may be difficult to obtain expanded particles having good in-mold moldability. On the other hand, in the resin particle for obtaining said foamed particle B, a conductive material is contained in the range of less than 3 mass% as needed.

(面積比)
本発明の発泡粒子成形体における発泡粒子Aと発泡粒子Bとの混合状態について、前記発泡粒子成形体の断面に現れた、発泡粒子Aの合計面積(S1)と発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲である。
(Area ratio)
About the mixed state of the expanded particle A and the expanded particle B in the expanded particle molded body of the present invention, the total area (S1) of the expanded particle A and the total area of the expanded particle B (S2) appearing in the cross section of the expanded particle molded body. ) And the area ratio (S1 / S2) is in the range of 0.05 to 1.0.

上記の面積比(S1/S2)の平均値が0.05〜1.0の範囲から外れて小さすぎる場合は、発泡粒子A中の導電性材料の含有量の上限にも前記のとおり限界があり、また、発泡粒子成形体中に発泡粒子Aを大きなバラツキなく分散させることも難しくなることから、十分かつ再現性のある導電性能や電波吸収性能が得られない。   When the average value of the area ratio (S1 / S2) is too small outside the range of 0.05 to 1.0, the upper limit of the content of the conductive material in the expanded particles A is also limited as described above. In addition, since it becomes difficult to disperse the foamed particles A in the foamed particle molded body without large variation, sufficient and reproducible conductive performance and radio wave absorption performance cannot be obtained.

上記の面積比(S1/S2)の平均値が0.05〜1.0の範囲から外れて大きすぎる場合は、発泡粒子の型内成形時の二次発泡性低下、得られる発泡粒子成形体の表面平滑性不良、および発泡粒子成形体の成形後における成形体の収縮率増大の虞がある。更に、該面積比の平均値が大きすぎる場合、得られる発泡粒子成形体製の電波吸収体においてMHz帯の電波吸収性能が低下してしまう虞がある。上記の観点から、本発明の発泡粒子成形体を得るための混合発泡粒子を構成する発泡粒子Aと発泡粒子Bとの混合割合は、体積比(発泡粒子Aの総体積/発泡粒子Bの総体積)で0.05〜1.0、好ましくは0.08〜0.7、更に好ましくは0.1〜0.5、特に好ましくは0.1〜0.3である。なお、型内成形にて使用される混合発泡粒子の発泡粒子Aと発泡粒子Bとの体積比は、該型内成形にて得られた発泡粒子成形体の断面を構成している発泡粒子Aと発泡粒子Bの面積比の平均値と同様であると見做せる。したがって、本発明において該面積比の平均値は、0.05〜1.0、好ましくは0.08〜0.7、更に好ましくは0.1〜0.5、特に好ましくは0.1〜0.3である。   When the average value of the above-mentioned area ratio (S1 / S2) is too large outside the range of 0.05 to 1.0, the secondary foamability deteriorates when the foamed particles are molded in the mold, and the obtained foamed particle molded body There is a risk that the surface smoothness of the molded article may be poor and the shrinkage rate of the molded article may be increased after the molded foamed article is molded. Furthermore, when the average value of the area ratio is too large, there is a risk that the radio wave absorption performance in the MHz band may be deteriorated in the radio wave absorber made of a foamed particle molded body to be obtained. From the above viewpoint, the mixing ratio of the expanded particles A and the expanded particles B constituting the mixed expanded particles for obtaining the expanded particle molded body of the present invention is a volume ratio (total volume of expanded particles A / total expanded particles B). Volume) in the range of 0.05 to 1.0, preferably 0.08 to 0.7, more preferably 0.1 to 0.5, and particularly preferably 0.1 to 0.3. In addition, the volume ratio of the foamed particle A and the foamed particle B of the mixed foamed particle used in the in-mold molding is the expanded particle A constituting the cross section of the foamed particle molded body obtained by the in-mold molding. And the average value of the area ratio of the expanded particles B. Therefore, in the present invention, the average value of the area ratio is 0.05 to 1.0, preferably 0.08 to 0.7, more preferably 0.1 to 0.5, and particularly preferably 0.1 to 0. .3.

(面積比の測定方法)
本発明において上記の面積比(S1/S2)は、発泡粒子成形体の断面上に選択された複数個所の縦150mm、横150mmの正方形の範囲内に存在する、複数の発泡粒子A断面の面積の合計(S1)と複数の発泡粒子B断面の面積の合計(S2)を求めて、S1をS2で除することにより求めることができる。そして、無作為に得た5箇所の発泡粒子成形体断面について、この面積比(S1/S2)を求める操作を行い、得られた5箇所についての面積比(それぞれSR、SR、SR、SR、SRとする)の算術平均値を該面積比(S1/S2)の平均値(SV)とする。
(Area ratio measurement method)
In the present invention, the above-mentioned area ratio (S1 / S2) is the area of the cross section of the plurality of expanded particles A existing within a square of 150 mm in length and 150 mm in width selected on the cross section of the expanded foam molded body. The total (S1) and the total area (S2) of the cross-sections of the plurality of expanded particles B can be obtained, and obtained by dividing S1 by S2. Then, the foamed bead molded article cross-section of 5 points obtained at random, do determine the area ratio (S1 / S2), the area ratio of the obtained 5 points (SR 1 respectively, SR 2, SR 3 , SR 4 , SR 5 ) is defined as an average value (SV) of the area ratio (S1 / S2).

なお、発泡粒子成形体の断面上に選択された正方形の範囲内に存在するS1、S2の測定は、例えば、次のように測定することができる。まず、上記正方形の範囲の拡大写真を撮影し、図8Aに表すように拡大写真をスキャナー装置で画像データ化する。このときスキャナー装置としては、市販のスキャナー装置を適宜選択可能である。次に、画像データ化された拡大写真の画像にモノトーン化処理を施して図8Bに表すようにモノトーン画像を調製する。図8B中、発泡粒子Aは黒い部分(図8B中、符号BLにて示す部分)として表示される。モノトーン化処理は、例えば、画像データ化された拡大写真をNS2K Pro(ナノシステム)のような画像解析ソフトに適用することで実現することができる。モノトーン化処理され画像データに基づき、黒く表れている部分の面積を算出することにより発泡粒子Aの面積の合計(S1)が算出され、画像全体(図8B中、符号Wにて示す部分)の面積から発泡粒子Aの面積の合計を差し引くことで、発泡粒子Bの面積の合計(S2)を算出することができる。   In addition, the measurement of S1 and S2 which exist in the range of the square selected on the cross section of the expanded particle molded object can be measured as follows, for example. First, an enlarged photograph of the square area is taken, and the enlarged photograph is converted into image data by a scanner device as shown in FIG. 8A. At this time, a commercially available scanner device can be appropriately selected as the scanner device. Next, a monotone image is prepared as shown in FIG. 8B by applying monotone processing to the enlarged photograph image that has been converted into image data. In FIG. 8B, the expanded particles A are displayed as black portions (portions indicated by reference numeral BL in FIG. 8B). The monotoning process can be realized, for example, by applying an enlarged photograph converted into image data to image analysis software such as NS2K Pro (nano system). The total area (S1) of the expanded particles A is calculated by calculating the area of the blackened portion based on the image data that has been subjected to monotone processing, and the entire image (the portion indicated by the symbol W in FIG. 8B). By subtracting the total area of the expanded particles A from the area, the total area (S2) of the expanded particles B can be calculated.

(面積比の変動係数)
本発明の発泡粒子成形体の断面における面積比(S1/S2)の変動係数は20%以下、好ましくは15%以下、更に好ましくは10%以下である。該変動係数が大きすぎる場合は、発泡粒子成形体の製品間、或いは該製品の部分の発泡粒子Aの分散状態のバラツキが大きく所期の性能バラツキに繋がる。したがって、該変動係数が大きすぎる発泡粒子成形体は電波吸収体として使用した場合、電波吸収性能のバラツキが大きなものとなってしまう。
(Coefficient of variation of area ratio)
The variation coefficient of the area ratio (S1 / S2) in the cross section of the foamed particle molded body of the present invention is 20% or less, preferably 15% or less, more preferably 10% or less. When the coefficient of variation is too large, the dispersion of the expanded state of the expanded particles A between the products of the expanded particle molded product or the product portion is large, leading to the expected performance variations. Therefore, when the foamed particle molded body having a too large coefficient of variation is used as a radio wave absorber, the radio wave absorption performance varies greatly.

(面積比の変動係数(%)の算出方法)
本発明において上記の面積比(S1/S2)の変動係数は、上記のとおり測定された発泡粒子成形体断面における5箇所の面積比(SR、SR、SR、SR、SR)の値および面積比の平均値(SV)から、下記数式(1)〜(3)に基づいて算出される。
(Calculation method of area ratio coefficient of variation (%))
In the present invention, the variation coefficient of the above-mentioned area ratio (S1 / S2) is the area ratio (SR 1 , SR 2 , SR 3 , SR 4 , SR 5 ) at five locations on the cross-section of the foamed particle molded body measured as described above. And the average value (SV) of the area ratio are calculated based on the following mathematical formulas (1) to (3).

(発泡粒子Aおよび発泡粒子Bの見かけ密度)
上記したような密度の発泡粒子成形体を容易に得ることを考慮すると、発泡粒子Aおよび発泡粒子Bの見かけ密度は、各々、20〜150g/L、更に30〜80g/Lであることが好ましい。
(Apparent density of expanded particles A and expanded particles B)
In consideration of easily obtaining a foamed particle molded body having the above-described density, the apparent density of the foamed particle A and the foamed particle B is preferably 20 to 150 g / L, and more preferably 30 to 80 g / L, respectively. .

(発泡粒子の見かけ密度の測定方法)
本明細書において発泡粒子の見かけ密度は次のとおり測定される。水を入れたメスシリンダー内に重量W(g)の発泡粒子群を、金網などを使用して沈め、金網などの道具の体積を考慮しつつ水位の上昇分から発泡粒子群の体積V(L)を求め、発泡粒子群の重量を発泡粒子群の体積で除すことにより求められる値(W/V)をg/Lに単位換算して発泡粒子の真密度が求められる。そして発泡粒子の見かけ密度は、前記真密度を1.6で除した値である。なお、前記見かけ密度は、発泡粒子を大きく圧縮することなく通常の型内成形により得られる発泡粒子成形体の密度と概ね同じ値となる。
(Measurement method of apparent density of expanded particles)
In the present specification, the apparent density of the expanded particles is measured as follows. The foam particle group of weight W (g) is submerged in a graduated cylinder containing water using a wire mesh, and the volume V (L) of the foam particle group is determined from the rise in water level while taking into account the volume of the tool such as the wire mesh. The value (W / V) obtained by dividing the weight of the expanded particle group by the volume of the expanded particle group is converted to g / L as a unit to determine the true density of the expanded particle. The apparent density of the expanded particles is a value obtained by dividing the true density by 1.6. In addition, the said apparent density becomes a value substantially the same as the density of the foaming particle molded object obtained by normal in-mold shaping | molding, without compressing a foaming particle large.

(発泡粒子成形体の製造方法)
本発明に係る発泡粒子成形体の製造方法としては、例えば次のような方法を挙げることができる。
(Method for producing foamed particle molded body)
As a manufacturing method of the expanded particle molding which concerns on this invention, the following methods can be mentioned, for example.

まず、発泡粒子Aおよび発泡粒子Bを次のように調製する。   First, the expanded particles A and the expanded particles B are prepared as follows.

(発泡粒子の調製)
発泡粒子成形体の形成に使用される発泡粒子Bは、導電性材料の実質的な使用を規制した状態にて上記した基材樹脂から樹脂粒子を得て、樹脂粒子に発泡剤を含浸させ、その樹脂粒子を各々周知の発泡方法にて発泡させることにより得ることができる。なお、導電性材料の実質的な使用を規制した状態とは、導電性材料を全く含まない状態と、導電性材料が3質量%未満で含まれている状態とをあわせた概念であるものとする。発泡粒子Bを得るための樹脂粒子を調製する方法としては、例えば、基材樹脂を押出機に投入して溶融状態として押出機先端に取り付けたダイからストランド状に押出し、押出されたストランドをカットして樹脂粒子を得る方法(ストランドカット法)等を挙げることができる。この方法の他にも、樹脂粒子を調製する方法としては、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。
(Preparation of expanded particles)
The foamed particles B used for forming the foamed particle molded body are obtained by obtaining resin particles from the base resin described above in a state in which substantial use of the conductive material is regulated, and impregnating the resin particles with a foaming agent. Each of the resin particles can be obtained by foaming by a known foaming method. The state in which the substantial use of the conductive material is regulated is a concept that combines a state in which no conductive material is included and a state in which the conductive material is included at less than 3% by mass. To do. As a method of preparing the resin particles for obtaining the expanded particles B, for example, the base resin is put into an extruder and extruded as a strand from a die attached to the tip of the extruder as a molten state, and the extruded strand is cut. And a method of obtaining resin particles (strand cut method). In addition to this method, as a method for preparing the resin particles, a known resin particle production method such as an underwater cut method can be employed.

発泡粒子Aは、熱可塑性樹脂に導電性材料が3〜30質量%分散されているものに発泡剤を含有させた樹脂粒子或いは樹脂組成物を得て、その樹脂粒子或いは樹脂組成物を前述した周知の発泡方法にて発泡させることにより得ることができる。発泡粒子Aを得るための樹脂粒子を調製する方法としては、導電性材料と熱可塑性樹脂とをニーダーや押出機などの混練機を使用することにより導電性材料が熱可塑性樹脂中に大きく偏在することなく分散するように混練する以外は、上述したようなストランドカット法や、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。   Foamed particles A are obtained by obtaining resin particles or resin compositions in which a foaming agent is contained in 3 to 30% by mass of a conductive material dispersed in a thermoplastic resin, and the resin particles or resin compositions are described above. It can be obtained by foaming by a known foaming method. As a method for preparing the resin particles for obtaining the foamed particles A, the conductive material and the thermoplastic resin are largely unevenly distributed in the thermoplastic resin by using a kneader such as a kneader or an extruder. A known resin particle production method such as the strand cut method or the underwater cut method as described above can be employed except that the kneading is performed without being dispersed.

(発泡粒子混合物の調製)
次に、混合装置などを用いて発泡粒子Aおよび発泡粒子Bを混合して発泡粒子混合物を調製する。混合装置としては、パドル型若しくはスクリュー型ミキサーや、タンブラー等を適宜選択可能である。
(Preparation of foam particle mixture)
Next, the foamed particle mixture is prepared by mixing the foamed particles A and the foamed particles B using a mixing device or the like. As a mixing device, a paddle type or screw type mixer, a tumbler, or the like can be appropriately selected.

本発明の発泡粒子成形体を電波吸収体として使用する場合においては、発泡粒子成形体を構成する発泡粒子Aと発泡粒子Bの混合状態は、均一であることが理想的である。これを実現する観点からは、発泡粒子Aと発泡粒子Bとの混合物(発泡粒子混合物)を型内成形して発泡粒子成形体を製造する工程において、発泡粒子混合物から無作為に取り出された発泡粒子群中に含まれる発泡粒子Aの割合が一定範囲内に収まっているような状態となっていることが好適である。発泡粒子Aと発泡粒子Bとが均一に混合された発泡粒子混合物を得る観点からは、発泡粒子Aおよび発泡粒子Bの見かけ密度および平均粒子径の関係が下記数式(4)および数式(5)を満足することが好ましい。   When the foamed particle molded body of the present invention is used as a radio wave absorber, the mixing state of the foamed particles A and the foamed particles B constituting the foamed particle molded body is ideally uniform. From the standpoint of realizing this, in the process of producing a foamed particle molded body by molding the mixture of foamed particles A and foamed particles B (foamed particle mixture) in the mold, the foam taken out at random from the foamed particle mixture It is preferable that the ratio of the expanded particles A contained in the particle group is in a certain range. From the viewpoint of obtaining a foamed particle mixture in which the foamed particles A and the foamed particles B are uniformly mixed, the relationship between the apparent density and the average particle diameter of the foamed particles A and the foamed particles B is expressed by the following formulas (4) and (5). Is preferably satisfied.

ただし、上記数式(4)、数式(5)において、
D1:発泡粒子Aの見かけ密度(g/L)、
D2:発泡粒子Bの見かけ密度(g/L)、
P1:発泡粒子Aの平均粒子径(mm)、
P2:発泡粒子Bの平均粒子径(mm)、
である。
However, in the above formulas (4) and (5),
D1: Apparent density (g / L) of the expanded particles A,
D2: apparent density (g / L) of the expanded particles B,
P1: Average particle diameter (mm) of the expanded particles A,
P2: average particle diameter (mm) of the expanded particles B,
It is.

上記数式(4)および数式(5)を満足する発泡粒子を混合装置にて混合して発泡粒子混合物を調製することにより、発泡粒子混合物から無作為に取り出された混合発泡粒子群中に含まれる発泡粒子Aの割合を一定範囲内にすることが容易となる。   The foamed particles satisfying the above formulas (4) and (5) are mixed in a mixing device to prepare a foamed particle mixture, which is included in the mixed foamed particle group randomly extracted from the foamed particle mixture. It becomes easy to make the ratio of the expanded particles A within a certain range.

(発泡粒子の平均粒子径測定方法)
水が入ったメスシリンダーを用意し、適量の発泡粒子群を上記メスシリンダー内の水中に金網などの道具を使用して沈める。そして、金網などの道具の体積を考慮しつつ水位上昇分より読みとられる発泡粒子の容積V1[L]を測定する。この容積V1をメスシリンダーに入れた発泡粒子の個数(N)にて割り算(V1/N)することにより、発泡粒子1個あたりの平均体積を算出する。得られた平均体積と同じ体積を有する仮想真球の直径をもって発泡粒子の平均粒子径[mm]とする。
(Measurement method of average particle diameter of expanded particles)
A graduated cylinder containing water is prepared, and an appropriate amount of foam particles is submerged in water in the graduated cylinder using a tool such as a wire mesh. Then, the volume V1 [L] of the expanded particles read from the rise in the water level is measured while taking into account the volume of a tool such as a wire mesh. By dividing (V1 / N) this volume V1 by the number of foamed particles (N) placed in a graduated cylinder, the average volume per foamed particle is calculated. The diameter of the virtual sphere having the same volume as the obtained average volume is defined as the average particle diameter [mm] of the expanded particles.

(発泡粒子成形体の調製)
前記のとおり得られた発泡粒子混合物を用いて発泡粒子成形物を調製する。発泡粒子成形物は、発泡粒子の型内成形法に基づき調整することができる。型内成形法は、従来公知の方法などを適宜選択可能である。たとえば、目的に応じた形状に形成された金型内に、上記のとおり調製された発泡粒子混合物を圧縮充填法、クラッキング充填法等の公知の充填法にて充填し、金型内の発泡粒子をスチーム等の加熱媒体にて加熱し発泡粒子を相互に融着させて融着物を得る。そして融着物を金型から取り出すことにより発泡粒子成形体を得ることができる。
(Preparation of foamed particle compact)
A foamed particle molded product is prepared using the foamed particle mixture obtained as described above. The foamed particle molded product can be adjusted based on the in-mold molding method of the foamed particles. As the in-mold molding method, a conventionally known method or the like can be appropriately selected. For example, a foamed particle mixture prepared as described above is filled into a mold formed according to the purpose by a known filling method such as compression filling method, cracking filling method, etc. Is heated with a heating medium such as steam to fuse the foamed particles to each other to obtain a fused product. And a foamed-particles molded object can be obtained by taking out a fused material from a metal mold | die.

(発泡粒子成形体の利用形態)
本発明における発泡粒子成形体は、電波吸収体として使用される場合、図1A,図1B、図2A,図2Bに示すように、ピラミッド型若しくは楔型の形状が主に採用され、好ましくは異なる周波数帯で異なる電波吸収性能を示す素材と複合的に使用される。但し、形状は、所望の目的性能に応じて適宜設計することが可能であり、上記形状に限定されることはない。なお、例えば本発明の発泡粒子成形体からなる電波吸収体は、主にフェライトタイルなどのMHz帯で顕著に電波吸収性能を発揮する素材と共に使うことにより、より広い周波数帯において効率的に電波吸収が可能となる。異なる周波数帯で異なる電波吸収性能を示す素材と発泡粒子成形体とを複合的に使用した電波吸収体として、具体的には、図3A,B、図4A,Bのような形状を有する複合型電波吸収体10が使用され、その底面に符号3にて示す低周波電波吸収材を使用する。本明細書においては、複合型電波吸収体を単に電波吸収体と呼ぶことがある。
(Usage form of foamed particle molded body)
When the foamed particle molded body of the present invention is used as a radio wave absorber, as shown in FIGS. 1A, 1B, 2A, and 2B, a pyramid or wedge shape is mainly adopted, and preferably different. Used in combination with materials that exhibit different electromagnetic wave absorption performance in different frequency bands. However, the shape can be appropriately designed according to the desired target performance, and is not limited to the above shape. For example, the radio wave absorber comprising the foamed particle molded body of the present invention is effectively absorbed in a wider frequency band by using it together with a material that exhibits remarkable radio wave absorption performance mainly in the MHz band such as ferrite tiles. Is possible. Specifically, as a radio wave absorber using a composite of a material exhibiting different radio wave absorption performance in different frequency bands and a foamed particle molded body, a composite mold having the shapes as shown in FIGS. 3A, 3B, 4A and 4B. A radio wave absorber 10 is used, and a low frequency radio wave absorber indicated by reference numeral 3 is used on the bottom surface thereof. In the present specification, the composite wave absorber may be simply referred to as a wave absorber.

電波吸収体で吸収する周波数帯を具体的に例示すると、異なる周波数帯で異なる電波吸収性能を示す素材としてフェライトを用いた場合、フェライトタイルが主に低周波数帯(30〜400MHz)の電波を吸収し、発泡粒子成形体が主にそれより上の高周波数帯の電波を吸収する。   Specific examples of frequency bands absorbed by radio wave absorbers: When ferrite is used as a material exhibiting different radio wave absorption performance in different frequency bands, ferrite tiles mainly absorb radio waves in the low frequency band (30 to 400 MHz). In addition, the foamed particle molded body mainly absorbs radio waves in a high frequency band above it.

ところで、誘電損失を起こす材料の電波吸収には、誘電損失ε”に起因するものと、導電損失σに起因するものとがあり、次に示す数式(6)で表される。 By the way, there are two types of radio wave absorption of materials that cause dielectric loss, which are caused by dielectric loss ε ″ * and those caused by conductive loss σ, which are expressed by the following formula (6).

ただし、上記数式(6)において、
ε”:誘電損失
σ :導電損失
ε” :複素誘電率の虚数部
f :周波数
である。
However, in the above formula (6),
ε ″ * : dielectric loss σ: conductive loss ε ″: imaginary part of complex dielectric constant f: frequency.

発泡粒子成形体とフェライトタイルとを複合させた電波吸収体においては、高周波数帯では発泡粒子成形体の複素誘電率の虚数部が大きいが、低周波数帯ではフェライトによる吸収効果を主とするため発泡粒子成形体の複素誘電率の虚数部が小さいほうが好ましい。したがって、発泡粒子成形体には、数式(6)における導電損失σが小さいことが求められる。   In radio wave absorbers that are a composite of foamed particle compacts and ferrite tiles, the imaginary part of the complex dielectric constant of foamed particle compacts is large in the high frequency band, but mainly because of the absorption effect of ferrite in the low frequency band. It is preferable that the imaginary part of the complex dielectric constant of the foamed particle molded body is small. Therefore, the foamed particle molded body is required to have a small conductive loss σ in the formula (6).

ここで、発泡粒子成形体の電気的な等価回路を図5A、発泡粒子成形体における導電損失と誘電損失を説明する模式図を図5Bに示す。図5AにおいてRは抵抗、Cはコンデンサであり、それぞれにおいて導電損失、誘電損失が生じる。発泡粒子成形体内において、導電性を示す発泡粒子Aは等価回路では小さな抵抗と見做せるため、そこで導電損失が生じる。そして、図5Bに示すように空間的に互いに離れて発泡粒子Aが存在している部分は、小さなコンデンサCと見做せるため、そこで誘電損失が生じる。ところで、上記数式6において、ε”は、コンデンサで生じる誘電損失であり、σは抵抗により生じる導電損失である。したがって、発泡粒子Aの連結が長すぎる場合には、等価回路の抵抗成分の影響が大きく、上記数式(6)において導電損失σが主体の発泡粒子成形体となる。この場合の発泡粒子成形体は、電波吸収体としては好適なものとは言えない。 Here, FIG. 5A shows an electrical equivalent circuit of the foamed particle molded body, and FIG. 5B shows a schematic diagram for explaining the conductive loss and dielectric loss in the foamed particle molded body. In FIG. 5A, R is a resistance, and C is a capacitor, and conductive loss and dielectric loss occur in each. In the foamed particle molded body, the foamed particles A exhibiting conductivity can be regarded as a small resistance in the equivalent circuit, and therefore, a conductive loss occurs. Then, as shown in FIG. 5B, the portion where the expanded particles A are spatially separated from each other can be regarded as a small capacitor C, so that dielectric loss occurs there. By the way, in the above formula 6, ε ″ * is a dielectric loss caused by the capacitor, and σ is a conduction loss caused by the resistance. Therefore, when the connection of the expanded particles A is too long, the resistance component of the equivalent circuit In this case, the foamed particle molded body is mainly composed of the conductive loss σ in the formula (6), and the foamed particle molded body in this case is not suitable as a radio wave absorber.

従来の導電性材料を含有した導電性発泡粒子のみからなる型内成形体の電波吸収体は、GHz帯での電波吸収性能を向上させるために、導電性材料の添加量を増やすことは可能であるが、添加量増加に応じてMHz帯吸収性能が低下するという問題がある。一方、MHz帯での吸収性能を向上させるために導電性材料の添加量を減らす場合、GHz帯での電波吸収性能が低下するという問題がある。すなわちGHz帯およびMHz帯の両周波数帯域で所望の電波吸収性能を得ることが難しいとうい問題がある。また、従来の導電塗料を被覆してなる被覆層を備えた導電性被膜形成発泡粒子とそのような被覆層を備えずに形成された非導電性発泡粒子との混合発泡粒子型内成形体からなる電波吸収体においては、MHz帯の電波吸収性能は上記のものと比して向上するものの、未だ不十分なレベルにあるという問題がある。   A conventional radio wave absorber made of only conductive foam particles containing a conductive material can increase the amount of conductive material added in order to improve the radio wave absorption performance in the GHz band. However, there is a problem in that the MHz band absorption performance is lowered as the amount of addition is increased. On the other hand, when reducing the addition amount of the conductive material in order to improve the absorption performance in the MHz band, there is a problem that the radio wave absorption performance in the GHz band is lowered. That is, there is a problem that it is difficult to obtain desired radio wave absorption performance in both frequency bands of the GHz band and the MHz band. Also, from a foamed in-mold molded product mixture of conductive film-forming foam particles having a coating layer formed by coating a conventional conductive paint and non-conductive foam particles formed without such a coating layer. However, there is a problem that the radio wave absorber is still in an insufficient level, although the radio wave absorption performance in the MHz band is improved as compared with the above.

導電性発泡粒子のみからなる型内成形体の電波吸収体についての上記問題は、電波吸収体をなす発泡粒子成形体全体が導電性材料にて構成されることになるため、電波吸収体の電波吸収性能は主に導電損失によって生じていると考えられ、高周波数帯で性能を発揮し易いなどの理由によるものと考えられる。また、上記導電塗料を被覆してなる被覆層を備えた導電性被膜形成発泡粒子の型内成形体からなる電波吸収体の問題は、導電塗料にて発泡粒子を被覆することにより導電性発泡粒子を得ていることから、導電性被膜形成発泡粒子は、導電性発泡粒子の被覆層にのみ導電性材料が存在しているにすぎない。また、発泡粒子表面に抵抗となる電気回路が形成され、導電性被膜形成発泡粒子成形体の導電損失σが大きくなる。したがって、このような導電性被膜形成発泡粒子成形体は、電波吸収性能として十分な性能を有するものとは言えないものである。   The above-mentioned problem with respect to the radio wave absorber of the in-mold molded body made only of conductive foam particles is that the entire foamed particle molded body constituting the radio wave absorber is composed of a conductive material. Absorption performance is considered to be mainly caused by conductive loss, and is considered to be due to reasons such as easy performance in the high frequency band. In addition, the problem with the radio wave absorber made of an in-mold molded body of conductive film-forming foam particles provided with a coating layer formed by coating the conductive paint is that the conductive foam particles are coated by covering the foam particles with a conductive paint. Therefore, in the conductive film-formed foamed particles, the conductive material is present only in the coating layer of the conductive foamed particles. In addition, an electric circuit serving as a resistance is formed on the surface of the foamed particles, and the conductive loss σ of the conductive film-formed foamed particle molded body is increased. Therefore, such a conductive film-formed foamed particle molded body cannot be said to have sufficient performance as radio wave absorption performance.

一方、本発明においては、前記のとおり、発泡粒子成形体断面における発泡粒子Aと発泡粒子Bとの該面積比の平均値が0.05〜1.0の範囲となるように混合した混合発泡粒子を用いることにより、得られる発泡粒子成形体内で発泡粒子Aを該面積比(S1/S2)1.0以下の小さな範囲としつつ、発泡粒子成形体の静電容量を所期の値に調整することができる。上記面積比の範囲内とした場合に、発泡粒子Aが、単独、および、2〜20個、更に2〜15個の連結するクラスターを形成するため好ましい。結果として、等価回路の導電損失を小さくしつつ、誘電損失を大きくすることができ、電波吸収性能が向上する。   On the other hand, in the present invention, as described above, mixed foaming is performed such that the average value of the area ratio of the foamed particles A and the foamed particles B in the cross section of the foamed particle molded body is in the range of 0.05 to 1.0. By using the particles, the capacitance of the foamed particle molded body is adjusted to an expected value while the foamed particle A is within a small range of 1.0 or less in the area ratio (S1 / S2) in the obtained foamed particle molded body. can do. When the area ratio is within the range, the expanded particles A are preferable because they form single and 2 to 20 and further 2 to 15 connected clusters. As a result, the dielectric loss can be increased while reducing the conductive loss of the equivalent circuit, and the radio wave absorption performance is improved.

実際に、本発明の発泡粒子成形体(発泡粒子Aおよび発泡粒子Bからなる成形体)と、単一発泡粒子からなる成形体(発泡粒子Aのみからなる成形体)の静電容量を測定した結果を図6に示す。なお、発泡粒子Aおよび発泡粒子Bからなる発泡粒子成形体に含有されている導電性材料としての導電性カーボンブラック添加量は、該カーボンブラックが14質量%分散している発泡粒子Aと発泡粒子Bとの混合比を変えることにより調整した。また、発泡粒子Aのみからなる発泡粒子成形体に含有されている導電性材料としての導電性カーボンブラック添加量は、発泡粒子A中の導電性カーボンブラックの配合率を変えることにより調整した。これらの発泡粒子成形体について、図6に示すように、前者の本発明の発泡粒子成形体の方が効率よく静電容量を高くすることができることが認められる。これは、発泡粒子成形体を等価回路とした場合、そのコンデンサ成分が抵抗成分に比べて大きいことを意味し、電波吸収体として望ましいことを示す。   Actually, the capacitances of the foamed particle molded body of the present invention (molded body composed of foamed particles A and foamed particles B) and the molded body composed of single foamed particles (molded body composed only of foamed particles A) were measured. The results are shown in FIG. The amount of conductive carbon black added as the conductive material contained in the foamed particle molded body composed of the foamed particles A and the foamed particles B is the same as the foamed particles A and the foamed particles in which the carbon black is dispersed by 14% by mass. Adjustment was made by changing the mixing ratio with B. Further, the amount of conductive carbon black added as the conductive material contained in the foamed particle molded body composed only of the foamed particles A was adjusted by changing the blending ratio of the conductive carbon black in the foamed particles A. As shown in FIG. 6, it is recognized that the former foamed particle molded body of the present invention can increase the capacitance more efficiently for these foamed particle molded bodies. This means that when the foamed particle molded body is an equivalent circuit, the capacitor component is larger than the resistance component, which indicates that it is desirable as a radio wave absorber.

そして本発明の発泡粒子成形体は、発泡粒子Aからなる導電性材料を多く含有する部分と、発泡粒子Bからなり導電性材料の実質的な使用を規制した状態の部分とを適宜存在させることにより、導電損失を主体とすることなく、誘電損失を主体とすることができるので、MHz帯の電波吸収性能が低下し易い性質を良化することができる。よって、本発明の発泡粒子成形体は、GHz帯の電波吸収性能に優れると共にMHz帯の吸収性能を向上させることができる。すなわち、当該発泡粒子成形体は、MHz帯からGHz帯までの電磁波を吸収させることの可能な、幅広い周波数領域に対応が可能な電波吸収体として利用可能なものである。   The foamed particle molded body of the present invention appropriately has a portion containing a large amount of the conductive material made of the foamed particle A and a portion made of the foamed particle B in a state where substantial use of the conductive material is restricted. Thus, the dielectric loss can be mainly used without mainly conducting loss, so that the property that the radio wave absorption performance in the MHz band is likely to be lowered can be improved. Therefore, the foamed particle molded body of the present invention is excellent in the radio wave absorption performance in the GHz band and can improve the absorption performance in the MHz band. That is, the foamed particle molded body can be used as a radio wave absorber capable of absorbing electromagnetic waves from the MHz band to the GHz band and capable of supporting a wide frequency range.

本発明において発泡粒子成形体は、変動係数は20%以下であることから、導電性材料が練り込まれている発泡粒子Aが、発泡粒子成形体全体に略均一に分散して存在していると言える。このことから、本発明によれば、より安定的にMHz帯からGHz帯までの電波を吸収させることの可能な、幅広い周波数領域に対応が可能な電波吸収体として利用可能なものが提供される。   In the present invention, since the coefficient of variation of the foamed particle molded body is 20% or less, the foamed particles A in which the conductive material is kneaded are present in a substantially uniformly dispersed state throughout the foamed particle molded body. It can be said. From this, according to the present invention, what can be used as a radio wave absorber that can absorb a radio wave from the MHz band to the GHz band more stably and can cope with a wide frequency range is provided. .

(低周波電波吸収材)
前記複合型電波吸収体に使用される低周波電波吸収材3としては、例えば、磁性損失材料としてフェライトタイル等からなる電波吸収体が好適に使用される。フェライトタイルは400MHz以下の低周波域においてきわめて良好な電波吸収特性を示すものである。そこで、複合型電波吸収体10としては、本発明の発泡粒子成形体からなる電波吸収体とフェライトタイルとを組み合わせたユニットを例示することができる。このような複合型電波吸収体10のユニットにおいては、GHz帯域の電波の吸収は発泡粒子成形体で効率よく吸収され、MHz帯の電波がフェライトの磁性損失によりフェライトタイルにて効率よく吸収されることとなり、より広域の周波数帯での電波吸収性能をより強力に発揮することができるようになる。
(Low frequency electromagnetic wave absorber)
As the low frequency radio wave absorber 3 used for the composite radio wave absorber, for example, a radio wave absorber made of a ferrite tile or the like is preferably used as a magnetic loss material. Ferrite tiles exhibit extremely good radio wave absorption characteristics in a low frequency range of 400 MHz or less. Therefore, as the composite wave absorber 10, a unit in which the wave absorber formed of the foamed particle molded body of the present invention and a ferrite tile can be exemplified. In such a unit of the composite wave absorber 10, the absorption of the GHz band radio wave is efficiently absorbed by the foamed particle molded body, and the MHz band radio wave is efficiently absorbed by the ferrite tile due to the magnetic loss of the ferrite. As a result, the radio wave absorption performance in a wider frequency band can be exhibited more powerfully.

なお、発泡粒子成形体とフェライトタイルを組み合わせて使用する場合、発泡粒子成形体の発泡粒子Aに含まれる導電性材料は、上述したように発泡粒子A100質量%に対して3〜30質量%、好ましくは7〜20質量%、更に好ましくは10〜17質量%である。このように好ましい導電性材料の上限範囲が存在する理由としては、フェライトタイルと空間(空気)のインピーダンスがマッチングするように設計すると発泡粒子成形体の導電性材料の含有量が多すぎると、そのインピーダンスが空気と大きく異なるため、インピーダンス不整合により発泡粒子成形体部分での電磁波の反射が起こりやすくなり、低周波域を受け持つフェライトタイルの吸収特性を阻害し易くなるためと考えられる。   When the foamed particle molded body and ferrite tile are used in combination, the conductive material contained in the foamed particle A of the foamed particle molded body is 3 to 30% by mass with respect to 100% by mass of the expanded particle A, as described above. Preferably it is 7-20 mass%, More preferably, it is 10-17 mass%. The reason why there is an upper limit range of the preferable conductive material as described above is that when the content of the conductive material in the foamed particle molded body is too large when the impedance of the ferrite tile and the space (air) is designed to match, This is probably because the impedance is greatly different from that of air, so that the electromagnetic wave is likely to be reflected at the foamed particle molded body due to impedance mismatching, and the absorption characteristics of the ferrite tile responsible for the low frequency range are likely to be hindered.

一方、発泡粒子成形体の導電性材料の含有量を少なくすると、フェライトタイルの吸収特性を阻害することはなくなるが、発泡粒子成形体自体の電波吸収性能が低下するため、同じ性能を出すためには、電波吸収体を大きく(発泡粒子成形体が多角錘形状の場合には多角錘の高さを高く)しなければならない。結果として、電波暗室などの空間占有率が大きくなり、限られた空間を有効に活用できなくなってしまう。   On the other hand, if the content of the conductive material of the foamed particle molded body is reduced, the absorption characteristics of the ferrite tile will not be disturbed, but the radio wave absorption performance of the foamed particle molded body itself will be lowered, so that the same performance can be obtained. The size of the electromagnetic wave absorber must be large (if the foamed particle molded body has a polygonal pyramid shape, the height of the polygonal pyramid must be high). As a result, the space occupancy rate such as the anechoic chamber becomes large, and the limited space cannot be used effectively.

したがって、本発明の発泡粒子成形体は、導電性材料を特定範囲の量で含有する発泡粒子Aと、導電性材料の実質的な使用を規制した発泡粒子Bとを特定範囲の混合比率を満たして含有する場合にあって、フェライトタイルを組み合わされてユニットを構成する電波吸収体として使用する場合に、フェライトの吸収特性の良い低周波数帯ではフェライトタイルが電波を効率的に吸収し、高周波数帯では該発泡粒子成形体が電波を効率的に吸収し、広い周波数帯域において特に優れた電波吸収性能が期待できる。   Therefore, the foamed particle molded body of the present invention satisfies the mixing ratio of the specific range between the foamed particle A containing the conductive material in a specific range amount and the foamed particle B that restricts the substantial use of the conductive material. If the ferrite tile is combined and used as a radio wave absorber that forms a unit, the ferrite tile efficiently absorbs radio waves in the low frequency band where the ferrite absorption characteristics are good. In the band, the foamed particle molded body efficiently absorbs radio waves, and particularly excellent radio wave absorption performance can be expected in a wide frequency band.

以下、実施例を用いて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[発泡粒子Aの製造]
内径65mmの押出機の出口側にストランド形成用ダイを付設した押出装置を準備した。表1に示した配合となるように、基材樹脂となる熱可塑性樹脂として表1に示すプロピレン系樹脂、導電性材料となる導電性無機物としてオイルファーネスブラック(製品名;ケッチェンブラック(登録商標)EC300J(ライオン社製)、DBP吸収量;360cm/100g、粒径;40nm)を内径65mmの押出機に供給し、設定温度200〜240℃にて加熱、溶融、混練し、ポリプロピレン樹脂中に導電性材料を分散させた後、得られた溶融混練物を前記ダイの細孔から、ストランド状に押出し、ペレタイザーで2mg(粒子の長さと直径の比率(L/D)は1.3)になるように切断して円柱状の樹脂粒子を得た。得られた樹脂粒子1kgと、分散媒体の水3L、分散剤としてカオリン3g、ドデシルベンゼンスルホン酸ナトリウム0.02gとを5Lのオートクレーブ内に仕込み、分散媒体中で密閉容器内に発泡剤として二酸化炭素を圧入し、撹拌下に表1に示した発泡温度まで加熱昇温して同温度に15分間保持して調整し、密閉容器内圧力を3.0MPa(G)とした後、オートクレーブ内容物を大気圧下に分散媒体と共に放出して発泡粒子Aを得た。なお、発泡粒子Aを構成している樹脂中の導電性材料の分散状態は図10のTEM写真(倍率20000倍)のとおりであった。図10のTEM写真において、黒色箇所にて導電性材料の存在箇所が示され、非黒色(白色)を呈する箇所にて樹脂の存在箇所が示されている。また、得られた発泡粒子Aの諸物性を表1に併せて示した。
[Production of expanded particles A]
An extrusion apparatus in which a strand forming die was attached to the outlet side of an extruder having an inner diameter of 65 mm was prepared. As shown in Table 1, the propylene resin shown in Table 1 as a thermoplastic resin as a base resin, and oil furnace black (product name: Ketjen Black (registered trademark) as a conductive inorganic substance as a conductive material. ) EC300J (manufactured by Lion Corporation), DBP absorption amount; 360 cm 3/100 g, particle size; 40 nm) were fed to an extruder having an inner diameter of 65 mm, heated at a set temperature 200-240 ° C., molten, kneaded, polypropylene resin After the conductive material is dispersed in, the obtained melt-kneaded product is extruded in the form of a strand from the pores of the die, and 2 mg (the ratio of particle length to diameter (L / D) is 1.3) with a pelletizer. Were cut to obtain cylindrical resin particles. 1 kg of the obtained resin particles, 3 L of water as a dispersion medium, 3 g of kaolin as a dispersant, and 0.02 g of sodium dodecylbenzenesulfonate are charged into a 5 L autoclave, and carbon dioxide as a blowing agent in a sealed container in the dispersion medium. The mixture was heated and heated to the foaming temperature shown in Table 1 under stirring and maintained at the same temperature for 15 minutes to adjust the pressure in the sealed container to 3.0 MPa (G). The foamed particles A were obtained by discharging together with the dispersion medium under atmospheric pressure. The dispersion state of the conductive material in the resin constituting the expanded particles A was as shown in the TEM photograph (magnification 20000 times) in FIG. In the TEM photograph of FIG. 10, the location where the conductive material is present is indicated by a black spot, and the location where the resin is present is indicated by a spot where non-black (white) is present. In addition, Table 1 shows various physical properties of the obtained expanded particles A.

[発泡粒子Bの製造]
導電性材料を使用しなかった以外は、上記発泡粒子Aと同様の工程を実施して発泡粒子Bを得た。ただし、発泡粒子Bの製造において、基材樹脂などの成分および配合量は、表2に示すとおりである。また、得られた発泡粒子Bの諸物性を表2に併せて示した。
[Production of expanded particles B]
Except not having used an electroconductive material, the process similar to the said foaming particle A was implemented and the foaming particle B was obtained. However, in the production of the expanded particles B, the components such as the base resin and the blending amounts are as shown in Table 2. Moreover, various physical properties of the obtained expanded particles B are shown together in Table 2.

上記表1および表2に示した発泡粒子Aの物性および発泡粒子Bの物性は、下記の方法により測定した。   The physical properties of the expanded particles A and the expanded particles B shown in Tables 1 and 2 above were measured by the following methods.

[発泡粒子の融点]
JIS K 7122(1987年)に基づく熱流束示差走査熱量測定法(DSC法)により得られた値を採用した。発泡粒子2〜4mgをサンプルとし、熱流束示差走査熱量計によって室温から200℃まで10℃/分の速度で昇温し、次いで200℃から40℃まで10℃/分の速度で降温し、再度40℃から200℃まで10℃/分の速度で昇温を行って得られたDSC曲線上の最大吸熱曲線ピークの頂点温度を融点とした。
[Melting point of expanded particles]
Values obtained by a heat flux differential scanning calorimetry method (DSC method) based on JIS K 7122 (1987) were adopted. Using 2 to 4 mg of expanded particles as a sample, the temperature was increased from room temperature to 200 ° C. at a rate of 10 ° C./min by a heat flux differential scanning calorimeter, and then decreased from 200 ° C. to 40 ° C. at a rate of 10 ° C./min, The peak temperature of the maximum endothermic curve peak on the DSC curve obtained by heating from 40 ° C. to 200 ° C. at a rate of 10 ° C./min was taken as the melting point.

なお、上記表1および表2に示した発泡粒子の「見かけ密度」、「平均粒子径」は、前述の測定方法により測定した。 The “apparent density” and “average particle diameter” of the expanded particles shown in Tables 1 and 2 were measured by the above-described measuring methods.

(実施例1〜8、比較例2〜4)
[熱可塑性樹脂発泡粒子成形体の製造]
表1に示した発泡粒子Aと表2に示した発泡粒子Bを、表3に示した混合比にてタンブラーで混合して発泡粒子混合物を得た。得られた発泡粒子混合物を金型内に充填して表3に示したスチーム成形圧力(MPa:ゲージ圧)にて加熱することにより型内成形工程を実施し、図7に示すような底面600mm×600mm、高さ300mmの複数のピラミッド形状(四角錐形状)の角から成る発泡粒子成形体(成形品)を得た。図7中、符号Eは底面を示し、符号Fは頂部を示し、図7に示す発泡粒子成形体における底面Eの寸法は符号Bと符号Aで示す範囲の長さであり、高さは、底面Eと頂部Fとの高さの差を示す符号Cで示す範囲の長さとして特定される。
(Examples 1-8, Comparative Examples 2-4)
[Production of thermoplastic resin foam particles]
The expanded particles A shown in Table 1 and the expanded particles B shown in Table 2 were mixed with a tumbler at the mixing ratio shown in Table 3 to obtain an expanded particle mixture. The obtained foamed particle mixture was filled in a mold and heated at a steam molding pressure (MPa: gauge pressure) shown in Table 3 to carry out an in-mold molding process, and a bottom surface of 600 mm as shown in FIG. A foamed particle molded body (molded article) comprising a plurality of pyramid-shaped (quadrangular pyramid-shaped) corners of × 600 mm and a height of 300 mm was obtained. In FIG. 7, the symbol E indicates the bottom surface, the symbol F indicates the top, the dimension of the bottom surface E in the foamed particle molded body shown in FIG. 7 is the length of the range indicated by the symbols B and A, and the height is It is specified as the length of the range indicated by the symbol C indicating the difference in height between the bottom surface E and the top F.

実施例および比較例で得られた発泡粒子成形体は、それぞれ、フェライトタイル(底面100mm×100mm、厚さ5.2mm;リケン環境システム社製、商品名RF044)に積み重ねられて相互に固定し図3Bのような形状のユニットを形成した。ユニットは、ユニットの底面が600mm×600mmとなるように形成された。こうして得られたフェライトタイルと発泡粒子成形体とで構成される構造体のユニットを、電波吸収体(この場合は複合型電波吸収体)とした。   The foamed particle molded bodies obtained in Examples and Comparative Examples were stacked on ferrite tiles (bottom 100 mm × 100 mm, thickness 5.2 mm; manufactured by Riken Environmental Systems Co., Ltd., trade name RF044) and fixed to each other. A unit shaped like 3B was formed. The unit was formed so that the bottom surface of the unit was 600 mm × 600 mm. The unit of the structure composed of the ferrite tile and the foamed particle molded body thus obtained was used as a radio wave absorber (in this case, a composite radio wave absorber).

実施例1、比較例2、後述の比較例5で得られた発泡粒子成形体については表面写真の撮影を行った。結果を図9に示す。図9Aは、実施例1で得られた発泡粒子成形体の表面写真である。図9Bは、比較例2で得られた発泡粒子成形体の表面写真である。図9Cは、比較例5で得られた発泡粒子成形体の表面写真である。   For the foamed particle molded bodies obtained in Example 1, Comparative Example 2, and Comparative Example 5 described later, a surface photograph was taken. The results are shown in FIG. FIG. 9A is a surface photograph of the expanded particle molded body obtained in Example 1. FIG. FIG. 9B is a surface photograph of the foamed particle molded body obtained in Comparative Example 2. FIG. 9C is a surface photograph of the foamed particle molded body obtained in Comparative Example 5.

(比較例1、5、6)
[熱可塑性樹脂発泡粒子成形体の製造]
表1に示した発泡粒子Aのみを金型内に充填した以外は実施例1と同様にして、表3に示した条件にて発泡粒子成形体を得た。
(Comparative Examples 1, 5, 6)
[Production of thermoplastic resin foam particles]
A foamed particle molded body was obtained under the conditions shown in Table 3 in the same manner as in Example 1 except that only the foamed particles A shown in Table 1 were filled in the mold.

実施例および比較例にて得られた発泡粒子成形体の諸物性の測定を下記の方法により行い結果を表4に示した。さらに、上記のとおり実施例および比較例の発泡粒子成形体からなる複合型電波吸収体について、電波吸収性能の評価と総合評価を下記の方法により行った結果を表4に併せて示した。   Various physical properties of the expanded foam molded bodies obtained in Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 4. Furthermore, as described above, the composite radio wave absorbers composed of the foamed particle molded bodies of Examples and Comparative Examples were subjected to evaluation of radio wave absorption performance and comprehensive evaluation by the following methods.

[発泡粒子成形体を構成している発泡粒子Aと発泡粒子Bの各々の平均粒子径(本発明請求項2における発泡粒子の平均粒子径)]
発泡粒子Aの平均粒子径は、発泡粒子成形体断面を観察し、該断面の縦100mm×横100mmの正方形の範囲内に存在している全ての発泡粒子Aの最大径を測定し、該最大径の算術平均値を発泡粒子Aの平均粒子径とした。一方、発泡粒子Bの平均粒子径についても、発泡粒子Aの平均粒子径を測定した同じ発泡粒子成形体断面を観察し、該断面の縦100mm×横100mmの正方形の範囲内に存在している全ての発泡粒子Bの最大径を測定し、該最大径の算術平均値を発泡粒子Bの平均粒子径とした。なお、表4に示すように発泡粒子Aと発泡粒子Bの各々の平均粒子径が概ね同じ値であった。
[Average particle diameter of each of expanded particles A and expanded particles B constituting the expanded particle molded body (average particle diameter of expanded particles in claim 2 of the present invention)]
The average particle size of the expanded particles A is determined by observing the cross section of the expanded molded product, measuring the maximum diameter of all expanded particles A present within a square of 100 mm length × 100 mm width of the cross section, The arithmetic average value of the diameters was defined as the average particle diameter of the expanded particles A. On the other hand, with respect to the average particle diameter of the expanded particles B, the same expanded particle molded body cross section in which the average particle diameter of the expanded particles A was measured was observed, and was present within the range of a square of 100 mm in length × 100 mm in width. The maximum diameter of all the expanded particles B was measured, and the arithmetic average value of the maximum diameters was defined as the average particle diameter of the expanded particles B. In addition, as shown in Table 4, the average particle diameter of each of the expanded particles A and the expanded particles B was approximately the same value.

[電波吸収体の電波吸収性能]
実施例、比較例の発泡粒子成形体を用いて複合型電波吸収体を100個試作し、周波数30MHz、100MHz、1GHz、18GHzにおいて、IEEE Std1128に示された同軸管法およびアーチ法により、電波吸収量(dB)を測定し、平均値を求めた。
[Radio wave absorption performance of radio wave absorber]
100 composite radio wave absorbers were prototyped using the foamed particle molded bodies of Examples and Comparative Examples, and the radio wave absorption was performed at the frequencies of 30 MHz, 100 MHz, 1 GHz, and 18 GHz by the coaxial tube method and the arch method shown in IEEE Std1128. The amount (dB) was measured and the average value was determined.

表4中、「*」は、電波吸収性能が不安定であったことを示す。   In Table 4, “*” indicates that the radio wave absorption performance was unstable.

また表4において、「粒子径比」欄、「密度比」欄には、それぞれ発泡粒子A,Bの平均粒子径(mm)の比率、発泡粒子A,Bの見掛け密度の比率が記載され、「面積比(S1/S2)」欄には面積比の平均値が記載され、「変動係数(%)」欄には面積比の変動係数(%)が記載されている。発泡粒子A,Bの平均粒子径(mm)の比率、発泡粒子A,Bの見かけ密度の比率、面積比の平均値、面積比の変動係数(%)については、それぞれ前述の測定方法により測定された。   In Table 4, the “particle diameter ratio” column and the “density ratio” column describe the ratio of the average particle diameter (mm) of the expanded particles A and B and the ratio of the apparent density of the expanded particles A and B, respectively. In the “area ratio (S1 / S2)” column, the average value of the area ratio is described, and in the “variation coefficient (%)” column, the variation coefficient (%) of the area ratio is described. The ratio of the average particle diameter (mm) of the expanded particles A and B, the ratio of the apparent density of the expanded particles A and B, the average value of the area ratio, and the coefficient of variation (%) of the area ratio are measured by the measurement methods described above, respectively. It was done.

上記表4の結果より、実施例1から8の電波吸収体は、MHz帯およびGHz帯において十分に安定した電波吸収能力を有することが確認された。また、型内成形時の発泡粒子の成形性に関しても良好なものであった。したがって、本発明の発泡粒子成形体は、広域な電磁波の吸収特性を持つ優れた電波吸収性能を有するものであり、電波吸収体として好適なものであった。   From the results of Table 4 above, it was confirmed that the radio wave absorbers of Examples 1 to 8 had sufficiently stable radio wave absorption capability in the MHz band and the GHz band. Further, the moldability of the expanded particles during molding in the mold was also good. Therefore, the foamed particle molded body of the present invention has excellent radio wave absorption performance with a wide range of electromagnetic wave absorption characteristics, and is suitable as a radio wave absorber.

比較例1の発泡粒子成形体は、発泡粒子Aのみを含むため、GHz帯で吸収性能に優れるものの、MHz帯において電波吸収性能は不十分なものであった。   Since the foamed particle molded body of Comparative Example 1 includes only the foamed particles A, the radio wave absorption performance was insufficient in the MHz band, although the absorption performance was excellent in the GHz band.

比較例2の発泡成形体は、発泡粒子Aの添加量が多すぎるため混合発泡粒子中の発泡粒子Aの面積比が大きくなりすぎ、特にMHz帯において、十分な電波吸収性能が発現されなかった。   In the foamed molded article of Comparative Example 2, the area ratio of the foamed particles A in the mixed foamed particles was too large because the amount of the foamed particles A added was too large, and sufficient radio wave absorption performance was not expressed particularly in the MHz band. .

比較例3と4の発泡成形体は、発泡粒子の型内成形時の成形性に劣るものであり、発泡粒子成形体の断面における面積比(S1/S2)の変動係数は20%以上であり、発泡粒子の型内成形も難しく、得られた発泡粒子成形体の電波吸収性能のバラツキが実施例1に比べ2倍以上大きいものであり、安定した品質の電波吸収性能が発現されなかった。   The foamed molded products of Comparative Examples 3 and 4 are inferior in moldability when foamed particles are molded in-mold, and the variation coefficient of the area ratio (S1 / S2) in the cross section of the foamed particle molded product is 20% or more. Also, in-mold molding of the foamed particles was difficult, and the variation of the radio wave absorption performance of the obtained foamed particle molded body was more than twice as large as that of Example 1, and stable radio wave absorption performance was not exhibited.

比較例5の発泡成形体は、実施例1と比較して発泡粒子成形体全体に含まれている導電性材料の含有量が略同じになるように導電性材料の配合量を少なく調整した発泡粒子Aのみで構成されている。この発泡粒子成形体の電波吸収性能は、MHz帯において良好な吸収特性を示すもののGHz帯において十分な電波吸収性能が発現されなかった。   The foamed molded product of Comparative Example 5 was foamed by adjusting the blending amount of the conductive material so that the content of the conductive material contained in the entire foamed particle molded product was substantially the same as in Example 1. It consists only of particles A. As for the radio wave absorption performance of the foamed particle molded body, satisfactory radio wave absorption performance was exhibited in the MHz band, but sufficient radio wave absorption performance was not expressed in the GHz band.

比較例6の発泡成形体は、導電性材料の配合量が多く調整した発泡粒子Aのみで構成されており、発泡粒子成形体の導電性材料の含有量が多くなっているものの、導電性発泡粒子の導電性材料の含有量が多すぎるため、そのインピーダンスが空気と大きく異なるため、インピーダンス不整合により発泡粒子成形体部分での電磁波の反射が起こりやすくなり、十分な電波吸収性能が得られなかった。   The foamed molded product of Comparative Example 6 is composed of only the foamed particles A adjusted in a large amount of the conductive material, and the content of the conductive material in the foamed particle molded product is increased. Since the content of the conductive material in the particles is too large, the impedance is significantly different from that of air, so electromagnetic wave reflection is likely to occur at the foamed particle molded part due to impedance mismatching, and sufficient radio wave absorption performance cannot be obtained. It was.

1 電波吸収体
2a 発泡粒子成形体
3 低周波電波吸収材
10 複合型電波吸収体
DESCRIPTION OF SYMBOLS 1 Radio wave absorber 2a Foamed particle molding 3 Low frequency radio wave absorber 10 Composite type radio wave absorber

Claims (6)

熱可塑性樹脂発泡粒子成形体であって、
前記発泡粒子成形体を構成している熱可塑性樹脂発泡粒子として、導電性材料が3〜30質量%分散している発泡粒子A、および、導電性材料含有量が3質量%未満(0を含む)の発泡粒子Bを含み、
前記発泡粒子成形体の断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、前記面積比の変動係数が20%以下であることを特徴とする発泡粒子成形体。
A molded thermoplastic resin particle,
As the thermoplastic resin foam particles constituting the foamed particle molded body, the foamed particles A in which the conductive material is dispersed in an amount of 3 to 30% by mass, and the conductive material content is less than 3% by mass (including 0). ) Expanded particles B,
The average value of the area ratio (S1 / S2) of the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in the cross section of the expanded particle molded body is 0.05 to 1.0. A foamed particle molded body having a range and a coefficient of variation of the area ratio of 20% or less.
前記発泡粒子Aと前記発泡粒子Bの各々における平均粒子径が2〜8mmであることを特徴とする請求項1に記載の発泡粒子成形体。   2. The foamed particle molded body according to claim 1, wherein an average particle diameter of each of the foamed particles A and the foamed particles B is 2 to 8 mm. 前記発泡粒子成形体の密度が15〜90g/Lであることを特徴とする請求項1又は2に記載の発泡粒子成形体。   The density of the said foaming particle molded object is 15-90 g / L, The expanded particle molded object of Claim 1 or 2 characterized by the above-mentioned. 前記導電性材料が導電性カーボンブラックであることを特徴とする請求項1から3のいずれか一項に記載の発泡粒子成形体。   The foamed particle molded body according to any one of claims 1 to 3, wherein the conductive material is conductive carbon black. 前記熱可塑性樹脂発泡粒子を形成する樹脂がポリオレフィン系樹脂であることを特徴とする請求項1から4のいずれか一項に記載の発泡粒子成形体。   The foamed particle molded body according to any one of claims 1 to 4, wherein the resin forming the thermoplastic resin foamed particles is a polyolefin-based resin. 前記熱可塑性樹脂発泡粒子を形成する樹脂がポリスチレン系樹脂であることを特徴とする請求項1から4のいずれか一項に記載の発泡粒子成形体。   The foamed particle molded body according to any one of claims 1 to 4, wherein the resin forming the thermoplastic resin foamed particles is a polystyrene-based resin.
JP2016058938A 2016-03-23 2016-03-23 Expanded particle molding Active JP6706108B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016058938A JP6706108B2 (en) 2016-03-23 2016-03-23 Expanded particle molding
CN201710160614.XA CN107226922B (en) 2016-03-23 2017-03-17 Foamed particle molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058938A JP6706108B2 (en) 2016-03-23 2016-03-23 Expanded particle molding

Publications (2)

Publication Number Publication Date
JP2017171773A true JP2017171773A (en) 2017-09-28
JP6706108B2 JP6706108B2 (en) 2020-06-03

Family

ID=59933087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058938A Active JP6706108B2 (en) 2016-03-23 2016-03-23 Expanded particle molding

Country Status (2)

Country Link
JP (1) JP6706108B2 (en)
CN (1) CN107226922B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material
JP2019056096A (en) * 2017-09-22 2019-04-11 株式会社ジェイエスピー Heat insulation material
JP2019108540A (en) * 2017-12-14 2019-07-04 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Electrically conductive foam bead and production method thereof
CN112585541A (en) * 2018-08-21 2021-03-30 莱尔德技术股份有限公司 Patterned materials and films and systems and methods for making the same
JP2021134332A (en) * 2020-02-28 2021-09-13 株式会社ジェイエスピー Foamed particle and foamed particle molding
CN113444283A (en) * 2021-06-10 2021-09-28 无锡敬仁电子材料科技有限公司 Polystyrene foam wave-absorbing ball with core-shell structure and preparation method thereof
WO2021206846A1 (en) * 2020-04-09 2021-10-14 Laird Technologies, Inc. Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
WO2024081161A1 (en) * 2022-10-10 2024-04-18 Laird Technologies, Inc. Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
US12022642B2 (en) 2018-08-21 2024-06-25 Laird Technologies, Inc. Patterned electromagnetic interference (EMI) mitigation materials including carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356543A (en) * 1991-05-17 1992-12-10 Kanegafuchi Chem Ind Co Ltd Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production
JPH1041674A (en) * 1996-07-24 1998-02-13 Mitsubishi Cable Ind Ltd Wave absorber and manufacture thereof
CN102977587A (en) * 2012-12-25 2013-03-20 中国人民解放军总参谋部工程兵科研三所 Foaming type polyurethane wave-absorbing material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material
JPWO2018105394A1 (en) * 2016-12-07 2019-07-18 三菱電機株式会社 Method for producing foam insulation and foam insulation
JP2019056096A (en) * 2017-09-22 2019-04-11 株式会社ジェイエスピー Heat insulation material
JP2019108540A (en) * 2017-12-14 2019-07-04 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Electrically conductive foam bead and production method thereof
CN112585541A (en) * 2018-08-21 2021-03-30 莱尔德技术股份有限公司 Patterned materials and films and systems and methods for making the same
US12022642B2 (en) 2018-08-21 2024-06-25 Laird Technologies, Inc. Patterned electromagnetic interference (EMI) mitigation materials including carbon nanotubes
EP3841434A4 (en) * 2018-08-21 2021-10-20 Laird Technologies, Inc. Patterned materials and films and systems and methods for making the same
JP2021134332A (en) * 2020-02-28 2021-09-13 株式会社ジェイエスピー Foamed particle and foamed particle molding
JP7421092B2 (en) 2020-02-28 2024-01-24 株式会社ジェイエスピー Expanded particles and expanded particle molded bodies
EP4133918A4 (en) * 2020-04-09 2023-08-23 Laird Technologies, Inc. Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
WO2021206846A1 (en) * 2020-04-09 2021-10-14 Laird Technologies, Inc. Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
CN113444283A (en) * 2021-06-10 2021-09-28 无锡敬仁电子材料科技有限公司 Polystyrene foam wave-absorbing ball with core-shell structure and preparation method thereof
WO2024081161A1 (en) * 2022-10-10 2024-04-18 Laird Technologies, Inc. Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes

Also Published As

Publication number Publication date
CN107226922B (en) 2020-11-03
CN107226922A (en) 2017-10-03
JP6706108B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6706108B2 (en) Expanded particle molding
JP4638487B2 (en) Dielectric lens
JP4891230B2 (en) Polypropylene resin foamed particles for dielectric molding and dielectric lens member molded from the polypropylene resin foamed particles
JP5975334B2 (en) Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
Al‐Saleh et al. Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black
DE60132599T2 (en) DIELECTRIC RESIN FOAM AND LENS ANTENNA THEREIN
US8901184B2 (en) Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
González et al. Carbon nanotube composites as electromagnetic shielding materials in GHz range
JP2003229691A (en) Radio wave absorbent
CN101012323A (en) Polythene physics foaming material and preparing method thereof
JP6927448B1 (en) Thermoplastic resin composition and molded product for electromagnetic wave absorber
JP2016180089A (en) Styrene resin foamable particles and production method for same, foam particles, foam molding, and use therefor
KR20180017125A (en) Thermoplastic resin expanded particles
JP4879613B2 (en) Resin composition, foamed resin composition, molded article and electric wire
CN104066309A (en) Radio wave invention
JP6387962B2 (en) Polypropylene resin foam particles and polypropylene resin in-mold foam moldings with excellent flame retardancy and conductivity
JP2004059832A (en) Electromagnetic wave absorbing material composition and electromagnetic wave absorber
JPH09202837A (en) Foamed particle of electrically conductive polypropylene resin and its production
JP3966521B2 (en) Method for producing conductive polypropylene resin expanded particles
WO2004086563A1 (en) Luneberg lens and process for producing the same
JP2016160416A (en) Pellet, foamed resin compact, foamed insulated wire and cable
JP5420663B2 (en) Foamed electric wire and transmission cable having the same
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
KR101948809B1 (en) Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure
JP6505570B2 (en) Foamed particle molded body and radio wave absorber using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200515

R150 Certificate of patent or registration of utility model

Ref document number: 6706108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250