JP3358868B2 - Expanded polypropylene resin particles and method for producing the same - Google Patents

Expanded polypropylene resin particles and method for producing the same

Info

Publication number
JP3358868B2
JP3358868B2 JP11951794A JP11951794A JP3358868B2 JP 3358868 B2 JP3358868 B2 JP 3358868B2 JP 11951794 A JP11951794 A JP 11951794A JP 11951794 A JP11951794 A JP 11951794A JP 3358868 B2 JP3358868 B2 JP 3358868B2
Authority
JP
Japan
Prior art keywords
particles
resin particles
temperature
differential scanning
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11951794A
Other languages
Japanese (ja)
Other versions
JPH07304895A (en
Inventor
寿男 所
政春 及川
和男 鶴飼
Original Assignee
株式会社ジエイエスピー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジエイエスピー filed Critical 株式会社ジエイエスピー
Priority to JP11951794A priority Critical patent/JP3358868B2/en
Publication of JPH07304895A publication Critical patent/JPH07304895A/en
Application granted granted Critical
Publication of JP3358868B2 publication Critical patent/JP3358868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はポリプロピレン系樹脂発
泡粒子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to expanded polypropylene resin particles and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリプ
ロピレン系樹脂発泡体は、緩衝性、断熱性等の物性に優
れるため、包装材、緩衝材、断熱材、建築部材等の種々
の分野で利用されている。ポリプロピレン系樹脂発泡体
は利用目的に応じた形状に形成して使用されている。所
望の形状の発泡体を得る方法として、発泡粒子を金型内
に充填し、水蒸気等で加熱して発泡粒子相互を融着せし
めて所定形状の発泡体を得る型内成型法は、複雑な形状
の製品であっても比較的容易に得ることができる好まし
い方法であり、型内成型法で得られる型内発泡成型体は
多くの用途に利用されている。
2. Description of the Related Art Polypropylene resin foams have excellent physical properties such as cushioning properties and heat insulation properties, and are therefore used in various fields such as packaging materials, cushioning materials, heat insulation materials and building materials. Have been. The polypropylene resin foam is used after being formed into a shape according to the purpose of use. As a method of obtaining a foam having a desired shape, an in-mold molding method of filling foamed particles in a mold, heating with steam or the like and fusing the foamed particles together to obtain a foam having a predetermined shape is complicated. This is a preferred method that can be obtained relatively easily even in the form of a product, and the in-mold foam molded product obtained by the in-mold molding method is used for many applications.

【0003】ところで、ポリプロピレン系樹脂型内発泡
成型体は、静電気が帯電し易い性質がある。しかしなが
ら近年、ポリプロピレン系樹脂型内発泡成型体の利用分
野が広がるにつれ、用途によっては発泡成型体への静電
気の帯電が大きな問題となっており、発泡成型体に帯電
防止能を付与する必要性が生じている。
[0003] By the way, a foamed molded article in a polypropylene resin mold has a property of being easily charged with static electricity. However, in recent years, as the field of application of foamed molded articles in polypropylene resin molds has expanded, the electrification of static electricity on foamed molded articles has become a major problem depending on the application, and it is necessary to impart antistatic ability to foamed molded articles. Has occurred.

【0004】このため、ポリプロピレン系樹脂発泡成型
体の製造に用いる発泡粒子に、帯電防止剤を含浸させた
り、発泡粒子表面に帯電防止剤を噴霧塗布して発泡粒子
に帯電防止能を付与することが試みられている。しかし
ながら帯電防止剤を含浸させたり噴霧塗布する場合、帯
電防止剤は粒子表面付近に含浸されているか、表面に付
着しているに過ぎないため、帯電防止剤量は充分な量と
は言い難く、このような発泡粒子を用いて得た発泡成型
体は、帯電防止能の持続性が乏しいとともに、発泡粒子
に帯電防止剤を含浸させたり噴霧塗布するための煩雑な
作業が必要となるという欠点があった。
[0004] For this reason, an antistatic agent is impregnated into foamed particles used for producing a foamed molded article of a polypropylene resin, or an antistatic agent is spray-coated on the surface of the foamed particles to impart an antistatic ability to the foamed particles. Have been tried. However, when the antistatic agent is impregnated or spray-applied, the antistatic agent is impregnated in the vicinity of the particle surface or only adheres to the surface, so the amount of the antistatic agent is hardly sufficient. The foamed molded article obtained by using such foamed particles has a disadvantage that the antistatic ability is poor in persistence and a complicated operation for impregnating or spraying the foamed particles with an antistatic agent is required. there were.

【0005】一方、発泡粒子の製造原料である樹脂粒子
中に帯電防止剤を含有させておくことも試みられてい
る。樹脂粒子を製造するには、一般に、基材樹脂を押出
機内で溶融した後、押出機からストランド状に押出し、
次いでこれを切断する方法が採用されており、樹脂粒子
中に帯電防止剤を含有させる場合、押出機内で基材樹脂
を溶融した際に同時に帯電防止剤を練り込めば良いた
め、作業工程が煩雑となる虞れがないとともに、樹脂粒
子中に多量の帯電防止剤を含有させることができるた
め、帯電防止能の持続性も優れる利点がある。
On the other hand, attempts have been made to incorporate an antistatic agent into resin particles, which are raw materials for producing expanded particles. In order to produce resin particles, generally, a base resin is melted in an extruder, and extruded from the extruder into a strand,
Then, a method of cutting the resin is adopted. When an antistatic agent is contained in the resin particles, the work process is complicated because the antistatic agent may be kneaded at the same time as the base resin is melted in the extruder. In addition to the above, there is an advantage that a large amount of an antistatic agent can be contained in the resin particles, so that the durability of the antistatic ability is excellent.

【0006】しかしながら、帯電防止剤を発泡粒子の製
造原料樹脂中に予め練り込んだ場合、従来は、 表面固有抵抗値が1×1012Ω以下という優れた帯電
防止能を有する発泡粒子を得難い。 特に無架橋のポリプロピレン系樹脂の場合、成型時に
発泡粒子相互の融着性が低下し、発泡成型体中で粒子の
融着不良を生じ易い。 発泡成型体を包装材等として用いる場合、発泡成型体
をカットして凹部を形成し、その凹部に被包装製品を収
納することが多いが、発泡成型体の表面部においてはあ
る程度の帯電防止効果を得ることができても、発泡成型
体の切断面では帯電防止効果が期待できなかったり、あ
る程度の帯電防止能が発揮されるまでにきわめて長時間
を要する。等の問題があった。
However, if the antistatic agent is previously kneaded into the raw material resin for producing the foamed particles, it is conventionally difficult to obtain foamed particles having an excellent antistatic ability having a surface resistivity of 1 × 10 12 Ω or less. In particular, in the case of a non-crosslinked polypropylene resin, the fusion property between the foamed particles during molding is reduced, and poor fusion of the particles is likely to occur in the foamed molded article. When a foamed molded article is used as a packaging material or the like, the foamed molded article is cut to form a concave portion, and the product to be packaged is often stored in the concaved portion. However, it is not possible to expect an antistatic effect on the cut surface of the foamed molded article, or it takes an extremely long time to exhibit a certain antistatic ability. And so on.

【0007】上記の問題が生じるのは、主として発泡粒
子内に含有されている帯電防止剤の、発泡粒子表面への
ブリード性が原因している。樹脂中に練り込んだ帯電防
止剤は、樹脂に対して適度な相溶性を有している必要が
あり、帯電防止剤の樹脂に対する相溶性が良すぎる(高
すぎる)と、帯電防止剤がブリードし難くなって帯電防
止効果が発揮されなくなる。逆に帯電防止剤の樹脂に対
する相溶性が悪すぎる(低すぎる)と、帯電防止剤が短
時間で多量にブリードし、帯電防止能の持続性低下や発
泡粒子、発泡成型体表面のベタツキを生じたり、発泡粒
子を成型する際の粒子の融着性が低下する等の問題を生
じる。
[0007] The above problems are mainly caused by the bleeding of the antistatic agent contained in the foamed particles on the surface of the foamed particles. The antistatic agent kneaded in the resin needs to have appropriate compatibility with the resin. If the compatibility of the antistatic agent with the resin is too good (too high), the antistatic agent may bleed. And the antistatic effect is not exhibited. Conversely, if the compatibility of the antistatic agent with the resin is too poor (too low), the antistatic agent bleeds in large quantities in a short period of time, causing a reduction in the sustainability of the antistatic ability and stickiness of the foamed particles and the foamed molded product surface. In addition, there arise problems such as a decrease in fusion property of the particles when molding the expanded particles.

【0008】発泡成型体に帯電防止性能を付与するとい
う目的から、発泡粒子内に含有されている帯電防止剤が
ブリードしてくるのは、発泡粒子を成型した後で良く、
発泡粒子の状態で多量の帯電防止剤がブリードした場
合、上記したように発泡粒子を成型する際の融着性を阻
害する等の不利益を生じることはあっても、好ましい結
果を生じることはない。従って、発泡粒子を成型する迄
の間に、多量の帯電防止剤がブリードすることがなく、
成型後に充分な帯電防止能を発揮できる程度の必要最少
量の帯電防止剤がブリードしてくるようなブリード速度
となるように、帯電防止剤の樹脂に対する相溶性をコン
トロールすることが好ましい。しかしながら、従来は帯
電防止剤が樹脂に対して適度な相溶性を有するようにコ
ントロールすることは困難であった。
For the purpose of imparting antistatic performance to the foamed molded article, the antistatic agent contained in the foamed particles may bleed after molding the foamed particles.
If a large amount of the antistatic agent bleeds in the state of the foamed particles, there may be disadvantages such as impairing the fusibility when molding the foamed particles as described above, but a favorable result may be produced. Absent. Therefore, before molding the expanded particles, a large amount of antistatic agent does not bleed,
It is preferable to control the compatibility of the antistatic agent with the resin so that the bleeding speed is such that a minimum necessary amount of the antistatic agent bleeds after molding. However, conventionally, it has been difficult to control the antistatic agent to have an appropriate compatibility with the resin.

【0009】本発明者等は上記課題を解決するために鋭
意研究した結果、特定量のノニオン系界面活性剤を含有
し、特定の結晶構造を有するポリプロピレン系樹脂から
得られる発泡粒子であり、且つ該発泡粒子も特定の結晶
構造を有するものとすることにより、帯電防止剤が適度
な速度でブリードし、該発泡粒子から得られる発泡成型
体は優れた帯電防止能を長期間に亘って発揮し得るとと
もに、成型時に発泡粒子の融着性を阻害することがな
く、粒子の融着性に優れた発泡成型体を得ることができ
ることを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, they are foamed particles obtained from a polypropylene resin containing a specific amount of a nonionic surfactant and having a specific crystal structure, and Since the foamed particles also have a specific crystal structure, the antistatic agent bleeds at an appropriate speed, and the foamed molded article obtained from the foamed particles exhibits excellent antistatic ability over a long period of time. The present invention has been found to be able to obtain a foam molded article excellent in the fusion property of the particles without inhibiting the fusion property of the foam particles at the time of molding, thereby completing the present invention.

【0010】[0010]

【課題を解決するための手段】即ち本発明のポリオレフ
ィン系樹脂発泡粒子は、帯電防止能を有する平均分子量
200〜1000のノニオン系界面活性剤を0.1〜
5.0重量%含有し、且つ示差走査熱量測定によって得
られるDSC曲線(但し、樹脂粒子2〜6mgを示差走査
熱量計によって10℃/分で220℃まで昇温した時に
得られるDSC曲線)における融解熱量が50〜95J
/gのポリプロピレン系樹脂を基材樹脂とする樹脂粒子
を発泡して得られるポリプロピレン系樹脂発泡粒子であ
って、該発泡粒子は示差走査熱量測定によって得られる
DSC曲線(但し、発泡粒子2〜6mgを示差走査熱量計
によって10℃/分で220℃まで昇温した時に得られ
るDSC曲線)に、固有ピークとともに、該固有ピーク
より高温側に高温ピークが現れる結晶構造を有し、且つ
該高温ピークの熱量が10〜30J/gであることを特
徴とする。
In other words, the polyolefin resin foamed particles of the present invention are prepared by adding a nonionic surfactant having an average molecular weight of 200 to 1,000 having antistatic ability to 0.1 to 0.1%.
In a DSC curve containing 5.0% by weight and obtained by differential scanning calorimetry (however, a DSC curve obtained when 2 to 6 mg of resin particles are heated to 220 ° C at 10 ° C / min by a differential scanning calorimeter) Heat of fusion 50-95J
/ G foamed polypropylene resin particles obtained by foaming resin particles having a polypropylene resin as a base resin, wherein the foamed particles have a DSC curve obtained by differential scanning calorimetry (provided that the foamed particles are 2 to 6 mg). Has a crystal structure in which a high-temperature peak appears on the higher temperature side than the intrinsic peak, together with a characteristic peak in a DSC curve obtained when the temperature is raised to 220 ° C. at 10 ° C./min by a differential scanning calorimeter. Is 10 to 30 J / g.

【0011】また本発明のポリプロピレン系樹脂発泡粒
子の製造方法は、平均分子量200〜1000の帯電防
止能を有するノニオン系界面活性剤を0.1〜5.0重
量%含有し、且つ示差走査熱量測定によって得られるD
SC曲線(但し、樹脂粒子2〜6mgを示差走査熱量計に
よって10℃/分で220℃まで昇温した時に得られる
DSC曲線)における融解熱量が50〜95J/gのポ
リプロピレン系樹脂を基材樹脂とする樹脂粒子を、密閉
容器内で無機ガス系発泡剤の存在下に分散媒に分散させ
て樹脂粒子が軟化する温度以上の温度にて発泡剤を含浸
した樹脂粒子と分散媒とを容器内より低圧下に放出して
樹脂粒子を発泡させ、示差走査熱量測定によって得られ
るDSC曲線(但し、発泡粒子2〜6mgを示差走査熱量
計によって10℃/分で220℃まで昇温した時に得ら
れるDSC曲線)に、固有ピークとともに、該固有ピー
クより高温側に高温ピークが現れる結晶構造を有し、且
つ該高温ピークの熱量が10〜30J/gである発泡粒
子を得ることを特徴とする。
The method for producing expanded polypropylene resin particles according to the present invention comprises 0.1 to 5.0% by weight of a nonionic surfactant having an antistatic ability having an average molecular weight of 200 to 1000, and a differential scanning calorimeter. D obtained by measurement
A polypropylene resin having a heat of fusion of 50 to 95 J / g in an SC curve (a DSC curve obtained when 2 to 6 mg of resin particles are heated to 220 ° C. at 10 ° C./min by a differential scanning calorimeter) is used as a base resin. The resin particles to be dispersed in a dispersion medium in the presence of an inorganic gas-based blowing agent in a closed container and the resin particles impregnated with the blowing agent at a temperature equal to or higher than the temperature at which the resin particles soften, and the dispersion medium are placed in the container. A DSC curve obtained by differential scanning calorimetry after releasing the resin particles under a lower pressure to expand the resin particles (however, obtained by heating 2 to 6 mg of expanded particles to 220 ° C at 10 ° C / min by a differential scanning calorimeter) (DSC curve), a characteristic feature is to obtain expanded particles having a crystal structure in which a high-temperature peak appears on the higher temperature side with respect to the intrinsic peak together with the intrinsic peak, and the calorific value of the high-temperature peak is 10 to 30 J / g. And

【0012】本発明において、ノニオン系界面活性剤と
しては、高級脂肪酸グリセリンエステルまたは高級アル
キルアミンが好ましい。
In the present invention, as the nonionic surfactant, a higher fatty acid glycerin ester or a higher alkylamine is preferable.

【0013】本発明の発泡粒子は、ポリプロピレン系樹
脂粒子に発泡剤を含浸させて発泡させることにより得ら
れる。基材樹脂であるポリプロピレン系樹脂としては、
例えば、ポリプロピレン、エチレン−プロピレンブロッ
ク共重合体、エチレン−プロピレンランダム共重合体、
ブテン−プロピレンランダム共重合体、エチレン−ブテ
ン−プロピレンランダム共重合体等が挙げられるが、な
かでも特にエチレン−プロピレンランダム共重合体、エ
チレン−ブテン−プロピレンランダム共重合体が好まし
い。これらの樹脂は無架橋のものでも架橋したものでも
良いが、リサイクルの面からは無架橋のものが好まし
い。
The foamed particles of the present invention can be obtained by impregnating polypropylene resin particles with a foaming agent and foaming. As the polypropylene resin as the base resin,
For example, polypropylene, ethylene-propylene block copolymer, ethylene-propylene random copolymer,
Examples thereof include a butene-propylene random copolymer and an ethylene-butene-propylene random copolymer. Among them, an ethylene-propylene random copolymer and an ethylene-butene-propylene random copolymer are particularly preferable. These resins may be non-cross-linked or cross-linked, but are preferably non-cross-linked from the viewpoint of recycling.

【0014】上記ポリプロピレン系樹脂粒子は、示差走
査熱量測定によって得られるDSC曲線における融解熱
量が50〜95J/gのものである。このDSC曲線と
は、、樹脂粒子2〜6mgを示差走査熱量計によって10
℃/分の昇温速度で220℃まで昇温して測定した時に
得られるDSC曲線であり、融解熱量とは図1に示すよ
うに、80℃から融解終了温度:Te(DSC曲線が高
温側でベースラインに戻った時の温度)まで間の、DS
C曲線とベースラインとに囲まれた部分(斜線の部分)
に相当する熱量である。
The polypropylene resin particles have a heat of fusion of 50 to 95 J / g on a DSC curve obtained by differential scanning calorimetry. This DSC curve means that 2 to 6 mg of the resin particles was measured by a differential scanning calorimeter.
FIG. 1 is a DSC curve obtained when the temperature was increased to 220 ° C. at a temperature increasing rate of 200 ° C./min, and the heat of fusion was, as shown in FIG. DS) until the temperature returns to the baseline at
The part surrounded by the C curve and the baseline (the shaded part)
Is the amount of heat corresponding to

【0015】上記ポリプロピレン系樹脂粒子には、帯電
防止能を有する平均分子量200〜1000のノニオン
系界面活性剤が0.1〜5.0重量%、好ましくは0.
3〜3.0重量%含有されている。ノニオン系界面活性
剤はカチオン系や両性のものに比べて熱安定性に優れ、
150〜220℃の高温で樹脂を溶融して樹脂中に練り
込んだり、発泡粒子を金型内に充填して加熱成型する際
の熱によって帯電防止能が劣化したり、樹脂が着色した
りすることがない。またアニオン系界面活性剤に比べて
帯電防止能が優れ、しかもアニオン系、カチオン系、両
性の界面活性剤に比べ、ノニオン系界面活性剤は樹脂中
から水中へ溶出し難い。このため、界面活性剤を練り込
んだ樹脂をストランド状に水中に押出して冷却する際
や、樹脂粒子の発泡に際し、樹脂粒子と発泡剤とを密閉
容器内で水等の分散媒に分散させ、樹脂粒子に発泡剤を
含浸させた後、樹脂粒子を容器内から放出して発泡する
等の方法を採用した場合でも樹脂から界面活性剤が溶出
して帯電防止能が低下する虞れがない。
The polypropylene resin particles contain 0.1 to 5.0% by weight, preferably 0.1 to 5.0% by weight, of a nonionic surfactant having an average molecular weight of 200 to 1000 having antistatic ability.
It is contained in an amount of 3 to 3.0% by weight. Nonionic surfactants have better thermal stability than cationic and amphoteric surfactants,
The resin is melted at a high temperature of 150 to 220 ° C. and kneaded into the resin, or the antistatic ability is deteriorated by heat generated when the foamed particles are filled in a mold and heat molded, or the resin is colored. Nothing. In addition, antistatic properties are superior to anionic surfactants, and nonionic surfactants are less likely to elute into water from resins than anionic, cationic or amphoteric surfactants. For this reason, when extruding the resin into which the surfactant is kneaded into water in the form of a strand and cooling, or when foaming the resin particles, the resin particles and the foaming agent are dispersed in a dispersion medium such as water in a closed container, Even when the resin particles are impregnated with a foaming agent and then the resin particles are discharged from the container and foamed, there is no fear that the surfactant is eluted from the resin and the antistatic ability is reduced.

【0016】上記ノニオン系界面活性剤としては下記化
1で示されるN,N−(2−ヒドロキシエチル)アルキ
ルアミン、下記化2で示されるモノグリセリンの高級脂
肪酸エステル、下記化3で示されるジグリセリンの高級
脂肪酸エステル、下記化4、又は化5で示されるソルビ
タン高級脂肪酸エステル、下記化6で示されるアルキル
ジエタノールアミドが好ましく、特に高級アルキルアミ
ン、高級脂肪酸グリセリンエステルが好ましい。
Examples of the nonionic surfactant include an N, N- (2-hydroxyethyl) alkylamine represented by the following formula (1), a higher fatty acid ester of monoglycerin represented by the following formula (2), and a diester represented by the following formula (3): A higher fatty acid ester of glycerin, a higher sorbitan fatty acid ester represented by the following chemical formula (4) or (5), and an alkyl diethanolamide represented by the following chemical formula (6) are preferable, and a higher alkyl amine and a higher fatty acid glycerin ester are particularly preferable.

【0017】[0017]

【化1】 Embedded image

【0018】[0018]

【化2】 Embedded image

【0019】[0019]

【化3】 Embedded image

【0020】[0020]

【化4】 Embedded image

【0021】[0021]

【化5】 Embedded image

【0022】[0022]

【化6】 Embedded image

【0023】上記界面活性剤は単独又は2種以上を組み
合わせて使用することができる。ノニオン系界面活性剤
として、平均分子量200未満のものを使用すると、帯
電防止能の持続性が乏しくなり、平均分子量1000を
超えるものを使用すると帯電防止能を発現するために必
要な時間が2週間以上と長くなるため好ましくない。界
面活性剤の樹脂粒子中における含有量は0.1〜5.0
重量%であり、0.1重量%未満であると充分な帯電防
止能が付与されず、5重量%を超える量の帯電防止剤が
含有されると発泡粒子の融着性が不良となり、良好な発
泡成型体が得られなくなる場合が多い。
The above surfactants can be used alone or in combination of two or more. When a nonionic surfactant having an average molecular weight of less than 200 is used, the durability of the antistatic ability becomes poor. When a surfactant having an average molecular weight of more than 1000 is used, the time required for expressing the antistatic ability is two weeks. It is not preferable because it becomes longer than the above. The content of the surfactant in the resin particles is 0.1 to 5.0.
When the amount is less than 0.1% by weight, sufficient antistatic ability is not provided, and when the amount of the antistatic agent exceeds 5% by weight, the fusion property of the expanded particles becomes poor, and In many cases, it becomes impossible to obtain a suitable foamed molded article.

【0024】上記界面活性剤を含有する樹脂粒子として
は、直径(D)が0.5〜2mm、長さ(L)が0.5〜
3mmで、且つ長さと直径の比(L/D)が1.5〜2.
5程度のものが好ましい。
The resin particles containing the above surfactant have a diameter (D) of 0.5 to 2 mm and a length (L) of 0.5 to 2 mm.
3 mm and the ratio of length to diameter (L / D) is 1.5 to 2.
About 5 is preferable.

【0025】界面活性剤を含有する樹脂粒子を得る方法
としては、ポリプロピレン系樹脂とノニオン系界面活性
剤とを押出機内で溶融混練し、次いで溶融混練物を押出
機からストランド状に押出し、冷却後にストランドをカ
ットして粒状とする方法が挙げられる。具体的には樹脂
に対してノニオン系界面活性剤を2〜20重量%の割合
で加え、三本ロール、ニーダー、押出機等によって10
0〜250℃に加熱し、溶融混練してマスターバッチを
作成し、次いで界面活性剤の最終的な含有量が0.1〜
5.0重量%となるように、上記マスターバッチと界面
活性剤を含有しないポリプロピレン系樹脂とを溶融混合
して上記したように押出機からストランド状に押出して
カットして樹脂粒子を得ることができる。上記方法(マ
スターバッチ法)によれば、界面活性剤を樹脂粒子中に
均一に分散して含有させることができる。尚、必要によ
り、樹脂粒子を製造する際に界面活性剤とともに顔料等
の着色剤や各種添加剤を添加することもできる。
As a method for obtaining a resin particle containing a surfactant, a polypropylene resin and a nonionic surfactant are melt-kneaded in an extruder, and then the melt-kneaded product is extruded into a strand from an extruder, and cooled. A method of cutting a strand into granules can be used. Specifically, a nonionic surfactant is added to the resin at a ratio of 2 to 20% by weight, and the nonionic surfactant is added to the resin by a three-roller, a kneader, an extruder or the like.
Heated to 0 to 250 ° C, melt-kneaded to create a masterbatch, then the final surfactant content is 0.1 to
The master batch and the polypropylene-based resin containing no surfactant are melt-mixed so as to be 5.0% by weight, and are extruded into a strand form from an extruder as described above, and cut to obtain resin particles. it can. According to the above method (master batch method), the surfactant can be uniformly dispersed and contained in the resin particles. If necessary, a colorant such as a pigment and various additives can be added together with the surfactant when producing the resin particles.

【0026】本発明の発泡粒子は、発泡粒子2〜6mgを
示差走査熱量計によって10℃/分の昇温速度で220
℃まで昇温した時に得られるDSC曲線に、図2に示す
ようにポリプロピレン系樹脂に固有の固有ピーク1と、
該固有ピーク1より高温側の高温ピーク2とが現れ、該
高温ピーク2の熱量(図2の斜線の部分に相当する熱
量)が10〜30J/gである結晶構造を有する。
The expanded particles of the present invention were prepared by adding 2 to 6 mg of expanded particles at a temperature rising rate of 10 ° C./min by a differential scanning calorimeter to 220 mg.
As shown in FIG. 2, the DSC curve obtained when the temperature was raised to 0 ° C. shows, as shown in FIG.
A high-temperature peak 2 which is higher in temperature than the intrinsic peak 1 appears, and has a crystal structure in which the amount of heat of the high-temperature peak 2 (the amount of heat corresponding to the hatched portion in FIG. 2) is 10 to 30 J / g.

【0027】上記固有ピーク1と高温ピーク2とは上記
条件で第1回目の測定を行って得たDSC曲線(図2)
と、第1回目の測定終了後、室温付近まで冷却した後、
同様の条件で第2回目の測定を行って得たDSC曲線
(図示せず)を比較することにより区別できる。固有ピ
ーク1とは、発泡粒子を構成するポリプロピレン系樹脂
固有の吸熱ピークであり、固有ピーク1は第1回目のD
SC曲線にも、第2回目のDSC曲線にも現れるピーク
である(但し、ピークの頂点の温度は、第1回目と第2
回目とで多少異なる場合がある。)。
The above-mentioned intrinsic peak 1 and high-temperature peak 2 are the DSC curves obtained by performing the first measurement under the above conditions (FIG. 2).
After the first measurement, after cooling to around room temperature,
The discrimination can be made by comparing the DSC curves (not shown) obtained by performing the second measurement under the same conditions. The unique peak 1 is an endothermic peak unique to the polypropylene resin constituting the expanded particles, and the unique peak 1 is the first D peak.
This is a peak that appears in both the SC curve and the second DSC curve (however, the temperature of the peak is between the first and second DSC curves).
It may be slightly different from the first time. ).

【0028】一方、高温ピーク2とは、第1回目のDS
C曲線において固有ピーク1よりも高温側に現れる吸熱
ピークであり、第2回目のDSC曲線には現れない。第
1回目のDSC曲線に高温ピーク2が現れない発泡粒子
は型内で発泡成型する際の成型性が悪く、性状の良好な
発泡成型体を得ることが困難となる。尚、第1回目のD
SC曲線に現れる高温ピーク2の頂点の温度と、第2回
目のDSC曲線における固有ピークの頂点の温度との差
は大きいことが望ましく、両者の差は5℃以上、好まし
くは10℃以上である。
On the other hand, the high temperature peak 2 is defined as the first DS
This endothermic peak appears on the higher temperature side than the intrinsic peak 1 in the C curve, and does not appear in the second DSC curve. Foamed particles for which the high-temperature peak 2 does not appear in the first DSC curve have poor moldability when foamed and molded in a mold, and it is difficult to obtain a foamed molded body having good properties. The first D
It is desirable that the difference between the temperature of the peak of the high temperature peak 2 appearing in the SC curve and the temperature of the peak of the unique peak in the second DSC curve is large, and the difference between the two is 5 ° C. or more, preferably 10 ° C. or more. .

【0029】上記DSC曲線に高温ピーク2が現れるポ
リプロピレン系樹脂発泡粒子には、高温ピーク2が現れ
ない発泡粒子とは異なる結晶構造が存在する。上記した
ように固有ピーク1は第1回目のDSC曲線にも第2回
目のDSC曲線にも略同様に現れるのに対し、高温ピー
ク2は第1回目のDSC曲線にだけ現れ、同一条件で測
定を行った第2回目のDSC曲線には現れないことか
ら、高温ピーク2が現れる結晶構造とは、基材樹脂自体
の結晶構造等に起因するものではなく、発泡粒子として
の形態におけるポリプロピレン系樹脂発泡粒子が有する
結晶構造に起因するものと考えられる。固有ピーク1と
ともに高温ピーク2を有するポリプロピレン系樹脂発泡
粒子は、発泡温度や発泡温度での保持時間等の発泡条件
を調節することにより得られる。
The expanded polypropylene resin particles having a high temperature peak 2 in the DSC curve have a different crystal structure from the expanded particles having no high temperature peak 2. As described above, the unique peak 1 appears almost similarly in the first DSC curve and the second DSC curve, whereas the high-temperature peak 2 appears only in the first DSC curve and measured under the same conditions. The crystal structure in which the high-temperature peak 2 appears is not caused by the crystal structure of the base resin itself, but is represented by the polypropylene resin in the form of expanded particles, since the crystal structure does not appear in the second DSC curve of the second round. This is considered to be due to the crystal structure of the expanded particles. Expanded polypropylene resin particles having a high-temperature peak 2 together with an intrinsic peak 1 can be obtained by adjusting foaming conditions such as a foaming temperature and a holding time at the foaming temperature.

【0030】本発明の発泡粒子は、前記した如き方法等
で製造した、界面活性剤を含有する樹脂粒子を、密閉容
器内で発泡剤の存在下に分散媒に分散させ、該樹脂粒子
が軟化する温度以上の温度(発泡温度)に保持して樹脂
粒子内に発泡剤を含浸させ、次いで容器の一端を開放し
て樹脂粒子と分散媒とを容器内よりも低圧の雰囲気下
(通常は大気圧下)に放出して樹脂粒子を発泡させる方
法により得ることができる。
The foamed particles of the present invention are prepared by dispersing a surfactant-containing resin particle produced by the above-described method or the like in a dispersion medium in the presence of a foaming agent in a closed container, and the resin particles are softened. The resin particles are impregnated with a foaming agent at a temperature (foaming temperature) or higher, and then one end of the container is opened to allow the resin particles and the dispersion medium to be exposed to an atmosphere at a lower pressure than the inside of the container (usually large). (Atmospheric pressure) to foam the resin particles.

【0031】上記発泡方法において、樹脂粒子を発泡温
度まで加熱する際に、樹脂粒子の融解終了温度:Te
(℃)以上に昇温することなく、発泡温度を樹脂の融
点:Tm(℃)−20℃以上、融解終了温度:Te
(℃)未満の温度とし、発泡温度までの昇温速度を適宜
調節することにより、上記した固有ピーク1と高温ピー
ク2とを有する発泡粒子を得ることができる。また、上
記発泡温度を上記の範囲内で適宜調節したり、樹脂粒子
を発泡温度に加熱する迄の間に、Te未満で且つTe付
近の温度にて充分な時間(通常、5〜45分程度)かけ
て一旦保持することにより、高温ピークの融解エネルギ
ーの値を調整することができる。尚、高温ピークの熱量
の値は、Te付近での保持時間よりも発泡温度に、より
大きく影響される。
In the above foaming method, when the resin particles are heated to the foaming temperature, the melting end temperature of the resin particles: Te
Without raising the temperature above (° C.), the foaming temperature is raised to the melting point of the resin: Tm (° C.)-20 ° C. or higher, and the melting end temperature: Te.
By setting the temperature to a temperature lower than (° C.) and appropriately adjusting the rate of temperature rise to the foaming temperature, foamed particles having the above-described intrinsic peak 1 and high-temperature peak 2 can be obtained. In addition, the foaming temperature is appropriately adjusted within the above range, and a sufficient time (normally about 5 to 45 minutes) at a temperature less than Te and near Te before heating the resin particles to the foaming temperature. ), And once held, the value of the melting energy of the high temperature peak can be adjusted. In addition, the value of the calorific value at the high temperature peak is more greatly affected by the foaming temperature than the holding time near Te.

【0032】尚、上記融点:Tmとは、樹脂粒子のDS
C曲線に現れる固有ピークの頂点の温度であり、融解終
了温度:Teとは、樹脂粒子のDSC曲線に現れる固有
ピークの裾が、高温側でベースラインの位置に戻った時
の温度である。尚、発泡粒子の第2回目のDSC曲線
と、樹脂粒子のDSC曲線の示すTm及びTeは略同じ
温度であり、融解熱量も略同じ値を示すため、発泡粒子
の第2回目のDSC曲線より樹脂粒子のDSC曲線の示
す、Tm、Te及び融解熱量の近似値が得られる。
The above melting point: Tm is defined as DS of resin particles.
The melting end temperature: Te, which is the temperature of the peak of the unique peak appearing in the C curve, is the temperature at which the tail of the unique peak appearing in the DSC curve of the resin particles returns to the baseline position on the high temperature side. Since the second DSC curve of the expanded particles and the Tm and Te indicated by the DSC curves of the resin particles are substantially the same temperature and the heats of fusion are also substantially the same, the second DSC curve of the expanded particles is different from the second DSC curve of the expanded particles. Approximate values of Tm, Te and heat of fusion shown by the DSC curve of the resin particles are obtained.

【0033】発泡粒子を得るために用いる発泡剤として
は、プロパン、ブタン、ペンタン、ヘキサン、シクロブ
タン、シクロペンタン、シクロヘキサン、トリクロロフ
ロロメタン、ジクロロジフロロメタン、クロロフロロメ
タン、トリフロロメタン、1,2,2,2-テトラフロロエタ
ン、1-クロロ-1,1- ジフロロエタン、1,1-ジフロロエタ
ン、1-クロロ-1,2,2,2- テトラフロロエタン等の揮発性
発泡剤や、窒素、二酸化炭素、アルゴン、空気等の無機
ガス発泡剤等が用いられるが、なかでもオゾン層破壊の
虞れがなく、安価な無機ガスを主成分とする無機ガス系
発泡剤が好ましい。無機ガス系発泡剤としては特に窒
素、空気、二酸化炭素が特に好ましく、また無機ガス発
泡剤を主成分として、それに揮発性発泡剤を混合したも
のも使用できる。
The foaming agents used to obtain the foamed particles include propane, butane, pentane, hexane, cyclobutane, cyclopentane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoromethane, trifluoromethane, 1,2 Volatile blowing agents such as, 2,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoroethane, nitrogen, Inorganic gas foaming agents such as carbon dioxide, argon, and air are used, and among them, an inorganic gas-based foaming agent containing as a main component an inexpensive inorganic gas, which has no risk of destruction of the ozone layer, is preferable. As the inorganic gas-based blowing agent, nitrogen, air, and carbon dioxide are particularly preferable, and a mixture of an inorganic gas blowing agent as a main component and a volatile blowing agent can also be used.

【0034】発泡剤の使用量は、窒素、空気以外の発泡
剤では、樹脂粒子100重量部当たり、1〜50重量部
程度であり、窒素、空気を発泡剤として用いる場合、2
0〜60kgf/cm2 Gの圧力で密閉容器内に圧入する。発
泡剤の実際の使用量は、得ようとする発泡粒子の嵩密度
と発泡温度との関係や、融解熱量等を考慮して選択す
る。
The amount of the foaming agent used is about 1 to 50 parts by weight per 100 parts by weight of the resin particles for the foaming agents other than nitrogen and air.
It is press-fitted into a closed container at a pressure of 0 to 60 kgf / cm 2 G. The actual amount of the foaming agent used is selected in consideration of the relationship between the bulk density of the foam particles to be obtained and the foaming temperature, the heat of fusion, and the like.

【0035】密閉容器内において樹脂粒子を分散させる
ための分散媒としては、樹脂粒子を溶解させないもので
あれば良い。このような分散媒としては、例えば水、エ
チレングリコール、グリセリン、メタノール、エタノー
ル等が挙げられるが、通常は水が用いられる。
The dispersion medium for dispersing the resin particles in the closed container may be any one that does not dissolve the resin particles. Examples of such a dispersion medium include water, ethylene glycol, glycerin, methanol, ethanol, and the like, but water is usually used.

【0036】分散媒に分散せしめた樹脂粒子を発泡温度
に加熱するに際し、樹脂粒子相互の融着を防止するた
め、融着防止剤を分散媒に添加して用いることができ
る。融着防止剤としては水等の分散媒に溶解せず、加熱
によって溶融しないものであれば無機系、有機系を問わ
ず使用可能であるが、一般には無機系の融着防止剤が好
ましい。無機系の融着防止剤としては、カオリン、タル
ク、マイカ、酸化アルミニウム、酸化チタン、水酸化ア
ルミニウム等の粉体が好適である。また分散助剤として
ドデシルベンゼンスルホン酸ナトリウム、オレイン酸ナ
トリウム等のアニオン系界面活性剤を用いることが好ま
しい。
When heating the resin particles dispersed in the dispersion medium to the foaming temperature, an anti-fusing agent can be added to the dispersion medium to prevent fusion between the resin particles. As the anti-fusing agent, any inorganic or organic one can be used as long as it does not dissolve in a dispersion medium such as water and does not melt by heating. In general, an inorganic anti-fusing agent is preferable. Powders such as kaolin, talc, mica, aluminum oxide, titanium oxide, and aluminum hydroxide are suitable as the inorganic anti-fusion agent. It is preferable to use an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium oleate as a dispersing aid.

【0037】上記融着防止剤は、平均粒径0.001〜
100μm、特に0.001〜30μmのものが好まし
い。融着防止剤の添加量は樹脂粒子100重量部当たり
に対し、通常0.01〜10重量部が好ましい。また界
面活性剤は樹脂粒子100重量部当たりに対し、通常
0.001〜5重量部添加することが好ましい。
The anti-fusing agent has an average particle size of 0.001 to 0.001.
Those having a thickness of 100 μm, particularly 0.001 to 30 μm, are preferred. The addition amount of the anti-fusing agent is usually preferably 0.01 to 10 parts by weight per 100 parts by weight of the resin particles. The surfactant is preferably added in an amount of usually 0.001 to 5 parts by weight per 100 parts by weight of the resin particles.

【0038】[0038]

【実施例】以下、実施例、比較例を挙げて本発明を更に
詳細に説明する。 実施例1〜5、比較例1〜7 表1に示すポリプロピレン系樹脂に、同表に示す界面活
性剤を5重量%添加し、140〜150℃に加熱した加
圧ニーダーで充分混練した後、冷却し、次いで角ペレタ
イザーにより造粒し、粒状の界面活性剤のマスターバッ
チとした。また同様に水酸化アルミニウムのマスターバ
ッチも造粒した。次にこれらのマスターバッチと、界面
活性剤を含有しない同種の樹脂とを、水酸化アルミニウ
ムの含有量が0.05重量%、界面活性剤の含有量が表
1に示す値となるような割合で混合し、押出機内で20
0〜220℃に加熱溶融して混練した後、ストランド状
に押出し、次いでペレタイザーで造粒し、直径(D)が
1mm、長さ(L)が2mmのポリプロピレン系樹脂粒子を
得た。
The present invention will be described below in further detail with reference to examples and comparative examples. Examples 1 to 5 and Comparative Examples 1 to 7 After adding 5% by weight of the surfactants shown in Table 1 to the polypropylene resins shown in Table 1, kneading them sufficiently with a pressure kneader heated to 140 to 150 ° C. After cooling, the mixture was granulated with a square pelletizer to obtain a master batch of granular surfactant. Similarly, a master batch of aluminum hydroxide was granulated. Next, these master batches and the same type of resin containing no surfactant were mixed in such a manner that the content of aluminum hydroxide was 0.05% by weight and the content of surfactant was a value shown in Table 1. And mix in an extruder for 20
The mixture was heated and melted at 0 to 220 ° C., kneaded, extruded into strands, and then granulated with a pelletizer to obtain polypropylene resin particles having a diameter (D) of 1 mm and a length (L) of 2 mm.

【0039】[0039]

【表1】 [Table 1]

【0040】上記のようにして得た界面活性剤を含有す
る樹脂粒子1kgを、内容積5リットルの密閉容器内で、
融着防止剤としてカオリン4g、分散助剤としてドデシ
ルベンゼンスルホン酸ナトリウム0.3gを配合した3
000ccの水に分散させ、容器内に発泡剤として二酸化
炭素をドライアイスで40〜90g使用し、攪拌しなが
ら樹脂の融解終了温度以上の温度に昇温することなく、
138〜151℃の保持温度で15分間保持した。その
後、更に発泡温度である143〜156℃まで昇温して
15分間保持した後、二酸化炭素を容器内に導入して発
泡剤の平衡蒸気圧に等しい背圧をかけ、容器内圧を一定
に保持するようにして容器の一端を開放し、樹脂粒子と
分散媒とを同時に大気圧下に放出し、樹脂粒子を発泡せ
しめた。
1 kg of the surfactant-containing resin particles obtained as described above was placed in a closed container having an internal volume of 5 liters,
4 g of kaolin as an anti-fusing agent and 0.3 g of sodium dodecylbenzenesulfonate as a dispersing aid were mixed.
Dispersed in 000 cc of water, using 40-90 g of carbon dioxide as a foaming agent in a container with dry ice, and without stirring, without raising the temperature to a temperature higher than the melting end temperature of the resin,
It was kept at a holding temperature of 138 to 151 ° C. for 15 minutes. Thereafter, the temperature is further raised to the foaming temperature of 143 to 156 ° C. and maintained for 15 minutes. Thereafter, carbon dioxide is introduced into the vessel to apply a back pressure equal to the equilibrium vapor pressure of the foaming agent, thereby keeping the vessel internal pressure constant. Then, one end of the container was opened, and the resin particles and the dispersion medium were simultaneously released under the atmospheric pressure to foam the resin particles.

【0041】得られた発泡粒子の性状を表2に示す。ま
たこの発泡粒子を常温、常圧下で48時間放置して熟成
した後、金型に充填して水蒸気で加熱成型した。得られ
た発泡成型体の性状を表2にあわせて示す。
Table 2 shows the properties of the obtained expanded particles. The foamed particles were aged at room temperature under normal pressure for 48 hours, aged, filled in a mold, and heat-molded with steam. The properties of the obtained foamed molded product are shown in Table 2.

【0042】[0042]

【表2】 [Table 2]

【0043】※2:発泡粒子の粒子状態は、発泡粒子の
形状の良否、収縮の有無、粒子中の気泡の大きさ等を観
察し、以下の基準で判定した。 ○・・・形状の変形、収縮、気泡の微細化がみられな
い。 △・・・変形、収縮、気泡の微細化の生じた粒子が多少
存在する。 ×・・・変形、収縮、気泡の微細化の生じた粒子がきわ
めて多く存在する。
* 2: The state of the foamed particles was determined according to the following criteria by observing the shape of the foamed particles, the presence or absence of shrinkage, the size of bubbles in the particles, and the like.・ ・ ・: No deformation, shrinkage of the shape, and no fine bubbles were observed. Δ: Some particles in which deformation, shrinkage, and miniaturization of bubbles have occurred. X: There are extremely many particles in which deformation, shrinkage, and fineness of air bubbles have occurred.

【0044】※3:発泡成型体の表面平滑性は、発泡成
型体表面を観察し、 ○・・・表面平滑で凹凸、皺が少ない。 ×・・・表面平滑性に劣り、凹凸、皺が大きい。 として評価した。
* 3: The surface smoothness of the foamed molded article was observed by observing the surface of the foamed molded article. ×: Poor surface smoothness, large irregularities and wrinkles. Was evaluated.

【0045】※4:発泡成型体における粒子の融着性
は、成型体を長さ150mm、幅50mm、厚さ10mmに切
り取った試験片を、引張試験機にて500mm/分の速度
で引っ張って破断させ、その破断面の状態を観察し、 ○・・・材質間の破壊が生じ、粒子間の切断が殆どな
い。 ×・・・粒子間で切断されている。 として評価した。
* 4: The fusion property of the particles in the foamed molded article was determined by pulling a test piece obtained by cutting the molded article to a length of 150 mm, a width of 50 mm, and a thickness of 10 mm at a speed of 500 mm / min using a tensile tester. Break and observe the state of the fracture surface. ○: Breakage between materials occurs, and there is almost no cutting between particles. ×: Cut between particles. Was evaluated.

【0046】※5:成型体のスキン層の表面抵抗値は、
成型体を成型後、温度20℃、相対湿度65%の条件下
で1日養生した後に測定した。
* 5: The surface resistance of the skin layer of the molded product is
After molding, the molded body was cured for one day under the conditions of a temperature of 20 ° C. and a relative humidity of 65%, and the measurement was performed.

【0047】※6:成型体のカット面の表面固有抵抗値
は、成型体をカット後、温度20℃、相対湿度65%の
条件下で10日間養生した後に測定した。
* 6: The surface specific resistance of the cut surface of the molded body was measured after the molded body was cut and cured for 10 days at a temperature of 20 ° C. and a relative humidity of 65%.

【0048】[0048]

【発明の効果】以上説明したように本発明のポリプロピ
レン系樹脂発泡粒子は、分子量200〜1000の帯電
防止能を有するノニオン系界面活性剤を特定の割合で含
有し、且つ特定の融解熱量を有するポリプロピレン系樹
脂粒子よりなる発泡粒子であり、また発泡粒子の示差走
査熱量測定で得られるDSC曲線に固有ピークと高温ピ
ークとが現れ、該高温ピークの融解エネルギーが特定の
範囲となる結晶構造を有することにより、本発明の発泡
粒子は成型時の融着性に優れるとともに、本発明発泡粒
子から得られた発泡成型体は、優れた帯電防止能を有
し、また帯電防止能の持続性にも優れる効果がある。本
発明によれば、発泡粒子に帯電防止剤を含有させた場
合、成型時の発泡粒子の融着性を確保することと、得ら
れた発泡成型体に優れた帯電防止能を付与することとを
両立することが困難であったポリプロピレン系樹脂発泡
粒子において、両課題を同時に満足することができる。
As described above, the expanded polypropylene resin particles of the present invention contain a nonionic surfactant having a molecular weight of 200 to 1000 and having an antistatic ability at a specific ratio and have a specific heat of fusion. It is a foamed particle composed of polypropylene resin particles, and also has a crystal structure in which a unique peak and a high temperature peak appear in a DSC curve obtained by differential scanning calorimetry of the foamed particle, and the melting energy of the high temperature peak is in a specific range. Thereby, the foamed particles of the present invention have excellent fusion bonding property during molding, and the foamed molded article obtained from the foamed particles of the present invention has excellent antistatic ability, and also has a sustained antistatic ability. Has an excellent effect. According to the present invention, when the foamed particles contain an antistatic agent, to ensure the fusion of the foamed particles at the time of molding, and to impart excellent antistatic ability to the obtained foamed molded article. Both of the problems can be satisfied simultaneously in the expanded polypropylene resin particles in which it was difficult to achieve both.

【0049】また本発明方法によれば、無機ガス系発泡
剤を使用する際の発泡倍率のバラツキの問題もなく、倍
率向上、気泡径の均一化等の効果も期待でき、優れたポ
リプロピレン系樹脂発泡粒子を確実に製造することがで
きる。
Further, according to the method of the present invention, there is no problem of variation in expansion ratio when using an inorganic gas-based blowing agent, and effects such as improvement of expansion ratio and uniformization of cell diameter can be expected. Expanded particles can be produced reliably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】界面活性剤を含む発泡前の樹脂粒子の示差走査
熱量測定によって得られたDSC曲線を示す。
FIG. 1 shows a DSC curve obtained by differential scanning calorimetry of a resin particle containing a surfactant before foaming.

【図2】発泡粒子の示差走査熱量測定によって得られた
DSC曲線を示す。
FIG. 2 shows a DSC curve obtained by differential scanning calorimetry of expanded particles.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−28239(JP,A) 特開 昭60−110734(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 9/16 C08L 23/10 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-28239 (JP, A) JP-A-60-110934 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08J 9/16 C08L 23/10

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 帯電防止能を有する平均分子量200〜
1000のノニオン系界面活性剤を0.1〜5.0重量
%含有し、且つ示差走査熱量測定によって得られるDS
C曲線(但し、樹脂粒子2〜6mgを示差走査熱量計によ
って10℃/分で220℃まで昇温した時に得られるD
SC曲線)における融解熱量が50〜95J/gのポリ
プロピレン系樹脂を基材樹脂とする樹脂粒子を発泡して
得られるポリプロピレン系樹脂発泡粒子であって、該発
泡粒子は示差走査熱量測定によって得られるDSC曲線
(但し、発泡粒子2〜6mgを示差走査熱量計によって1
0℃/分で220℃まで昇温した時に得られるDSC曲
線)に、固有ピークとともに、該固有ピークより高温側
に高温ピークが現れる結晶構造を有し、且つ該高温ピー
クの熱量が10〜30J/gであることを特徴とするポ
リプロピレン系樹脂発泡粒子。
1. An average molecular weight having an antistatic ability of 200 to 200.
DS containing 0.1 to 5.0% by weight of a nonionic surfactant of 1000 and obtained by differential scanning calorimetry
C curve (however, D obtained when 2 to 6 mg of resin particles were heated to 220 ° C. at 10 ° C./min by a differential scanning calorimeter)
(SC curve) are expanded polypropylene resin particles obtained by foaming resin particles containing a polypropylene resin having a heat of fusion of 50 to 95 J / g as a base resin, and the expanded particles are obtained by differential scanning calorimetry. DSC curve (However, 2 to 6 mg of expanded particles were measured by a differential scanning calorimeter.
(A DSC curve obtained when the temperature is raised to 220 ° C. at 0 ° C./min), has a crystal structure in which a high-temperature peak appears on the higher temperature side than the specific peak along with a specific peak, and the calorific value of the high-temperature peak is 10 to 30 J / G foamed polypropylene resin.
【請求項2】 ノニオン系界面活性剤が高級脂肪酸グリ
セリンエステルである請求項1記載のポリプロピレン系
樹脂発泡粒子。
2. The expanded polypropylene resin particles according to claim 1, wherein the nonionic surfactant is a higher fatty acid glycerin ester.
【請求項3】 ノニオン系界面活性剤が高級アルキルア
ミンである請求項1記載のポリプロピレン系樹脂発泡粒
子。
3. The expanded polypropylene resin particles according to claim 1, wherein the nonionic surfactant is a higher alkylamine.
【請求項4】 平均分子量200〜1000の帯電防止
能を有するノニオン系界面活性剤を0.1〜5.0重量
%含有し、且つ示差走査熱量測定によって得られるDS
C曲線(但し、樹脂粒子2〜6mgを示差走査熱量計によ
って10℃/分で220℃まで昇温した時に得られるD
SC曲線)における融解熱量が50〜95J/gのポリ
プロピレン系樹脂を基材樹脂とする樹脂粒子を、密閉容
器内で無機ガス系発泡剤の存在下に分散媒に分散させて
樹脂粒子が軟化する温度以上の温度にて発泡剤を含浸し
た樹脂粒子と分散媒とを容器内より低圧下に放出して樹
脂粒子を発泡させ、示差走査熱量測定によって得られる
DSC曲線(但し、発泡粒子2〜6mgを示差走査熱量計
によって10℃/分で220℃まで昇温した時に得られ
るDSC曲線)に、固有ピークとともに、該固有ピーク
より高温側に高温ピークが現れる結晶構造を有し、且つ
該高温ピークの熱量が10〜30J/gである発泡粒子
を得ることを特徴とする、ポリプロピレン系樹脂発泡粒
子の製造方法。
4. A DS containing 0.1 to 5.0% by weight of a nonionic surfactant having an antistatic ability having an average molecular weight of 200 to 1000 and obtained by differential scanning calorimetry.
C curve (however, D obtained when 2 to 6 mg of resin particles were heated to 220 ° C. at 10 ° C./min by a differential scanning calorimeter)
The resin particles having a heat of fusion of 50 to 95 J / g as a base resin in an SC curve) are dispersed in a dispersion medium in the presence of an inorganic gas-based blowing agent in a closed container to soften the resin particles. A resin curve impregnated with a foaming agent and a dispersion medium at a temperature higher than the temperature are discharged under low pressure from the container to foam the resin particles, and a DSC curve obtained by differential scanning calorimetry (provided that the expanded particles are 2 to 6 mg) Has a crystal structure in which a high-temperature peak appears on the higher temperature side than the intrinsic peak, together with a characteristic peak in a DSC curve obtained when the temperature is raised to 220 ° C. at 10 ° C./min by a differential scanning calorimeter. A method for producing expanded polypropylene resin particles, characterized by obtaining expanded particles having a calorific value of 10 to 30 J / g.
【請求項5】 ノニオン系界面活性剤が高級脂肪酸グリ
セリンエステルである請求項4記載のポリプロピレン系
樹脂発泡粒子の製造方法。
5. The method for producing expanded polypropylene resin particles according to claim 4, wherein the nonionic surfactant is a higher fatty acid glycerin ester.
【請求項6】 ノニオン系界面活性剤が高級アルキルア
ミンである請求項4記載のポリプロピレン系樹脂発泡粒
子の製造方法。
6. The method according to claim 4, wherein the nonionic surfactant is a higher alkylamine.
JP11951794A 1994-05-09 1994-05-09 Expanded polypropylene resin particles and method for producing the same Expired - Fee Related JP3358868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11951794A JP3358868B2 (en) 1994-05-09 1994-05-09 Expanded polypropylene resin particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11951794A JP3358868B2 (en) 1994-05-09 1994-05-09 Expanded polypropylene resin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07304895A JPH07304895A (en) 1995-11-21
JP3358868B2 true JP3358868B2 (en) 2002-12-24

Family

ID=14763237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11951794A Expired - Fee Related JP3358868B2 (en) 1994-05-09 1994-05-09 Expanded polypropylene resin particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3358868B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5175221B2 (en) * 2006-12-20 2013-04-03 株式会社カネカ Non-crosslinked polypropylene resin pre-expanded particles and in-mold expanded molding
JP5090213B2 (en) * 2008-03-06 2012-12-05 株式会社カネカ Method for producing expanded polypropylene resin particles
JP5566634B2 (en) * 2008-09-30 2014-08-06 株式会社カネカ Polyolefin resin multistage expanded particles with excellent mold filling
CN102459438B (en) * 2009-06-18 2013-08-21 株式会社钟化 Pre-expanded polypropylene resin beads and process for producing same
JP5717198B2 (en) 2012-03-05 2015-05-13 株式会社ジェイエスピー Polypropylene resin expanded particles and molded polypropylene resin expanded particles
MY165732A (en) 2012-03-14 2018-04-20 Kaneka Corp Polypropylene resin foam particles, in-mold foam molded body comprising polypropylene resin foam particles, and method for producing same
JP5582586B2 (en) 2012-10-10 2014-09-03 株式会社ジェイエスピー Polyolefin resin foamed molded body
KR102526334B1 (en) 2019-11-29 2023-04-26 롯데케미칼 주식회사 Polyolefin based resin foam and molded article manufactured therefrom

Also Published As

Publication number Publication date
JPH07304895A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
US6417240B1 (en) Foams prepared from blends of syndiotactic polypropylenes and thermoplastic polymers
CA2153321C (en) Enlarged cell foam and method of making same
JP2001519835A (en) Microporous foam plate
WO1994017133A1 (en) Expandable composition and process for producing extruded thermoplastic foam
JPH08504472A (en) Open-cell polypropylene foam and method for producing the same
JP3198334B2 (en) C2 lower 2 lower 0 lower 2 lower 4 polyolefin composition containing glycerol monoester of fatty acid and foamed article produced therefrom
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
JPH10502952A (en) Extruded open-cell foam and method for producing the same
JP3571352B2 (en) Foamable synthetic resin composition, synthetic resin foam, and method for producing synthetic resin foam
JP4238032B2 (en) Blends of ethylene polymers with improved modulus and melt strength and articles made from these blends
JP3358868B2 (en) Expanded polypropylene resin particles and method for producing the same
JP2002523587A (en) Foams made from blends of syndiotactic polypropylene and thermoplastic polymers
JP7117829B2 (en) Olefin-based thermoplastic elastomer expanded particles
JPH09202837A (en) Foamed particle of electrically conductive polypropylene resin and its production
JP3135238B2 (en) Olefin resin pre-expanded particles
JP2878527B2 (en) Pre-expanded particles of polyethylene resin
JPH08504471A (en) Extruded closed cell propylene polymer foam and method of making same
JPH10502118A (en) Foaming method
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JP3526660B2 (en) In-mold foaming particles and in-mold foam molding
JP4295971B2 (en) Thermoplastic resin foamed particles, molded product thereof, and method for producing foamed particles
JPH0812798A (en) Polyolefin resin prefoamed particle with antistatic property and its manufacture
JP2927822B2 (en) Linear low density polyethylene resin colored particles for foaming and linear low density polyethylene resin pre-expanded colored particles
JPH07330935A (en) Crystalline polyolefin foam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081011

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091011

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20111011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121011

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121011

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131011

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees