JP2019056096A - Heat insulation material - Google Patents

Heat insulation material Download PDF

Info

Publication number
JP2019056096A
JP2019056096A JP2017182888A JP2017182888A JP2019056096A JP 2019056096 A JP2019056096 A JP 2019056096A JP 2017182888 A JP2017182888 A JP 2017182888A JP 2017182888 A JP2017182888 A JP 2017182888A JP 2019056096 A JP2019056096 A JP 2019056096A
Authority
JP
Japan
Prior art keywords
particles
foamed
molded body
expanded
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017182888A
Other languages
Japanese (ja)
Other versions
JP6960291B2 (en
Inventor
浅野 一生
Kazuo Asano
一生 浅野
茂富 木戸
Shigetomi Kido
茂富 木戸
光司 村田
Koji Murata
光司 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2017182888A priority Critical patent/JP6960291B2/en
Publication of JP2019056096A publication Critical patent/JP2019056096A/en
Application granted granted Critical
Publication of JP6960291B2 publication Critical patent/JP6960291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a heat insulation material which has an appropriate density, has stable thermal conductivity and excellent heat insulation performance, and is particularly appropriate for use application for architecture.SOLUTION: The heat insulation material includes, as a styrene resin foam particle: a foam particle A containing 1-10 mass% of a radiation heat transfer inhibitor and a foam particle B having a content of the radiation heat transfer inhibitor of less than 1 mass% (including 0), wherein an average value of an area ratio (S1/S2) of the total area (S1) of the foam particles A in a cross section perpendicular to a thickness direction of the foam particle molding to the total area (S2) of the foamed particles B is in the range of 0.1-4.0, and a coefficient of variance of the area ratio is 40% or less.SELECTED DRAWING: None

Description

本発明は、断熱材に関し、詳しくは、スチレン系樹脂発泡粒子成形体からなる建築用用途に好適な断熱材に関するものである。   TECHNICAL FIELD The present invention relates to a heat insulating material, and more particularly, to a heat insulating material suitable for a building application made of a styrene-based resin expanded particle molded body.

従来、発泡粒子成形体からなる断熱板を製造する際には、グラファイトやカーボンブラック等の輻射伝熱抑制剤を含まない発泡粒子成形体と、グラファイトやカーボンブラック等の輻射伝熱抑制剤を含む発泡粒子成形体とを貼り合わせた、2層構造の複合成形体が製造されていた。しかし、このような積層体からなる断熱材を製造する際には、貼り合わせ工程が必要となるので、積層工程数の減少や、コスト低減が求められていた。   Conventionally, when producing a heat insulating plate made of a foamed particle molded body, a foamed particle molded body not containing a radiation heat transfer inhibitor such as graphite or carbon black and a radiation heat transfer inhibitor such as graphite or carbon black are included. A composite molded body having a two-layer structure in which the foamed particle molded body is bonded together has been manufactured. However, when a heat insulating material made of such a laminated body is manufactured, a bonding process is required, and therefore a reduction in the number of lamination processes and a reduction in cost have been demanded.

また、積層体の場合、積層面によって物性にバラつきが生じやすくなったり、断熱層の設計や、自由な成形体形状を設計することが難しいという問題があった。   Moreover, in the case of a laminated body, there existed a problem that it became easy to produce a physical property variation with a laminated surface, and it was difficult to design a heat insulation layer and a free-form body shape.

特開2003−192821号公報JP 2003-192821 A

本発明は、このような従来技術の実状に鑑みてなされたもので、断熱材として適切な密度を有し、熱伝導率が安定し断熱性能に優れ、かつ、成形体の形状の自由度に優れる建築用用途に好適な断熱材を提供することを課題とする。   The present invention has been made in view of such a state of the art, and has an appropriate density as a heat insulating material, stable thermal conductivity, excellent heat insulating performance, and freedom in the shape of a molded body. It aims at providing the heat insulating material suitable for the use for the outstanding building.

本発明によれば、上記課題を解決するため、第1に、スチレン系樹脂発泡粒子成形体であって、前記発泡粒子成形体を構成しているスチレン系樹脂発泡粒子として、輻射伝熱抑制剤の含有量が1〜10質量%である発泡粒子A、及び、前記輻射伝熱抑制剤含有量が1質量%未満(0を含む)の発泡粒子Bを含み、前記発泡粒子成形体の厚み方向に垂直な断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.1〜4.0の範囲であり、前記面積比の変動係数が40%以下である断熱材が提供される。   According to the present invention, in order to solve the above-mentioned problem, first, a styrene resin foamed particle molded body, and as a styrene resin foamed particle constituting the foamed particle molded body, a radiation heat transfer inhibitor is used. The expanded particle A contains 1 to 10% by mass of foamed particles A, and the radiation heat transfer inhibitor content is less than 1% by mass (including 0) of foamed particles B. The average value of the area ratio (S1 / S2) of the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in a cross section perpendicular to the range is 0.1 to 4.0. A heat insulating material having a variation coefficient of the area ratio of 40% or less is provided.

第2に、上記第1の発明において、前記輻射伝熱抑制剤が、グラファイトである断熱材が提供される。   2ndly, in the said 1st invention, the heat insulating material whose said radiant heat transfer inhibitor is graphite is provided.

第3に、上記第1又は第2の発明において、前記スチレン系樹脂発泡粒子成形体の密度が、10〜50kg/mである断熱材が提供される。 3rdly, in the said 1st or 2nd invention, the heat insulating material whose density of the said styrene-type resin expanded particle molded object is 10-50 kg / m < 3 > is provided.

第4に、上記第1〜3のいずれかの発明において、前記スチレン系樹脂発泡粒子成形体の熱伝導率が0.037W/m・K以下である断熱材が提供される。   Fourthly, in any one of the first to third inventions, a heat insulating material in which the thermal conductivity of the styrene-based resin expanded particle molded body is 0.037 W / m · K or less is provided.

第5に、上記第1〜4のいずれかの発明において、前記スチレン系樹脂発泡粒子成形体の引張り強さが20N/cm以上である断熱材が提供される。 Fifthly, in any one of the first to fourth inventions, there is provided a heat insulating material in which the tensile strength of the styrenic resin expanded particle molded body is 20 N / cm 2 or more.

本発明によれば、熱伝導率が良好で断熱性能が優れ、かつ、建築用用途に適切な断熱材を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide a heat insulating material with favorable heat conductivity, excellent heat insulation performance, and suitable for a building use.

予備発泡粒子AとBの金型への導入するための装置例を示す図である。It is a figure which shows the example of an apparatus for introduce | transducing the pre-expanded particle | grains A and B to the metal mold | die. 80℃、90℃、95℃での実施例1、3、4、5、6、比較例1、2の耐熱材の耐熱試験を行った後の様子を示す写真である。It is a photograph which shows the mode after performing the heat test of Example 1, 3, 4, 5, 6, and the heat resistant material of Comparative Examples 1 and 2 at 80 degreeC, 90 degreeC, and 95 degreeC.

以下、本発明を実施の形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の断熱材は、スチレン系樹脂発泡粒子成形体であって、前記発泡粒子成形体を構成しているスチレン系樹脂発泡粒子として、輻射伝熱抑制剤の含有量が1〜10質量%である発泡粒子A、及び、前記輻射伝熱抑制剤含有量が1質量%未満(0を含む)の発泡粒子Bを含み、前記発泡粒子成形体の厚み方向に垂直な断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.1〜4.0の範囲である。   The heat insulating material of the present invention is a styrene resin foamed particle molded body, and the styrene resin foamed particle constituting the foamed particle molded body has a radiation heat transfer inhibitor content of 1 to 10% by mass. The expanded particle A and the expanded heat transfer inhibitor content of the expanded particle B is less than 1% by mass (including 0), and the expanded particle A has a cross section perpendicular to the thickness direction of the expanded particle molded body. The average value of the area ratio (S1 / S2) between the total area (S1) and the total area (S2) of the expanded particles B is in the range of 0.1 to 4.0.

本発明の好ましい実施形態では、前記発泡粒子成形体が、複数の前記発泡粒子Aと複数の前記発泡粒子Bの融着体からなり、前記発泡粒子Aと前記発泡粒子Bとが前記発泡粒子成形体中で分散して存在している。   In a preferred embodiment of the present invention, the foamed particle molded body comprises a fused body of a plurality of foamed particles A and a plurality of foamed particles B, and the foamed particles A and the foamed particles B are molded into the foamed particles. It is dispersed throughout the body.

また、本発明の断熱材において、前記発泡粒子成形体の厚み方向に垂直な断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の変動係数は40%以下である。   In the heat insulating material of the present invention, the area ratio (S1 / S1) of the total area (S1) of the foam particles A and the total area (S2) of the foam particles B in a cross section perpendicular to the thickness direction of the foam particle molded body. The variation coefficient of S2) is 40% or less.

また、本発明において、輻射伝熱抑制剤としては、特にグラファイト及び/又はカーボンブラックであることが望ましい。以下の説明では、輻射伝熱抑制剤としてグラファイトを用いる場合を代表例として説明する。   In the present invention, the radiation heat transfer inhibitor is particularly preferably graphite and / or carbon black. In the following description, the case where graphite is used as the radiation heat transfer inhibitor will be described as a representative example.

また、本発明の断熱材を構成するスチレン系樹脂発泡粒子成形体の密度が、10〜50kg/mであることが望ましい。 Moreover, it is desirable that the density of the styrene-based resin expanded particle molded body constituting the heat insulating material of the present invention is 10 to 50 kg / m 3 .

なお、本明細書において、スチレン系樹脂発泡粒子成形体を発泡粒子成形体又は単に成形体と呼ぶことがある。また、発泡粒子Aと発泡粒子Bをまとめて発泡粒子と呼ぶことがある。   In the present specification, the styrene resin foamed particle molded body may be referred to as a foamed particle molded body or simply a molded body. In addition, the expanded particles A and the expanded particles B may be collectively referred to as expanded particles.

先ず、発泡粒子成形体が発泡粒子Aと発泡粒子Bから構成される実施形態について説明する。
(発泡粒子A)
輻射抑制剤を含有する発泡粒子Aは、輻射抑制剤の含有量が1〜10質量%である。輻射抑制剤の含有量が少なすぎる場合には、目的の建築用途としての熱伝導率(0.037W/m・K以下)が得られ難くなるおそれがある。一方、輻射抑制剤が多すぎる場合には、発泡粒子Aを発泡成形体中に均一に分散させて存在させることが難しくなる。上記観点から、発泡粒子Aにおける輻射抑制剤の含有量は1〜10質量%、更に好ましくは2〜8質量%、さらに好ましくは、3〜5質量%である。
(輻射抑制剤)
輻射抑制剤としては、赤外線吸収効果を有するものや、赤外線反射効果を有するものがあり、カーボン系輻射抑制剤やカーボン系輻射抑制剤以外の無機粒子系輻射抑制剤等が例示できる。カーボン系輻射抑制剤としては、グラファイトやカーボンブラック等が挙げられ、無機粒子系輻射抑制剤としては、酸化チタン、酸化亜鉛、硫酸バリウム、アルミニウム粉等が挙げられる。
First, an embodiment in which a foamed particle molded body is composed of foamed particles A and foamed particles B will be described.
(Foamed particles A)
The foamed particles A containing the radiation inhibitor have a radiation inhibitor content of 1 to 10% by mass. When there is too little content of a radiation inhibitor, there exists a possibility that the heat conductivity (0.037 W / m * K or less) as the target building use may become difficult to be obtained. On the other hand, when there is too much radiation inhibitor, it becomes difficult to make the foamed particles A uniformly disperse in the foamed molded product. From the above viewpoint, the content of the radiation inhibitor in the expanded particles A is 1 to 10% by mass, more preferably 2 to 8% by mass, and further preferably 3 to 5% by mass.
(Radiation inhibitor)
Examples of the radiation inhibitor include those having an infrared absorption effect and those having an infrared reflection effect, and examples thereof include carbon-based radiation inhibitors and inorganic particle-based radiation inhibitors other than carbon-based radiation inhibitors. Examples of the carbon radiation inhibitor include graphite and carbon black, and examples of the inorganic particle radiation inhibitor include titanium oxide, zinc oxide, barium sulfate, and aluminum powder.

なお、輻射抑制剤は、コストや取扱性の観点から、カーボン系輻射抑制剤が好ましく、さらにはグラファイトであることが好ましい。
(発泡粒子B)
一方、発泡粒子Bは輻射抑制剤を含有せずに形成された樹脂粒子を発泡して得られる発泡粒子、又は輻射抑制剤が1質量%未満の範囲で含有されている樹脂粒子を発泡して得られる発泡粒子である。また、輻射抑制剤の含有量が、0質量%〜0.5質量%であることが好ましい。
(発泡粒子)
なお、発泡粒子A及び発泡粒子Bのいずれについても、輻射抑制剤以外にその他の添加剤が適宜含有されてもよい。なお、前記添加剤としては、着色剤、難燃剤、帯電防止剤、気泡調整剤などを例示することができる。また、発泡粒子A及び発泡粒子Bの嵩密度は、10〜80kg/mであることが好ましく、12〜50kg/mであることが好ましい。上記範囲内であれば、良好な断熱材を得ることが可能である。なお、発泡粒子Aまたは発泡粒子Bの嵩密度は、それぞれ同一のものを用いてもよいが、異なる嵩密度の発泡粒子を用いることもできる。なお、嵩密度は、発泡粒子を1Lメスシリンダー内の1Lの標線位置まで充填して計量し、嵩体積1Lの発泡粒子の質量WP(単位:g)を小数点第1位まで秤量した。そして、単位換算を行うことにより、嵩密度(単位:kg/m)を求めた。
(発泡粒子成形体)
本発明の発泡粒子成形体は、発泡粒子Aと発泡粒子Bとから構成され、それらが特定の分散状態で発泡粒子成形体中に存在していることが好ましい。熱伝導率の低減の観点からは、発泡粒子Aと発泡粒子Bの配合割合(体積割合)が、10:90〜70:30であることが好ましく、より好ましくは15:85〜60:40であり、さらに好ましくは20:80〜55:45である。
The radiation inhibitor is preferably a carbon-based radiation inhibitor, and more preferably graphite, from the viewpoints of cost and handleability.
(Foamed particles B)
On the other hand, the foamed particles B are foamed by foaming resin particles formed by foaming resin particles formed without containing a radiation inhibitor, or resin particles containing a radiation inhibitor in a range of less than 1% by mass. The resulting expanded particles. Moreover, it is preferable that content of a radiation inhibitor is 0 mass%-0.5 mass%.
(Foamed particles)
In addition, in any of the expanded particles A and the expanded particles B, other additives may be appropriately contained in addition to the radiation inhibitor. Examples of the additive include a colorant, a flame retardant, an antistatic agent, and a bubble regulator. Moreover, it is preferable that the bulk density of the expanded particle A and the expanded particle B is 10-80 kg / m < 3 >, and it is preferable that it is 12-50 kg / m < 3 >. If it is in the said range, it is possible to obtain a favorable heat insulating material. In addition, although the same bulk density may be used for the expanded particles A or the expanded particles B, expanded particles having different bulk densities may be used. The bulk density was measured by filling the foamed particles up to the 1 L mark position in the 1 L graduated cylinder, and the mass WP (unit: g) of the 1 L bulk particles was weighed to the first decimal place. And the bulk density (unit: kg / m < 3 >) was calculated | required by performing unit conversion.
(Foamed particle molding)
The foamed particle molded body of the present invention is composed of foamed particles A and foamed particles B, which are preferably present in the foamed particle molded body in a specific dispersed state. From the viewpoint of reducing thermal conductivity, the blending ratio (volume ratio) of the foamed particles A and the foamed particles B is preferably 10:90 to 70:30, more preferably 15:85 to 60:40. And more preferably 20:80 to 55:45.

なお、発泡粒子成形体中での、発泡粒子Aと発泡粒子Bとの分散状態は、均一に分散していることが好ましく、後述する発泡粒子成形体断面における面積比を満足することが好ましく、さらには上記面積比の変動係数を満足することが好ましい。
(発泡粒子成形体密度)
発泡粒子成形体の密度は、建築用途としては、断熱性及び引張強さのバランスの観点から、10〜50kg/mであることが好ましく、12〜25kg/mであることがより好ましく、更には15〜20kg/mが好ましい。
(発泡粒子成形体密度の測定)
発泡粒子成形体の密度は、型内成形法により得られる型内成形体であるため、成形体試料の質量(g)を成形体試料の体積(m)で除することにより求めることができる。なお、成形体試料の体積は、発泡成形体を水没させた際における水の容積増加分により算出する水没法により求めることができる。
(発泡粒子成形体形状)
発泡粒子成形体の形状は、建築用途としては、板状や柱状等、種々の立体形状に適宜設定が可能である。特に、本発明の断熱材では、従来の積層構造を形成する必要がなく、発泡粒子Aと発泡粒子Bとを発泡粒子成形体中に分散させることによって、成形体の断熱性を向上させることができる。発泡粒子Aと発泡粒子Bとを、下記断面積の面積比と該面積比の変動係数を満足するように均一に存在させることができれば、統計的に、厚み方向に対する発泡粒子Aの数がほぼ同じになるので、均一な断熱特性を有し、優れた断熱性を発揮させることができる。また、断熱性層を形成させる必要がなく、断熱材を型内成形によって自由な形状に形成できるので、形状の自由度に優れるものとなる。
(スチレン系樹脂)
スチレン系樹脂は、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−エチルスチレンなどの芳香族ビニルモノマーを重合して得られたスチレン系樹脂である。スチレン系樹脂は、上記芳香族ビニルモノマー単独でも、これらのモノマーを2種類以上混合して重合したものでも良く、更には前記モノマーから重合して得られた樹脂を2種類以上混合したものでも良い。
In the foamed particle molded body, the dispersed state of the foamed particles A and the foamed particles B is preferably uniformly dispersed, and preferably satisfies the area ratio in the cross-section of the foamed particle molded body described later. Furthermore, it is preferable to satisfy the variation coefficient of the area ratio.
(Foamed particle density)
The density of the foamed particle molded body is preferably 10 to 50 kg / m 3 , more preferably 12 to 25 kg / m 3 from the viewpoint of the balance between heat insulating properties and tensile strength as a building application. Furthermore, 15-20 kg / m < 3 > is preferable.
(Measurement of density of molded foam particles)
Since the density of the foamed particle molded body is an in-mold molded body obtained by an in-mold molding method, it can be obtained by dividing the mass (g) of the molded body sample by the volume (m 3 ) of the molded body sample. . In addition, the volume of a molded object sample can be calculated | required by the submerging method calculated by the volume increase of the water when a foaming molded object is submerged.
(Foamed particle shape)
The shape of the foamed particle molded body can be appropriately set to various three-dimensional shapes such as a plate shape and a column shape for architectural purposes. In particular, in the heat insulating material of the present invention, it is not necessary to form a conventional laminated structure, and the heat insulating properties of the molded body can be improved by dispersing the expanded particles A and the expanded particles B in the expanded particle molded body. it can. If the expanded particles A and the expanded particles B can be uniformly present so as to satisfy the area ratio of the following cross-sectional area and the coefficient of variation of the area ratio, the number of expanded particles A in the thickness direction is statistically almost equal. Since it becomes the same, it has a uniform heat insulation characteristic and can exhibit the outstanding heat insulation. Further, it is not necessary to form a heat insulating layer, and the heat insulating material can be formed into a free shape by in-mold molding, so that the degree of freedom in shape is excellent.
(Styrene resin)
The styrene resin is a styrene resin obtained by polymerizing an aromatic vinyl monomer such as styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, and p-ethylstyrene. The styrenic resin may be the above aromatic vinyl monomer alone, or may be a mixture of two or more of these monomers and polymerized, or may be a mixture of two or more resins obtained by polymerization from the monomers. .

また、芳香族ビニルモノマーと共重合可能なビニルモノマーが共重合されたスチレン系樹脂を用いても良い。   Alternatively, a styrene resin copolymerized with a vinyl monomer copolymerizable with an aromatic vinyl monomer may be used.

製造コストの点、前記発泡性樹脂粒子から発泡粒子を得る際の発泡性などの観点から、スチレンを主成分とするスチレン系樹脂を用いることが好ましく、前記スチレン系樹脂はスチレン成分を50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上含むことが好ましい。
(発泡粒子を構成するスチレン系樹脂の分子量)
発泡粒子を構成するスチレン系樹脂の分子量は、重量平均分子量(Mw)で、150,000〜350,000の範囲にあることが好ましい。特に、発泡粒子Aと発泡粒子Bとを構成するスチレン系樹脂の両方の分子量が上記範囲内であれば、前記発泡性樹脂粒子から得られる発泡粒子の発泡性が良好で、高発泡倍率の発泡粒子成形体を得ることができ、且つ型内成形時に発泡粒子同士が融着し易く、得られる発泡粒子成形体の強度が向上する。前記重量平均分子量(Mw)は150,000〜250,000であることが好ましい。
From the viewpoints of production cost, foamability when obtaining foamed particles from the foamable resin particles, it is preferable to use a styrene resin mainly composed of styrene, and the styrene resin contains 50% by weight of a styrene component. The content is preferably 70% by weight or more, more preferably 90% by weight or more.
(Molecular weight of the styrene resin constituting the expanded particles)
The molecular weight of the styrene resin constituting the expanded particles is preferably in the range of 150,000 to 350,000 in terms of weight average molecular weight (Mw). In particular, if the molecular weight of both of the styrenic resins constituting the expanded particles A and the expanded particles B is within the above range, the expanded particles obtained from the expandable resin particles have good expandability, and have a high expansion ratio. A particle molded body can be obtained, and the foamed particles are easily fused to each other at the time of in-mold molding, and the strength of the obtained foamed particle molded body is improved. The weight average molecular weight (Mw) is preferably 150,000 to 250,000.

なお、前記重量平均分子量、および、数平均分子量、Z平均分子量は、スチレン系樹脂10mgをTHF(テトラヒドロフラン)10mLに溶解させ、GPC(ゲルパーミエーションクロマトグラフ)法により測定し、標準ポリスチレンで校正した値である。上記GPC分析は、使用機器:東ソー(株)製、SC−8020型、カラム:昭和電工(株)製、Shodex AC−80M 2本を直列に連結、カラム温度:40℃、流速:1.0ml/分、検出器:東ソー(株)製、紫外可視光検出機UV−8020型、を用いて行うことができる。
(面積比)
本発明の発泡粒子成形体における発泡粒子Aと発泡粒子Bとの分散状態について、前記発泡粒子成形体の厚み方向に垂直な断面に現れた、発泡粒子Aの合計面積(S1)と発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値は0.1〜4である
上記の面積比(S1/S2)の平均値が小さすぎる場合は、目的の熱伝導率を発揮することが困難となるおそれがある。上記の面積比(S1/S2)の平均値が大きすぎる場合は、均一に発泡粒子を分散させることが難しくなることから、十分かつ再現性のある断熱性能が得られなくなるおそれがある。上記観点から、該面積比は、より好ましくは0.2〜3であり、さらに好ましくは0.25〜2である。
(面積比の測定方法)
本発明において上記の面積比(S1/S2)は、発泡粒子成形体において、厚み方向の中央部分と、表面側部分の2か所の、合計3か所の断面を切り出す。そして、それぞれの断面上において、複数個所の縦50mm、横50mmの正方形の範囲内に存在する、複数の発泡粒子A断面の面積の合計(S1)と複数の発泡粒子B断面の面積の合計(S2)を求めて、S1をS2で除することにより求める。そして、それぞれの発泡粒子成形体断面について、この面積比(S1/S2)を求める操作を行い、得られた少なくとも15箇所についての面積比(それぞれSR1、SR2、・・・・・SR15とする)の算術平均値を該面積比(S1/S2)の平均値(SV)とする。
The weight average molecular weight, number average molecular weight, and Z average molecular weight were measured by GPC (gel permeation chromatography) method by dissolving 10 mg of styrene resin in 10 mL of THF (tetrahydrofuran) and calibrated with standard polystyrene. Value. The above GPC analysis was performed using equipment: Tosoh Corporation, SC-8020 type, column: Showa Denko KK, Shodex AC-80M, connected in series, column temperature: 40 ° C., flow rate: 1.0 ml. / Min, detector: manufactured by Tosoh Corporation, UV-visible light detector UV-8020 type.
(Area ratio)
Regarding the dispersed state of the expanded particles A and the expanded particles B in the expanded particle molded body of the present invention, the total area (S1) of the expanded particles A and the expanded particles B appearing in the cross section perpendicular to the thickness direction of the expanded particle molded body. The average value of the area ratio (S1 / S2) to the total area (S2) is 0.1 to 4 If the average value of the area ratio (S1 / S2) is too small, the target thermal conductivity is There is a risk that it may be difficult to exert. When the average value of the area ratio (S1 / S2) is too large, it is difficult to uniformly disperse the foamed particles, and thus there is a possibility that sufficient and reproducible heat insulation performance cannot be obtained. From the above viewpoint, the area ratio is more preferably 0.2 to 3, and further preferably 0.25 to 2.
(Area ratio measurement method)
In this invention, said area ratio (S1 / S2) cuts out the cross section of a total of three places, the center part of a thickness direction, and two places of a surface side part in a foamed particle molded object. Then, on each cross section, the total area (S1) of the cross sections of the plurality of expanded particles A and the total area of the cross sections of the expanded particles B (S1) existing within a square range of 50 mm in length and 50 mm in width ( S2) is obtained and obtained by dividing S1 by S2. And about each foamed particle molded object cross section, operation which calculates | requires this area ratio (S1 / S2) is performed, and the area ratio about at least 15 places obtained (it is set as SR1, SR2, ... SR15, respectively). Is the average value (SV) of the area ratio (S1 / S2).

なお、発泡粒子成形体の断面が曲面を含む場合には、平面断面として切り出したサンプルについて、同様の操作を行い、該面積比を算出する。なお、厚み方向とは、断熱材として使用される断熱方向を意味する。   In addition, when the cross section of a foamed particle molded object contains a curved surface, the same operation is performed about the sample cut out as a plane cross section, and this area ratio is calculated. In addition, a thickness direction means the heat insulation direction used as a heat insulating material.

また、発泡粒子成形体の断面上に選択された正方形の範囲内に存在するS1、S2の算出方法としては、例えば、まず、上記正方形の範囲の拡大写真を撮影し、その拡大写真をスキャナー装置で画像データ化する。このときスキャナー装置としては、市販のスキャナー装置を適宜選択可能である。次に、画像データ化された拡大写真の画像にモノトーン化処理を施してモノトーン画像を調製する。グラファイトを含有する発泡粒子Aは黒い部分として表示される。モノトーン化処理は、例えば、画像データ化された拡大写真をNS2K Pro(ナノシステム)のような画像解析ソフトに適用することで実現することができる。モノトーン化処理され画像データに基づき、黒く表れている部分の面積を算出することにより発泡粒子Aの面積の合計(S1)が算出され、画像全体の面積から発泡粒子Aの面積の合計を差し引くことで、発泡粒子Bの面積の合計(S2)を算出することができる。
(面積比の変動係数)
本発明の発泡粒子成形体の断面における面積比(S1/S2)の変動係数は40%以下、より好ましくは30%以下であり、さらに好ましくは25%以下である。上記面積比の変動係数が小さいことは、発泡粒子成形体中での発泡粒子A及び発泡粒子Bのそれぞれがより均一に分散していることを示している。なお、変動係数の下限は、概ね5%であることが好ましい。
従来、断熱材を形成する際には、熱伝導率低減効果に優れる発泡粒子Aのみからなる成形体の層を形成することで、目的の断熱性能を得ることが一般的であった。
Moreover, as a calculation method of S1 and S2 existing in the range of the square selected on the cross section of the foamed particle molded body, for example, first, an enlarged photograph of the above-described square range is taken, and the enlarged photograph is taken as a scanner device. To convert it to image data. At this time, a commercially available scanner device can be appropriately selected as the scanner device. Next, a monotone image is prepared by applying monotone processing to the enlarged photograph image that has been converted into image data. Expanded particles A containing graphite are displayed as black portions. The monotoning process can be realized, for example, by applying an enlarged photograph converted into image data to image analysis software such as NS2K Pro (nano system). The total area (S1) of the expanded particles A is calculated by calculating the area of the blackened portion based on the image data that has been monotoned and subtracting the total area of the expanded particles A from the area of the entire image. Thus, the total area (S2) of the expanded particles B can be calculated.
(Coefficient of variation of area ratio)
The variation coefficient of the area ratio (S1 / S2) in the cross section of the foamed particle molded body of the present invention is 40% or less, more preferably 30% or less, and further preferably 25% or less. A small coefficient of variation in the area ratio indicates that each of the expanded particles A and the expanded particles B in the expanded particle molded body is more uniformly dispersed. The lower limit of the coefficient of variation is preferably approximately 5%.
Conventionally, when forming a heat insulating material, it has been common to obtain a desired heat insulating performance by forming a layer of a molded body composed only of foamed particles A excellent in thermal conductivity reduction effect.

一方、発泡粒子Aと発泡粒子Bとを混合して成形体を形成した場合には、発泡粒子Aには輻射抑制剤が含有されているので、発泡粒子Aと発泡粒子Bの体積当たりの重量が異なり、型内成形時に、発泡粒子Aが成形型の下側に滞留しやすくなるため、均一な断熱特性を有する発泡粒子成形体を得ることは難しいと考えられていた。したがって、型内成形にて使用される発泡粒子Aと発泡粒子Bとの配合割合と、該型内成形にて得られた発泡粒子成形体の断面を構成している発泡粒子Aと発泡粒子Bの面積比は、必ずしも対応する関係になるとは限らない。   On the other hand, when the foamed particle A and the foamed particle B are mixed to form a molded body, the foamed particle A contains a radiation inhibitor, so the weight per volume of the foamed particle A and the foamed particle B However, the foamed particles A tend to stay on the lower side of the mold during in-mold molding, and it has been considered difficult to obtain a foamed particle molded body having uniform heat insulating properties. Therefore, the blending ratio of the expanded particles A and the expanded particles B used in the in-mold molding, and the expanded particles A and the expanded particles B constituting the cross section of the expanded particle molded body obtained by the in-mold molding. The area ratio is not necessarily a corresponding relationship.

なお、本発明においては、発泡粒子成形体中で発泡粒子Aを従来よりも均一に分散させた成形体を断熱材として用いることによって、安定した熱伝導率の低減効果が得られることを見出したものである。本発明においては、発泡粒子成形体中において、上記面積比の変動係数が小さく、発泡粒子Aが比較的均一に分散して存在している。この場合には、統計的に厚み方向に存在する発泡粒子Aの個数も均一となる。すると、厚み方向における断熱性能は、均質化されたものとなるので、断熱性能に優れるものとなる。本発明においては、後述する方法によって、均一に型内に発泡粒子を導入することによって、上記の面積比の変動係数が小さなものとなり、優れた断熱性を発揮し得るものとなる。
(面積比の変動係数(%)の算出方法)
本発明において上記の面積比(S1/S2)の変動係数は、上記のとおり測定された発泡粒子成形体断面における15箇所の面積比(SR1、SR2、SR3、・・・SR14、SR15)の値および面積比の平均値(SV)から、下記数式(1)〜(3)に基づいて算出される。
In addition, in this invention, it discovered that the reduction effect of the stable heat conductivity was acquired by using as a heat insulating material the molded object which disperse | distributed the expanded particle A more uniformly than before in the expanded particle molded object. Is. In the present invention, in the foamed particle molded body, the coefficient of variation of the area ratio is small, and the foamed particles A are present relatively uniformly dispersed. In this case, the number of expanded particles A existing statistically in the thickness direction is also uniform. Then, since the heat insulation performance in the thickness direction is homogenized, the heat insulation performance is excellent. In the present invention, the foamed particles are uniformly introduced into the mold by a method to be described later, so that the coefficient of variation of the area ratio becomes small and excellent heat insulation can be exhibited.
(Calculation method of area ratio coefficient of variation (%))
In the present invention, the variation coefficient of the area ratio (S1 / S2) is the value of the area ratio (SR1, SR2, SR3,... SR14, SR15) at 15 locations in the cross-section of the foamed particle molded body measured as described above. And the average value (SV) of the area ratio is calculated based on the following mathematical formulas (1) to (3).

(発泡粒子成形体の製造方法)
本発明に係る発泡粒子成形体の製造方法としては、例えば次のような方法を挙げることができる。
(Method for producing foamed particle molded body)
As a manufacturing method of the expanded particle molding which concerns on this invention, the following methods can be mentioned, for example.

まず、発泡粒子A及び発泡粒子Bを次のように調製する。   First, the expanded particles A and the expanded particles B are prepared as follows.

発泡粒子Bを得るための樹脂粒子を調製する方法としては、例えば、基材樹脂を押出機に投入して溶融状態として押出機先端に取り付けたダイからストランド状に押出し、押出されたストランドをカットして樹脂粒子を得る方法(ストランドカット法)等を挙げることができる。この方法の他にも、樹脂粒子を調製する方法としては、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。発泡粒子Aは、スチレン系樹脂に輻射抑制剤としてグラファイトが1〜10質量%分散されているものに発泡剤を含有させた樹脂粒子を得る。発泡粒子Aを得るための樹脂粒子を調製する方法としては、グラファイトとスチレン系樹脂とをニーダーや押出機などの混練機を使用することによりグラファイトがスチレン系樹脂中に大きく偏在することなく分散するように混練する以外は、上述したようなストランドカット法や、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。   As a method of preparing the resin particles for obtaining the expanded particles B, for example, the base resin is put into an extruder and extruded as a strand from a die attached to the tip of the extruder as a molten state, and the extruded strand is cut. And a method of obtaining resin particles (strand cut method). In addition to this method, as a method for preparing the resin particles, a known resin particle production method such as an underwater cut method can be employed. The expanded particles A obtain resin particles in which a foaming agent is contained in a styrene resin in which 1 to 10% by mass of graphite is dispersed as a radiation inhibitor. As a method of preparing resin particles for obtaining the expanded particles A, graphite and styrene resin are dispersed without using a kneader such as a kneader or an extruder so that the graphite is not unevenly distributed in the styrene resin. A known resin particle production method such as the strand cut method and the underwater cut method as described above can be employed except kneading as described above.

樹脂粒子の発泡物である発泡粒子は、従来公知の押出発泡粒子製造方法やオートクレーブから発泡剤を含有する発泡性樹脂粒子を放出して発泡する方法、発泡剤を含有する発泡性樹脂粒子を加熱軟化させて発泡する方法等の従来公知の発泡方法により製造することができる。   Foamed particles, which are foamed resin particles, can be produced by a conventionally known method for producing extruded foamed particles, a method in which foamable resin particles containing a foaming agent are released from an autoclave and foaming, or heating foamable resin particles containing a foaming agent. It can be produced by a conventionally known foaming method such as a method of softening and foaming.

本発明の発泡粒子成形体を断熱材として使用する場合においては、発泡粒子成形体を構成する発泡粒子Aと発泡粒子Bの混合状態は、均一であることが理想的である。発泡粒子Aと発抱粒子Bとが均一に混合された発泡粒子成形体を得る観点からは、発泡粒子A及び発泡粒子Bの見かけ密度及び平均粒子径の関係が下記数式(4)および数式(5)を満足することが好ましい。   When the foamed particle molded body of the present invention is used as a heat insulating material, it is ideal that the mixed state of the foamed particle A and the foamed particle B constituting the foamed particle molded body is uniform. From the viewpoint of obtaining a foamed particle molded body in which the foamed particles A and the particles B are uniformly mixed, the relationship between the apparent density and the average particle size of the foamed particles A and B is expressed by the following formulas (4) and ( It is preferable to satisfy 5).

ただし、上記数式(4)、数式(5)において、
D1:発泡粒子Aの見かけ密度(kg/m)、
D2:発泡粒子Bの見かけ密度(kg/m)、
P1:発泡粒子Aの平均粒子径(mm)、
P2:発泡粒子Bの平均粒子径(mm)、
である。
However, in the above formulas (4) and (5),
D1: Apparent density (kg / m 3 ) of the expanded particles A,
D2: apparent density (kg / m 3 ) of the expanded particles B,
P1: Average particle diameter (mm) of the expanded particles A,
P2: average particle diameter (mm) of the expanded particles B,
It is.

上記数式(4)及び数式(5)を満足する発泡粒子を用いることにより、発泡粒子成形体中の発泡粒子Aの分散をより均一なものにすることができる。   By using the expanded particles satisfying the above formulas (4) and (5), the dispersion of the expanded particles A in the expanded particle molded body can be made more uniform.

なお、発泡粒子Aおよび発泡粒子Bは、混合装置などを用いて十分に混合して発泡粒子混合物を調製し、該発泡粒子混合物を成形型に充填して型内成形することによって発泡粒子成形体とすることができる。混合装置としては、パドル型若しくはスクリュー型ミキサーや、タンブラー等を適宜選択可能である。   The foamed particles A and the foamed particles B are sufficiently mixed by using a mixing device to prepare a foamed particle mixture, and the foamed particle mixture is filled in a mold and molded in-mold, thereby forming a foamed particle molded body. It can be. As a mixing device, a paddle type or screw type mixer, a tumbler, or the like can be appropriately selected.

また、本発明においては、発泡粒子Aと発泡粒子Bとを別々に保管しておき、成形型に導入する際に、図1に示すような導入方法によって、成形体中の発泡粒子Aと発泡粒子Bの分散状態をさらに均一なものに制御することができる。すなわち、発泡粒子Aと発泡粒子Bとを成形型に移送する際に、移送する配管の径を変更することで、それぞれの発泡粒子の配合割合を制御する。そして、成形型に導入する直前に、発泡粒子A用の配管と発泡粒子B用の配管とを1本に連結して、配管内で発泡粒子Aと発泡粒子Bとを混ぜ合わせることにより、成形型内に発泡粒子AとBとを均一に導入することが可能となる。導入された発泡粒子は型内成形によって融着して、成形体中に、発泡粒子AとBとが均一に分散した成形体が得られる。   Further, in the present invention, the foamed particles A and the foamed particles B are stored separately and introduced into the mold by the introduction method shown in FIG. The dispersion state of the particles B can be controlled to be more uniform. That is, when the expanded particles A and the expanded particles B are transferred to the mold, the ratio of the expanded particles is controlled by changing the diameter of the pipe to be transferred. And just before introducing into a shaping | molding die, the pipe | tube for foamed particle A and the pipe | tube for foamed particle B are connected to one, and the foaming particle A and the foamed particle B are mixed in a pipe | tube, and it shape | molds. It is possible to uniformly introduce the foam particles A and B into the mold. The introduced expanded particles are fused by in-mold molding to obtain a molded product in which the expanded particles A and B are uniformly dispersed in the molded product.

特に、上記の図1の方法であれば、平板のボード状の成形体であったり、発泡粒子に密度差があったり、発泡粒子の重量が異なるなど、一方の発泡粒子が金型内で偏在し易い場合であっても、発泡粒子Aと発泡粒子Bとが良好に分散した成形体となる。   In particular, in the case of the above-described method of FIG. 1, one foamed particle is unevenly distributed in the mold, such as a flat board-like molded body, a density difference in the foamed particle, or a different weight of the foamed particle. Even if it is a case where it is easy to do, it becomes a molded object in which the foaming particle A and the foaming particle B were disperse | distributed favorably.

建築用断熱材として用いられる場合には、例えば、平板状の成形体である場合、厚み方向に垂直な断面上において、均一に上記2種の発泡粒子が分散されていることが重要であるとともに、成形体の厚み方向にも偏りなく、均一に分散されていることが重要である。本発明においては、このようにして、2種類の発泡粒子の成形体中での分散を制御して得られた成形体が、建築用断熱材として特に優れることを見出したものである。   When used as a heat insulating material for building, for example, in the case of a flat molded body, it is important that the two kinds of foamed particles are uniformly dispersed on a cross section perpendicular to the thickness direction. It is important that the molded body is uniformly distributed without being biased in the thickness direction. In this invention, it discovered that the molded object obtained by controlling dispersion | distribution in the molded object of two types of expanded particles in this way was especially excellent as a heat insulating material for buildings.

なお、上記方法であれば、本発明の効果を阻害しない範囲内で、配管の本数を増減させることで、さらに多種の発泡粒子を混合させ、成形体を得ることもできる。
(発泡粒子の平均粒子径測定方法)
水が入ったメスシリンダーを用意し、適量の発泡粒子群を上記メスシリンダー内の水中に金網などの道具を使用して沈める。そして、金網などの道具の体積を考慮しつつ水位上昇分より読みとられる発泡粒子の容積V1[L]を測定する。この容積V1をメスシリンダーに入れた発泡粒子の個数(N)にて割り算(V1/N)することにより、発泡粒子1個あたりの平均体積を算出する。得られた平均体積と同じ体積を有する仮想真球の直径をもって発泡粒子の平均粒子径[mm]とした。
(発泡粒子成形体の引張強さ)
発泡粒子成形体の引張強さは、JIS K6767:1999に記載の引張試験方法に基づき、試験片90mm×90mm×10mm(厚み)を、引張試験用オートグラフで鉛直方向に速度10mm/minで引張った時の、切断にいたるまでの最大荷重を試験片の断面積(試験片の幅×試験片の厚さ)で割算することにより求める。なお、前記スチレン系樹脂発泡粒子成形体の引張り強さは、20N/cm以上であることが好ましく、21N/cm以上であることがさらに好ましい。
(加熱寸法変化)
得られた断熱材を、JIS K6767(1999)に準拠して、70℃〜90℃の各温度に保った熱風循環式乾燥機の中に水平に置き、22時間加熱を行った後取り出し、標準状態に1時間放置した後と、加熱前の寸法を測定した。
(熱伝導率)
熱伝導率は、、製造直後の発泡成形体200mm×200mm×25mmの試験片を23℃、湿度50%の雰囲気下に保存する。製造後10日後に該試験片を用いてJIS A1412−2:1999記載の熱流計法(試験体1枚・対称構成方式、高温側33℃、低温側13℃)に基づいて熱伝導率を測定することができる。なお、建築用断熱材として優れた性能を発揮し得る観点からは、上記熱伝導率が0.037W/m・K以下であることが好ましく、0.0365W/m・K以下であることがより好ましく、0.036W/m・K以下であることがさらに好ましい。
In addition, if it is the said method, in the range which does not inhibit the effect of this invention, by increasing / decreasing the number of piping, a various types of expanded particle can be mixed and a molded object can also be obtained.
(Measurement method of average particle diameter of expanded particles)
A graduated cylinder containing water is prepared, and an appropriate amount of foam particles is submerged in water in the graduated cylinder using a tool such as a wire mesh. Then, the volume V1 [L] of the expanded particles read from the rise in the water level is measured while taking into account the volume of a tool such as a wire mesh. By dividing (V1 / N) this volume V1 by the number of foamed particles (N) placed in a graduated cylinder, the average volume per foamed particle is calculated. The diameter of the virtual sphere having the same volume as the obtained average volume was defined as the average particle diameter [mm] of the expanded particles.
(Tensile strength of molded foam particles)
Based on the tensile test method described in JIS K6767: 1999, the tensile strength of the foamed particle molded body was determined by pulling a test piece 90 mm × 90 mm × 10 mm (thickness) in the vertical direction at a speed of 10 mm / min with a tensile test autograph. The maximum load until cutting is divided by the cross-sectional area of the test piece (the width of the test piece x the thickness of the test piece). Incidentally, the tensile strength of the styrene resin foamed bead molded article is preferably 20 N / cm 2 or more, more preferably 21N / cm 2 or more.
(Heating dimensional change)
In accordance with JIS K6767 (1999), the obtained heat insulating material is horizontally placed in a hot-air circulating drier maintained at each temperature of 70 ° C. to 90 ° C., heated for 22 hours, taken out, and standard The dimensions after heating for 1 hour and before heating were measured.
(Thermal conductivity)
As for thermal conductivity, a test piece of 200 mm × 200 mm × 25 mm immediately after production is stored in an atmosphere of 23 ° C. and 50% humidity. Ten days after production, the thermal conductivity is measured using the test piece based on the heat flow meter method described in JIS A1412-2: 1999 (one specimen, symmetrical configuration method, high temperature side 33 ° C., low temperature side 13 ° C.) can do. The thermal conductivity is preferably 0.037 W / m · K or less and more preferably 0.0365 W / m · K or less from the viewpoint of exhibiting excellent performance as a heat insulating material for buildings. Preferably, it is 0.036 W / m · K or less.

以下、実施例及び比較例を用いて本発明をより詳細に説明する。
実施例1
市販のグラファイトを5.5質量%含有した、ポリスチレン樹脂からなる予備発泡粒子A13%(vol%)(嵩密度18kg/m、平均粒子径4.0mm)と、市販のグラファイト非含有のポリスチレン樹脂からなる予備発泡粒子B87%(vol%)(嵩密度18kg/m、平均粒子径4.0mm)を別々に用意し、後述の方法でこれらを型内成形機に充填した。成形体全体に対するグラファイト比は0.8質量%であった。
Hereinafter, the present invention will be described in more detail using examples and comparative examples.
Example 1
Pre-expanded particles A containing 13% (vol%) of polystyrene resin containing 5.5% by mass of commercially available graphite (bulk density 18 kg / m 3 , average particle size 4.0 mm), and commercially available polystyrene resin not containing graphite Pre-expanded particles B87% (vol%) (bulk density 18 kg / m 3 , average particle diameter 4.0 mm) were separately prepared and filled in an in-mold molding machine by the method described later. The graphite ratio with respect to the whole compact was 0.8% by mass.

そして、0.09MPa(ゲージ圧力)のスチームで金型内に充填した予備発泡粒子を15秒間加熱した。これにより、予備発泡粒子を金型内にて相互に融着させた。次いで、金型内を所定時間冷却した後、予備発泡粒子同士が相互に融着してなる発泡粒子成形体を金型から取り出して、実施例1の断熱材を製造した。この断熱材の寸法は、底面200mm×200mm、厚さ25mm、密度が16kg/mであった。なお、予備発泡粒子AとBは、金型に導入する際の配管径により配合割合を調整し、予備発泡粒子AとBの配管を金型導入前に一度合流させた後に、配管内で混合された発泡粒子群を充填ガンから金型に導入した。予備発泡粒子AとBの金型への導入は、図1に示すように、発泡粒子充填ホースの先端を二股(Y字管)とし、そのパイプ径(断面積)を適切な比率に設定することで均一な混合比率の成形体を得ることができる。実施例1では、発泡粒子B側の配管を直径25mmとし、発泡粒子A側の配管の断面積を、発泡粒子Bの配管の断面積の18%とすることで、発泡粒子Aの充填割合を13%に制御した。 Then, the pre-expanded particles filled in the mold with steam of 0.09 MPa (gauge pressure) were heated for 15 seconds. As a result, the pre-expanded particles were fused to each other in the mold. Next, after cooling the inside of the mold for a predetermined time, the foamed particle molded body formed by fusing the pre-foamed particles with each other was taken out of the mold, and the heat insulating material of Example 1 was manufactured. The dimensions of this heat insulating material were a bottom surface of 200 mm × 200 mm, a thickness of 25 mm, and a density of 16 kg / m 3 . In addition, the pre-expanded particles A and B are mixed in the pipe after adjusting the blending ratio according to the pipe diameter at the time of introduction into the mold and once joining the pipes of the pre-expanded particles A and B before introducing the mold. The expanded foam particles were introduced into the mold from the filling gun. As shown in FIG. 1, the pre-expanded particles A and B are introduced into the mold by setting the tip of the expanded particle-filled hose to be bifurcated (Y-shaped tube) and setting the pipe diameter (cross-sectional area) to an appropriate ratio. Thus, a molded body having a uniform mixing ratio can be obtained. In Example 1, the diameter of the expanded particle B-side pipe is 25 mm, and the cross-sectional area of the expanded particle A-side pipe is 18% of the cross-sectional area of the expanded particle B pipe. Controlled to 13%.

実施例1で作成した断熱材の平均面積比(S1/S2)、面積比の変動係数、標準偏差(σ)、成形体密度、熱伝導率、寸法変化(70℃、80℃、85℃、90℃、95℃)、引張強さAを、前述した方法により測定した。その結果を表1、表2に示す。なお、面積比は、成形体中央部と、成形体表面から5mmの断面を切り出し、測定を行った。表1から、実施例1の断熱材は、熱伝導率が良好で断熱性能に優れ、かつ、引張強さに優れることがわかる。   Average area ratio (S1 / S2), coefficient of variation of area ratio, standard deviation (σ), molded body density, thermal conductivity, dimensional change (70 ° C., 80 ° C., 85 ° C., heat insulating material created in Example 1 (90 ° C., 95 ° C.) and tensile strength A were measured by the method described above. The results are shown in Tables 1 and 2. The area ratio was measured by cutting a 5 mm cross section from the center of the molded body and the surface of the molded body. From Table 1, it can be seen that the heat insulating material of Example 1 has good thermal conductivity, excellent heat insulating performance, and excellent tensile strength.

また、表2から、発泡粒子Aの配合割合が多い断熱材ほど、加熱寸法変化が小さくなっていることが分かる。これは、グラファイト粒子を含有する発泡粒子Aは熱放散が起こり易いので、このような特性を有する発泡粒子が発泡粒子成形体中に均一に分散されているため、加熱寸法変化が小さいと考えられる。上記観点からは、発泡粒子Aと発泡粒子Bの配合割合(体積割合)が、30:70〜70:30であることが好ましい。   Moreover, it can be seen from Table 2 that the heat dimensional change is smaller as the heat insulating material has a higher blending ratio of the expanded particles A. This is because the expanded particles A containing graphite particles are likely to dissipate heat, and the expanded particles having such characteristics are uniformly dispersed in the expanded particle molded body, so that the heating dimensional change is considered to be small. . From the above viewpoint, the blending ratio (volume ratio) of the expanded particles A and the expanded particles B is preferably 30:70 to 70:30.

実施例2〜6
発泡粒子Aと発泡粒子Bの配合比率を表1に示すようにした以外は実施例1と同様にして、実施例2〜6の断熱材を製造した。それぞれの発泡粒子の充填割合は、実施例1の際の発泡粒子Bの配管を一定とし、発泡粒子Aの配管の断面積を変更することで制御した。実施例2においては、発泡粒子Bの配管に対する発泡粒子Aの配管の断面積の割合Xを36%とし、実施例3ではXを42%とし、実施例4では55%とし、実施例5では100%とした。したがって、配管の断面積を変更することで、各発泡粒子の充填割合を制御することができる。上記のようにして型内成形された発泡粒子成形体は、前記発泡粒子成形体の厚み方向に垂直な断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.1〜4.0の範囲であり、前記面積比の変動係数が40%以下となり、発泡粒子の分散性に優れていた。
Examples 2-6
Insulating materials of Examples 2 to 6 were produced in the same manner as in Example 1 except that the blending ratio of the expanded particles A and the expanded particles B was as shown in Table 1. The filling ratio of each foamed particle was controlled by changing the cross-sectional area of the foamed particle A pipe while keeping the pipe of the foamed particle B in Example 1 constant. In Example 2, the ratio X of the cross-sectional area of the expanded particle A pipe to the expanded particle B pipe is 36%, X is 42% in Example 3, 55% in Example 4, and in Example 5. 100%. Therefore, the filling ratio of each expanded particle can be controlled by changing the cross-sectional area of the piping. The foamed particle molded body molded in the mold as described above has a total area (S1) of the foamed particles A and a total area (S2) of the foamed particles B in a cross section perpendicular to the thickness direction of the foamed particle molded body. And the area ratio (S1 / S2) average value was in the range of 0.1 to 4.0, the coefficient of variation of the area ratio was 40% or less, and the dispersibility of the expanded particles was excellent.

これらの断熱材について実施例1と同様にして各種特性を調べた。その結果を表1に示す。
比較例1
発泡粒子Bのみを用いて、実施例1と同様にして、比較例1の断熱材を製造した。
Various characteristics of these heat insulating materials were examined in the same manner as in Example 1. The results are shown in Table 1.
Comparative Example 1
The heat insulating material of Comparative Example 1 was manufactured in the same manner as Example 1 using only the expanded particles B.

比較例1の断熱材について、表1に示す各種特性を調べた。その結果を表1に示す。表1から、比較例1の断熱材は、熱伝導率が大きく断熱性が劣る。
比較例2
発泡粒子Aのみを用いて、実施例1と同様にして、比較例2の断熱材を製造した。
For the heat insulating material of Comparative Example 1, various characteristics shown in Table 1 were examined. The results are shown in Table 1. From Table 1, the heat insulating material of the comparative example 1 has large heat conductivity, and is inferior in heat insulation.
Comparative Example 2
The heat insulating material of Comparative Example 2 was manufactured in the same manner as Example 1 using only the expanded particles A.

比較例2の断熱材について、表1に示す各種特性を調べた。
比較例3
発泡粒子Aのみを用いて、実施例1と同様にして作製した発泡粒子成形体と、発泡粒子Bのみを用いて、実施例1と同様にして作製した発泡粒子成形体を厚みが1:2となるように積層し、厚さ25mmの成形体とし、比較例3の断熱材を製造した。
For the heat insulating material of Comparative Example 2, various characteristics shown in Table 1 were examined.
Comparative Example 3
A foamed particle molded body produced in the same manner as in Example 1 using only the foamed particles A and a foamed particle molded body produced in the same manner as in Example 1 using only the foamed particles B had a thickness of 1: 2. The heat insulating material of Comparative Example 3 was manufactured by forming a molded body having a thickness of 25 mm.

比較例3の断熱材について、表1に示す各種特性を調べた。その結果を表1に示す。   With respect to the heat insulating material of Comparative Example 3, various characteristics shown in Table 1 were examined. The results are shown in Table 1.

なお、比較例3においては、発泡粒子Aの成形体と、発泡粒子Bの成形体との積層接着面が存在するので、測定箇所によって引張強さは大きく変動してしまった。特に、接着強度が不十分な箇所が存在すると、局所的にその部分から壊れて、引張強度が低下する場合があった。   In Comparative Example 3, since there is a laminated adhesive surface between the molded body of the foamed particles A and the molded body of the foamed particles B, the tensile strength greatly fluctuated depending on the measurement location. In particular, if there is a portion with insufficient adhesive strength, the portion may be broken locally and the tensile strength may be reduced.

Claims (5)

スチレン系樹脂発泡粒子成形体であって、
前記発泡粒子成形体を構成しているスチレン系樹脂発泡粒子として、輻射伝熱抑制剤の含有量が1〜10質量%である発泡粒子A、及び、前記輻射伝熱抑制剤含有量が1質量%未満(0を含む)の発泡粒子Bを含み、
前記発泡粒子成形体の厚み方向に垂直な断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.1〜4.0の範囲であり、前記面積比の変動係数が40%以下である、断熱材。
Styrenic resin expanded particle molded body,
As the styrene resin foam particles constituting the foamed particle molded body, the content of the radiation heat transfer inhibitor is 1 to 10% by mass, and the content of the radiation heat transfer inhibitor is 1 mass. % (Including 0) of expanded particles B,
The average value of the area ratio (S1 / S2) of the total area (S1) of the foamed particles A and the total area (S2) of the foamed particles B in a cross section perpendicular to the thickness direction of the foamed particle molded body is 0.1. A heat insulating material having a range of ˜4.0 and a coefficient of variation of the area ratio of 40% or less.
前記輻射伝熱抑制剤が、グラファイトである、請求項1に記載の断熱材。   The heat insulating material according to claim 1, wherein the radiation heat transfer inhibitor is graphite. 前記スチレン系樹脂発泡粒子成形体の密度が、10〜50kg/mである、請求項1又は2に記載の断熱材。 The heat insulating material of Claim 1 or 2 whose density of the said styrene-type resin expanded particle molded object is 10-50 kg / m < 3 >. 前記スチレン系樹脂発泡粒子成形体の熱伝導率が0.037W/m・K以下である、請求項1〜3のいずれか一項に記載の断熱材。   The heat insulating material as described in any one of Claims 1-3 whose heat conductivity of the said styrene-type resin expanded particle molded object is 0.037 W / m * K or less. 前記スチレン系樹脂発泡粒子成形体の引張強さが20N/cm以上である、請求項1〜4のいずれか一項に記載の断熱材。 The heat insulating material as described in any one of Claims 1-4 whose tensile strength of the said styrene-type resin expanded particle molded object is 20 N / cm < 2 > or more.
JP2017182888A 2017-09-22 2017-09-22 Insulation Active JP6960291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182888A JP6960291B2 (en) 2017-09-22 2017-09-22 Insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182888A JP6960291B2 (en) 2017-09-22 2017-09-22 Insulation

Publications (2)

Publication Number Publication Date
JP2019056096A true JP2019056096A (en) 2019-04-11
JP6960291B2 JP6960291B2 (en) 2021-11-05

Family

ID=66107103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182888A Active JP6960291B2 (en) 2017-09-22 2017-09-22 Insulation

Country Status (1)

Country Link
JP (1) JP6960291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230956A1 (en) * 2021-04-30 2022-11-03 株式会社カネカ Fire-resistant article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456298A (en) * 1990-06-26 1992-02-24 Yokohama Rubber Co Ltd:The Radio wave absorbing material
JP2003192821A (en) * 2001-12-28 2003-07-09 Dow Kakoh Kk Heat insulating material for building comprising molded article of polystyrene-based resin foamed beads
JP2014125621A (en) * 2012-12-27 2014-07-07 Sekisui Plastics Co Ltd Foamed molded body and method for manufacturing foamed molded body
JP2016108479A (en) * 2014-12-08 2016-06-20 イビデン株式会社 Heat insulation improver-containing expandable particle and method for producing the same, and method for producing foamed material
JP2017171773A (en) * 2016-03-23 2017-09-28 株式会社ジェイエスピー Foamed particle molding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456298A (en) * 1990-06-26 1992-02-24 Yokohama Rubber Co Ltd:The Radio wave absorbing material
JP2003192821A (en) * 2001-12-28 2003-07-09 Dow Kakoh Kk Heat insulating material for building comprising molded article of polystyrene-based resin foamed beads
JP2014125621A (en) * 2012-12-27 2014-07-07 Sekisui Plastics Co Ltd Foamed molded body and method for manufacturing foamed molded body
JP2016108479A (en) * 2014-12-08 2016-06-20 イビデン株式会社 Heat insulation improver-containing expandable particle and method for producing the same, and method for producing foamed material
JP2017171773A (en) * 2016-03-23 2017-09-28 株式会社ジェイエスピー Foamed particle molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230956A1 (en) * 2021-04-30 2022-11-03 株式会社カネカ Fire-resistant article

Also Published As

Publication number Publication date
JP6960291B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
JP2017019980A (en) Propylene-based resin foaming particle and foaming particle molded body
JP2009144096A (en) Polypropylenic resin foamed particles and molded article from foamed particles
JP3916460B2 (en) Architectural insulation made of polystyrene resin extruded foam
JP2009108237A (en) Expanded styrene resin bead and molded object formed from expanded styrene resin bead
JP6960291B2 (en) Insulation
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP2014118548A (en) Polyvinylidene fluoride resin foamed particle, manufacturing method of polyvinylidene fluoride resin foamed particle and polyvinylidene fluoride resin foamed particle molded body
WO2009084456A1 (en) Flame-retardant expandable styrene resin particle, and method for production thereof
JP2003192821A (en) Heat insulating material for building comprising molded article of polystyrene-based resin foamed beads
WO2021157369A1 (en) Polypropylene resin foam particles and polypropylene resin foam particle molded article
JP2013181074A (en) Styrene-modified polyethylene resin particles, foamable composite resin particles, preliminary foamable particles, foaming molded product, and method of producing the preliminary foamable particles
JP2006207114A (en) External heat insulation structure
JP6869017B2 (en) Urethane-based thermoplastic elastomer foamed particle molded product
JP2016121325A (en) Styrenic resin expanded molded body, manufacturing method therefor and use thereof
JP2016069471A (en) Foam particle
JPWO2020090335A1 (en) Effervescent particles
JP2020164706A (en) Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP7488081B2 (en) Styrenic resin extrusion foam
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
TWI667273B (en) Propylene-based resin foamed particles and foamed particles molded body
US20240158599A1 (en) Composite material and method for manufacturing composite material
JP5666796B2 (en) Method for producing styrenic polymer particles
JP4984482B2 (en) Thermoplastic resin foam molding
JP2012077115A (en) Heat insulator and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211011

R150 Certificate of patent or registration of utility model

Ref document number: 6960291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150