JPH09202837A - Foamed particle of electrically conductive polypropylene resin and its production - Google Patents

Foamed particle of electrically conductive polypropylene resin and its production

Info

Publication number
JPH09202837A
JPH09202837A JP8031316A JP3131696A JPH09202837A JP H09202837 A JPH09202837 A JP H09202837A JP 8031316 A JP8031316 A JP 8031316A JP 3131696 A JP3131696 A JP 3131696A JP H09202837 A JPH09202837 A JP H09202837A
Authority
JP
Japan
Prior art keywords
resin
particles
polypropylene resin
weight
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8031316A
Other languages
Japanese (ja)
Inventor
Toshio Tokoro
寿男 所
Akira Shiotani
暁 塩谷
Mitsuru Shinohara
篠原  充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP8031316A priority Critical patent/JPH09202837A/en
Publication of JPH09202837A publication Critical patent/JPH09202837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain foamed particles of electrically conductive polypropylene resin capable of giving a molded article having excellent properties in spite of high content (>=10wt.%) of electrically conductive carbon. SOLUTION: This foamed particle of an electrically conductive polypropylene resin is produced by impregnating a foaming agent into a polypropylene resin particle containing a carboxyl-containing polypropylene resin as a base and further containing >=10wt.% of electrically conductive carbon and nucleus bubbles and foaming the impregnated product or by impregnating a foaming agent into a polypropylene resin particle containing >=10wt.% of electrically conductive carbon and 0.01-5wt.% of a water-soluble inorganic substance and foaming the impregnated product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は導電性ポリプロピレ
ン系樹脂発泡粒子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive polypropylene resin expanded particles and a method for producing the same.

【0002】[0002]

【従来の技術】ポリオレフィン系樹脂発泡粒子は、包装
材、緩衝材等の種々の成型体の製造原料として広く利用
されているが、近年、例えばIC等の電子部品の包装用
等として導電性を有する成型体が要求されている。成型
体に導電性を付与する方法の一つとして、その製造原料
である発泡粒子中に導電剤を含有させる方法が挙げら
れ、このような導電性ポリオレフィン系樹脂発泡粒子と
して、導電性カーボンを分散させた導電性ポリエチレン
系樹脂発泡粒子が知られている(特開平3−2230
号)。しかしながら、ポリエチレン系樹脂と同じポリオ
レフィン系樹脂であっても、ポリプロピレン系樹脂は結
晶性が高いために樹脂中に多量の導電性カーボンを分散
させても良好な導電性を発揮する分散状態を達成するこ
とが困難であり、導電性に優れたポリプロピレン系樹脂
発泡粒子を得ることは難しかった。
2. Description of the Related Art Foamed polyolefin resin particles are widely used as a raw material for manufacturing various molded products such as packaging materials and cushioning materials, but in recent years, they have been used as conductive materials for packaging electronic parts such as ICs. There is a demand for molded bodies having. As one of the methods for imparting conductivity to the molded body, there is a method in which a conductive agent is contained in the foamed particles that are the raw material for producing the molded body, and as such conductive polyolefin resin foamed particles, conductive carbon is dispersed. The conductive expanded polyethylene resin particles are known (Japanese Patent Application Laid-Open No. 3-2230).
issue). However, even if it is the same polyolefin resin as the polyethylene resin, the polypropylene resin has high crystallinity, so even if a large amount of conductive carbon is dispersed in the resin, it achieves a dispersed state in which it exhibits good conductivity. It was difficult to obtain, and it was difficult to obtain expanded polypropylene resin particles having excellent conductivity.

【0003】本願出願人は、導電性カーボンとともに高
級脂肪酸アミド及び/又は高級脂肪酸金属塩を特定の割
合でポリプロピレン系樹脂中に配合することにより、導
電性に優れたポリプロピレン系樹脂発泡粒子や発泡体が
得られることを見出した(特願平6−117698
号)。
The applicant of the present invention blended a higher fatty acid amide and / or a higher fatty acid metal salt with a conductive carbon in a specific proportion in a polypropylene resin to obtain expanded polypropylene resin particles and a foamed polypropylene resin having excellent conductivity. It was found that (Japanese Patent Application No. 6-117698).
issue).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、導電性
カーボンとともに高級脂肪酸アミド及び/又は高級脂肪
酸金属塩を添加したポリプロピレン系樹脂発泡粒子は、
導電性には優れるものの粒子中の気泡が微細となって優
れた物性の成型体が得られ難いという問題があった。ま
た導電性カーボンを添加したポリプロピレン系樹脂発泡
粒子は、発泡粒子の成型に先立つ加圧処理によって付与
した粒子内圧が低下し易く、特に発泡倍率の大きな発泡
粒子では内圧低下が著しいため、加圧処理により粒子内
圧を付与して高発泡倍率で優れた成型体を安定して得る
ことが困難であり、また得られる成型体の寸法安定性、
圧縮回復性等も十分満足のゆくものではなかった。
However, the expanded polypropylene resin particles obtained by adding the higher fatty acid amide and / or the higher fatty acid metal salt together with the conductive carbon are
Although it is excellent in conductivity, there is a problem that it is difficult to obtain a molded article having excellent physical properties because the bubbles in the particles become fine. In addition, the polypropylene resin expanded particles to which conductive carbon is added are likely to have a decrease in the internal pressure of the particles applied by the pressure treatment prior to the molding of the expanded particles. It is difficult to stably obtain an excellent molded product with a high expansion ratio by applying an internal pressure of particles, and the dimensional stability of the resulting molded product,
The compression recovery property was not sufficiently satisfactory.

【0005】本発明は上記の点に鑑みなされたもので、
導電性に優れるとともに、優れた物性の成型体を提供す
ることのできる導電性ポリプロピレン系樹脂発泡粒子及
びその製造方法を提供することを目的とする。
[0005] The present invention has been made in view of the above points,
It is an object of the present invention to provide a conductive polypropylene-based resin expanded particle capable of providing a molded product having excellent conductivity and excellent physical properties, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】即ち本発明の導電性ポリ
プロピレン系樹脂発泡粒子は、導電性カーボンを10重
量%以上含有し、且つ内圧減衰係数が0.3未満である
ことを特徴とする。
That is, the expanded conductive polypropylene resin particles of the present invention are characterized by containing conductive carbon in an amount of 10% by weight or more and having an internal pressure attenuation coefficient of less than 0.3.

【0007】また本発明の導電性ポリプロピレン系樹脂
発泡粒子の製造方法は、カルボキシル基を有するポリプ
ロピレン系樹脂を基材とし、且つ10重量%以上の導電
性カーボンと、核気泡とを含有するポリプロピレン系樹
脂粒子に発泡剤を含浸させた発泡性樹脂粒子を発泡させ
ることを特徴とする。或いは本発明の導電性ポリプロピ
レン系樹脂発泡粒子の製造方法は、10重量%以上の導
電性カーボンと、0.01〜5重量%の水溶性無機物と
を含有するポリプロピレン系樹脂粒子に発泡剤を含浸さ
せた発泡性樹脂粒子を発泡させることを特徴とする。
The method for producing expanded beads of conductive polypropylene resin of the present invention is based on polypropylene resin having a carboxyl group as a base material and contains 10% by weight or more of conductive carbon and nuclear bubbles. It is characterized in that foamable resin particles obtained by impregnating resin particles with a foaming agent are foamed. Alternatively, the method for producing expanded particles of conductive polypropylene resin according to the present invention comprises impregnating a polypropylene resin particle containing 10% by weight or more of conductive carbon and 0.01 to 5% by weight of a water-soluble inorganic substance with a foaming agent. It is characterized in that the expandable resin particles thus foamed.

【0008】[0008]

【発明の実施の形態】本発明の導電性ポリプロピレン系
樹脂発泡粒子は、導電性カーボンを10重量%以上含有
することにより優れた導電性を発現し、導電性カーボン
の含有量が多い程、導電性は向上するが、導電性カーボ
ンを10〜16重量%含有する発泡粒子であれば、体積
固有抵抗値100 〜104 Ωcmという優れた導電性を
有する成型体が得られ、また16重量%を超える導電性
カーボンを含有する場合にはコスト的な不利が生じると
ともに、発泡剤を含浸した発泡性樹脂粒子の溶融時の流
動性が減少して発泡性が不良なものとなり、発泡倍率の
大きい良好な成型品を得ることが困難となる。このた
め、導電性カーボンの含有量は、好ましくは10重量%
以上、16重量%以下、特に好ましくは12〜14重量
%である。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive polypropylene resin foamed particles of the present invention exhibit excellent conductivity by containing 10% by weight or more of conductive carbon, and the higher the content of conductive carbon is, the more conductive it is. However, if the expanded particles contain conductive carbon in an amount of 10 to 16% by weight, a molded product having a volume resistivity value of 10 0 to 10 4 Ωcm and excellent conductivity can be obtained. If the conductive carbon content exceeds 100, a cost disadvantage arises, and the fluidity of the expandable resin particles impregnated with the foaming agent at the time of melting decreases, resulting in poor foamability and a large expansion ratio. It becomes difficult to obtain a good molded product. Therefore, the content of conductive carbon is preferably 10% by weight.
As described above, the amount is 16% by weight or less, particularly preferably 12 to 14% by weight.

【0009】導電性カーボンとしては、アセチレンブラ
ック、ファーネスブラック等を用いることができるが、
少ない添加量で高い導電性を付与できるファーネスブラ
ックが好ましい。ファーネスブラックは、ジブチルフタ
レート吸油量が300ml/100g以上で、BET比
表面積が700m2 /g以上のものが、特に少量の配合
でも高い導電性を付与できるため好ましい。このような
ファーネスブラックとしては、例えばブラックパール2
000(キャボット社製)、ケッチェンブラックEC
(ケッチェン・ブラック・インターナショナル社製)、
#3950(三菱化成社製)等が挙げられる。これらは
単独又は2種以上を混合して用いることができる。
As the conductive carbon, acetylene black, furnace black or the like can be used.
Furnace black, which can provide high conductivity with a small amount of addition, is preferred. Furnace black having a dibutyl phthalate oil absorption of 300 ml / 100 g or more and a BET specific surface area of 700 m 2 / g or more is preferable because high conductivity can be imparted even with a small amount of the compound. As such furnace black, for example, black pearl 2
000 (made by Cabot), Ketjen Black EC
(Made by Ketjen Black International),
# 3950 (manufactured by Mitsubishi Kasei) and the like. These can be used alone or in combination of two or more.

【0010】本発明の発泡粒子は内圧減衰係数が0.3
未満であるが、特に好ましくは0.2未満である。内圧
減衰係数が0.3以上であると成型性に劣り、高発泡倍
率で優れた成型体を安定して得ることが困難であり、得
られる成型体は寸法安定性、表面平滑性等に劣り、また
圧縮残留歪み等の物性に劣るものとなり易い。
The expanded particles of the present invention have an internal pressure attenuation coefficient of 0.3.
However, it is particularly preferably less than 0.2. When the internal pressure attenuation coefficient is 0.3 or more, the moldability is poor, and it is difficult to stably obtain an excellent molded article with a high expansion ratio, and the obtained molded article is poor in dimensional stability and surface smoothness. In addition, the physical properties such as compression residual strain tend to be inferior.

【0011】本発明の発泡粒子は、該発泡粒子の示差走
査熱量測定によって得られたDSC曲線に、基材樹脂の
融解に起因した吸熱ピーク(固有ピークと呼ぶ。)より
も高温側に、二次結晶の存在に起因すると考えられる吸
熱ピーク(高温ピークと呼ぶ。)を有し、該高温ピーク
の融解熱量が9〜30J/gであることが好ましい。こ
のような融解熱量の高温ピークを有することが、独立起
泡率の高い成型品を得るための必要条件となる。高温ピ
ークの融解熱量は、図1に示すDSC曲線において、固
有ピークaよりも高温側の高温ピークbの山とベースラ
インcとで囲まれた部分の面積に相当するものである。
The expanded particles of the present invention have a DSC curve obtained by differential scanning calorimetry of the expanded particles, which has two peaks on the higher temperature side than the endothermic peak (referred to as an intrinsic peak) due to the melting of the base resin. It is preferable that the polymer has an endothermic peak (referred to as a high temperature peak) that is considered to be caused by the presence of a secondary crystal, and the heat of fusion of the high temperature peak is 9 to 30 J / g. Having such a high temperature peak of the heat of fusion is a necessary condition for obtaining a molded product having a high independent foaming rate. The heat of fusion of the high temperature peak corresponds to the area of the portion surrounded by the peak c of the high temperature peak b on the higher temperature side than the specific peak a and the baseline c in the DSC curve shown in FIG.

【0012】本発明の導電性ポリプロピレン系樹脂発泡
粒子は、導電性カーボンの他に、必要に応じて帯電防止
剤、酸化防止剤、光安定剤、滑剤、顔料等の添加剤を任
意の割合で含有していても良い。本発明の発泡粒子は、
通常、嵩密度0.01〜0.3g/cm3 、平均気泡径
0.05〜0.5mmである。
The conductive polypropylene resin foamed particles of the present invention contain, in addition to conductive carbon, additives such as an antistatic agent, an antioxidant, a light stabilizer, a lubricant, and a pigment, if desired. It may be contained. The expanded particles of the present invention,
Usually, the bulk density is 0.01 to 0.3 g / cm 3 , and the average cell diameter is 0.05 to 0.5 mm.

【0013】導電性カーボンを10重量%以上含有し、
且つ内圧減衰係数が0.3未満である導電性ポリプロピ
レン系樹脂発泡粒子は、以下のようにして製造すること
ができる。
Containing 10% by weight or more of conductive carbon,
The conductive polypropylene-based resin expanded particles having an internal pressure attenuation coefficient of less than 0.3 can be manufactured as follows.

【0014】第1の製造方法は、カルボキシル基を有す
るポリプロピレン系樹脂を基材樹脂とする粒子中に導電
性カーボンと核気泡とを含有させ、この樹脂粒子に発泡
剤を含浸させた発泡性樹脂粒子を発泡させる方法であ
る。樹脂粒子への発泡剤の含浸及び発泡工程は例えば、
樹脂粒子を密閉容器内で分散媒に分散させて樹脂粒子の
軟化点以上の温度に加熱、加圧し、樹脂粒子に発泡剤を
含浸させた後、容器の一端を開放して発泡性の樹脂粒子
と分散媒とを容器内よりも低圧の雰囲気下に放出して発
泡させる方法が好ましく採用される。
The first manufacturing method is a foaming resin in which particles having a carboxyl group-containing polypropylene resin as a base resin contain conductive carbon and nuclear bubbles, and the resin particles are impregnated with a foaming agent. This is a method of foaming particles. The impregnation of the foaming agent into the resin particles and the foaming process are, for example,
Resin particles are dispersed in a dispersion medium in a closed container and heated to a temperature equal to or higher than the softening point of the resin particles, and pressurized, and after impregnating the resin particles with a foaming agent, one end of the container is opened to expand the resin particles. A method in which the dispersion medium and the dispersion medium are discharged under a lower pressure atmosphere than the inside of the container to foam is preferably adopted.

【0015】カルボキシル基を有するポリプロピレン系
樹脂としては、例えば、プロピレンホモ単独重合体、エ
チレン−プロピレンブロック共重合体、エチレン−プロ
ピレンランダム共重合体、プロピレン−ブテンランダム
共重合体、エチレン−プロピレン−ブテンランダム共重
合体等の通常のプロピレン系重合体を、マレイン酸、フ
マル酸、メサコン酸、イタコン酸等の不飽和ジカルボン
酸、無水マレイン酸、無水シトラコン酸、無水イタコン
酸等の不飽和ジカルボン酸無水物、或いはマレイン酸ジ
メチル、マレイン酸モノエチル、フマル酸ジブチル、シ
トラコン酸ジメチル、メサコン酸ジメチル等の不飽和ジ
カルボン酸低級エステル等の変性剤によりグラフト変性
したもの及び、それらとカルボキシル基を含まない通常
のポリプロピレン系樹脂との混合物が挙げられる。上記
変性剤として特に好適なものは無水マレイン酸であり、
グラフト変性が極めて容易であるため好ましい。
As the polypropylene resin having a carboxyl group, for example, propylene homopolymer, ethylene-propylene block copolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene-butene. Ordinary propylene-based polymer such as random copolymer, maleic acid, fumaric acid, mesaconic acid, unsaturated dicarboxylic acid such as itaconic acid, maleic anhydride, citraconic acid anhydride, unsaturated dicarboxylic acid anhydride such as itaconic acid anhydride Or dimethyl maleate, monoethyl maleate, dibutyl fumarate, dimethyl citraconate, those graft-modified with a modifying agent such as unsaturated dicarboxylic acid lower ester such as dimethyl mesaconate, and those and ordinary carboxyl group-free polypropylene A mixture of resins. Particularly preferred as the modifier is maleic anhydride,
Graft modification is very easy, which is preferable.

【0016】ポリプロピレン系樹脂粒子の基材樹脂とし
て用いるカルボキシル基を有するポリプロピレン系樹脂
は、上記の変性剤によりグラフト変性したものを例にと
ると、グラフト変性したポリプロピレン系樹脂と通常の
ポリプロピレン系樹脂とを混合したものも、グラフト変
性したポリプロピレン系樹脂のみのものも、いずれも基
材樹脂全体としてグラフト変性量が0.001〜0.1
モル%となるようにすることが好ましい。
Examples of the polypropylene resin having a carboxyl group used as the base resin of the polypropylene resin particles include, for example, those graft-modified with the above-mentioned modifying agent, the graft-modified polypropylene resin and the ordinary polypropylene resin. Both the mixture of, and the graft-modified polypropylene-based resin alone have a graft modification amount of 0.001 to 0.1 as the entire base resin.
It is preferable to set it to be mol%.

【0017】上記ポリプロピレン系樹脂粒子に含有され
る核気泡とは、該樹脂粒子に発泡剤を含浸させて発泡さ
せる際の気泡の核となる微細気泡であり、核気泡を含有
することにより、発泡剤を含浸した発泡性樹脂粒子が発
泡する際の気泡の成長が促進され、気泡径の大きな発泡
粒子を得ることができる。また核気泡を含有することに
より発泡粒子の発泡倍率が増大するという効果も生じ
る。核気泡の大きさは10〜150μ、好ましくは40
〜100μであり、これは樹脂粒子を切断し、断面を顕
微鏡で観察することにより確認される。本発明の第1の
方法で用いる樹脂粒子の基材樹脂は、カルボキシル基を
有するポリプロピレン系樹脂であることが必須であり、
カルボキシル基を含まない通常のポリプロピレン系樹脂
のみを用いた場合、及び基材樹脂全体としての前記変性
剤によるグラフト変性量が0.001モル%未満である
場合には、核気泡を樹脂粒子中に均一に分散させること
が困難となり、その結果、樹脂粒子に発泡剤を含浸して
発泡させた発泡粒子は核気泡により気泡径が増大した気
泡と、微細気泡とが不均一に混在する気泡径のバラツキ
の大きいものとなってしまうため、内圧減衰性に劣り、
寸法安定性や圧縮回復性に優れた成型体を得ることは困
難である。この核気泡を得る方法としては、例えば、押
出機内でポリプロピレン系樹脂を溶融した後、押出機か
らストランド状に押出し、このストランドを切断して樹
脂粒子を得る工程(以下、ペレタイズ工程と呼ぶ。)に
おいて、押出機内で樹脂を溶融する際に、分解型発泡
剤を添加して該発泡剤の分解温度以上の温度において樹
脂に発泡剤を練り込み、発泡剤の少なくとも一部を分解
させて核気泡を形成する方法、揮発性発泡剤を樹脂に
練り込み、揮発性発泡剤の揮発によって核気泡を形成す
る方法、樹脂に空隙形成剤を練り込んで、空隙形成剤
による空隙を核気泡とする方法、発泡粒子や発泡成形
体等を樹脂中に溶融混練し、発泡粒子や発泡成形体の気
泡を核気泡とする方法、溶融した樹脂中に無機ガスを
練り込んで核気泡を形成する方法等が考えられるが、
の方法が最も均一に核気泡の分散した樹脂粒子を得るこ
とができるため好ましい。
The nuclear bubbles contained in the polypropylene resin particles are fine bubbles which become the nuclei of the bubbles when the resin particles are impregnated with a foaming agent and foamed. The growth of bubbles when the expandable resin particles impregnated with the agent are expanded is promoted, and expanded particles having a large bubble diameter can be obtained. Moreover, the effect of increasing the expansion ratio of the expanded particles is also produced by containing the nuclear bubbles. The size of the nuclear bubble is 10 to 150 μ, preferably 40.
˜100 μ, which is confirmed by cutting the resin particles and observing the cross section with a microscope. It is essential that the base resin of the resin particles used in the first method of the present invention is a polypropylene resin having a carboxyl group,
When only a normal polypropylene resin not containing a carboxyl group is used, and when the graft modification amount of the base resin as a whole by the modifying agent is less than 0.001 mol%, nuclear bubbles are present in the resin particles. As a result, it becomes difficult to disperse the particles uniformly, and as a result, the expanded particles obtained by impregnating the resin particles with a foaming agent and expanded the bubbles have an increased bubble diameter due to the nucleus bubbles Since the variation will be large, the internal pressure damping property will be poor,
It is difficult to obtain a molded product having excellent dimensional stability and compression recovery. As a method of obtaining the nucleus bubbles, for example, a step of melting the polypropylene-based resin in an extruder, extruding it in a strand shape from the extruder, and cutting the strand to obtain resin particles (hereinafter referred to as a pelletizing step). In melting the resin in the extruder, a decomposing type foaming agent is added and the foaming agent is kneaded into the resin at a temperature equal to or higher than the decomposition temperature of the foaming agent to decompose at least a part of the foaming agent to form nuclear bubbles. A method of kneading a volatile foaming agent into a resin, forming a nuclear bubble by volatilizing the volatile foaming agent, a method of kneading a void-forming agent into the resin to form a void by the void-forming agent into a nuclear bubble. A method of melting and kneading foamed particles or a foamed molded product into a resin to make bubbles of the foamed particles or a foamed molded product into a nuclear bubble, or a method of kneading an inorganic gas into a molten resin to form a nuclear bubble. Thought But it is,
The method (2) is most preferable because the resin particles in which the nuclear bubbles are dispersed can be obtained most uniformly.

【0018】上記の方法で用いる分解型発泡剤として
は、アゾジカルボンアミド、クエン酸モノナトリウム、
ジニトロソペンタメチレンテトラミン、p,p´−オキ
シビスベンゼンスルフォニルヒドラジド、ジアゾアミノ
ベンゼン、アゾビスイソブチロニトリル、パラトルエン
スルフォニルセミカルバジド、ベンゼンスルフォニルヒ
ドラジド、炭酸水素ナトリウム等が挙げられる。分解型
発泡剤により樹脂粒子中に核気泡を形成させる場合、核
気泡形成前の樹脂粒子の容積に対し、核気泡形成後の樹
脂粒子の容積が1.01〜2.0倍、好ましくは1.0
1〜1.5倍となるように発泡剤を添加することが好ま
しい。分解型発泡剤は樹脂に対して0.005〜5重量
%、特に0.01〜0.3重量%用いることが好まし
い。
As the decomposition type foaming agent used in the above method, azodicarbonamide, monosodium citrate,
Examples thereof include dinitrosopentamethylenetetramine, p, p'-oxybisbenzenesulfonyl hydrazide, diazoaminobenzene, azobisisobutyronitrile, p-toluenesulfonyl semicarbazide, benzenesulfonyl hydrazide, sodium hydrogen carbonate and the like. When forming a nuclear bubble in the resin particle by the decomposing type foaming agent, the volume of the resin particle after the nuclear bubble is formed is 1.01 to 2.0 times, preferably 1 to the volume of the resin particle before the nuclear bubble is formed. .0
It is preferable to add the foaming agent so that the ratio is 1 to 1.5 times. The decomposition-type foaming agent is preferably used in an amount of 0.005 to 5% by weight, particularly 0.01 to 0.3% by weight, based on the resin.

【0019】導電性カーボン等の添加剤を樹脂粒子中に
分散させるにあたっては、樹脂粒子のペレタイズ工程以
前にバンバリーミキサーや加圧ニーダー等を用いて樹脂
と添加剤とを予備分散させた原料混合物を作成しておく
ことが好ましい。
In dispersing the additive such as conductive carbon in the resin particles, a raw material mixture in which the resin and the additive are predispersed by using a Banbury mixer or a pressure kneader is used before the pelletizing step of the resin particles. It is preferable to create it.

【0020】上記のようにして形成した10重量%以上
の導電性カーボンと核気泡とを含有するポリプロピレン
系樹脂粒子を発泡させる方法として樹脂粒子と発泡剤と
を、密閉容器内で分散媒に分散させて樹脂粒子の軟化点
以上の温度に加熱、加圧し、樹脂粒子に発泡剤を含浸さ
せた後、容器の一端を開放して発泡性樹脂粒子と分散媒
とを容器内よりも低圧の雰囲気下に放出して発泡させる
方法を用いた場合には、樹脂粒子を分散させる分散媒と
しては、水、メタノール、エタノール等のアルコール
類、エチレングリコール等のグリコール類、グリセリン
等の樹脂粒子を溶解しない溶媒を用いることができる
が、通常は水が用いられる。
As a method for foaming the polypropylene resin particles containing 10% by weight or more of conductive carbon and nuclear bubbles formed as described above, the resin particles and the foaming agent are dispersed in a dispersion medium in a closed container. After heating and pressurizing to a temperature above the softening point of the resin particles to impregnate the resin particles with a foaming agent, one end of the container is opened and the expandable resin particles and the dispersion medium are at a lower pressure than in the container. In the case of using the method of releasing and foaming, the dispersion medium for dispersing the resin particles does not dissolve water, alcohols such as methanol and ethanol, glycols such as ethylene glycol, and resin particles such as glycerin. Although a solvent can be used, water is usually used.

【0021】樹脂粒子を発泡させるための発泡剤として
は、揮発性発泡剤、または無機ガスを用いることが好ま
しく、揮発性発泡剤としては、プロパン、ブタン、ヘキ
サン等の脂肪族炭化水素類、シクロブタン、シクロヘキ
サン等の環式脂肪族炭化水素類、トリクロロフロロメタ
ン、ジクロロジフロロメタン、ジクロロテトラフロロエ
タン、メチルクロライド、エチルクロライド、メチレン
クロライド等のハロゲン化炭化水素類が挙げられ、無機
ガスとしては、二酸化炭素、空気、窒素、ヘリウム、ア
ルゴン等が挙げられる。これらの発泡剤は単独で用いて
も、2種類以上を混合して用いても良く、また揮発性発
泡剤と無機ガスとを混合して用いることもできる。発泡
剤の添加量は、発泡剤として揮発性発泡剤を用いる場合
には、樹脂粒子100重量部に対して5〜30重量部が
好ましく、無機ガスを用いる場合には密閉容器内の平衡
蒸気圧が20〜60kgf/cm2 Gとなるように添加す
ることが好ましい。
As the foaming agent for foaming the resin particles, it is preferable to use a volatile foaming agent or an inorganic gas, and as the volatile foaming agent, aliphatic hydrocarbons such as propane, butane, hexane and cyclobutane are used. , Cyclohexane and other cycloaliphatic hydrocarbons, trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride, halogenated hydrocarbons such as methylene chloride, and the like, the inorganic gas, Examples thereof include carbon dioxide, air, nitrogen, helium and argon. These foaming agents may be used alone, or two or more kinds may be mixed and used, or the volatile foaming agent and the inorganic gas may be mixed and used. When a volatile foaming agent is used as the foaming agent, the addition amount of the foaming agent is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the resin particles, and when an inorganic gas is used, the equilibrium vapor pressure in the closed container. Is preferably 20 to 60 kgf / cm 2 G.

【0022】樹脂粒子を分散媒に分散させて加熱するに
際し、樹脂粒子相互の融着を防止するために融着防止剤
を分散媒に添加することができる。融着防止剤としては
分散媒に溶解せず、加熱によって溶融しないものであれ
ば無機系、有機系を問わず使用可能であるが、一般には
無機系の融着防止剤が使用される。無機系の融着防止剤
としては、カオリン、マイカ、酸化アルミニウム、酸化
チタン、水酸化アルミニウム等の粉末が好適である。融
着防止剤は平均粒径が0.001〜100μm、特に
0.001〜30μmのものが好ましい。融着防止剤を
添加した場合、分散助剤としてドデシルベンゼンスルホ
ン酸ナトリウム、オレイン酸ナトリウム等のアニオン系
界面活性剤を併用することが好ましい。融着防止剤は樹
脂粒子100重量部当たり0.01〜2重量部程度添加
し、界面活性剤は樹脂粒子100重量部当たり0.00
1〜1重量部程度添加することが好ましい。
When the resin particles are dispersed in the dispersion medium and heated, a fusion preventing agent may be added to the dispersion medium in order to prevent the resin particles from being fused to each other. As the anti-fusing agent, any inorganic or organic one can be used as long as it does not dissolve in the dispersion medium and does not melt by heating. In general, an inorganic anti-fusing agent is used. As the inorganic anti-fusing agent, powders of kaolin, mica, aluminum oxide, titanium oxide, aluminum hydroxide and the like are suitable. The anti-fusing agent preferably has an average particle size of 0.001 to 100 μm, particularly preferably 0.001 to 30 μm. When an anti-fusing agent is added, it is preferable to use an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium oleate as a dispersing aid. The anti-fusing agent is added in an amount of about 0.01 to 2 parts by weight per 100 parts by weight of the resin particles, and the surfactant is 0.00 per 100 parts by weight of the resin particles.
It is preferable to add about 1 to 1 part by weight.

【0023】上記のようにして導電性カーボンと核気泡
とを含有する樹脂粒子に発泡剤を含浸させた後、密閉容
器の一端を開放して樹脂粒子と分散媒とを、容器内より
も低圧の雰囲気下、通常は大気圧下に放出することによ
り、樹脂粒子を発泡せしめて発泡粒子を得ることができ
る。この時の容器内圧力は少なくとも20気圧以上、好
ましくは30気圧以上であり、容器内温度は樹脂の融点
−10℃〜融点+15℃とすることが好ましい。
After the resin particles containing the conductive carbon and the nuclear bubbles are impregnated with the foaming agent as described above, one end of the closed container is opened to remove the resin particles and the dispersion medium at a pressure lower than that in the container. The resin particles can be foamed to obtain expanded particles by discharging the resin particles under the atmosphere, usually under atmospheric pressure. At this time, the pressure in the container is at least 20 atm or higher, preferably 30 atm or higher, and the temperature in the container is preferably from −10 ° C. to + 15 ° C. of melting point of the resin.

【0024】本発明の発泡粒子を得るための第2の方法
は、導電性カーボンと水溶性無機物とを含有するポリプ
ロピレン系樹脂粒子を、上記第1の方法と同様に樹脂粒
子に発泡剤を含浸して発泡せしめて発泡粒子を得る方法
である。
A second method for obtaining the expanded beads of the present invention is to impregnate the resin particles with a polypropylene resin particle containing conductive carbon and a water-soluble inorganic substance in the same manner as the above-mentioned first method with a foaming agent. And foamed to obtain expanded particles.

【0025】第2の方法で用いる樹脂粒子の基材樹脂と
しては、樹脂粒子中に核気泡を含有しないため上記第1
の方法における基材樹脂のようにカルボキシル基を有す
るポリプロピレン系樹脂を含有している必要はなく、通
常のポリプロピレン系樹脂を用いることができるが、カ
ルボキシル基を有するポリプロピレン系樹脂も用いるこ
とができるのは勿論のことである。
As the base resin for the resin particles used in the second method, since the resin particles do not contain nuclear bubbles, the above-mentioned first resin is used.
It is not necessary to contain a polypropylene-based resin having a carboxyl group like the base resin in the method of 1., a usual polypropylene-based resin can be used, but a polypropylene-based resin having a carboxyl group can also be used. Of course.

【0026】水溶性無機物としては、例えば硼砂、硼酸
亜鉛、硼酸ナトリウム、硼酸マグネシウム、塩化ナトリ
ウム、塩化マグネシウム、塩化カルシウム等が挙げられ
るが、なかでも硼酸金属塩を用いると、気泡径が大き
く、かつ均一な成型性に優れる発泡粒子が得られるため
好ましい。水溶性無機物は1種又は2種以上を混合して
用いることができる。これら水溶性無機物は、通常、ポ
リプロピレン系樹脂のペレタイズ工程において樹脂中に
添加する。水溶性無機物は通常、粉体として添加するが
粒径は特に限定されない。しかしながら、一般に粒径
0.1〜150μm、特に0.5〜20μmのものを用
いることが好ましい。水溶性無機物は、樹脂粒子中に
0.01〜5重量%、好ましくは0.01〜1重量%含
有せしめる。樹脂粒子中の水溶性無機物の含有量が0.
01重量%未満であると、発泡粒子が内圧減衰性に劣っ
たものとなり、また5重量%を超えるとコスト高になる
とともに、発泡直後の発泡粒子の収縮率が高くなり好ま
しくない。尚、この方法でも導電性カーボンは前記方法
と同様にして樹脂粒子中に含有させる。
Examples of the water-soluble inorganic substance include borax, zinc borate, sodium borate, magnesium borate, sodium chloride, magnesium chloride, calcium chloride and the like. Among them, when boric acid metal salt is used, the bubble diameter is large and It is preferable because expanded beads having excellent moldability can be obtained. The water-soluble inorganic substances can be used alone or in combination of two or more. These water-soluble inorganic substances are usually added to the resin in the pelletizing step of the polypropylene resin. The water-soluble inorganic substance is usually added as a powder, but the particle size is not particularly limited. However, it is preferable to use particles having a particle size of generally 0.1 to 150 μm, particularly 0.5 to 20 μm. The water-soluble inorganic substance is contained in the resin particles in an amount of 0.01 to 5% by weight, preferably 0.01 to 1% by weight. The content of the water-soluble inorganic substance in the resin particles is 0.
If it is less than 01% by weight, the expanded particles will be inferior in the internal pressure damping property, and if it exceeds 5% by weight, the cost will be high and the contraction rate of the expanded particles immediately after expansion will be high, which is not preferable. Even in this method, the conductive carbon is contained in the resin particles in the same manner as in the above method.

【0027】上記のようにして得た10重量%以上の導
電性カーボンと、0.01〜5重量%の水溶性無機物と
を含有するポリプロピレン系樹脂粒子は、前記第1の方
法と同様にして発泡させることにより、本発明の発泡粒
子を得ることができる。
The polypropylene-based resin particles containing 10% by weight or more of conductive carbon and 0.01 to 5% by weight of water-soluble inorganic substance obtained as described above are prepared in the same manner as in the first method. The expanded particles of the present invention can be obtained by foaming.

【0028】本発明の第1の方法及び第2の方法で得ら
れた導電性ポリプロピレン系樹脂発泡粒子は、大気圧下
で熟成し、次いで加圧処理して内圧を付与した後、金型
内に充填して蒸気等で加熱することにより、発泡粒子相
互を融着せしめた所望の形状の成型体とすることができ
る。
The conductive polypropylene-based resin expanded particles obtained by the first and second methods of the present invention are aged under atmospheric pressure, and then subjected to a pressure treatment to give an internal pressure, and then in a mold. Then, the foamed particles are fused with each other to obtain a molded product having a desired shape.

【0029】[0029]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0030】実施例1〜4、比較例1〜3 導電性カーボン(ケッチェン・ブラック・インターナシ
ョナル社製「ケッチェンブラックEC」、BET比表面
積800m2 /g)、エチレン−プロピレンランダム共
重合体(エチレン含有量4.5重量%、融点135℃、
MI=8g/10分)、無水マレイン酸変性ポリプロピ
レン(三菱化学株式会社製「P371K」、無水マレイ
ン酸グラフト変性量0.11モル%、融点139℃、M
FR=6g/10分)をバンバリーミキサーで混合して
原料混合物を作成した。次いでこの原料混合物100重
量部当たり、クエン酸モノナトリウム0.1重量部を添
加し(比較例1のみ無添加)押出機内で240℃で溶融
混練した後、ストランド状に押出し、次いでこのストラ
ンドを切断して樹脂粒子を得た。この樹脂粒子の基材樹
脂全体に対する無水マレイン酸変性量、導電性カーボン
含有量を表1に示す。
Examples 1 to 4, Comparative Examples 1 to 3 Conductive carbon ("Ketjen Black EC" manufactured by Ketjen Black International, BET specific surface area 800 m 2 / g), ethylene-propylene random copolymer (ethylene 4.5% by weight, melting point 135 ° C.,
MI = 8 g / 10 minutes), maleic anhydride modified polypropylene (“P371K” manufactured by Mitsubishi Chemical Corporation, maleic anhydride graft modification amount 0.11 mol%, melting point 139 ° C., M
FR = 6 g / 10 minutes) was mixed with a Banbury mixer to prepare a raw material mixture. Next, 0.1 part by weight of monosodium citrate was added to 100 parts by weight of this raw material mixture (only Comparative Example 1 was not added), and the mixture was melt-kneaded at 240 ° C. in an extruder, then extruded into a strand, and then the strand was cut. To obtain resin particles. Table 1 shows the amount of maleic anhydride modified and the conductive carbon content of the resin particles with respect to the entire base resin.

【0031】次いで上記樹脂粒子100重量部、水30
0重量部、表1に示す量の二酸化炭素、カオリン0.3
重量部、界面活性剤(ドデシルベンゼンスルホン酸ナト
リウム)0.006重量部を、400リットルのオート
クレーブに仕込み、攪拌しながら表1に示す発泡温度ま
で加熱し、同温度で15分間保持した後、オートクレー
ブ内に窒素ガスを導入してオートクレーブ内の平衡蒸気
圧を保持しながらオートクレーブの一端を開放し、内容
物を大気圧下に放出して樹脂粒子を発泡させた。得られ
た発泡粒子の物性を表1に示す。またこの発泡粒子を2
4時間大気圧下に放置して熟成後、空気で加圧して1.
5kgf/cm2 Gの内圧を付与して23℃で1時間放置
後、300mm×300mm×60mmの金型に充填
し、蒸気加熱して成型した。得られた成型体は大気圧
下、60℃で1日養生した。得られた成型体の諸物性を
表1にあわせて示す。
Next, 100 parts by weight of the above resin particles and 30 parts of water
0 parts by weight, carbon dioxide in the amounts shown in Table 1, kaolin 0.3
Parts by weight and 0.006 parts by weight of a surfactant (sodium dodecylbenzenesulfonate) were charged into a 400 liter autoclave, heated to the foaming temperature shown in Table 1 with stirring, and kept at the same temperature for 15 minutes, and then the autoclave. Nitrogen gas was introduced into the autoclave to maintain the equilibrium vapor pressure in the autoclave, one end of the autoclave was opened, and the contents were discharged under atmospheric pressure to foam the resin particles. Table 1 shows the physical properties of the obtained expanded beads. In addition, 2
After aging for 4 hours under atmospheric pressure, pressurizing with air 1.
After applying an internal pressure of 5 kgf / cm 2 G and leaving it at 23 ° C. for 1 hour, it was filled in a mold of 300 mm × 300 mm × 60 mm and steam-heated to mold. The obtained molded body was cured at 60 ° C. under atmospheric pressure for 1 day. Various physical properties of the obtained molded product are also shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1における発泡粒子の各物性及び成型体
の物性は以下のようにして評価した。 内圧減衰性 23℃、1atm 下で内圧が2kgf/cm2 Gから1k
gf/cm2 Gまで減少する時間(t:単位は時間)を
計測し、下記式(1)により内圧減衰係数kを求め、 内圧減衰係数kが0.3未満・・・・○ 内圧減衰係数kが0.3以上・・・・× として評価した。また、雰囲気温度がT(°K)の時の
発泡粒子の内圧は、下記(2)式により求めた。
The physical properties of the expanded beads and the physical properties of the molded product in Table 1 were evaluated as follows. Attenuation of internal pressure 23 ° C, 1atm, internal pressure 2kgf / cm 2 G to 1k
The time (t: unit is time) for decreasing to gf / cm 2 G is measured, and the internal pressure damping coefficient k is calculated by the following equation (1). The internal pressure damping coefficient k is less than 0.3 ... It was evaluated as k of 0.3 or more ... Further, the internal pressure of the foamed particles when the ambient temperature was T (° K) was obtained by the following formula (2).

【0034】[0034]

【数1】log(1/2)=−kt ・・・・(1)## EQU1 ## log (1/2) =-kt (1)

【0035】[0035]

【数2】 [Equation 2]

【0036】気泡の均一性 発泡粒子20個を、その中心で切断して断面を50倍に
拡大して観察し、 粒子内でも、粒子間でも気泡のバラツキ殆どなし・・○ 粒子内及び粒子間の気泡のバラツキ有り・・・・・・・
× として評価した。
Uniformity of Bubbles 20 foamed particles were cut at the center and observed with a cross section magnified 50 times, and there was almost no variation in bubbles within particles or between particles. There are variations in the air bubbles ...
It was evaluated as x.

【0037】平均気泡径 発泡粒子20個を、その中心で切断して断面を50倍に
拡大して観察して気泡の平均径を求め、 平均気泡径0.05mm以上・・・・○ 平均気泡径0.05mm未満・・・・× として評価した。
Average Cell Diameter 20 foamed particles were cut at the center and the cross section was magnified 50 times to observe the average diameter of the cells, and the average cell diameter was 0.05 mm or more. The diameter was less than 0.05 mm ...

【0038】核気泡の有無 樹脂粒子を切断し、切断面を顕微鏡で観察して核気泡の
有無を確認した。
Presence or absence of nuclear bubbles The resin particles were cut, and the cut surface was observed with a microscope to confirm the presence or absence of nuclear bubbles.

【0039】成型体の導電性 三菱化学株式会社製抵抗計(Loresta AP)にて成型体
の体積固有抵抗値を測定した。
Conductivity of Molded Body The volume resistivity of the molded body was measured with a resistance meter (Loresta AP) manufactured by Mitsubishi Chemical Corporation.

【0040】成型体の寸法安定性 60℃で1日養生した成型体の金型内寸法(300mm
×300mm)に対応する面のうち、一方の面の周囲の
4辺について、相対する2辺の中点を結ぶ線分の長さを
それぞれ測定し、その平均長さ:A(mm)を算出し、
下記(3)式に代入して収縮率を求め、 収縮率が2.7%未満・・・・・○ 収縮率が2.7%以上・・・・・× として評価した。
Dimensional stability of molded body Dimensional stability of molded body after curing at 60 ° C for 1 day (300 mm
X300 mm), the length of the line segment connecting the midpoints of the two opposite sides is measured for each of the four sides around one side, and the average length: A (mm) is calculated. Then
The shrinkage rate was calculated by substituting it in the following formula (3), and the shrinkage rate was evaluated as less than 2.7% ... ◯ Shrinkage rate is 2.7% or more ...

【0041】[0041]

【数3】 収縮率(%)=〔(300−A)/300〕×100 ・・・(3)## EQU00003 ## Shrinkage (%) = [(300-A) / 300] .times.100 (3)

【0042】成型体の圧縮回復性 60℃で1日養生した成型体をスライスして長さ50m
m、幅50mm、厚み25mmの直方体の試験片を作成
し、万能試験機を用いて10mm/分の速度で試験片を
その厚み方向に75%圧縮し、その直後に10mm/分
の速度で圧縮を緩和してゆき、応力がゼロになった時の
成型体の厚み:B(mm)を測定し、下記(4)式に代
入して残留歪を求め、 残留歪みが30%以下・・・・・○ 残留歪みが30%を越える・・・× として評価した。
Compressive recovery of molded body 50 minutes long by slicing the molded body aged at 60 ° C for 1 day
m, width 50 mm, thickness 25 mm rectangular parallelepiped test piece is created, and the test piece is compressed by 75% in the thickness direction at a speed of 10 mm / min using a universal testing machine, and immediately thereafter at a speed of 10 mm / min. The thickness: B (mm) of the molded product when the stress becomes zero is measured, and the residual strain is obtained by substituting it in the following formula (4). The residual strain is 30% or less ... ∘∘ The residual strain exceeded 30% and was evaluated as ×.

【0043】[0043]

【数4】 残留歪(%)=〔(25−B)/25〕×100 ・・・・(4)## EQU00004 ## Residual strain (%) = [(25-B) / 25] .times.100 ... (4)

【0044】実施例5〜7、比較例4〜6 実施例1〜4で用いたと同様の導電性カーボン、エチレ
ン−プロピレンランダム共重合体(エチレン含有量4.
5重量%、融点135℃、MI=8g/10分)及び水
溶性無機物をバンバリーミキサーで混合して原料混合物
を作成した。次いでこの原料混合物を押出機内で溶融混
練した後、ストランド状に押出し、次いでこのストラン
ドを切断して樹脂粒子を得た。この樹脂粒子の基材樹脂
中の導電性カーボン含有量、水溶性無機物の種類及び含
有量を表2に示す。
Examples 5 to 7 and Comparative Examples 4 to 6 The same conductive carbon and ethylene-propylene random copolymer as those used in Examples 1 to 4 (ethylene content 4.
5% by weight, melting point 135 ° C., MI = 8 g / 10 minutes) and a water-soluble inorganic substance were mixed with a Banbury mixer to prepare a raw material mixture. Next, this raw material mixture was melt-kneaded in an extruder, then extruded into a strand, and then this strand was cut to obtain resin particles. Table 2 shows the conductive carbon content of the resin particles in the base resin, the type and content of the water-soluble inorganic substance.

【0045】次いで上記樹脂粒子100重量部、水30
0重量部、表2に示す量の二酸化炭素、カオリン0.3
重量部、界面活性剤(ドデシルベンゼンスルホン酸ナト
リウム)0.006重量部を、400リットルのオート
クレーブに仕込み、攪拌しながら表2に示す発泡温度ま
で加熱し、同温度で15分間保持した後、オートクレー
ブ内に窒素ガスを導入してオートクレーブ内の平衡蒸気
圧を保持しながらオートクレーブの一端を開放し、内容
物を大気圧下に放出して樹脂粒子を発泡させた。得られ
た発泡粒子の物性を表2に示す。またこの発泡粒子を2
4時間大気圧下に放置して熟成後、空気で加圧して1.
5kgf/cm2 Gの内圧を付与して23℃で1時間放置
した後、実施例1〜4と同寸法の金型で成型し、大気圧
下、60℃で1日養生した。得られた成型体の諸物性を
表2にあわせて示す。
Next, 100 parts by weight of the above resin particles and 30 parts of water
0 parts by weight, carbon dioxide in the amounts shown in Table 2, kaolin 0.3
Parts by weight and 0.006 parts by weight of a surfactant (sodium dodecylbenzenesulfonate) were charged into a 400 liter autoclave, heated to the foaming temperature shown in Table 2 with stirring, and kept at the same temperature for 15 minutes, and then the autoclave. Nitrogen gas was introduced into the autoclave to maintain the equilibrium vapor pressure in the autoclave, one end of the autoclave was opened, and the contents were discharged under atmospheric pressure to foam the resin particles. Table 2 shows the physical properties of the obtained expanded beads. In addition, 2
After aging for 4 hours under atmospheric pressure, pressurizing with air 1.
After applying an internal pressure of 5 kgf / cm 2 G and leaving it at 23 ° C. for 1 hour, it was molded with a mold having the same dimensions as in Examples 1 to 4 and cured at 60 ° C. under atmospheric pressure for 1 day. Various physical properties of the obtained molded product are also shown in Table 2.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】本発明の発泡粒子は、10重量%以上の
導電性カーボンを含有し、しかも内圧減衰係数が0.3
未満であるため、ポリプロピレン系樹脂を基材樹脂とし
ていながら、導電性カーボンを添加した従来のポリプロ
ピレン系樹脂発泡粒子のように気泡が微細化することが
なく、高発泡倍率で導電性、寸法安定性、圧縮回復性等
の物性に優れた成型体を得ることができる。
The expanded particles of the present invention contain 10% by weight or more of conductive carbon and have an internal pressure attenuation coefficient of 0.3.
Since it is less than the above, the polypropylene resin is used as the base resin, but the bubbles do not become fine as in the conventional polypropylene resin expanded particles to which conductive carbon is added, and the conductivity and dimensional stability are high at a high expansion ratio. It is possible to obtain a molded product having excellent properties such as properties and compression recovery properties.

【0048】また本発明方法によれば上記優れた発泡粒
子を確実に製造することができる効果がある。
Further, according to the method of the present invention, there is an effect that the above excellent expanded beads can be reliably produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】高温ピークを有する発泡粒子のDSC曲線の一
例である。
FIG. 1 is an example of a DSC curve of expanded particles having a high temperature peak.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性カーボンを10重量%以上含有
し、且つ内圧減衰係数が0.3未満であることを特徴と
する導電性ポリプロピレン系樹脂発泡粒子。
1. A conductive polypropylene-based resin foamed particle containing 10% by weight or more of conductive carbon and having an internal pressure attenuation coefficient of less than 0.3.
【請求項2】 カルボキシル基を有するポリプロピレン
系樹脂を基材とし、且つ10重量%以上の導電性カーボ
ンと、核気泡とを含有するポリプロピレン系樹脂粒子に
発泡剤を含浸させた発泡性樹脂粒子を発泡させることを
特徴とする導電性ポリプロピレン系樹脂発泡粒子の製造
方法。
2. Foamable resin particles obtained by impregnating a polypropylene resin having a carboxyl group as a base material and containing 10% by weight or more of conductive carbon and nuclear bubbles with a foaming agent. A method for producing expanded particles of a conductive polypropylene resin, which comprises foaming.
【請求項3】 10重量%以上の導電性カーボンと、
0.01〜5重量%の水溶性無機物とを含有するポリプ
ロピレン系樹脂粒子に発泡剤を含浸させた発泡性樹脂粒
子を発泡させることを特徴とする導電性ポリプロピレン
系樹脂発泡粒子の製造方法。
3. Conductive carbon of 10% by weight or more,
A method for producing conductive polypropylene resin foamed particles, which comprises foaming expandable resin particles obtained by impregnating polypropylene resin particles containing 0.01 to 5% by weight of a water-soluble inorganic substance with a foaming agent.
JP8031316A 1996-01-25 1996-01-25 Foamed particle of electrically conductive polypropylene resin and its production Pending JPH09202837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8031316A JPH09202837A (en) 1996-01-25 1996-01-25 Foamed particle of electrically conductive polypropylene resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8031316A JPH09202837A (en) 1996-01-25 1996-01-25 Foamed particle of electrically conductive polypropylene resin and its production

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005128842A Division JP3966521B2 (en) 2005-04-27 2005-04-27 Method for producing conductive polypropylene resin expanded particles

Publications (1)

Publication Number Publication Date
JPH09202837A true JPH09202837A (en) 1997-08-05

Family

ID=12327884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8031316A Pending JPH09202837A (en) 1996-01-25 1996-01-25 Foamed particle of electrically conductive polypropylene resin and its production

Country Status (1)

Country Link
JP (1) JPH09202837A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032681A1 (en) * 1998-12-03 2000-06-08 Kaneka Corporation Expansion-molded product of electrically conductive polypropylene-based resin
JP4891230B2 (en) * 2004-09-10 2012-03-07 株式会社ジェイエスピー Polypropylene resin foamed particles for dielectric molding and dielectric lens member molded from the polypropylene resin foamed particles
WO2013094529A1 (en) 2011-12-21 2013-06-27 株式会社カネカ Polypropylene-based resin foamed particles having excellent flame retardancy and conductivity and polypropylene-based resin in-mold foamed molded product
WO2013132957A1 (en) 2012-03-05 2013-09-12 株式会社ジェイエスピー Polypropylene resin foamed particles and moulded article of polypropylene resin foamed particles
EP2719721A1 (en) 2012-10-10 2014-04-16 Jsp Corporation Molded article of polyolefin-based resin expanded beads
WO2014203876A1 (en) 2013-06-21 2014-12-24 株式会社カネカ Polypropylene resin foamed particles having excellent flame resistance and conductivity and polypropylene resin-type in-mold foam molded body
WO2014208397A1 (en) 2013-06-24 2014-12-31 株式会社カネカ Electroconductive polypropylene resin foam particles having excellent flame retardancy and electroconductivity and electroconductive polypropylene resin in-mold-foamed molded article
JP2015113403A (en) * 2013-12-11 2015-06-22 株式会社ジェイエスピー Polyolefin resin foamed particle
CN105778292A (en) * 2016-05-17 2016-07-20 江南大学 Conductive master batch specially used for EPP and preparation method thereof
JP2018009182A (en) * 2017-08-21 2018-01-18 株式会社ジェイエスピー Polyolefin resin foamed particle
US10403416B2 (en) 2014-08-21 2019-09-03 Kaneka Corporation Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032681A1 (en) * 1998-12-03 2000-06-08 Kaneka Corporation Expansion-molded product of electrically conductive polypropylene-based resin
JP4891230B2 (en) * 2004-09-10 2012-03-07 株式会社ジェイエスピー Polypropylene resin foamed particles for dielectric molding and dielectric lens member molded from the polypropylene resin foamed particles
WO2013094529A1 (en) 2011-12-21 2013-06-27 株式会社カネカ Polypropylene-based resin foamed particles having excellent flame retardancy and conductivity and polypropylene-based resin in-mold foamed molded product
CN104024315A (en) * 2011-12-21 2014-09-03 株式会社钟化 Polypropylene-based resin foamed particles having excellent flame retardancy and conductivity and polypropylene-based resin in-mold foamed molded product
JPWO2013094529A1 (en) * 2011-12-21 2015-04-27 株式会社カネカ Polypropylene resin foam particles and polypropylene resin in-mold foam moldings with excellent flame retardancy and conductivity
US9230710B2 (en) 2012-03-05 2016-01-05 Jsp Corporation Polypropylene-based resin expanded beads, and polypropylene-based resin expanded beads molded article
WO2013132957A1 (en) 2012-03-05 2013-09-12 株式会社ジェイエスピー Polypropylene resin foamed particles and moulded article of polypropylene resin foamed particles
EP2719721A1 (en) 2012-10-10 2014-04-16 Jsp Corporation Molded article of polyolefin-based resin expanded beads
US9449735B2 (en) 2012-10-10 2016-09-20 Jsp Corporation Molded article of polyolefin-based resin expanded beads
WO2014203876A1 (en) 2013-06-21 2014-12-24 株式会社カネカ Polypropylene resin foamed particles having excellent flame resistance and conductivity and polypropylene resin-type in-mold foam molded body
WO2014208397A1 (en) 2013-06-24 2014-12-31 株式会社カネカ Electroconductive polypropylene resin foam particles having excellent flame retardancy and electroconductivity and electroconductive polypropylene resin in-mold-foamed molded article
JP2015113403A (en) * 2013-12-11 2015-06-22 株式会社ジェイエスピー Polyolefin resin foamed particle
US10403416B2 (en) 2014-08-21 2019-09-03 Kaneka Corporation Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article
CN105778292A (en) * 2016-05-17 2016-07-20 江南大学 Conductive master batch specially used for EPP and preparation method thereof
JP2018009182A (en) * 2017-08-21 2018-01-18 株式会社ジェイエスピー Polyolefin resin foamed particle

Similar Documents

Publication Publication Date Title
JP2000072912A (en) Foaming nucleating agent, foam and production of foam
JPH09202837A (en) Foamed particle of electrically conductive polypropylene resin and its production
JPS5840326A (en) Foamable polyolefin resin composition
JP3638960B2 (en) Polyolefin resin expanded particles and method for producing the same
JP3966521B2 (en) Method for producing conductive polypropylene resin expanded particles
JP2005023302A (en) Method for producing polypropylene-based resin-foamed particle
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP3986394B2 (en) Conductive polypropylene resin foam and process for producing the same
JP3358868B2 (en) Expanded polypropylene resin particles and method for producing the same
JPS5880332A (en) Expandable polyolefin resin composition
EP1055700B1 (en) Expansion-molded product of electrically conductive polypropylene-based resin
JP4231251B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded articles using the same
JP3525947B2 (en) Conductive polypropylene resin expanded particles, in-mold molded article formed from the expanded particles, and method for producing in-mold molded article
JPH09213133A (en) Foaming resin composite for highly foaming insulating polyethylene and highly foaming insulating polyethylene coated wire formed by coating it
JP3531922B2 (en) Method for producing molded article of expanded aliphatic polyester resin particles
JP5399126B2 (en) Method for producing polyolefin resin expanded particles and polyolefin resin expanded particles
JPH06128403A (en) Insulated cable of highly expanded polyethylene having fine diameter and its production
JP2002248645A (en) Method for manufacturing thermoplastic resin foamed small piece molded object
JPH10251437A (en) Molded item of foamed polypropylene resin particle
JP3193209B2 (en) Method for producing high-expansion foam
JP4001669B2 (en) Olefinic resin foamable particles and method for producing the same
JP3306189B2 (en) Olefin resin composition for foaming
JP4455706B2 (en) Method for producing expanded polypropylene resin particles for molding
JPH0476028A (en) Expandable resin composition for highly expanded insulating polyethylene and its production
JPH06145399A (en) Production of polyethylene foam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051013

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051118