JP6706108B2 - Expanded particle molding - Google Patents
Expanded particle molding Download PDFInfo
- Publication number
- JP6706108B2 JP6706108B2 JP2016058938A JP2016058938A JP6706108B2 JP 6706108 B2 JP6706108 B2 JP 6706108B2 JP 2016058938 A JP2016058938 A JP 2016058938A JP 2016058938 A JP2016058938 A JP 2016058938A JP 6706108 B2 JP6706108 B2 JP 6706108B2
- Authority
- JP
- Japan
- Prior art keywords
- expanded
- particles
- particle molded
- foamed
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 438
- 238000000465 moulding Methods 0.000 title description 15
- 239000004020 conductor Substances 0.000 claims description 84
- 229920005989 resin Polymers 0.000 claims description 66
- 239000011347 resin Substances 0.000 claims description 66
- 229920005992 thermoplastic resin Polymers 0.000 claims description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 239000006260 foam Substances 0.000 claims description 9
- 229920005672 polyolefin resin Polymers 0.000 claims description 9
- 229920005990 polystyrene resin Polymers 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 description 78
- 238000010521 absorption reaction Methods 0.000 description 70
- 239000011324 bead Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- 229910000859 α-Fe Inorganic materials 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002131 composite material Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000005187 foaming Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 8
- 230000001747 exhibiting effect Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000003973 paint Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 239000004088 foaming agent Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003658 microfiber Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920012753 Ethylene Ionomers Polymers 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000001864 heat-flux differential scanning calorimetry Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920005678 polyethylene based resin Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005673 polypropylene based resin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2325/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
- C08J2325/02—Homopolymers or copolymers of hydrocarbons
- C08J2325/04—Homopolymers or copolymers of styrene
- C08J2325/06—Polystyrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/14—Applications used for foams
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
本発明は、電波吸収体として好適に利用可能な発泡粒子成形体に関する。 The present invention relates to a foamed particle molded body that can be suitably used as a radio wave absorber.
電子機器から放射される電波について実施される妨害電波に関する規格適合性の評価試験や、アンテナなどの通信機器についての電波の受信特性を評価するための試験などといった電波に関する様々な試験を実施するために、電波暗室と呼ばれる電波隔離空間を備える施設が使用される。 To carry out various tests related to radio waves, such as standard conformity evaluation tests for radio waves radiated from electronic devices and tests for evaluating radio wave reception characteristics of communication devices such as antennas. A facility equipped with a radio wave isolation space called an anechoic chamber is used.
妨害電波に関する規格では、所定の電波の周波数帯での妨害電波の許容値が規定されることが多く、従来、こうした規格に使用される電波の周波数帯は、テレビ、ラジオ、携帯電話等で使用される周波数帯である30MHz〜1GHzの周波数帯を主とするものであった。ところが、近年の無線LAN、ETC、スマートフォン等の発達に伴い、規格に使用される電波の周波数帯は、30MHz〜18GHzの範囲に広がっている。 Interference radio standards often specify the allowable value of interfering radio waves in a predetermined radio frequency band, and the radio frequency bands used in these standards are conventionally used in televisions, radios, mobile phones, etc. The main frequency band was 30 MHz to 1 GHz. However, with the recent development of wireless LANs, ETCs, smartphones, etc., the frequency band of radio waves used in the standard has expanded to the range of 30 MHz to 18 GHz.
また電波の受信特性評価に関しては、光通信設備や自動車衝突防止用レーダーなどの10GHz以上のマイクロ波帯やミリ波帯の電波を利用した設備や通信機器が発展してきていることから、こうした設備や通信機器の電波の受信特性を評価することができるような電波暗室が求められてきている。 Regarding the evaluation of radio wave reception characteristics, since equipment and communication devices using radio waves in the microwave band and millimeter wave band of 10 GHz or more, such as optical communication equipment and radars for preventing vehicle collision, have been developed, There is a demand for an anechoic chamber capable of evaluating the radio wave reception characteristics of communication devices.
したがって電波暗室には、1GHz未満、すなわちMHz程度の低周波数帯の電波から、1GHz以上のマイクロ波帯、ミリ波帯などの高周波数帯の電波まで、広範囲に電波を測定することができることが要請されている。 Therefore, it is required that the anechoic chamber can measure radio waves in a wide range from radio waves in a low frequency band of less than 1 GHz, that is, about MHz to radio waves in a high frequency band such as a microwave band and a millimeter wave band of 1 GHz or more. Has been done.
ところで、電波暗室には、電波に関する様々な試験を適切に実施するべく、空間内への外部電波の侵入を遮断して空間内を外部電波から隔離された状態とするだけでなく、空間内での測定対象電波とその反射波の干渉による悪影響を抑止するように構成されることが要請される。こうした要請を考慮して、電波暗室内には、通常、天面や周囲の壁面、必要に応じて床面などに、電波吸収体と呼ばれる構造体が配備されており、電波吸収体が空間内で測定対象電波が壁面で反射して反射波が生じてしまう虞を抑制している。 By the way, in the anechoic chamber, in order to properly carry out various tests related to radio waves, not only is the state of being isolated from external radio waves by blocking the intrusion of external radio waves into the space, It is required to be configured to suppress the adverse effects of the interference between the measurement target radio wave and its reflected wave. In consideration of these requirements, structures called radio wave absorbers are usually installed in the anechoic chamber on the top surface, surrounding wall surfaces, and, if necessary, the floor surface. Thus, it is possible to suppress the possibility that the measurement target radio wave is reflected on the wall surface to generate a reflected wave.
電波吸収体としては、例えば、導電性カーボン等の導電性材料を充填させた発泡粒子である導電性発泡粒子や、樹脂発泡粒子の表面をグラファイト系導電塗料からなる塗膜で被覆してなる導電性発泡粒子を所定形状に成形してなる発泡粒子成形体が使用されている。このような成形体から構成される電波吸収体は、比較的高周波数である1GHz以上のいわゆるGHz帯の高周波数帯の電波をより効果的に吸収する電波吸収性能に優れている。 As the radio wave absorber, for example, conductive foamed particles that are foamed particles filled with a conductive material such as conductive carbon, or conductive particles formed by coating the surface of resin foamed particles with a coating film made of graphite-based conductive paint There is used a foamed particle molded body obtained by molding the foamed expanded particles into a predetermined shape. A radio wave absorber made of such a molded body has excellent radio wave absorption performance for more effectively absorbing radio waves in a high frequency band of a so-called GHz band of 1 GHz or higher, which is a relatively high frequency.
このような電波吸収体には、高周波数帯として区分されうる1GHz以上の周波数帯の電波吸収性能は優れているものの、低周波数帯として区分されうる1GHz未満の周波数帯いわゆるMHz帯の電波吸収性能に劣り、既述したような広範囲の周波数帯の電波測定には対応することが難しいという課題がある。この課題に対しては、電波吸収体を形成する発泡粒子成形体の長さ寸法を大きくすることでMHz帯の電波吸収特性を得ることが試みられている。しかしながら、発泡粒子成形体の寸法自体を大きくしてしまうと電波暗室内の電波吸収体の空間占有率が大きくなり、限られた空間を有効に活用できなくなるといった問題が生じてしまう。 Although such a radio wave absorber has excellent radio wave absorption performance in a frequency band of 1 GHz or more that can be classified as a high frequency band, it has a radio wave absorption performance in a frequency band of less than 1 GHz that can be classified as a low frequency band, a so-called MHz band. However, there is a problem that it is difficult to support radio wave measurement in a wide frequency band as described above. To solve this problem, it has been attempted to obtain the electromagnetic wave absorption characteristics in the MHz band by increasing the length dimension of the expanded particle molded body forming the electromagnetic wave absorber. However, if the size of the foamed particle molded body is increased, the space occupancy rate of the radio wave absorber in the radio wave darkroom increases, which causes a problem that the limited space cannot be effectively utilized.
この問題に対し、電波吸収体として、グラファイト系導電塗料で表面を被覆処理された導電性発泡粒子とそのような被覆処理を施されていない非導電性発泡粒子との混合物を型内形成して得られた発泡粒子成形体(例えば、特許文献1、2を参照)を用いることが提案されている。このような電波吸収体は、数百MHz前後の周波数帯の電波吸収性能を有するものでもある。更に、電波吸収体をフェライトタイル等の他の低周波数帯の電波吸収性能を有する部材と組み合わせてユニットを調製し、そのユニットを電波暗室内に取り付けられることで、電波吸収体の寸法を大きくせずとも、MHz帯の電波吸収性能を向上させた電波暗室を実現することができる。 In response to this problem, as a radio wave absorber, a mixture of conductive foamed particles whose surface is coated with a graphite-based conductive paint and non-conductive foamed particles not subjected to such a coating treatment are formed in a mold. It has been proposed to use the obtained expanded particle molded body (see, for example, Patent Documents 1 and 2). Such a radio wave absorber also has a radio wave absorption performance in a frequency band of around several hundred MHz. In addition, the unit is prepared by combining the electromagnetic wave absorber with other low frequency band electromagnetic wave absorbing members such as ferrite tiles, and the unit can be installed in an anechoic chamber to increase the size of the electromagnetic wave absorber. Even without this, it is possible to realize an anechoic chamber with improved electromagnetic wave absorption performance in the MHz band.
しかしながら、特許文献1、2に記載の電波吸収体単独では、数百MHz帯の電波吸収性能を多少改善させることができるにとどまる。特許文献1、2に記載の電波吸収体は、MHz帯からGHz帯において電波吸収性の弱い周波数帯が生じてしまう虞もあり、改善の余地を有するものであった。 However, the radio wave absorbers described in Patent Documents 1 and 2 alone can only slightly improve the radio wave absorption performance in the several hundred MHz band. The radio wave absorbers described in Patent Documents 1 and 2 have room for improvement because there is a possibility that a frequency band with weak radio wave absorption may occur in the MHz band to the GHz band.
本発明は、上記の問題点に鑑みてなされたものであり、優れた電波吸収性能を発揮可能な電波吸収体に好適に利用できる発泡粒子成形体を提供するという課題を解決することを目的する。 The present invention has been made in view of the above problems, and an object thereof is to solve the problem of providing a foamed particle molded body that can be suitably used as a radio wave absorber capable of exhibiting excellent radio wave absorption performance. ..
本発明は、
(1)熱可塑性樹脂発泡粒子成形体であって、
前記発泡粒子成形体を構成している熱可塑性樹脂発泡粒子として、導電性材料が3〜30質量%分散している発泡粒子A、及び、導電性材料含有量が3質量%未満(0を含む)の発泡粒子Bを含み、
前記発泡粒子成形体の断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、
前記面積比の変動係数が20%以下であることを特徴とする発泡粒子成形体、
(2)前記発泡粒子Aと前記発泡粒子Bの各々における平均粒子径が2〜8mmであることを特徴とする上記(1)に記載の発泡粒子成形体。
(3)前記発泡粒子成形体の密度が15〜90g/Lであることを特徴とする上記(1)又は上記(2)に記載の発泡粒子成形体。
(4)前記導電性材料が導電性カーボンブラックであることを特徴とする上記(1)から上記(3)のいずれか一項に記載の発泡粒子成形体。
(5)前記熱可塑性樹脂発泡粒子を形成する樹脂がポリオレフィン系樹脂であることを特徴とする上記(1)から上記(4)のいずれか一項に記載の発泡粒子成形体。
(6)前記熱可塑性樹脂発泡粒子を形成する樹脂がポリスチレン系樹脂であることを特徴とする上記(1)から上記(4)のいずれか一項に記載の発泡粒子成形体、
を要旨とする。
The present invention is
(1) A thermoplastic resin expanded particle molded body,
As the thermoplastic resin expanded particles constituting the expanded particle molded body, expanded particles A in which a conductive material is dispersed in an amount of 3 to 30% by mass, and a conductive material content of less than 3% by mass (including 0) ) Foamed particles B,
The average value of the area ratio (S1/S2) between the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in the cross section of the expanded particle molded body is 0.05 to 1.0. Is a range
A coefficient of variation of the area ratio is 20% or less;
(2) The expanded particle molded body according to (1) above, wherein the expanded particle A and the expanded particle B each have an average particle diameter of 2 to 8 mm.
(3) The expanded-particle molded product according to (1) or (2) above, wherein the expanded-particle molded product has a density of 15 to 90 g/L.
(4) The expanded particle molded body according to any one of (1) to (3) above, wherein the conductive material is conductive carbon black.
(5) The expanded particle molded product according to any one of (1) to (4) above, wherein the resin forming the expanded thermoplastic resin particles is a polyolefin resin.
(6) The expanded particle molded article according to any one of (1) to (4) above, wherein the resin forming the thermoplastic resin expanded particles is a polystyrene resin.
Is the gist.
本発明の発泡粒子成形体は、発泡粒子成形体を複数調製した場合における発泡粒子成形体間での導電性能のバラツキが小さいものであり、発泡粒子A、Bの混合比率を変更することにより発泡粒子成形体の導電性能の変更が容易である。 INDUSTRIAL APPLICABILITY The expanded-particle molded product of the present invention has a small variation in the conductive performance among the expanded-particle molded products when a plurality of expanded-particle molded products are prepared, and foaming is achieved by changing the mixing ratio of the expanded particles A and B. It is easy to change the conductive performance of the particle compact.
特に、本発明の発泡粒子成形体を電波吸収体として利用した場合には、発泡粒子成形体が導電性材料を特定量含んだ複数種類の発泡粒子A、Bを含む混合成形体であることにより、発泡粒子A、Bの混合比率を変更することにより電波吸収体の誘電率の変更が容易であり、優れた電波吸収性能を有する電波吸収体となる。また、発泡粒子成形体を複数製造した場合における発泡粒子成形体間での電波吸収性能のバラツキも小さいものである。更に、本発明の発泡粒子成形体からなる電波吸収体と低周波吸収体とを組み合わせたものは、例えばMHz帯からGHz帯の幅広い周波数領域にわたって特に優れた電波吸収性能を発揮可能なものとなる。 In particular, when the expanded particle molded product of the present invention is used as a radio wave absorber, the expanded particle molded product is a mixed molded product containing a plurality of types of expanded particles A and B containing a specific amount of a conductive material. By changing the mixing ratio of the expanded particles A and B, the dielectric constant of the radio wave absorber can be easily changed, and the radio wave absorber has excellent radio wave absorption performance. Further, when a plurality of foamed particle molded bodies are manufactured, variations in the radio wave absorption performance among the foamed particle molded bodies are small. Further, a combination of the radio wave absorber made of the expanded particle molded article of the present invention and the low frequency absorber can exhibit particularly excellent radio wave absorption performance over a wide frequency range from, for example, the MHz band to the GHz band. ..
(発泡粒子成形体)
本発明の熱可塑性樹脂発泡粒子成形体は、熱可塑性樹脂を基材樹脂とするとともに導電性材料が3〜30質量%分散している第1の発泡粒子(熱可塑性樹脂発泡粒子A)と熱可塑性樹脂を基材樹脂とするとともに導電性材料含有量が3質量%未満(0を含む)の第2の発泡粒子(熱可塑性樹脂発泡粒子B)とを含む発泡粒子混合物を型内成形してなる発泡粒子型内成形体である。熱可塑性樹脂発泡粒子A,Bを以下それぞれ単に発泡粒子A,Bとよぶ。この型内成形体である発泡粒子成形体においては、発泡粒子成形体断面における発泡粒子Aの合計面積(S1)と発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、且つ、前記面積比の変動係数が20%以下である。なお、本明細書において、本発明の発泡粒子成形体を、熱可塑性樹脂発泡粒子成形体又は単に成形体と呼ぶことがある。また、発泡粒子Aと発泡粒子Bをまとめて発泡粒子と呼ぶことがある。
(Expanded particle molding)
The thermoplastic resin expanded particle molded body of the present invention contains a thermoplastic resin as a base resin and a first expanded particle (thermoplastic resin expanded particle A) in which a conductive material is dispersed in an amount of 3 to 30% by mass. In-mold molding of a foamed particle mixture containing a thermoplastic resin as a base resin and second expanded particles (thermoplastic resin expanded particles B) having a conductive material content of less than 3% by mass (including 0). It is a foamed particle in-mold molded article. The thermoplastic resin expanded particles A and B are hereinafter simply referred to as expanded particles A and B, respectively. In the expanded particle molded article which is the in-mold molded article, the average of the area ratio (S1/S2) of the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in the cross section of the expanded particle molded article. The value is in the range of 0.05 to 1.0, and the coefficient of variation of the area ratio is 20% or less. In addition, in this specification, the expanded particle molded article of the present invention may be referred to as a thermoplastic resin expanded particle molded article or simply a molded article. Further, the expanded particles A and the expanded particles B may be collectively referred to as expanded particles.
(分散)
本明細書において、導電性材料が分散している発泡粒子Aにおける分散とは、後述する数式(2)、(3)に示す数学用語上の分散の意味とは必ずしも一致するものではなく、導電性材料が発泡粒子を構成している樹脂中に分かれ散らばっていることを意味している。具体的には、図10に示す透過型電子顕微鏡の写真上で、粒状の黒点にて示される導電性カーボンが分かれ散らばっている状態が例示される。
(dispersion)
In the present specification, the dispersion in the expanded particles A in which the conductive material is dispersed does not necessarily mean the dispersion in the mathematical terms shown in the mathematical expressions (2) and (3) described later, It means that the conductive material is dispersed in the resin forming the expanded beads. Specifically, a state in which conductive carbon indicated by granular black dots is scattered on the photograph of the transmission electron microscope shown in FIG. 10 is exemplified.
(発泡粒子成形体密度)
発泡粒子成形体の密度は、軽量性と剛性とのバランスの観点から、15〜180g/L、更に15〜90g/Lであることが好ましい。発泡粒子成形体を電波吸収体として利用する場合には、上記バランスの観点に加えて、前記発泡粒子混合物を使用して得られる発泡粒子成形体において優れた電波吸収性能が発揮される観点から、15〜90g/L、更に20〜60g/L、特に25〜50g/Lがより好ましい。
(Expanded particle compact density)
The density of the foamed particle molded product is preferably 15 to 180 g/L, and more preferably 15 to 90 g/L from the viewpoint of a balance between lightness and rigidity. In the case of using a foamed particle molded body as a radio wave absorber, in addition to the above viewpoint, from the viewpoint of exhibiting excellent radio wave absorption performance in a foamed particle molded body obtained by using the foamed particle mixture, 15 to 90 g/L, more preferably 20 to 60 g/L, and particularly preferably 25 to 50 g/L.
(発泡粒子成形体密度の測定)
発泡粒子成形体の密度は、成形体試料の質量(g)を成形体試料の体積(L)で除することにより求めることができる。なお、成形体試料の体積は、成形体から直方体形状に切り出した成形体試料の外形寸法(縦、横、高さ)に基づき縦寸法、横寸法、高さ寸法の積を求め単位換算して当該体積(L)とする。
(Measurement of density of foamed particle molded body)
The density of the foamed particle molded body can be determined by dividing the mass (g) of the molded body sample by the volume (L) of the molded body sample. The volume of the molded body sample is calculated by calculating the product of the vertical dimension, horizontal dimension, and height dimension based on the external dimensions (length, width, height) of the molded body sample cut from the molded body into a rectangular shape. Let the volume (L).
(発泡粒子成形体形状)
発泡粒子成形体の形状は、目的に応じて板状や柱状、種々の立体形状に適宜設定が可能であり、特に限定されるものではないが、発泡粒子成形体を電波吸収体として利用する場合、すなわち、本発明によって発泡粒子成形体製電波吸収体を調製する場合には、発泡粒子成形体は、電波の吸収をより効果的に実現可能な形状に形成されていることが好ましい。この点を考慮して、本発明の発泡粒子成形体は、電波到来側の端部から他方の端部に向かう方向にそった直線を法線とする平面を想定した場合に、その平面で発泡粒子成形体を切断した場合に認められる切断面の面積(切断面が複数存在する場合には、切断面の総面積)が、法線にそって電波到来側の端部から他方の端部に向かうにつれて、大きくなる形状であることが好ましい。
(Foam particle molded body shape)
The shape of the foamed particle molded body can be appropriately set to a plate shape, a columnar shape, or various three-dimensional shapes according to the purpose and is not particularly limited, but when the foamed particle molded body is used as a radio wave absorber That is, in the case of preparing the foamed particle molded body radio wave absorber according to the present invention, it is preferable that the foamed particle molded body is formed in a shape that can more effectively realize the absorption of radio waves. In consideration of this point, when the foamed particle molded body of the present invention is assumed to be a plane whose normal is a straight line along the direction from the end on the radio wave arrival side to the other end, foaming is performed on that plane. The area of the cut surface (when there are multiple cut surfaces, the total area of the cut surface) that is recognized when cutting the particle compact is from the end on the radio wave arrival side to the other end along the normal. It is preferable that the shape becomes larger as it goes.
具体的に図1Aや図2Aに例示するように、発泡粒子成形体2aは、ピラミッド形状若しくはウェッジ形状などの多角錘形状、多角錘台形状或いは楔形状を有することが好ましい。このように成形体2aを形成することで、図1に示したピラミッド形状の電波吸収体1、図2に示したウェッジ形状の電波吸収体1を得ることができる。たとえば、図1に示したピラミッド形状の電波吸収体1では、ピラミッド形状の頂部を電波到来側の端部としてピラミッド形状の底面部を他方の端部とし、その頂部から底面部に向かう方向に沿った法線を有する平面で発泡粒子成形体を切断して切断面を見た場合に、切断面の面積がその頂部から底面部に向かうにつれて大きくなる。図2に示したウェッジ形状の電波吸収体1についても同様である。また、発泡粒子成形体2aは、図1Bや図2Bに示すような突出端を有する形状に形成されていてもよい。図1Bや図2Bの発泡粒子成形体2aは、例えば、ピラミッド形状若しくはウェッジ形状の成形体の傾斜面を底面位置から所定の高さより上の部分を切り欠く形状とすることで形成することができる。 As specifically illustrated in FIGS. 1A and 2A, it is preferable that the foamed particle molded body 2a has a polygonal pyramid shape such as a pyramid shape or a wedge shape, a polygonal frustum shape, or a wedge shape. By forming the molded body 2a in this manner, the pyramid-shaped radio wave absorber 1 shown in FIG. 1 and the wedge-shaped radio wave absorber 1 shown in FIG. 2 can be obtained. For example, in the pyramid-shaped radio wave absorber 1 shown in FIG. 1, the pyramid-shaped top portion is the end portion on the incoming side of the radio wave and the pyramid-shaped bottom portion is the other end portion, and the pyramid-shaped bottom portion is arranged along the direction from the top portion to the bottom portion. When the foamed particle molded body is cut along a plane having a normal line and the cut surface is viewed, the area of the cut surface increases from the top to the bottom. The same applies to the wedge-shaped radio wave absorber 1 shown in FIG. Further, the foamed particle molded body 2a may be formed in a shape having a protruding end as shown in FIG. 1B or FIG. 2B. The expanded particle molded body 2a of FIG. 1B or FIG. 2B can be formed, for example, by forming the pyramid-shaped or wedge-shaped molded body into a shape in which the inclined surface is cut out at a portion above a predetermined height from the bottom position. ..
(発泡粒子Aおよび発泡粒子B)
発泡粒子Aは、導電性材料が3〜30質量%の範囲で分散している樹脂粒子の発泡物である。更に加工性や電波吸収性能の観点から、5〜25質量%、更に7〜20質量%が好ましく、特に10〜17質量%がより好ましい。発泡粒子Bは、導電性材料を含有させずに形成された樹脂粒子、又は導電性材料が3質量%未満の範囲で含有されている樹脂粒子(導電性材料により被覆されているものを含む)の発泡物、或いは、樹脂粒子の発泡物に導電性材料を3質量%未満の範囲で含有されているもの(発泡粒子Bには導電性材料により被覆されているものを含む)である。したがって、本発明において発泡粒子Aは熱可塑性樹脂と導電性材料を含む樹脂組成物から形成され、発泡粒子Bは熱可塑性樹脂と必要に応じて用いられる導電性材料を含む樹脂組成物から形成されている。また、発泡粒子Aおよび発泡粒子Bのいずれについても、導電性材料以外にその他の添加剤が適宜含有されてもよい。なお、前記添加剤としては、着色剤、難燃剤、帯電防止剤、気泡調整剤などを例示することができる。
(Expanded particles A and expanded particles B)
The expanded particles A are resin particles in which the conductive material is dispersed in the range of 3 to 30% by mass. Further, from the viewpoint of workability and radio wave absorption performance, 5 to 25% by mass is preferable, 7 to 20% by mass is more preferable, and 10 to 17% by mass is particularly preferable. The expanded particles B are resin particles formed without containing a conductive material, or resin particles containing a conductive material in a range of less than 3% by mass (including those covered with a conductive material). Or a resin particle foam containing a conductive material in a range of less than 3% by mass (the foam particles B include those covered with a conductive material). Therefore, in the present invention, the foamed particles A are formed from a resin composition containing a thermoplastic resin and a conductive material, and the foamed particles B are formed from a resin composition containing a thermoplastic resin and a conductive material used as necessary. ing. Further, both the expanded particles A and the expanded particles B may appropriately contain other additives in addition to the conductive material. Examples of the additive include a colorant, a flame retardant, an antistatic agent, a bubble control agent, and the like.
発泡粒子Aおよび発泡粒子Bのいずれにおいても、上記の導電性材料が分散された樹脂粒子は、基材樹脂と導電性材料を押出機やニーダー等の従来公知の混練機を使用して樹脂中に導電性材料を分散させ、導電性材料が分散された樹脂組成物をペレタイザー等で造粒することにより得ることができる。また、樹脂粒子の発泡物である発泡粒子は従来公知の押出発泡粒子製造方法やオートクレーブから発泡剤を含有する発泡性樹脂粒子を放出して発泡する方法、発泡剤を含有する発泡性樹脂粒子を加熱軟化させて発泡する方法等の従来公知の発泡方法により製造することができる。また、発泡粒子Bに関して、導電性材料が被覆された樹脂粒子や発泡粒子は、スプレーコーター等のコーティング装置を使用して導電性塗料等の導電性材料を樹脂粒子や発泡粒子に塗布することにより得ることができる。 In both the foamed particles A and the foamed particles B, the resin particles in which the above-mentioned conductive material is dispersed are prepared by mixing the base resin and the conductive material in a resin by using a conventionally known kneader such as an extruder or a kneader. It can be obtained by dispersing a conductive material in the above and granulating the resin composition in which the conductive material is dispersed with a pelletizer or the like. Further, the foamed particles which are foams of the resin particles are conventionally known methods for producing extruded foamed particles or a method of releasing foamable resin particles containing a foaming agent from an autoclave to foam, foamable resin particles containing a foaming agent. It can be produced by a conventionally known foaming method such as a method of softening by heating to foam. Regarding the foamed particles B, the resin particles or the foamed particles coated with the conductive material can be obtained by applying a conductive material such as a conductive paint to the resin particles or the foamed particles by using a coating device such as a spray coater. Obtainable.
(熱可塑性樹脂)
本発明の発泡粒子成形体、該成形体を構成する発泡粒子、および該発泡粒子を形成する樹脂粒子を構成する熱可塑性樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂等のポリオレフィン系樹脂や、ポリスチレン系樹脂、ポリカーボネート系樹脂、ポリ塩化ビニル樹脂、ポリメタクリル系樹脂、アクリロニトリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂およびこれらのブレンド物、或いは共重合体等からなる熱可塑性樹脂が挙げられる。なお、熱可塑性樹脂としてポリオレフィン系樹脂とその他樹脂との混合樹脂が用いられる場合、混合樹脂は、ポリオレフィン系樹脂を50質量%以上含有するものであることが好ましく、ポリオレフィン系樹脂を70質量%以上含有するものであることがより好ましく、ポリオレフィン系樹脂を90質量%以上含有することがさらに好ましい。
(Thermoplastic resin)
As the thermoplastic resin forming the expanded particle molded product of the present invention, the expanded particles forming the molded product, and the resin particles forming the expanded particles, a polyolefin resin such as a polyethylene resin or a polypropylene resin, or polystyrene. Resins, polycarbonate-based resins, polyvinyl chloride resins, polymethacryl-based resins, acrylonitrile-based resins, polyester-based resins, polyamide-based resins, polyurethane-based resins and blends thereof, or thermoplastic resins such as copolymers Be done. When a mixed resin of a polyolefin resin and another resin is used as the thermoplastic resin, the mixed resin preferably contains 50% by mass or more of the polyolefin resin, and 70% by mass or more of the polyolefin resin. It is more preferable that the content of the polyolefin resin is 90% by mass or more.
上述した熱可塑性樹脂として利用可能なポリエチレン系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、エチレン−メタクリル酸共重合体やその分子間を金属イオンで架橋したアイオノマー系樹脂等が挙げられる。 Examples of the polyethylene-based resin that can be used as the thermoplastic resin described above include low-density polyethylene, high-density polyethylene, linear low-density polyethylene, ultra-low-density polyethylene, ethylene-vinyl acetate copolymer, and ethylene-methyl methacrylate copolymer. Examples thereof include polymers, ethylene-methacrylic acid copolymers, and ionomer resins in which the molecules are crosslinked with metal ions.
上述した熱可塑性樹脂として利用可能なポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレンに由来する構造単位が50質量%以上のプロピレン系共重合体が挙げられ、該共重合体としては、エチレン−プロピレン共重合体、プロピレン−ブテン共重合体、プロピレン−エチレン−ブテン共重合体などのプロピレンとエチレン又は炭素数4以上のαオレフィンとの共重合体や、プロピレン−アクリル酸共重合体、プロピレン−無水マレイン酸共重合体等が例示できる。なお、これらの共重合体は、ブロック共重合体、ランダム共重合体、グラフト共重合体のいずれでもよい。 Examples of the polypropylene-based resin that can be used as the thermoplastic resin include a propylene homopolymer and a propylene-based copolymer having a structural unit derived from propylene of 50% by mass or more, and the copolymer may be ethylene- Propylene copolymers, propylene-butene copolymers, propylene-ethylene-butene copolymers and other copolymers of propylene and ethylene or α-olefins having 4 or more carbon atoms, propylene-acrylic acid copolymers, propylene- A maleic anhydride copolymer etc. can be illustrated. These copolymers may be block copolymers, random copolymers, or graft copolymers.
上述の熱可塑性樹脂の例示のなかでも、靭性に優れる点でポリオレフィン系樹脂が好ましく、ポリプロピレン系樹脂を用いることが特に好ましい。また、脆性改善、軽量性と剛性とのバランスに優れる観点からは、基材樹脂を構成する熱可塑性樹脂として、ポリスチレン系樹脂を主体としポリオレフィン系樹脂にスチレンモノマーを含浸、重合してなる改質ポリスチレン系樹脂が選択されることが好ましい。 Among the above-mentioned examples of the thermoplastic resin, a polyolefin resin is preferable in terms of excellent toughness, and a polypropylene resin is particularly preferable. Further, from the viewpoint of improving the brittleness and having an excellent balance between lightness and rigidity, as a thermoplastic resin that constitutes the base resin, polystyrene resin is mainly used as a modified resin obtained by impregnating a styrene monomer into a polyolefin resin and polymerizing it. It is preferable that a polystyrene resin is selected.
また、上述の熱可塑性樹脂は、リサイクル性の観点からは無架橋(架橋されていない)であることが好ましい。 Further, the above-mentioned thermoplastic resin is preferably non-crosslinked (not crosslinked) from the viewpoint of recyclability.
(導電性材料)
発泡粒子Aに分散されている導電性材料は、特に限定されるものではなく、無機材料、有機材料を用いることができる。
(Conductive material)
The conductive material dispersed in the expanded particles A is not particularly limited, and an inorganic material or an organic material can be used.
本発明の発泡粒子成形体を電波吸収体として利用する場合は、導電性材料は、それを含有する発泡粒子成形体において電波吸収性能を発現する材料であればよい。例えば、電波吸収性能を発現する無機材料としては、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等のカーボン類、金属繊維、カーボン繊維等の繊維、酸化鉄、酸化スズ、酸化チタン、酸化亜鉛、酸化カドミウム、酸化イリジウム等の無機酸化物が挙げられる。これらの中でも、高い電波吸収性能を発現する材料として、カーボン類、金属酸化物が好ましく、その中でも電波吸収性の観点から、カーボン類を好適に用いることができ、具体的には、導電性カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンマイクロファイバー、カーボンマイクロコイル、カーボンナノコイル等が挙げられる。 When the expanded particle molded body of the present invention is used as a radio wave absorber, the conductive material may be any material that exhibits a radio wave absorbing performance in the expanded particle molded body containing the conductive material. For example, as the inorganic material exhibiting radio wave absorption performance, carbon such as conductive carbon black, graphite, graphene, carbon nanotube, carbon nanofiber, carbon microfiber, carbon microcoil, carbon nanocoil, metal fiber, carbon fiber And the like, and inorganic oxides such as iron oxide, tin oxide, titanium oxide, zinc oxide, cadmium oxide, and iridium oxide. Among these, carbons and metal oxides are preferable as the material exhibiting high radio wave absorption performance. Among them, carbons can be preferably used from the viewpoint of radio wave absorption, and specifically, conductive carbons can be used. Examples include black, graphite, graphene, carbon nanotubes, carbon nanofibers, carbon microfibers, carbon microcoils, and carbon nanocoils.
さらに、導電性材料としては、カーボン類のなかでも、導電性カーボンブラックを好適に用いることができる。この導電性カーボンブラックは、製造法や組成が限定されるものではなく、オイルファーネスブラックやアセチレンブラック、中空構造を有するカーボンブラック等も含まれ、それらのカーボンブラックを親水化、疎水化、酸化、還元、酸性化、塩基性化、有機化処理したものなども含まれる。なお、導電性カーボンブラックとしては、JIS6217−4:2008に基づいて測定されるDBP吸収量が150〜700cm3/100gのものが好ましい。 Further, as the conductive material, conductive carbon black among carbons can be preferably used. The conductive carbon black is not limited in production method and composition, and includes oil furnace black and acetylene black, carbon black having a hollow structure, etc., and hydrophilizes, oxidizes, and hydrophilizes those carbon blacks. Also included are those that have been subjected to reduction, acidification, basification, or organic treatment. The conductive carbon black preferably has a DBP absorption amount of 150 to 700 cm 3 /100 g measured according to JIS 6217-4:2008.
導電性材料は、上記した電波吸収性能を発現する材料から選択された1種類を使用してもよいし、2種類以上を選択して併用して使用することもできる。なお、発泡粒子Bが導電性材料を含有する場合は、該導電性材料として上記の導電性材料が例示できる。 As the conductive material, one kind selected from the above-mentioned materials exhibiting electromagnetic wave absorption performance may be used, or two or more kinds may be selected and used in combination. When the expanded particles B contain a conductive material, the above-mentioned conductive material can be exemplified as the conductive material.
(導電性材料の配合量)
発泡粒子Aを得るための導電性材料が練り込まれた樹脂粒子においては、導電性材料の含有量が3〜30質量%となるように基材樹脂中に導電性材料が分散されていればよく、この導電性材料が練り込まれた樹脂粒子を発泡させることにより導電性材料の含有量が同様に3〜30質量%の発泡粒子Aを得ることができる。発泡粒子A中に含まれる導電性材料の含有量は、電波吸収体においては、一般に吸収しようとする電波の周波数帯およびその電波吸収性能に応じて決定すべきであるが、本発明においては発泡粒子A100質量%に対して3〜30質量%、好ましくは7〜20質量%、更に好ましくは10〜17質量%である。
(Amount of conductive material blended)
In the resin particles in which the conductive material for kneading the expanded particles A is kneaded, if the conductive material is dispersed in the base resin so that the content of the conductive material is 3 to 30% by mass. Well, by foaming the resin particles in which the conductive material is kneaded, it is possible to obtain the expanded particles A in which the content of the conductive material is similarly 3 to 30% by mass. In the electromagnetic wave absorber, the content of the conductive material contained in the expanded particles A should be determined according to the frequency band of the electromagnetic wave to be generally absorbed and its electromagnetic wave absorption performance. It is 3 to 30% by mass, preferably 7 to 20% by mass, and more preferably 10 to 17% by mass, relative to 100% by mass of the particle A.
発泡粒子A中の導電性材料の含有量が少なすぎる場合は、それを用いて発泡粒子成形体としても所望の導電性能や電波吸収性能を得ることが困難となる虞がある。なお、導電性材料の含有量が少ない導電性発泡粒子であっても発泡粒子Bに対する発泡粒子Aの割合を多くする対策も想定されるが、導電性材料にて被覆された導電性発泡粒子を使用する場合と同様に電波吸収体においては十分なMHz帯の電波吸収性能は得られない。一方、該導電性材料の含有量が多すぎる場合は、導電性材料を基材樹脂に混合する工程の実施自体が困難となり樹脂粒子自体を得ることが困難となる虞がある。また、導電性材料の含有量が多すぎる場合において、仮に、樹脂粒子を得ることができたとしても、良好な発泡粒子を得ることが難しく、独立気泡率の低い発泡粒子や収縮の大きな発泡粒子となり、型内成形性の良好な発泡粒子を得ることが難しくなる虞も生じる。一方、上記の発泡粒子Bを得るための樹脂粒子においては、必要に応じて導電性材料が3質量%未満の範囲で含有される。 When the content of the conductive material in the expanded beads A is too small, it may be difficult to obtain desired conductive performance and radio wave absorption performance even when using the expanded material as a foamed particle molded body. Even if the conductive foamed particles have a small content of the conductive material, a measure for increasing the ratio of the foamed particles A to the foamed particles B can be considered, but the conductive foamed particles coated with the conductive material are As in the case of use, the electromagnetic wave absorber does not have sufficient electromagnetic wave absorption performance in the MHz band. On the other hand, if the content of the conductive material is too large, it may be difficult to perform the step of mixing the conductive material with the base resin, and it may be difficult to obtain the resin particles themselves. Further, when the content of the conductive material is too large, even if it is possible to obtain resin particles, it is difficult to obtain good expanded particles, expanded particles having a low closed cell rate or expanded particles having large shrinkage. Therefore, it may be difficult to obtain expanded particles having good in-mold moldability. On the other hand, in the resin particles for obtaining the expanded beads B, the conductive material is contained in a range of less than 3% by mass, if necessary.
(面積比)
本発明の発泡粒子成形体における発泡粒子Aと発泡粒子Bとの混合状態について、前記発泡粒子成形体の断面に現れた、発泡粒子Aの合計面積(S1)と発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲である。
(Area ratio)
Regarding the mixed state of the expanded particles A and the expanded particles B in the expanded particle molded product of the present invention, the total area of the expanded particles A (S1) and the total area of the expanded particles B (S2) appearing in the cross section of the expanded particle molded product. The average value of the area ratio (S1/S2) is 0.05 to 1.0.
上記の面積比(S1/S2)の平均値が0.05〜1.0の範囲から外れて小さすぎる場合は、発泡粒子A中の導電性材料の含有量の上限にも前記のとおり限界があり、また、発泡粒子成形体中に発泡粒子Aを大きなバラツキなく分散させることも難しくなることから、十分かつ再現性のある導電性能や電波吸収性能が得られない。 When the average value of the above area ratio (S1/S2) is out of the range of 0.05 to 1.0 and is too small, the upper limit of the content of the conductive material in the expanded particles A is also limited as described above. In addition, since it is difficult to disperse the expanded beads A in the expanded beads molded article without a large variation, sufficient and reproducible conductive performance and electromagnetic wave absorption performance cannot be obtained.
上記の面積比(S1/S2)の平均値が0.05〜1.0の範囲から外れて大きすぎる場合は、発泡粒子の型内成形時の二次発泡性低下、得られる発泡粒子成形体の表面平滑性不良、および発泡粒子成形体の成形後における成形体の収縮率増大の虞がある。更に、該面積比の平均値が大きすぎる場合、得られる発泡粒子成形体製の電波吸収体においてMHz帯の電波吸収性能が低下してしまう虞がある。上記の観点から、本発明の発泡粒子成形体を得るための混合発泡粒子を構成する発泡粒子Aと発泡粒子Bとの混合割合は、体積比(発泡粒子Aの総体積/発泡粒子Bの総体積)で0.05〜1.0、好ましくは0.08〜0.7、更に好ましくは0.1〜0.5、特に好ましくは0.1〜0.3である。なお、型内成形にて使用される混合発泡粒子の発泡粒子Aと発泡粒子Bとの体積比は、該型内成形にて得られた発泡粒子成形体の断面を構成している発泡粒子Aと発泡粒子Bの面積比の平均値と同様であると見做せる。したがって、本発明において該面積比の平均値は、0.05〜1.0、好ましくは0.08〜0.7、更に好ましくは0.1〜0.5、特に好ましくは0.1〜0.3である。 When the average value of the above area ratio (S1/S2) deviates from the range of 0.05 to 1.0 and is too large, the secondary foamability of the expanded particles at the time of in-mold molding is decreased, and the obtained expanded particle molded body is obtained. There is a risk of poor surface smoothness and an increase in shrinkage rate of the molded product after molding of the expanded particle molded product. Further, if the average value of the area ratio is too large, the radio wave absorbing performance in the MHz band of the obtained foamed particle molded article radio wave absorber may be deteriorated. From the above viewpoint, the mixing ratio of the expanded particles A and the expanded particles B forming the mixed expanded particles for obtaining the expanded particle molded article of the present invention is such that the volume ratio (total volume of expanded particles A/total expanded particles B). The volume) is 0.05 to 1.0, preferably 0.08 to 0.7, more preferably 0.1 to 0.5, and particularly preferably 0.1 to 0.3. The volume ratio of the foamed particles A and the foamed particles B of the mixed foamed particles used in the in-mold molding is the foamed particle A constituting the cross section of the foamed particle molded body obtained by the in-mold molding. And the average value of the area ratio of the foamed particles B can be regarded as the same. Therefore, in the present invention, the average value of the area ratio is 0.05 to 1.0, preferably 0.08 to 0.7, more preferably 0.1 to 0.5, and particularly preferably 0.1 to 0. .3.
(面積比の測定方法)
本発明において上記の面積比(S1/S2)は、発泡粒子成形体の断面上に選択された複数個所の縦150mm、横150mmの正方形の範囲内に存在する、複数の発泡粒子A断面の面積の合計(S1)と複数の発泡粒子B断面の面積の合計(S2)を求めて、S1をS2で除することにより求めることができる。そして、無作為に得た5箇所の発泡粒子成形体断面について、この面積比(S1/S2)を求める操作を行い、得られた5箇所についての面積比(それぞれSR1、SR2、SR3、SR4、SR5とする)の算術平均値を該面積比(S1/S2)の平均値(SV)とする。
(Area ratio measuring method)
In the present invention, the above-mentioned area ratio (S1/S2) is the area of a plurality of expanded particles A cross sections existing within a range of a square of 150 mm in length and 150 mm in width at a plurality of locations selected on the cross section of the expanded particle molded article. (S1) and the total area (S2) of the cross-sections of the plurality of expanded particles B, and then S1 is divided by S2. Then, an operation for obtaining this area ratio (S1/S2) was performed on the cross section of the expanded-particle molded article at 5 locations obtained at random, and the area ratios for 5 locations obtained (SR 1 , SR 2 , SR 3 respectively). , SR 4 , SR 5 ) is the average value (SV) of the area ratio (S1/S2).
なお、発泡粒子成形体の断面上に選択された正方形の範囲内に存在するS1、S2の測定は、例えば、次のように測定することができる。まず、上記正方形の範囲の拡大写真を撮影し、図8Aに表すように拡大写真をスキャナー装置で画像データ化する。このときスキャナー装置としては、市販のスキャナー装置を適宜選択可能である。次に、画像データ化された拡大写真の画像にモノトーン化処理を施して図8Bに表すようにモノトーン画像を調製する。図8B中、発泡粒子Aは黒い部分(図8B中、符号BLにて示す部分)として表示される。モノトーン化処理は、例えば、画像データ化された拡大写真をNS2K Pro(ナノシステム)のような画像解析ソフトに適用することで実現することができる。モノトーン化処理され画像データに基づき、黒く表れている部分の面積を算出することにより発泡粒子Aの面積の合計(S1)が算出され、画像全体(図8B中、符号Wにて示す部分)の面積から発泡粒子Aの面積の合計を差し引くことで、発泡粒子Bの面積の合計(S2)を算出することができる。 The measurement of S1 and S2 existing in the range of the selected square on the cross section of the expanded particle molded article can be performed as follows, for example. First, an enlarged photograph of the square range is taken, and the enlarged photograph is converted into image data by a scanner device as shown in FIG. 8A. At this time, a commercially available scanner device can be appropriately selected as the scanner device. Next, a monotone image is prepared as shown in FIG. 8B by performing a monotone process on the enlarged image of the image data. In FIG. 8B, the foamed particles A are displayed as a black portion (a portion indicated by reference symbol BL in FIG. 8B). The monotone processing can be realized by applying the enlarged photograph converted into image data to image analysis software such as NS2K Pro (nanosystem). The total area (S1) of the expanded particles A is calculated by calculating the area of the portion that appears black based on the image data that has been subjected to the monotone process, and the entire image (the portion indicated by the symbol W in FIG. 8B) is calculated. By subtracting the total area of the expanded particles A from the area, the total area (S2) of the expanded particles B can be calculated.
(面積比の変動係数)
本発明の発泡粒子成形体の断面における面積比(S1/S2)の変動係数は20%以下、好ましくは15%以下、更に好ましくは10%以下である。該変動係数が大きすぎる場合は、発泡粒子成形体の製品間、或いは該製品の部分の発泡粒子Aの分散状態のバラツキが大きく所期の性能バラツキに繋がる。したがって、該変動係数が大きすぎる発泡粒子成形体は電波吸収体として使用した場合、電波吸収性能のバラツキが大きなものとなってしまう。
(Coefficient of variation of area ratio)
The coefficient of variation of the area ratio (S1/S2) in the cross section of the expanded bead molded product of the present invention is 20% or less, preferably 15% or less, more preferably 10% or less. If the coefficient of variation is too large, the dispersion of the expanded particles A between the products of the expanded particle molded product or the product part is large, which leads to the expected performance dispersion. Therefore, when the expanded particle molded body having an excessively large coefficient of variation is used as a radio wave absorber, the radio wave absorption performance varies greatly.
(面積比の変動係数(%)の算出方法)
本発明において上記の面積比(S1/S2)の変動係数は、上記のとおり測定された発泡粒子成形体断面における5箇所の面積比(SR1、SR2、SR3、SR4、SR5)の値および面積比の平均値(SV)から、下記数式(1)〜(3)に基づいて算出される。
(Calculation method of area ratio variation coefficient (%))
In the present invention, the coefficient of variation of the above area ratio (S1/S2) is the area ratio at five locations (SR 1 , SR 2 , SR 3 , SR 4 , SR 5 ) in the cross section of the expanded particle molded article measured as described above. And the average value (SV) of the area ratios are calculated based on the following mathematical formulas (1) to (3).
(発泡粒子Aおよび発泡粒子Bの見かけ密度)
上記したような密度の発泡粒子成形体を容易に得ることを考慮すると、発泡粒子Aおよび発泡粒子Bの見かけ密度は、各々、20〜150g/L、更に30〜80g/Lであることが好ましい。
(Apparent density of expanded particles A and expanded particles B)
Considering that a foamed particle molded body having the above-described density is easily obtained, the apparent density of the foamed particles A and the foamed particles B is preferably 20 to 150 g/L, and further preferably 30 to 80 g/L. ..
(発泡粒子の見かけ密度の測定方法)
本明細書において発泡粒子の見かけ密度は次のとおり測定される。水を入れたメスシリンダー内に重量W(g)の発泡粒子群を、金網などを使用して沈め、金網などの道具の体積を考慮しつつ水位の上昇分から発泡粒子群の体積V(L)を求め、発泡粒子群の重量を発泡粒子群の体積で除すことにより求められる値(W/V)をg/Lに単位換算して発泡粒子の真密度が求められる。そして発泡粒子の見かけ密度は、前記真密度を1.6で除した値である。なお、前記見かけ密度は、発泡粒子を大きく圧縮することなく通常の型内成形により得られる発泡粒子成形体の密度と概ね同じ値となる。
(Method of measuring apparent density of expanded particles)
In this specification, the apparent density of expanded particles is measured as follows. The foamed particle group of weight W (g) is submerged in a graduated cylinder containing water using a wire netting or the like, and the volume V (L) of the foamed particle group is calculated from the rise of the water level while considering the volume of the tool such as the wire netting. And the true density of the expanded beads is calculated by converting the value (W/V) obtained by dividing the weight of the expanded beads by the volume of the expanded beads into a unit of g/L. The apparent density of the expanded particles is a value obtained by dividing the true density by 1.6. The apparent density is approximately the same value as the density of a foamed particle molded body obtained by ordinary in-mold molding without significantly compressing the foamed particles.
(発泡粒子成形体の製造方法)
本発明に係る発泡粒子成形体の製造方法としては、例えば次のような方法を挙げることができる。
(Method for producing foamed particle molded body)
Examples of the method for producing the expanded bead molded article according to the present invention include the following methods.
まず、発泡粒子Aおよび発泡粒子Bを次のように調製する。 First, the expanded particles A and the expanded particles B are prepared as follows.
(発泡粒子の調製)
発泡粒子成形体の形成に使用される発泡粒子Bは、導電性材料の実質的な使用を規制した状態にて上記した基材樹脂から樹脂粒子を得て、樹脂粒子に発泡剤を含浸させ、その樹脂粒子を各々周知の発泡方法にて発泡させることにより得ることができる。なお、導電性材料の実質的な使用を規制した状態とは、導電性材料を全く含まない状態と、導電性材料が3質量%未満で含まれている状態とをあわせた概念であるものとする。発泡粒子Bを得るための樹脂粒子を調製する方法としては、例えば、基材樹脂を押出機に投入して溶融状態として押出機先端に取り付けたダイからストランド状に押出し、押出されたストランドをカットして樹脂粒子を得る方法(ストランドカット法)等を挙げることができる。この方法の他にも、樹脂粒子を調製する方法としては、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。
(Preparation of expanded particles)
The expanded particles B used for forming the expanded particle molded body are obtained by obtaining resin particles from the above-mentioned base resin in a state in which the use of the conductive material is substantially restricted, and impregnating the resin particles with a foaming agent, It can be obtained by foaming the resin particles by a known foaming method. It should be noted that the state in which the use of the conductive material is substantially regulated is a concept including a state in which the conductive material is not contained at all and a state in which the conductive material is contained in less than 3% by mass. To do. As a method for preparing resin particles for obtaining the foamed particles B, for example, a base resin is put into an extruder, melted, extruded in a strand form from a die attached to the tip of the extruder, and the extruded strand is cut. To obtain resin particles (strand cut method). In addition to this method, as a method for preparing resin particles, a well-known resin particle manufacturing method such as an underwater cut method can be adopted.
発泡粒子Aは、熱可塑性樹脂に導電性材料が3〜30質量%分散されているものに発泡剤を含有させた樹脂粒子或いは樹脂組成物を得て、その樹脂粒子或いは樹脂組成物を前述した周知の発泡方法にて発泡させることにより得ることができる。発泡粒子Aを得るための樹脂粒子を調製する方法としては、導電性材料と熱可塑性樹脂とをニーダーや押出機などの混練機を使用することにより導電性材料が熱可塑性樹脂中に大きく偏在することなく分散するように混練する以外は、上述したようなストランドカット法や、アンダーウォーターカット法等の周知の樹脂粒子製造方法を採用することができる。 The expanded particles A are obtained by obtaining a resin particle or a resin composition in which a conductive material is dispersed in a thermoplastic resin in an amount of 3 to 30% by mass and containing a foaming agent, and the resin particle or the resin composition is described above. It can be obtained by foaming by a known foaming method. As a method of preparing the resin particles for obtaining the expanded beads A, the conductive material and the thermoplastic resin are largely unevenly distributed in the thermoplastic resin by using a kneader such as a kneader or an extruder. Other than kneading so as to disperse the resin particles without using any of the above methods, well-known methods for producing resin particles such as the strand cutting method and the underwater cutting method described above can be adopted.
(発泡粒子混合物の調製)
次に、混合装置などを用いて発泡粒子Aおよび発泡粒子Bを混合して発泡粒子混合物を調製する。混合装置としては、パドル型若しくはスクリュー型ミキサーや、タンブラー等を適宜選択可能である。
(Preparation of expanded particle mixture)
Next, the expanded particles A and the expanded particles B are mixed using a mixing device or the like to prepare an expanded particle mixture. As the mixing device, a paddle type or screw type mixer, a tumbler, or the like can be appropriately selected.
本発明の発泡粒子成形体を電波吸収体として使用する場合においては、発泡粒子成形体を構成する発泡粒子Aと発泡粒子Bの混合状態は、均一であることが理想的である。これを実現する観点からは、発泡粒子Aと発泡粒子Bとの混合物(発泡粒子混合物)を型内成形して発泡粒子成形体を製造する工程において、発泡粒子混合物から無作為に取り出された発泡粒子群中に含まれる発泡粒子Aの割合が一定範囲内に収まっているような状態となっていることが好適である。発泡粒子Aと発泡粒子Bとが均一に混合された発泡粒子混合物を得る観点からは、発泡粒子Aおよび発泡粒子Bの見かけ密度および平均粒子径の関係が下記数式(4)および数式(5)を満足することが好ましい。 When the expanded particle molded product of the present invention is used as a radio wave absorber, it is ideal that the mixed state of the expanded particles A and the expanded particles B constituting the expanded particle molded product is uniform. From the viewpoint of achieving this, in the process of in-mold molding a mixture of expanded particles A and expanded particles B (expanded particle mixture) to produce an expanded particle molded article, foams randomly extracted from the expanded particle mixture. It is preferable that the ratio of the expanded particles A contained in the particle group is within a certain range. From the viewpoint of obtaining a foamed particle mixture in which the foamed particles A and the foamed particles B are uniformly mixed, the relationship between the apparent density and the average particle diameter of the foamed particles A and the foamed particles B is represented by the following formulas (4) and (5). Is preferably satisfied.
ただし、上記数式(4)、数式(5)において、
D1:発泡粒子Aの見かけ密度(g/L)、
D2:発泡粒子Bの見かけ密度(g/L)、
P1:発泡粒子Aの平均粒子径(mm)、
P2:発泡粒子Bの平均粒子径(mm)、
である。
However, in the above formulas (4) and (5),
D1: apparent density (g/L) of expanded particles A,
D2: Apparent density (g/L) of the expanded particles B,
P1: average particle diameter (mm) of the expanded particles A,
P2: average particle diameter (mm) of the expanded particles B,
Is.
上記数式(4)および数式(5)を満足する発泡粒子を混合装置にて混合して発泡粒子混合物を調製することにより、発泡粒子混合物から無作為に取り出された混合発泡粒子群中に含まれる発泡粒子Aの割合を一定範囲内にすることが容易となる。 Foamed particles satisfying the above formulas (4) and (5) are mixed in a mixing device to prepare a foamed particle mixture, which is included in a group of mixed foamed particles randomly extracted from the foamed particle mixture. It becomes easy to keep the ratio of the expanded particles A within a certain range.
(発泡粒子の平均粒子径測定方法)
水が入ったメスシリンダーを用意し、適量の発泡粒子群を上記メスシリンダー内の水中に金網などの道具を使用して沈める。そして、金網などの道具の体積を考慮しつつ水位上昇分より読みとられる発泡粒子の容積V1[L]を測定する。この容積V1をメスシリンダーに入れた発泡粒子の個数(N)にて割り算(V1/N)することにより、発泡粒子1個あたりの平均体積を算出する。得られた平均体積と同じ体積を有する仮想真球の直径をもって発泡粒子の平均粒子径[mm]とする。
(Measurement method of average particle diameter of expanded particles)
A graduated cylinder containing water is prepared, and an appropriate amount of the expanded particle group is submerged in water in the graduated cylinder using a tool such as a wire net. Then, the volume V1 [L] of the expanded particles read from the water level rise is measured while considering the volume of a tool such as a wire net. This volume V1 is divided (V1/N) by the number (N) of expanded particles put in the graduated cylinder to calculate the average volume per expanded particle. The diameter of a virtual sphere having the same volume as the obtained average volume is defined as the average particle diameter [mm] of the expanded particles.
(発泡粒子成形体の調製)
前記のとおり得られた発泡粒子混合物を用いて発泡粒子成形物を調製する。発泡粒子成形物は、発泡粒子の型内成形法に基づき調整することができる。型内成形法は、従来公知の方法などを適宜選択可能である。たとえば、目的に応じた形状に形成された金型内に、上記のとおり調製された発泡粒子混合物を圧縮充填法、クラッキング充填法等の公知の充填法にて充填し、金型内の発泡粒子をスチーム等の加熱媒体にて加熱し発泡粒子を相互に融着させて融着物を得る。そして融着物を金型から取り出すことにより発泡粒子成形体を得ることができる。
(Preparation of foamed particle molded body)
An expanded particle molded product is prepared using the expanded particle mixture obtained as described above. The foamed particle molded product can be prepared based on the in-mold molding method of the foamed particles. As the in-mold molding method, a conventionally known method can be appropriately selected. For example, in a mold formed into a shape according to the purpose, the foamed particle mixture prepared as described above is filled by a known filling method such as a compression filling method or a cracking filling method, and the foamed particles in the die are filled. Is heated with a heating medium such as steam to fuse the foamed particles to each other to obtain a fusion product. Then, the expanded particle molded body can be obtained by taking out the fused material from the mold.
(発泡粒子成形体の利用形態)
本発明における発泡粒子成形体は、電波吸収体として使用される場合、図1A,図1B、図2A,図2Bに示すように、ピラミッド型若しくは楔型の形状が主に採用され、好ましくは異なる周波数帯で異なる電波吸収性能を示す素材と複合的に使用される。但し、形状は、所望の目的性能に応じて適宜設計することが可能であり、上記形状に限定されることはない。なお、例えば本発明の発泡粒子成形体からなる電波吸収体は、主にフェライトタイルなどのMHz帯で顕著に電波吸収性能を発揮する素材と共に使うことにより、より広い周波数帯において効率的に電波吸収が可能となる。異なる周波数帯で異なる電波吸収性能を示す素材と発泡粒子成形体とを複合的に使用した電波吸収体として、具体的には、図3A,B、図4A,Bのような形状を有する複合型電波吸収体10が使用され、その底面に符号3にて示す低周波電波吸収材を使用する。本明細書においては、複合型電波吸収体を単に電波吸収体と呼ぶことがある。
(Use form of foamed particle molded body)
When the foamed particle molded body according to the present invention is used as a radio wave absorber, as shown in FIGS. 1A, 1B, 2A, and 2B, a pyramid-shaped or wedge-shaped shape is mainly adopted, and preferably different. It is used in combination with materials that show different electromagnetic absorption performance in different frequency bands. However, the shape can be appropriately designed according to the desired target performance, and is not limited to the above shape. Note that, for example, the electromagnetic wave absorber made of the expanded particle molded body of the present invention can be efficiently absorbed in a wider frequency band by being used together with a material that exhibits remarkable electromagnetic wave absorption performance mainly in the MHz band such as ferrite tile. Is possible. As a radio wave absorber using a composite of a material exhibiting different radio wave absorption performance in different frequency bands and a foamed particle molded body, specifically, a composite type having a shape as shown in FIGS. 3A, B and 4A, B. The radio wave absorber 10 is used, and a low frequency radio wave absorber indicated by reference numeral 3 is used on the bottom surface thereof. In the present specification, the composite type electromagnetic wave absorber may be simply referred to as an electromagnetic wave absorber.
電波吸収体で吸収する周波数帯を具体的に例示すると、異なる周波数帯で異なる電波吸収性能を示す素材としてフェライトを用いた場合、フェライトタイルが主に低周波数帯(30〜400MHz)の電波を吸収し、発泡粒子成形体が主にそれより上の高周波数帯の電波を吸収する。 To give a concrete example of the frequency bands absorbed by the radio wave absorber, when ferrite is used as a material exhibiting different radio wave absorption performance in different frequency bands, the ferrite tile mainly absorbs radio waves in the low frequency band (30 to 400 MHz). However, the expanded particle molded body mainly absorbs radio waves in the high frequency band above it.
ところで、誘電損失を起こす材料の電波吸収には、誘電損失ε”*に起因するものと、導電損失σに起因するものとがあり、次に示す数式(6)で表される。 By the way, the electromagnetic wave absorption of a material that causes a dielectric loss includes one caused by a dielectric loss ε″ * and one caused by a conductive loss σ, which is expressed by the following mathematical expression (6).
ただし、上記数式(6)において、
ε”* :誘電損失
σ :導電損失
ε” :複素誘電率の虚数部
f :周波数
である。
However, in the above formula (6),
ε″ * : dielectric loss σ: conduction loss ε″: imaginary part of complex permittivity f: frequency.
発泡粒子成形体とフェライトタイルとを複合させた電波吸収体においては、高周波数帯では発泡粒子成形体の複素誘電率の虚数部が大きいが、低周波数帯ではフェライトによる吸収効果を主とするため発泡粒子成形体の複素誘電率の虚数部が小さいほうが好ましい。したがって、発泡粒子成形体には、数式(6)における導電損失σが小さいことが求められる。 In a radio wave absorber that combines a foamed particle molded body and a ferrite tile, since the imaginary part of the complex dielectric constant of the foamed particle molded body is large in the high frequency band, the absorption effect of ferrite is mainly in the low frequency band. It is preferable that the imaginary part of the complex dielectric constant of the foamed particle molded body is small. Therefore, the expanded particle molded body is required to have a small conductive loss σ in the formula (6).
ここで、発泡粒子成形体の電気的な等価回路を図5A、発泡粒子成形体における導電損失と誘電損失を説明する模式図を図5Bに示す。図5AにおいてRは抵抗、Cはコンデンサであり、それぞれにおいて導電損失、誘電損失が生じる。発泡粒子成形体内において、導電性を示す発泡粒子Aは等価回路では小さな抵抗と見做せるため、そこで導電損失が生じる。そして、図5Bに示すように空間的に互いに離れて発泡粒子Aが存在している部分は、小さなコンデンサCと見做せるため、そこで誘電損失が生じる。ところで、上記数式6において、ε”*は、コンデンサで生じる誘電損失であり、σは抵抗により生じる導電損失である。したがって、発泡粒子Aの連結が長すぎる場合には、等価回路の抵抗成分の影響が大きく、上記数式(6)において導電損失σが主体の発泡粒子成形体となる。この場合の発泡粒子成形体は、電波吸収体としては好適なものとは言えない。 Here, an electrical equivalent circuit of the expanded-particle molded product is shown in FIG. 5A, and a schematic diagram for explaining the conduction loss and the dielectric loss in the expanded-particle molded product is shown in FIG. 5B. In FIG. 5A, R is a resistance and C is a capacitor, and a conductive loss and a dielectric loss occur in each. In the expanded particle molded body, the expanded particles A exhibiting conductivity can be regarded as a small resistance in an equivalent circuit, and thus a conductive loss occurs there. Then, as shown in FIG. 5B, the portions where the foamed particles A are spatially separated from each other can be regarded as the small capacitors C, so that dielectric loss occurs there. By the way, in the above formula 6, ε″ * is a dielectric loss generated in the capacitor, and σ is a conductive loss caused by resistance. Therefore, when the connection of the expanded particles A is too long, the resistance component of the equivalent circuit is The expanded particle molded body is largely affected by the conductive loss σ in the above formula (6), and the expanded particle molded body in this case is not suitable as a radio wave absorber.
従来の導電性材料を含有した導電性発泡粒子のみからなる型内成形体の電波吸収体は、GHz帯での電波吸収性能を向上させるために、導電性材料の添加量を増やすことは可能であるが、添加量増加に応じてMHz帯吸収性能が低下するという問題がある。一方、MHz帯での吸収性能を向上させるために導電性材料の添加量を減らす場合、GHz帯での電波吸収性能が低下するという問題がある。すなわちGHz帯およびMHz帯の両周波数帯域で所望の電波吸収性能を得ることが難しいとうい問題がある。また、従来の導電塗料を被覆してなる被覆層を備えた導電性被膜形成発泡粒子とそのような被覆層を備えずに形成された非導電性発泡粒子との混合発泡粒子型内成形体からなる電波吸収体においては、MHz帯の電波吸収性能は上記のものと比して向上するものの、未だ不十分なレベルにあるという問題がある。 In the case of the conventional electromagnetic wave absorber of the in-mold molded article containing only the conductive foam particles containing the conductive material, it is possible to increase the amount of the conductive material added in order to improve the electromagnetic wave absorption performance in the GHz band. However, there is a problem that the MHz band absorption performance deteriorates as the added amount increases. On the other hand, when the amount of the conductive material added is reduced in order to improve the absorption performance in the MHz band, there is a problem that the radio wave absorption performance in the GHz band deteriorates. That is, there is a problem in that it is difficult to obtain desired radio wave absorption performance in both the GHz band and the MHz band. Further, from a mixed foamed particle type in-molded product of a conductive film-forming foamed particle having a coating layer formed by coating a conventional conductive paint and a non-conductive foamed particle formed without such a coating layer. In this radio wave absorber, the radio wave absorption performance in the MHz band is improved as compared with the above, but there is a problem that it is still at an insufficient level.
導電性発泡粒子のみからなる型内成形体の電波吸収体についての上記問題は、電波吸収体をなす発泡粒子成形体全体が導電性材料にて構成されることになるため、電波吸収体の電波吸収性能は主に導電損失によって生じていると考えられ、高周波数帯で性能を発揮し易いなどの理由によるものと考えられる。また、上記導電塗料を被覆してなる被覆層を備えた導電性被膜形成発泡粒子の型内成形体からなる電波吸収体の問題は、導電塗料にて発泡粒子を被覆することにより導電性発泡粒子を得ていることから、導電性被膜形成発泡粒子は、導電性発泡粒子の被覆層にのみ導電性材料が存在しているにすぎない。また、発泡粒子表面に抵抗となる電気回路が形成され、導電性被膜形成発泡粒子成形体の導電損失σが大きくなる。したがって、このような導電性被膜形成発泡粒子成形体は、電波吸収性能として十分な性能を有するものとは言えないものである。 The above-mentioned problem regarding the electromagnetic wave absorber of the in-mold molded body composed only of conductive foamed particles is caused by the fact that the entire foamed particle molded body forming the electromagnetic wave absorber is composed of a conductive material. It is considered that the absorption performance is mainly caused by the conduction loss, and it is considered that the absorption performance is easily exhibited in the high frequency band. Further, the problem of the radio wave absorber made of the in-mold molded body of the conductive film-forming foamed particles having the coating layer formed by coating the conductive paint is that the conductive foamed particles are formed by coating the foamed particles with the conductive paint. Therefore, in the conductive film-forming expanded particles, the conductive material is present only in the coating layer of the conductive expanded particles. Further, an electric circuit that becomes a resistance is formed on the surface of the expanded beads, and the conductive loss σ of the expanded film-formed molded particles having a conductive film increases. Therefore, such a conductive film-forming expanded particle molded article cannot be said to have a sufficient radio wave absorption performance.
一方、本発明においては、前記のとおり、発泡粒子成形体断面における発泡粒子Aと発泡粒子Bとの該面積比の平均値が0.05〜1.0の範囲となるように混合した混合発泡粒子を用いることにより、得られる発泡粒子成形体内で発泡粒子Aを該面積比(S1/S2)1.0以下の小さな範囲としつつ、発泡粒子成形体の静電容量を所期の値に調整することができる。上記面積比の範囲内とした場合に、発泡粒子Aが、単独、および、2〜20個、更に2〜15個の連結するクラスターを形成するため好ましい。結果として、等価回路の導電損失を小さくしつつ、誘電損失を大きくすることができ、電波吸収性能が向上する。 On the other hand, in the present invention, as described above, mixed foaming in which the average value of the area ratio of the expanded particles A and the expanded particles B in the cross section of the expanded particle molded product is in the range of 0.05 to 1.0. By using the particles, while adjusting the area ratio (S1/S2) of the expanded particles A in the resulting expanded particle molded body to a small range of 1.0 or less, the capacitance of the expanded particle molded body is adjusted to a desired value. can do. When the area ratio is within the above range, the expanded particles A are preferable because they form a single cluster and 2 to 20, and further 2 to 15 connected clusters. As a result, the dielectric loss can be increased while reducing the conductive loss of the equivalent circuit, and the electromagnetic wave absorption performance is improved.
実際に、本発明の発泡粒子成形体(発泡粒子Aおよび発泡粒子Bからなる成形体)と、単一発泡粒子からなる成形体(発泡粒子Aのみからなる成形体)の静電容量を測定した結果を図6に示す。なお、発泡粒子Aおよび発泡粒子Bからなる発泡粒子成形体に含有されている導電性材料としての導電性カーボンブラック添加量は、該カーボンブラックが14質量%分散している発泡粒子Aと発泡粒子Bとの混合比を変えることにより調整した。また、発泡粒子Aのみからなる発泡粒子成形体に含有されている導電性材料としての導電性カーボンブラック添加量は、発泡粒子A中の導電性カーボンブラックの配合率を変えることにより調整した。これらの発泡粒子成形体について、図6に示すように、前者の本発明の発泡粒子成形体の方が効率よく静電容量を高くすることができることが認められる。これは、発泡粒子成形体を等価回路とした場合、そのコンデンサ成分が抵抗成分に比べて大きいことを意味し、電波吸収体として望ましいことを示す。 Actually, the capacitances of the expanded-particle molded product of the present invention (molded product composed of expanded particles A and expanded particles B) and the molded product composed of single expanded particles (molded product composed of only expanded particles A) were measured. Results are shown in FIG. The added amount of conductive carbon black as a conductive material contained in a foamed particle molded body composed of foamed particles A and foamed particles B is as follows. It was adjusted by changing the mixing ratio with B. In addition, the amount of conductive carbon black added as a conductive material contained in the expanded particle molded body consisting of expanded particles A was adjusted by changing the compounding ratio of the conductive carbon black in expanded particles A. Regarding these expanded-particle molded products, as shown in FIG. 6, it is recognized that the former expanded-particle molded product of the present invention can efficiently increase the electrostatic capacity. This means that when the foamed particle molded body is used as an equivalent circuit, its capacitor component is larger than the resistance component, which is desirable as a radio wave absorber.
そして本発明の発泡粒子成形体は、発泡粒子Aからなる導電性材料を多く含有する部分と、発泡粒子Bからなり導電性材料の実質的な使用を規制した状態の部分とを適宜存在させることにより、導電損失を主体とすることなく、誘電損失を主体とすることができるので、MHz帯の電波吸収性能が低下し易い性質を良化することができる。よって、本発明の発泡粒子成形体は、GHz帯の電波吸収性能に優れると共にMHz帯の吸収性能を向上させることができる。すなわち、当該発泡粒子成形体は、MHz帯からGHz帯までの電磁波を吸収させることの可能な、幅広い周波数領域に対応が可能な電波吸収体として利用可能なものである。 The foamed-particle molded article of the present invention appropriately has a portion containing a large amount of the conductive material composed of the foamed particles A and a portion composed of the foamed particles B in a state in which the use of the conductive material is substantially restricted. As a result, the dielectric loss can be the main component without the conduction loss being the main component, so that the property that the electromagnetic wave absorption performance in the MHz band is likely to deteriorate can be improved. Therefore, the expanded bead molded product of the present invention is excellent in the electromagnetic wave absorption performance in the GHz band and can improve the absorption performance in the MHz band. That is, the foamed particle molded body can be used as a radio wave absorber capable of absorbing electromagnetic waves in the MHz band to the GHz band and capable of supporting a wide frequency range.
本発明において発泡粒子成形体は、変動係数は20%以下であることから、導電性材料が練り込まれている発泡粒子Aが、発泡粒子成形体全体に略均一に分散して存在していると言える。このことから、本発明によれば、より安定的にMHz帯からGHz帯までの電波を吸収させることの可能な、幅広い周波数領域に対応が可能な電波吸収体として利用可能なものが提供される。 In the present invention, since the coefficient of variation of the expanded particle molded article is 20% or less, the expanded particles A in which the conductive material is kneaded are present substantially uniformly dispersed throughout the expanded particle molded article. Can be said. From this, according to the present invention, what is available as a radio wave absorber capable of more stably absorbing radio waves from the MHz band to the GHz band and capable of supporting a wide frequency range is provided. ..
(低周波電波吸収材)
前記複合型電波吸収体に使用される低周波電波吸収材3としては、例えば、磁性損失材料としてフェライトタイル等からなる電波吸収体が好適に使用される。フェライトタイルは400MHz以下の低周波域においてきわめて良好な電波吸収特性を示すものである。そこで、複合型電波吸収体10としては、本発明の発泡粒子成形体からなる電波吸収体とフェライトタイルとを組み合わせたユニットを例示することができる。このような複合型電波吸収体10のユニットにおいては、GHz帯域の電波の吸収は発泡粒子成形体で効率よく吸収され、MHz帯の電波がフェライトの磁性損失によりフェライトタイルにて効率よく吸収されることとなり、より広域の周波数帯での電波吸収性能をより強力に発揮することができるようになる。
(Low frequency wave absorber)
As the low-frequency wave absorber 3 used for the composite type wave absorber, for example, a wave absorber made of ferrite tile or the like is preferably used as a magnetic loss material. The ferrite tile exhibits extremely good electromagnetic wave absorption characteristics in the low frequency region of 400 MHz or less. Therefore, as the composite type electromagnetic wave absorber 10, a unit in which an electromagnetic wave absorber made of the expanded particle molded body of the present invention and a ferrite tile are combined can be exemplified. In such a unit of the composite type electromagnetic wave absorber 10, the absorption of the radio wave in the GHz band is efficiently absorbed by the expanded particle molded body, and the radio wave in the MHz band is efficiently absorbed by the ferrite tile due to the magnetic loss of ferrite. As a result, it becomes possible to more strongly exert the electromagnetic wave absorption performance in a wider frequency band.
なお、発泡粒子成形体とフェライトタイルを組み合わせて使用する場合、発泡粒子成形体の発泡粒子Aに含まれる導電性材料は、上述したように発泡粒子A100質量%に対して3〜30質量%、好ましくは7〜20質量%、更に好ましくは10〜17質量%である。このように好ましい導電性材料の上限範囲が存在する理由としては、フェライトタイルと空間(空気)のインピーダンスがマッチングするように設計すると発泡粒子成形体の導電性材料の含有量が多すぎると、そのインピーダンスが空気と大きく異なるため、インピーダンス不整合により発泡粒子成形体部分での電磁波の反射が起こりやすくなり、低周波域を受け持つフェライトタイルの吸収特性を阻害し易くなるためと考えられる。 When the expanded particle molded body and the ferrite tile are used in combination, the conductive material contained in the expanded particle A of the expanded particle molded body is 3 to 30% by mass relative to 100% by mass of the expanded particle A as described above. It is preferably 7 to 20% by mass, more preferably 10 to 17% by mass. The reason why the preferable upper limit range of the conductive material exists is that the content of the conductive material of the expanded particle molded body is too large when the ferrite tile and the space (air) are designed to be matched in impedance. It is considered that since the impedance is largely different from that of air, electromagnetic waves are likely to be reflected at the foamed particle molded body portion due to impedance mismatching, and the absorption characteristics of the ferrite tile responsible for the low frequency region are easily impaired.
一方、発泡粒子成形体の導電性材料の含有量を少なくすると、フェライトタイルの吸収特性を阻害することはなくなるが、発泡粒子成形体自体の電波吸収性能が低下するため、同じ性能を出すためには、電波吸収体を大きく(発泡粒子成形体が多角錘形状の場合には多角錘の高さを高く)しなければならない。結果として、電波暗室などの空間占有率が大きくなり、限られた空間を有効に活用できなくなってしまう。 On the other hand, if the content of the conductive material in the expanded particle molded article is reduced, the absorption characteristics of the ferrite tile will not be hindered, but the radio wave absorption performance of the expanded particle molded article itself will decrease, so in order to achieve the same performance. Requires that the electromagnetic wave absorber be made large (the height of the polygonal cone is increased when the expanded particle molded body has a polygonal cone shape). As a result, the space occupancy of the anechoic chamber and the like becomes large, and it becomes impossible to effectively utilize the limited space.
したがって、本発明の発泡粒子成形体は、導電性材料を特定範囲の量で含有する発泡粒子Aと、導電性材料の実質的な使用を規制した発泡粒子Bとを特定範囲の混合比率を満たして含有する場合にあって、フェライトタイルを組み合わされてユニットを構成する電波吸収体として使用する場合に、フェライトの吸収特性の良い低周波数帯ではフェライトタイルが電波を効率的に吸収し、高周波数帯では該発泡粒子成形体が電波を効率的に吸収し、広い周波数帯域において特に優れた電波吸収性能が期待できる。 Therefore, the expanded particle molded article of the present invention satisfies the mixing ratio of the specific range of the expanded particles A containing the conductive material in the specific range and the expanded particles B in which the use of the conductive material is substantially restricted. When used as a radio wave absorber that is combined with a ferrite tile to form a unit, the ferrite tile efficiently absorbs radio waves in the low frequency band with good ferrite absorption characteristics, and In the band, the foamed particle molded body efficiently absorbs radio waves, and particularly excellent radio wave absorption performance can be expected in a wide frequency band.
以下、実施例を用いて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[発泡粒子Aの製造]
内径65mmの押出機の出口側にストランド形成用ダイを付設した押出装置を準備した。表1に示した配合となるように、基材樹脂となる熱可塑性樹脂として表1に示すプロピレン系樹脂、導電性材料となる導電性無機物としてオイルファーネスブラック(製品名;ケッチェンブラック(登録商標)EC300J(ライオン社製)、DBP吸収量;360cm3/100g、粒径;40nm)を内径65mmの押出機に供給し、設定温度200〜240℃にて加熱、溶融、混練し、ポリプロピレン樹脂中に導電性材料を分散させた後、得られた溶融混練物を前記ダイの細孔から、ストランド状に押出し、ペレタイザーで2mg(粒子の長さと直径の比率(L/D)は1.3)になるように切断して円柱状の樹脂粒子を得た。得られた樹脂粒子1kgと、分散媒体の水3L、分散剤としてカオリン3g、ドデシルベンゼンスルホン酸ナトリウム0.02gとを5Lのオートクレーブ内に仕込み、分散媒体中で密閉容器内に発泡剤として二酸化炭素を圧入し、撹拌下に表1に示した発泡温度まで加熱昇温して同温度に15分間保持して調整し、密閉容器内圧力を3.0MPa(G)とした後、オートクレーブ内容物を大気圧下に分散媒体と共に放出して発泡粒子Aを得た。なお、発泡粒子Aを構成している樹脂中の導電性材料の分散状態は図10のTEM写真(倍率20000倍)のとおりであった。図10のTEM写真において、黒色箇所にて導電性材料の存在箇所が示され、非黒色(白色)を呈する箇所にて樹脂の存在箇所が示されている。また、得られた発泡粒子Aの諸物性を表1に併せて示した。
[Production of expanded beads A]
An extruder having an inner diameter of 65 mm and a strand forming die attached to the exit side of the extruder was prepared. The propylene-based resin shown in Table 1 is used as the thermoplastic resin as the base resin so as to have the composition shown in Table 1, and the oil furnace black (product name; Ketjen Black (registered trademark) as the conductive inorganic substance that is the conductive material). ) EC300J (manufactured by Lion Corporation), DBP absorption amount; 360 cm 3 /100 g, particle size; 40 nm) are supplied to an extruder having an inner diameter of 65 mm, heated at a set temperature of 200 to 240° C., melted, kneaded, and in a polypropylene resin. After the conductive material is dispersed in the mixture, the obtained melt-kneaded product is extruded in a strand form from the pores of the die, and 2 mg (the ratio of particle length to diameter (L/D) is 1.3) with a pelletizer. To obtain cylindrical resin particles. 1 kg of the obtained resin particles, 3 L of water as a dispersion medium, 3 g of kaolin as a dispersant, and 0.02 g of sodium dodecylbenzenesulfonate were charged into a 5 L autoclave, and carbon dioxide was used as a foaming agent in a closed container in the dispersion medium. Was charged under pressure and heated to the foaming temperature shown in Table 1 under stirring and maintained at the same temperature for 15 minutes to adjust the pressure inside the closed container to 3.0 MPa (G). The particles were discharged together with the dispersion medium under atmospheric pressure to obtain expanded particles A. The dispersed state of the conductive material in the resin forming the expanded particles A was as shown in the TEM photograph (magnification: 20000 times) of FIG. 10. In the TEM photograph of FIG. 10, a black portion indicates a location of the conductive material, and a non-black (white) location indicates a location of the resin. Further, various physical properties of the obtained expanded beads A are also shown in Table 1.
[発泡粒子Bの製造]
導電性材料を使用しなかった以外は、上記発泡粒子Aと同様の工程を実施して発泡粒子Bを得た。ただし、発泡粒子Bの製造において、基材樹脂などの成分および配合量は、表2に示すとおりである。また、得られた発泡粒子Bの諸物性を表2に併せて示した。
[Production of expanded beads B]
Except for not using a conductive material, the same steps as those for the expanded particles A were performed to obtain expanded particles B. However, in the production of the expanded beads B, the components such as the base resin and the compounding amounts are as shown in Table 2. Further, various physical properties of the obtained expanded beads B are also shown in Table 2.
上記表1および表2に示した発泡粒子Aの物性および発泡粒子Bの物性は、下記の方法により測定した。 The physical properties of expanded beads A and expanded beads B shown in Tables 1 and 2 above were measured by the following methods.
[発泡粒子の融点]
JIS K 7122(1987年)に基づく熱流束示差走査熱量測定法(DSC法)により得られた値を採用した。発泡粒子2〜4mgをサンプルとし、熱流束示差走査熱量計によって室温から200℃まで10℃/分の速度で昇温し、次いで200℃から40℃まで10℃/分の速度で降温し、再度40℃から200℃まで10℃/分の速度で昇温を行って得られたDSC曲線上の最大吸熱曲線ピークの頂点温度を融点とした。
[Melting point of expanded particles]
The value obtained by the heat flux differential scanning calorimetry (DSC method) based on JIS K 7122 (1987) was adopted. Using foamed particles of 2 to 4 mg as a sample, the temperature was raised from room temperature to 200° C. at a rate of 10° C./min by a heat flux differential scanning calorimeter, and then the temperature was lowered from 200° C. to 40° C. at a rate of 10° C./min, and again. The apex temperature of the maximum endothermic curve peak on the DSC curve obtained by raising the temperature from 40° C. to 200° C. at a rate of 10° C./min was taken as the melting point.
なお、上記表1および表2に示した発泡粒子の「見かけ密度」、「平均粒子径」は、前述の測定方法により測定した。 The "apparent density" and "average particle diameter" of the expanded particles shown in Tables 1 and 2 were measured by the above-mentioned measuring methods.
(実施例1〜8、比較例2〜4)
[熱可塑性樹脂発泡粒子成形体の製造]
表1に示した発泡粒子Aと表2に示した発泡粒子Bを、表3に示した混合比にてタンブラーで混合して発泡粒子混合物を得た。得られた発泡粒子混合物を金型内に充填して表3に示したスチーム成形圧力(MPa:ゲージ圧)にて加熱することにより型内成形工程を実施し、図7に示すような底面600mm×600mm、高さ300mmの複数のピラミッド形状(四角錐形状)の角から成る発泡粒子成形体(成形品)を得た。図7中、符号Eは底面を示し、符号Fは頂部を示し、図7に示す発泡粒子成形体における底面Eの寸法は符号Bと符号Aで示す範囲の長さであり、高さは、底面Eと頂部Fとの高さの差を示す符号Cで示す範囲の長さとして特定される。
(Examples 1 to 8, Comparative Examples 2 to 4)
[Manufacture of expanded thermoplastic resin particles]
The expanded beads A shown in Table 1 and the expanded beads B shown in Table 2 were mixed in a tumbler at the mixing ratio shown in Table 3 to obtain an expanded beads mixture. The resulting foamed particle mixture was filled in a mold and heated at the steam forming pressure (MPa: gauge pressure) shown in Table 3 to carry out the in-mold forming step, and the bottom surface 600 mm as shown in FIG. A foamed particle molded body (molded article) having a plurality of pyramid-shaped (quadrangular pyramid-shaped) corners having a size of 600 mm and a height of 300 mm was obtained. In FIG. 7, reference numeral E indicates the bottom surface, reference numeral F indicates the top portion, the dimension of the bottom surface E in the expanded particle molded body shown in FIG. 7 is the length in the range indicated by reference numerals B and A, and the height is It is specified as the length of the range indicated by the symbol C indicating the difference in height between the bottom surface E and the top portion F.
実施例および比較例で得られた発泡粒子成形体は、それぞれ、フェライトタイル(底面100mm×100mm、厚さ5.2mm;リケン環境システム社製、商品名RF044)に積み重ねられて相互に固定し図3Bのような形状のユニットを形成した。ユニットは、ユニットの底面が600mm×600mmとなるように形成された。こうして得られたフェライトタイルと発泡粒子成形体とで構成される構造体のユニットを、電波吸収体(この場合は複合型電波吸収体)とした。 The foamed particle molded bodies obtained in Examples and Comparative Examples were stacked on ferrite tiles (bottom surface 100 mm×100 mm, thickness 5.2 mm; Riken Environment System Co., Ltd., trade name RF044) and fixed to each other. A unit having a shape like 3B was formed. The unit was formed such that the bottom surface of the unit was 600 mm×600 mm. The unit of the structure composed of the ferrite tile and the expanded particle molded body thus obtained was used as a radio wave absorber (in this case, a composite type radio wave absorber).
実施例1、比較例2、後述の比較例5で得られた発泡粒子成形体については表面写真の撮影を行った。結果を図9に示す。図9Aは、実施例1で得られた発泡粒子成形体の表面写真である。図9Bは、比較例2で得られた発泡粒子成形体の表面写真である。図9Cは、比較例5で得られた発泡粒子成形体の表面写真である。 Surface photographs were taken of the foamed particle molded bodies obtained in Example 1, Comparative Example 2 and Comparative Example 5 described later. The results are shown in Fig. 9. FIG. 9A is a surface photograph of the expanded bead molded article obtained in Example 1. FIG. 9B is a surface photograph of the expanded bead molded product obtained in Comparative Example 2. FIG. 9C is a surface photograph of the expanded bead molded product obtained in Comparative Example 5.
(比較例1、5、6)
[熱可塑性樹脂発泡粒子成形体の製造]
表1に示した発泡粒子Aのみを金型内に充填した以外は実施例1と同様にして、表3に示した条件にて発泡粒子成形体を得た。
(Comparative Examples 1, 5, 6)
[Manufacture of expanded thermoplastic resin particles]
Except for filling only the expanded beads A shown in Table 1 into the mold, the expanded beads molded article was obtained under the conditions shown in Table 3 in the same manner as in Example 1.
実施例および比較例にて得られた発泡粒子成形体の諸物性の測定を下記の方法により行い結果を表4に示した。さらに、上記のとおり実施例および比較例の発泡粒子成形体からなる複合型電波吸収体について、電波吸収性能の評価と総合評価を下記の方法により行った結果を表4に併せて示した。 Various physical properties of the expanded bead molded products obtained in Examples and Comparative Examples were measured by the following methods, and the results are shown in Table 4. Furthermore, as described above, Table 4 also shows the results of the evaluation and comprehensive evaluation of the electromagnetic wave absorption performance of the composite type electromagnetic wave absorbers formed of the expanded particle molded products of Examples and Comparative Examples by the following method.
[発泡粒子成形体を構成している発泡粒子Aと発泡粒子Bの各々の平均粒子径(本発明請求項2における発泡粒子の平均粒子径)]
発泡粒子Aの平均粒子径は、発泡粒子成形体断面を観察し、該断面の縦100mm×横100mmの正方形の範囲内に存在している全ての発泡粒子Aの最大径を測定し、該最大径の算術平均値を発泡粒子Aの平均粒子径とした。一方、発泡粒子Bの平均粒子径についても、発泡粒子Aの平均粒子径を測定した同じ発泡粒子成形体断面を観察し、該断面の縦100mm×横100mmの正方形の範囲内に存在している全ての発泡粒子Bの最大径を測定し、該最大径の算術平均値を発泡粒子Bの平均粒子径とした。なお、表4に示すように発泡粒子Aと発泡粒子Bの各々の平均粒子径が概ね同じ値であった。
[Average particle diameter of each of expanded particles A and expanded particles B constituting the expanded particle molded article (average particle diameter of expanded particles in claim 2 of the present invention)]
The average particle diameter of the expanded particles A is obtained by observing the cross section of the expanded particle molded article and measuring the maximum diameter of all the expanded particles A present within the range of 100 mm in length×100 mm in width of the cross section. The arithmetic average value of the diameters was defined as the average particle diameter of the expanded particles A. On the other hand, regarding the average particle diameter of the expanded particles B, the same expanded particle molded article cross section in which the average particle diameter of the expanded particles A was measured was observed, and the particles exist within the range of a square of 100 mm length×100 mm width. The maximum diameters of all the foamed particles B were measured, and the arithmetic mean value of the maximum diameters was defined as the average particle diameter of the foamed particles B. As shown in Table 4, the average particle diameters of the expanded particles A and the expanded particles B were approximately the same value.
[電波吸収体の電波吸収性能]
実施例、比較例の発泡粒子成形体を用いて複合型電波吸収体を100個試作し、周波数30MHz、100MHz、1GHz、18GHzにおいて、IEEE Std1128に示された同軸管法およびアーチ法により、電波吸収量(dB)を測定し、平均値を求めた。
[Radio wave absorption performance of radio wave absorber]
100 composite type electromagnetic wave absorbers were prototyped using the foamed particle molded bodies of Examples and Comparative Examples, and electromagnetic waves were absorbed by the coaxial tube method and the arch method shown in IEEE Std 1128 at frequencies of 30 MHz, 100 MHz, 1 GHz and 18 GHz. The amount (dB) was measured and the average value was calculated.
表4中、「*」は、電波吸収性能が不安定であったことを示す。 In Table 4, "*" indicates that the radio wave absorption performance was unstable.
また表4において、「粒子径比」欄、「密度比」欄には、それぞれ発泡粒子A,Bの平均粒子径(mm)の比率、発泡粒子A,Bの見掛け密度の比率が記載され、「面積比(S1/S2)」欄には面積比の平均値が記載され、「変動係数(%)」欄には面積比の変動係数(%)が記載されている。発泡粒子A,Bの平均粒子径(mm)の比率、発泡粒子A,Bの見かけ密度の比率、面積比の平均値、面積比の変動係数(%)については、それぞれ前述の測定方法により測定された。 Further, in Table 4, in the "particle diameter ratio" column and the "density ratio" column, the ratio of the average particle diameter (mm) of the expanded particles A and B and the ratio of the apparent density of the expanded particles A and B are described, The "area ratio (S1/S2)" column describes the average value of the area ratio, and the "variation coefficient (%)" column describes the variation coefficient (%) of the area ratio. The ratio of the average particle diameter (mm) of the foamed particles A and B, the ratio of the apparent density of the foamed particles A and B, the average value of the area ratio, and the coefficient of variation (%) of the area ratio are measured by the above-described measurement methods. Was done.
上記表4の結果より、実施例1から8の電波吸収体は、MHz帯およびGHz帯において十分に安定した電波吸収能力を有することが確認された。また、型内成形時の発泡粒子の成形性に関しても良好なものであった。したがって、本発明の発泡粒子成形体は、広域な電磁波の吸収特性を持つ優れた電波吸収性能を有するものであり、電波吸収体として好適なものであった。 From the results in Table 4 above, it was confirmed that the electromagnetic wave absorbers of Examples 1 to 8 had sufficiently stable electromagnetic wave absorption ability in the MHz band and the GHz band. Further, the moldability of the expanded beads during in-mold molding was also good. Therefore, the expanded particle molded article of the present invention has excellent electromagnetic wave absorption performance having a wide range of electromagnetic wave absorption characteristics, and was suitable as an electromagnetic wave absorber.
比較例1の発泡粒子成形体は、発泡粒子Aのみを含むため、GHz帯で吸収性能に優れるものの、MHz帯において電波吸収性能は不十分なものであった。 Since the expanded bead molded article of Comparative Example 1 contained only the expanded particles A, it had excellent absorption performance in the GHz band, but had poor radio wave absorption performance in the MHz band.
比較例2の発泡成形体は、発泡粒子Aの添加量が多すぎるため混合発泡粒子中の発泡粒子Aの面積比が大きくなりすぎ、特にMHz帯において、十分な電波吸収性能が発現されなかった。 In the foamed molded article of Comparative Example 2, the area ratio of the foamed particles A in the mixed foamed particles was too large because the added amount of the foamed particles A was too large, and sufficient electromagnetic wave absorption performance was not exhibited particularly in the MHz band. ..
比較例3と4の発泡成形体は、発泡粒子の型内成形時の成形性に劣るものであり、発泡粒子成形体の断面における面積比(S1/S2)の変動係数は20%以上であり、発泡粒子の型内成形も難しく、得られた発泡粒子成形体の電波吸収性能のバラツキが実施例1に比べ2倍以上大きいものであり、安定した品質の電波吸収性能が発現されなかった。 The foamed molded articles of Comparative Examples 3 and 4 were inferior in moldability during in-mold molding of the foamed particles, and the coefficient of variation of the area ratio (S1/S2) in the cross section of the foamed particle molded article was 20% or more. In-mold molding of expanded particles was also difficult, and the variation in the electromagnetic wave absorption performance of the obtained expanded particle molded article was more than twice as large as that of Example 1, and stable quality electromagnetic wave absorption performance was not expressed.
比較例5の発泡成形体は、実施例1と比較して発泡粒子成形体全体に含まれている導電性材料の含有量が略同じになるように導電性材料の配合量を少なく調整した発泡粒子Aのみで構成されている。この発泡粒子成形体の電波吸収性能は、MHz帯において良好な吸収特性を示すもののGHz帯において十分な電波吸収性能が発現されなかった。 The foamed molded article of Comparative Example 5 was foamed in which the compounding amount of the conductive material was adjusted to be small so that the content of the conductive material contained in the entire foamed particle molded article was substantially the same as that of Example 1. It is composed only of particles A. Regarding the electromagnetic wave absorption performance of this foamed particle molded article, it showed good absorption characteristics in the MHz band, but did not exhibit sufficient electromagnetic wave absorption performance in the GHz band.
比較例6の発泡成形体は、導電性材料の配合量が多く調整した発泡粒子Aのみで構成されており、発泡粒子成形体の導電性材料の含有量が多くなっているものの、導電性発泡粒子の導電性材料の含有量が多すぎるため、そのインピーダンスが空気と大きく異なるため、インピーダンス不整合により発泡粒子成形体部分での電磁波の反射が起こりやすくなり、十分な電波吸収性能が得られなかった。 The foamed molded article of Comparative Example 6 was composed of only the foamed particles A in which the amount of the conductive material was adjusted to a large amount, and although the content of the conductive material in the foamed particle molded body was large, the conductive foamed material was used. Since the content of the conductive material in the particles is too large, its impedance is significantly different from that of air, so that electromagnetic wave reflection easily occurs at the foamed particle molded body part due to impedance mismatch, and sufficient electromagnetic wave absorption performance cannot be obtained. It was
1 電波吸収体
2a 発泡粒子成形体
3 低周波電波吸収材
10 複合型電波吸収体
1 Radio Wave Absorber 2a Expanded Particle Molded Body 3 Low Frequency Radio Wave Absorber 10 Composite Wave Absorber
Claims (6)
前記発泡粒子成形体を構成している熱可塑性樹脂発泡粒子として、導電性材料が3〜30質量%分散している発泡粒子A、および、導電性材料含有量が3質量%未満(0を含む)の発泡粒子Bを含み、
前記発泡粒子成形体の断面における前記発泡粒子Aの合計面積(S1)と前記発泡粒子Bの合計面積(S2)との面積比(S1/S2)の平均値が0.05〜1.0の範囲であり、前記面積比の変動係数が20%以下であることを特徴とする発泡粒子成形体。 A thermoplastic resin expanded particle molded article,
As the thermoplastic resin expanded particles forming the expanded particle molded body, expanded particles A in which a conductive material is dispersed in an amount of 3 to 30% by mass, and a conductive material content of less than 3% by mass (including 0) ) Foamed particles B,
The average value of the area ratio (S1/S2) between the total area (S1) of the expanded particles A and the total area (S2) of the expanded particles B in the cross section of the expanded particle molded body is 0.05 to 1.0. And the coefficient of variation of the area ratio is 20% or less.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058938A JP6706108B2 (en) | 2016-03-23 | 2016-03-23 | Expanded particle molding |
CN201710160614.XA CN107226922B (en) | 2016-03-23 | 2017-03-17 | Foamed particle molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058938A JP6706108B2 (en) | 2016-03-23 | 2016-03-23 | Expanded particle molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017171773A JP2017171773A (en) | 2017-09-28 |
JP6706108B2 true JP6706108B2 (en) | 2020-06-03 |
Family
ID=59933087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016058938A Active JP6706108B2 (en) | 2016-03-23 | 2016-03-23 | Expanded particle molding |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6706108B2 (en) |
CN (1) | CN107226922B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112017006174T5 (en) * | 2016-12-07 | 2019-08-14 | Mitsubishi Electric Corporation | METHOD FOR PRODUCING A LAYERED HEAT INSULATING MATERIAL AND FLUSHED HEAT INSULATING MATERIAL |
JP6960291B2 (en) * | 2017-09-22 | 2021-11-05 | 株式会社ジェイエスピー | Insulation |
KR102085939B1 (en) * | 2017-12-14 | 2020-03-06 | 금호석유화학 주식회사 | A expanded bead having electrical conductivity and a method for manufacturing the same |
US12022642B2 (en) | 2018-08-21 | 2024-06-25 | Laird Technologies, Inc. | Patterned electromagnetic interference (EMI) mitigation materials including carbon nanotubes |
EP3841434A4 (en) * | 2018-08-21 | 2021-10-20 | Laird Technologies, Inc. | Patterned materials and films and systems and methods for making the same |
JP7421092B2 (en) * | 2020-02-28 | 2024-01-24 | 株式会社ジェイエスピー | Expanded particles and expanded particle molded bodies |
CN213862058U (en) * | 2020-04-09 | 2021-08-03 | 莱尔德技术股份有限公司 | Electromagnetic interference EMI absorber, radar mount, automobile and automobile part |
CN113444283A (en) * | 2021-06-10 | 2021-09-28 | 无锡敬仁电子材料科技有限公司 | Polystyrene foam wave-absorbing ball with core-shell structure and preparation method thereof |
WO2024081161A1 (en) * | 2022-10-10 | 2024-04-18 | Laird Technologies, Inc. | Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04356543A (en) * | 1991-05-17 | 1992-12-10 | Kanegafuchi Chem Ind Co Ltd | Conductive and dielectric thermoplastic resin particle, foam made therefrom, and its production |
JPH1041674A (en) * | 1996-07-24 | 1998-02-13 | Mitsubishi Cable Ind Ltd | Wave absorber and manufacture thereof |
CN102977587A (en) * | 2012-12-25 | 2013-03-20 | 中国人民解放军总参谋部工程兵科研三所 | Foaming type polyurethane wave-absorbing material and preparation method thereof |
-
2016
- 2016-03-23 JP JP2016058938A patent/JP6706108B2/en active Active
-
2017
- 2017-03-17 CN CN201710160614.XA patent/CN107226922B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017171773A (en) | 2017-09-28 |
CN107226922B (en) | 2020-11-03 |
CN107226922A (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6706108B2 (en) | Expanded particle molding | |
JP4891230B2 (en) | Polypropylene resin foamed particles for dielectric molding and dielectric lens member molded from the polypropylene resin foamed particles | |
JP4638487B2 (en) | Dielectric lens | |
DE60132599T2 (en) | DIELECTRIC RESIN FOAM AND LENS ANTENNA THEREIN | |
CN101012323A (en) | Polythene physics foaming material and preparing method thereof | |
TWI622613B (en) | Expandable polystyrene resin particles and method for producing the same, foamed particles, molded foam product and use thereof | |
TWI691534B (en) | Thermoplastic resin foaming particle | |
JP5630591B2 (en) | Polyolefin resin pre-expanded particles and method for producing the same | |
JP6387962B2 (en) | Polypropylene resin foam particles and polypropylene resin in-mold foam moldings with excellent flame retardancy and conductivity | |
CN117467219A (en) | Thermoplastic resin expanded beads and molded article of thermoplastic resin expanded beads | |
WO2004086563A1 (en) | Luneberg lens and process for producing the same | |
JP3966521B2 (en) | Method for producing conductive polypropylene resin expanded particles | |
JP6505570B2 (en) | Foamed particle molded body and radio wave absorber using the same | |
JP2016160416A (en) | Pellet, foamed resin compact, foamed insulated wire and cable | |
JP5420663B2 (en) | Foamed electric wire and transmission cable having the same | |
JP6407113B2 (en) | Styrenic resin foam molding, method for producing the same, and use thereof | |
EP3015497B1 (en) | Electroconductive polypropylene resin foam particles having excellent flame retardancy and electroconductivity and electroconductive polypropylene resin in-mold-foamed molded article | |
KR101948809B1 (en) | Method for producing electromagnetic wave absorption structure and electromagnetic wave absorption structure | |
WO2011004835A1 (en) | Foamed electric wire and transmission cable having said foamed electric wires | |
CN113166498A (en) | Improved foaming behavior of polymer compositions using inert nucleation | |
JPWO2019189462A1 (en) | Manufacturing method of polypropylene-based resin foam particles | |
JP5735163B1 (en) | Conductive slurry for radio wave absorber and radio wave absorber | |
JP2016121324A (en) | Styrenic resin expandable particle and manufacturing method therefor, expanded particle, expanded molded body and use thereof | |
JPH04136044A (en) | Production of conductive polyethylene resin foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20160330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160330 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6706108 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |