JP2017168925A - 信号処理装置、撮像装置および信号処理方法 - Google Patents

信号処理装置、撮像装置および信号処理方法 Download PDF

Info

Publication number
JP2017168925A
JP2017168925A JP2016050084A JP2016050084A JP2017168925A JP 2017168925 A JP2017168925 A JP 2017168925A JP 2016050084 A JP2016050084 A JP 2016050084A JP 2016050084 A JP2016050084 A JP 2016050084A JP 2017168925 A JP2017168925 A JP 2017168925A
Authority
JP
Japan
Prior art keywords
signal
frequency
low
visible light
light signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016050084A
Other languages
English (en)
Inventor
泰史 佐藤
Yasushi Sato
泰史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2016050084A priority Critical patent/JP2017168925A/ja
Priority to US16/080,912 priority patent/US10887530B2/en
Priority to PCT/JP2017/002081 priority patent/WO2017159041A1/ja
Publication of JP2017168925A publication Critical patent/JP2017168925A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/131Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing infrared wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals

Abstract

【課題】可視光信号と赤外光信号とを混合してカラー画像信号を生成する際の画質の低下を防止する。【解決手段】信号処理装置は、混合比率生成部と混合部とを備える。混合比率生成部は、可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を低周波可視光信号および低周波非可視光信号に基づいて生成する。混合部は、低周波可視光信号および低周波非可視光信号を混合比率に基づいて混合して混合信号を生成する。【選択図】図8

Description

本技術は、信号処理装置、撮像装置および信号処理方法に関する。詳しくは、可視光信号と赤外光信号とを混合して画像信号を生成する信号処理装置、撮像装置およびこれらにおける信号処理方法に関する。
従来、低照度環境において使用される監視カメラ等の撮像装置において、可視光信号と赤外光に対応する赤外光信号とを合成することにより、視認性を向上させた画像信号を生成する撮像装置が使用されている。例えば、可視光信号から生成された可視光輝度信号と赤外光信号から生成された赤外光輝度信号とを合成して合成輝度信号を生成する撮像装置が使用されている。この合成の際、可視光輝度信号の値に応じた合成比率に基づいて合成を行うシステムが提案されている(例えば、特許文献1参照。)。
特開2014−135627号公報
上述の従来技術では、可視光輝度信号に基づいて合成比率が決定される。このため、赤外光を照射しながら撮像を行った場合のように、可視光信号と比較して赤外光信号の値が大きい場合等には、合成後の画像信号の色再現性が低下し、画質が低下するという問題がある。
本技術はこのような状況に鑑みて生み出されたものであり、赤外光を照射しながら可視光信号と赤外光信号とを混合してカラー画像信号を生成する場合において、画質の低下を防止することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を上記低周波可視光信号および上記低周波非可視光信号に基づいて生成する混合比率生成部と、上記低周波可視光信号および上記低周波非可視光信号を上記混合比率に基づいて混合して混合信号を生成する混合部とを具備する信号処理装置および信号処理方法である。これにより、低周波可視光信号および低周波非可視光信号に基づいて混合比率が生成されるという作用をもたらす。
また、この第1の側面において、上記混合比率生成部は、上記低周波可視光信号または上記低周波非可視光信号の何れが大きいかに基づいて上記混合比率を生成してもよい。これにより、低周波可視光信号または低周波非可視光信号の何れが大きいかに基づいて混合比率が生成されるという作用をもたらす。
また、この第1の側面において、上記混合比率生成部は、上記低周波可視光信号が上記低周波非可視光信号より小さい場合に上記混合における上記低周波非可視光信号の比率を略0にする上記混合比率を生成してもよい。これにより、低周波可視光信号が低周波非可視光信号より小さい場合に低周波非可視光信号の比率が略0となる混合比率が生成されるという作用をもたらす。
また、この第1の側面において、上記混合比率生成部は、上記低周波可視光信号が上記低周波非可視光信号より大きい場合に上記混合における上記低周波可視光信号および上記低周波非可視光信号の比率を略等しくする上記混合比率を生成してもよい。これにより、低周波可視光信号が低周波非可視光信号より大きい場合に低周波可視光信号および低周波非可視光信号を等しい比率にする混合比率が生成されるという作用をもたらす。
また、この第1の側面において、上記混合比率生成部は、上記低周波可視光信号が所定の閾値より小さい場合に上記混合比率を所定の値に制限して上記混合信号を上記低周波非可視光信号より小さくしてもよい。これにより、上記低周波可視光信号が所定の閾値より小さい場合に混合信号が低周波非可視光信号より小さくなるという作用をもたらす。
また、この第1の側面において、上記非可視光信号の高周波数成分である高周波非可視光信号を上記混合信号に加算する高周波信号加算部をさらに具備してもよい。これにより、混合信号に高周波信号が加算されるという作用をもたらす。
また、この第1の側面において、上記高周波信号加算部は、上記可視光信号の高周波数成分である高周波可視光信号と上記高周波非可視光信号とを上記混合信号に加算してもよい。これにより、混合信号に高周波可視光信号と高周波非可視光信号とが加算されるという作用をもたらす。
また、この第1の側面において、上記可視光信号から上記低周波可視光信号を生成する可視光信号フィルタと、上記非可視光信号から上記低周波非可視光信号を生成する非可視光信号フィルタとをさらに具備し、上記混合比率生成部は、上記生成された低周波可視光信号と上記生成された低周波非可視光信号とに基づく上記混合比率を生成し、上記混合部は、上記生成された低周波可視光信号と上記生成された低周波非可視光信号とを混合してもよい。これにより、可視光信号フィルタおよび非可視光信号フィルタにより、低周波可視光信号および低周波非可視光信号がそれぞれ生成されるという作用をもたらす。
また、この第1の側面において、上記可視光信号フィルタは、ローパスフィルタにより構成されてもよい。これにより、ローパスフィルタにより低周波可視光信号が生成されるという作用をもたらす。
また、この第1の側面において、上記非可視光信号フィルタは、ローパスフィルタにより構成されてもよい。これにより、ローパスフィルタにより低周波非可視光信号が生成されるという作用をもたらす。
また、この第1の側面において、上記可視光信号フィルタは、上記可視光信号のノイズを除去するノイズリダクション部により構成されてもよい。これにより、ノイズリダクション部により低周波可視光信号が生成されるという作用をもたらす。
また、この第1の側面において、上記非可視光信号フィルタは、上記非可視光信号のノイズを除去するノイズリダクション部により構成されてもよい。これにより、ノイズリダクション部により低周波非可視光信号が生成されるという作用をもたらす。
また、この第1の側面において、上記低周波可視光信号は、可視光輝度信号の低周波数成分である低周波可視光輝度信号であり、上記混合比率生成部は、上記低周波可視光輝度信号と上記低周波非可視光信号とに基づいて上記混合比率を生成し、上記混合部は、上記低周波可視光輝度信号および上記低周波非可視光信号を混合してもよい。これにより、低周波可視光輝度信号および低周波非可視光信号に基づいて混合比率が生成されるという作用をもたらす。
また、この第1の側面において、上記低周波非可視光信号は、赤外光に対応する赤外光信号の低周波数成分である低周波赤外光信号であってもよい。これにより、低周波可視光輝度信号および低周波赤外光信号に基づいて混合比率が生成されるという作用をもたらす。
また、本技術の第2の側面は、可視光信号および非可視光信号を生成する撮像素子と、上記生成された可視光信号の低周波数成分である低周波可視光信号と上記生成された非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を上記低周波可視光信号および上記低周波非可視光信号に基づいて生成する混合比率生成部と、上記低周波可視光信号および上記低周波非可視光信号を上記混合比率に基づいて混合して混合信号を生成する混合部とを具備する撮像装置である。これにより、低周波可視光信号および低周波非可視光信号に基づいて混合比率が生成されるという作用をもたらす。
本技術によれば、赤外光を照射しながら可視光信号と赤外光信号とを混合してカラー画像信号を生成する場合において、画質の低下を防止するという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の実施の形態における撮像装置10の構成例を示す図である。 本技術の実施の形態における撮像素子12の構成例を示す図である。 本技術の実施の形態における赤外光の照射の一例を示す図である。 本技術の実施の形態における信号処理部13の構成例を示す図である。 本技術の実施の形態における3次元ノイズリダクション部100の構成例を示す図である。 本技術の第1の実施の形態における合成部200の構成例を示す図である。 本技術の第1の実施の形態における帯域分離部220の構成例を示す図である。 本技術の第1の実施の形態における低周波信号合成部230の構成例を示す図である。 本技術の第1の実施の形態における高周波信号補完部240の構成例を示す図である。 本技術の第1の実施の形態における画像信号切替部250の構成例を示す図である。 本技術の実施の形態における混合比率の一例を示す図である。 本技術の実施の形態における低周波輝度信号生成処理の処理手順の一例を示す図である。 本技術の第2の実施の形態における合成部200の構成例を示す図である。 本技術の第2の実施の形態における帯域分離部260の構成例を示す図である。 本技術の第2の実施の形態における高周波信号補完部270の構成例を示す図である。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(ローパスフィルタにより低周波可視光輝度信号を生成する場合の例)
2.第2の実施の形態(ノイズリダクション部により低周波可視光輝度信号を生成する場合の例)
<1.第1の実施の形態>
図1は、本技術の実施の形態における撮像装置10の構成例を示す図である。この撮像装置10は、レンズ11と、撮像素子12と、信号処理部13と、制御部14と、赤外光照射部15とを備える。
レンズ11は、撮像素子12に対して光学的に被写体を結像するものである。
撮像素子12は、レンズ11によって結像された光学画像を画像信号に変換し、出力するものである。この撮像素子12は、光学画像が結像される面に画像信号を生成する画素が2次元格子状に配置されて構成される。この画素から出力される画像信号には可視光成分に対応する可視光信号および赤外光成分に対応する赤外光信号が含まれる。
このような画素を有する撮像素子12の例としては、赤色光と赤外光に対応する画像信号を生成する画素、緑色光と赤外光に対応する画像信号を生成する画素および青色光と赤外光に対応する画像信号を生成する画素の3種の画素を有する撮像素子が挙げられる。さらに、白色光と赤外光に対応する画像信号を生成する画素を加えた4種の画素を有する撮像素子を使用することもできる。以下、赤色光と赤外光に対応する画像信号、緑色光と赤外光に対応する画像信号、青色光と赤外光に対応する画像信号および白色光と赤外光に対応する画像信号をそれぞれR+IR信号、G+IR信号、B+IR信号およびW+IR信号と称する。これら、R+IR信号、G+IR信号、B+IR信号およびW+IR信号を生成する画素をそれぞれR+IR画素、G+IR画素、B+IR画素およびW+IR画素と称する。このように異なる光に対応した画素として構成するために、各画素にはカラーフィルタが備えられている。このカラーフィルタの分光特性を特定の光に対応させて、上述した4種の画素を構成している。
また、撮像素子12は、アナログデジタル変換器を有しており、デジタル信号に変換された1画面分の上記画像信号を出力する。ここで、1画面分の画像信号をフレームと称する。
信号処理部13は、撮像素子12から出力された画像信号を処理するものである。この信号処理部13は、出力された画像信号を可視光信号および赤外光信号に分離してノイズ除去等の処理を行う。その後、ノイズ除去等が行われた可視光信号および赤外光信号を合成し、出力するものである。信号処理部13の構成の詳細については後述する。なお、信号処理部13は、特許請求の範囲に記載の信号処理装置の一例である。
制御部14は、信号処理部13から出力された画像信号を撮像装置10の外部に出力するものである。また、この制御部14は、撮像装置10の全体を制御する。
赤外光照射部15は、赤外光を被写体に対して照射するものである。この赤外光照射部15は、制御部14の制御により、赤外光の照射を行う。赤外光の照射の詳細については後述する。
[撮像素子の構成]
図2は、本技術の実施の形態における撮像素子12の構成例を示す図である。同図は、撮像素子12の画面上の画素の配置を表したものである。同図の四角は画素401を表しており、撮像素子12の画面は、画素401が2次元格子状に配置されて構成される。なお、画素401に記載された記号は、画素401の種類を表すものである。R、G、BおよびWが記載された画素は、それぞれR+IR画素、G+IR画素、B+IR画素およびW+IR画素を表している。これらの画素が画面上に一定の規則に基づいて配置されている。同図においては、W+IR画素が市松形状に配置され、残りの部分にR+IR画素、G+IR画素およびB+IR画素が配置された例を表している。
[赤外光の照射]
図3は、本技術の実施の形態における赤外光の照射の一例を示す図である。同図は、撮像素子12におけるフレーム毎の露光および露光後の画像信号の読出しの様子を表したものである。同図においては、撮像素子12は、N本のラインを有する画面により構成されることを想定する。撮像素子12は、1ライン毎に露光の開始および停止と画像信号の出力とを順次行う。これを第1ラインから第Nラインまで行うことにより、1フレーム分の画像信号の生成が行われる。このように、1ライン毎に露光の開始および停止と画像信号の出力とが順次行われる方式をローリングシャッタ方式と称する。また、露光の開始から停止までの期間を露光期間と称する。本技術の実施の形態においては、1つの露光期間おきに赤外光照射部15による赤外光の照射が行われる。ここで、赤外光が照射された露光期間(同図におけるFおよびF+2)に生成されたフレームを赤外光照射フレームと称し、赤外光が照射されない露光期間(同図におけるF+1およびF+3)に生成されたフレームを可視光フレームと称する。赤外光の照射を行うことにより、低照度環境下における画像信号の信号レベルを高めることができ、視認性を向上させることができる。
[信号処理部の構成]
図4は、本技術の実施の形態における信号処理部13の構成例を示す図である。この信号処理部13は、3次元ノイズリダクション部100と、デモザイク部31および32と、分離部33および34とを備える。また、信号処理部13は、2次元ノイズリダクション部35および36と、ホワイトバランス調整部37と、合成部200と、補正部38と、輝度色差信号変換部39とをさらに備える。
3次元ノイズリダクション部100は、3次元ノイズリダクション処理を行うことにより、撮像素子12から出力された画像信号のノイズを除去するものである。ここで、3次元ノイズリダクション処理とは、連続する複数のフレームに属する画像信号を用いてノイズの除去を行う処理である。この3次元ノイズリダクション部100は、可視光フレームおよび赤外光照射フレームの画像信号に対して個別にノイズリダクション処理を行う。可視光フレームと赤外光照射フレームとは、画像信号に含まれる赤外光信号成分が異なるためである。処理後の可視光フレームおよび赤外光照射フレームの画像信号は、それぞれデモザイク部31および32に対して出力される。また、3次元ノイズリダクション部100は、入力された画像信号において動きのある領域を検出し、この領域についての情報である動き情報をさらに出力する。ここで、動きのある領域とは、フレームにおいて動いている人物等が含まれる領域である。3次元ノイズリダクション部100の構成の詳細については後述する。
デモザイク部31および32は、3次元ノイズリダクション部100から出力された画像信号に対してデモザイク処理を行うものである。このデモザイク処理は、撮像素子12から出力された単色の画像信号に対して不足する他の色の画像信号を補完するものである。このデモザイク処理により、デモザイク部31では、1画素当たりの画像信号がR+IR信号、G+IR信号、B+IR信号およびW+IR信号の4つに増加することになる。デモザイク部31は、可視光フレームの画像信号に対してデモザイク処理を行って分離部33に対して出力する。デモザイク部32は、赤外光照射フレームの画像信号に対し、一例としてW+IR信号のデモザイク処理を行って分離部34に対して出力する。
分離部33および34は、それぞれデモザイク部31および32により出力された画像信号から可視光信号および赤外光信号を分離するものである。この分離は、例えば、次式に基づいて行うことができる。
IR=(RIR+GIR+BIR−WIR)/2
R =RIR−IR
G =GIR−IR
B =BIR−IR
ここで、IRは、赤外光に対応する画像信号を表す。また、R、GおよびBは、それぞれ赤色光に対応する画像信号(赤色画像信号)、緑色光に対応する画像信号(緑色画像信号)および青色光に対応する画像信号(青色画像信号)を表す。また、RIR、GIR、BIRおよびWIRは、それぞれR+IR信号、G+IR信号、B+IR信号およびW+IR信号を表す。
分離部33は、可視光フレームの画像信号から分離した画像信号のうち、赤色画像信号R、緑色画像信号Gおよび青色画像信号Bを2次元ノイズリダクション部35に対して出力する。この際、可視光フレームの画像信号に含まれていた環境赤外光信号成分は、除去される。ここで、赤色画像信号R、緑色画像信号Gおよび青色画像信号Bは、可視光信号に該当する。一方、分離部34は、赤外光照射フレームの画像信号から分離した画像信号のうち、赤外光照射フレームの輝度信号を2次元ノイズリダクション部36および合成部200に対して出力する。ここでは、この赤外光照射フレームの輝度信号の一例として、W+IR画素から出力されたW+IR信号に対してデモザイク処理を行うことにより生成された信号である赤外光輝度信号Yirが出力される。ここで、赤外光輝度信号Yirは、赤外光に対応する画像信号である。
2次元ノイズリダクション部35および36は、2次元ノイズリダクション処理を行うことにより、分離部33等から出力された画像信号のノイズを除去するものである。ここで、2次元ノイズリダクション処理とは、同一フレームに属する画像信号を用いてノイズを除去する処理である。2次元ノイズリダクション部35は、分離部33から出力された赤色画像信号R、緑色画像信号Gおよび青色画像信号Bに対してノイズリダクション処理を行ってホワイトバランス調整部37に対して出力する。一方、2次元ノイズリダクション部36は、分離部34から出力された赤外光輝度信号Yirに対してノイズリダクション処理を行って合成部200に対して出力する。同図においては、ノイズが除去された赤色画像信号R、緑色画像信号G、青色画像信号Bおよび赤外光輝度信号YirをそれぞれR_NR、G_NR、B_NRおよびYir_NRと記載した。
ホワイトバランス調整部37は、2次元ノイズリダクション部35から出力された可視光信号である赤色画像信号R_NR、緑色画像信号G_NRおよび青色画像信号B_NRに対してホワイトバランス調整を行うものである。ここで、ホワイトバランス調整とは、白い被写体に対する赤色画像信号、緑色画像信号および青色画像信号が同じ信号レベルになるように調整する処理である。このホワイトバランス調整部37は、調整後の赤色画像信号、緑色画像信号および青色画像信号(同図において、それぞれR_NR'、G_NR'およびB_NR'と記載した。)を合成部200に対して出力する。
合成部200は、ホワイトバランス調整が行われた可視光信号とノイズが除去された赤外光信号とを合成して低周波合成信号を生成するものである。ここで、低周波合成信号とは、可視光信号および赤外光信号が混合されて生成された信号である。低照度環境の撮像において、赤外光を被写体に照射しながら画像信号を生成すると、生成された画像信号は疑似カラー化した画像信号となり、色再現性が低下した画像となる。そこで、低周波合成信号を生成することにより、視認性と色再現性を向上させた画像信号を得ることができる。この合成部200は、生成した低周波合成信号、可視光信号および赤外光信号(赤外光輝度信号Yir)を切り替えて出力する。また、合成部200は、ノイズ除去の過程において失われた可視光信号の高周波数成分の補完をさらに行う。合成部200の構成の詳細については後述する。
補正部38は、合成部200から出力された画像信号に対してガンマ補正を行うものである。ここで、ガンマ補正とは、赤色画像信号、緑色画像信号および青色画像信号をガンマ曲線に沿って補正する処理である。補正部38は、ガンマ補正後の赤色画像信号、緑色画像信号および青色画像信号を輝度色差信号変換部39に対して出力する。
輝度色差信号変換部39は、補正部38から出力された赤色画像信号、緑色画像信号および青色画像信号を輝度信号および色差信号に変換するものである。この変換は、公知の変換式に基づいて行うことができる。変換後の輝度信号および色差信号は、制御部14に対して出力される。
[3次元ノイズリダクション部の構成]
図5は、本技術の実施の形態における3次元ノイズリダクション部100の構成例を示す図である。この3次元ノイズリダクション部100は、フレームメモリ#1(110)および#2(130)と、可視光フレームノイズリダクション部120と、赤外光照射フレームノイズリダクション部140とを備える。
フレームメモリ#1(110)および#2(130)は、画像信号を保持するメモリである。フレームメモリ#1(110)は、可視光フレームノイズリダクション部120から出力された複数の可視光フレームの画像信号を保持する。フレームメモリ#2(130)は、赤外光照射フレームノイズリダクション部140から出力された複数の赤外光照射フレームの画像信号を保持する。
可視光フレームノイズリダクション部120は、撮像素子12から出力された画像信号のうち可視光フレームの画像信号に対して3次元ノイズリダクション処理を行うものである。この可視光フレームノイズリダクション部120は、可視光フレームの画像信号をフレームメモリ#1(110)に保持させるとともに、フレームメモリ#1(110)に保持された画像信号に基づいて3次元ノイズリダクション処理を行う。この処理として、例えば、連続する複数のフレームにおける画像信号の画素毎の平均を算出する方法を使用することができる。この際、動きのある画像については、3次元ノイズリダクション処理を制限し、画質の低下を防止する必要がある。このため、可視光フレームノイズリダクション部120は、動きのある領域の検出を行い、該当する領域におけるノイズリダクション処理を制限する。また、可視光フレームノイズリダクション部120は、ノイズ除去処理を行った画像信号を可視光フレーム画像信号としてデモザイク部31に対して出力する。さらに可視光フレームノイズリダクション部120は、検出した動きのある領域を動き情報として合成部200に対して出力する。
赤外光照射フレームノイズリダクション部140は、撮像素子12から出力された画像信号のうち赤外光照射フレームの画像信号に対して3次元ノイズリダクション処理を行うものである。この赤外光照射フレームノイズリダクション部140は、赤外光照射フレームの画像信号をフレームメモリ#2(130)に保持させるとともに、フレームメモリ#2(130)に保持された画像信号に基づいて3次元ノイズリダクション処理を行う。また、赤外光照射フレームノイズリダクション部140は、ノイズ除去処理を行った画像信号を赤外光照射フレーム画像信号としてデモザイク部32に対して出力する。さらに赤外光照射フレームノイズリダクション部140は、検出した動きのある領域を動き情報として合成部200に対して出力する。
[合成部の構成]
図6は、本技術の第1の実施の形態における合成部200の構成例を示す図である。この合成部200は、利得調整部210と、帯域分離部220と、低周波信号合成部230と、高周波信号補完部240と、画像信号切替部250とを備える。
利得調整部210は、3次元ノイズリダクション部100から出力された動き情報に基づいて色差信号利得調整情報および赤外光信号利得調整情報を生成するものである。ここで、色差信号利得調整情報は、後述する低周波信号合成部230において色差信号のレベルの調整および低周波合成信号と低周波赤外光輝度信号との合成に使用する情報である。図5において説明したように、3次元ノイズリダクション部100は、動きのある領域におけるノイズの除去を制限する。このため、当該領域においては、比較的ノイズが多い画像となり視認性が低下する。そこで、動きのある領域における色差信号の信号レベルを低下させるとともに赤外光信号の混合比率を高める。これにより、当該領域における視認性の低下を軽減することができる。
帯域分離部220は、ホワイトバランス調整部37から出力された可視光信号を輝度信号および色差信号に変換するものである。また、この帯域分離部220は、変換後の輝度信号の低周波数成分である低周波可視光輝度信号と変換後の色差信号の低周波数成分である低周波色差信号とを生成する。さらに、帯域分離部220は、分離部34から出力された赤外光輝度信号の高周波数成分である高周波赤外光輝度信号の生成を行う。帯域分離部220の構成の詳細については後述する。
低周波信号合成部230は、帯域分離部220から出力された低周波可視光輝度信号及び低周波赤外光輝度信号等から低周波合成信号を生成するものである。低周波信号合成部230の構成の詳細については後述する。
高周波信号補完部240は、低周波信号合成部230により生成された低周波合成信号に対して帯域分離部220により生成された高周波可視光信号及び高周波赤外光輝度信号を補完するものである。後述するように、帯域分離部220により、可視光輝度信号および色差信号の高周波数成分が除去される。高い周波数のノイズが除去されるとともに、画像のエッジ部分のように急峻な信号の変化を有する部分の画像信号においても高周波数成分が除去される。このため、エッジ部分の信号の変化が緩慢なものとなり、エッジのぼけを生じる。そこで、高周波信号補完部240により、高周波数成分の補完を行いエッジのぼけ等の画質の低下を防止する。高周波信号補完部240により高周波数成分が補完された画像信号を合成信号と称する。高周波信号補完部240の構成の詳細については後述する。
画像信号切替部250は、可視光信号、合成信号および赤外光輝度信号の切替えを行うものである。この画像信号切替部250は、可視光フレームの画像の明るさに応じて可視光信号、合成信号および赤外光輝度信号の切替えを行う。この切替の際、画像の遷移を滑らかに行う。例えば、可視光信号から合成信号に切り替える際には、可視光信号の画像が徐々に合成信号に遷移するように制御される。この切替えの際に合成信号を全部または一部出力することにより、赤外光照射中にカラー画像を出力するモードである「カラーナイトビューモード」を実現することができる。画像信号切替部250の構成の詳細については後述する。なお、合成部200の構成は、上述の例に限定されるものではない。例えば、画像信号切替部250を省略し、可視光信号、合成信号および赤外光輝度信号を個別に出力する構成にすることもできる。
[帯域分離部の構成]
図7は、本技術の第1の実施の形態における帯域分離部220の構成例を示す図である。この帯域分離部220は、輝度色差信号変換部221と、ローパスフィルタ#1(222)乃至#3(224)と、減算部#1(225)および#2(226)とを備える。
輝度色差信号変換部221は、ホワイトバランス調整部37から出力された可視光信号(R_NR'、G_NR'およびB_NR')を可視光輝度信号Yおよび色差信号CrおよびCbに変換するものである。ここで、色差信号Crは赤色画像信号と可視光輝度信号Yとの差分に基づく信号であり、色差信号Cbは青色画像信号と可視光輝度信号Yとの差分に基づく信号である。
ローパスフィルタ#1(222)乃至#3(224)は、画像信号等の高周波数成分を減衰させることにより、低周波数成分の画像信号を生成するものである。高周波数成分の減衰により、画像信号のノイズの除去を行うことができ、画像信号の視認性を向上させることができる。ローパスフィルタ#1(222)は、色差信号CrおよびCbの低周波数成分である低周波色差信号Cr_LFおよびCb_LFを生成する。ローパスフィルタ#2(223)は、可視光輝度信号Yの低周波数成分である低周波可視光輝度信号Y_LFを生成する。ローパスフィルタ#3(224)は、2次元ノイズリダクション部36から出力された赤外光輝度信号Yir_NRの低周波数成分である低周波赤外光輝度信号Yir_LFを生成する。低周波色差信号Cr_LFおよびCb_LFと低周波可視光輝度信号Y_LFと低周波赤外光輝度信号Yir_LFとは、低周波信号合成部230に対して出力される。これらのローパスフィルタ#1(222)乃至#3(224)としてデジタルフィルタを使用することができる。
減算部#1(225)および#2(226)は、画像信号等の減算を行うものである。減算部#1(225)は、可視光輝度信号Yから低周波可視光輝度信号Y_LFを減算するものである。これにより、可視光輝度信号Yの高周波数成分である高周波可視光輝度信号Y_HFが生成される。一方、減算部#2(226)は、分離部34により出力された赤外光輝度信号Yirから低周波赤外光輝度信号Yir_LFを減算するものである。これにより、赤外光輝度信号Yirの高周波数成分である高周波赤外光輝度信号Yir_HFが生成される。高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFは、高周波信号補完部240に対して出力される。
[低周波信号合成部の構成]
図8は、本技術の第1の実施の形態における低周波信号合成部230の構成例を示す図である。この低周波信号合成部230は、色差信号レベル変換部231と、赤外光信号利得調整部237と、画像信号変換部232と、混合比率生成部234と、混合部236とを備える。
色差信号レベル変換部231は、利得調整部210から出力された色差信号利得調整情報に基づいて帯域分離部220から出力された低周波色差信号Cr_LFおよびCb_LFの信号レベルを変換するものである。対象の画像信号が動きのある領域の画像信号である場合に、低周波色差信号Cr_LFおよびCb_LFの信号レベルを低下させる。これにより、低周波色差信号Cr_LFおよびCb_LFに含まれるノイズ成分を減衰させることができる。
混合比率生成部234は、低周波可視光信号と低周波非可視光信号とを混合する際の比率である混合比率を低周波可視光信号および低周波非可視光信号に基づいて生成するものである。この混合比率生成部234は、帯域分離部220から出力された低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFに基づいて混合比率α1を生成する。これらの高周波数成分が除去された信号に基づいて混合比率を生成するため、ノイズの影響を削減することができる。混合比率α1は、例えば、所定の変換テーブルに基づいて生成することができる。混合比率α1の生成の詳細については後述する。
混合部236は、混合比率生成部234により生成された混合比率α1に基づいて、低周波可視光信号および低周波非可視光信号を混合するものである。この混合は、例えば、アルファブレンドにより行うことができる。ここで、同図の混合部236は、帯域分離部220から出力された低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFを混合して低周波輝度信号を生成する。この混合は、次式に基づいて行うことができる。
Y_CNV=Y_LF×(1−α1)+Yir_LF×α1
ここで、Y_CNVは、低周波輝度信号を表す。このように、高周波数成分が除去された画像信号同士を混合するため、ノイズが低減された低周波輝度信号を生成することができる。
赤外光信号利得調整部237は、混合部236から出力された低周波輝度信号Y_CNVと帯域分離部220から出力された低周波赤外光輝度信号Yir_LFとを混合するものである。この混合は、混合比率α2に基づいて行われる。赤外光信号利得調整部237は、利得調整部210から出力された赤外光信号利得調整情報に基づいて混合比率α2を生成する。具体的には、対象の画像信号が動きのある領域の画像信号である場合に、低周波赤外光輝度信号の混合比率を高める混合比率α2が生成される。混合は、次式に基づいて行うことができる。
Y_CNV'=Y_CNV×(1−α2)+Yir_LF×α2
ここで、Y_CNV'は、混合後の信号である。これにより、動きのある領域における画像信号の際には、赤外光信号の混合比率を高めることができ、ノイズの影響を削減することができる。
画像信号変換部232は、輝度信号および色差信号をR、GおよびB信号に変換するものである。この画像信号変換部232は、赤外光信号利得調整部237により生成された低周波輝度信号Y_CNV'と色差信号レベル変換部231から出力された低周波色差信号Cr_LFおよびCb_LFとを低周波合成信号(R_CNV、G_CNVおよびB_CNV)に変換する。変換は、公知の変換式に基づいて行うことができる。画像信号変換部232により変換された低周波合成信号は、高周波信号補完部混合部240に対して出力される。
[高周波信号補完部の構成]
図9は、本技術の第1の実施の形態における高周波信号補完部240の構成例を示す図である。この高周波信号補完部240は、高周波信号生成部241と、高周波信号加算部242とを備える。
高周波信号生成部241は、帯域分離部220から出力された高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFに基づいて高周波信号を生成するものである。この高周波信号の生成は、例えば、高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFを混合することにより生成することができる。この際、例えば、高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFのうち大きなエッジ部分を含む信号の混合比率を高めて混合する方式を採用することができる。また、例えば、これらの信号の混合を行わずに、高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFの何れかを高周波信号として出力することも可能である。この際、例えば、高周波可視光輝度信号Y_HFおよび高周波赤外光輝度信号Yir_HFのうち大きなエッジ部分を含む信号を選択し、高周波信号として出力することもできる。
大きなエッジ部分を含む信号の混合比率を高める方式または大きなエッジ部分を含む信号を選択する方式を採用することにより、可視光信号および赤外光信号の何れかにエッジが存在する場合において、被写体の視認性を確保することができる。
可視光および赤外光の反射率は、被写体により大きく変化する場合がある。例えば、塗料または染料により模様が付けられた布地が被写体になる場合には、可視光および赤外光の反射率が塗料等により大きく変化し、可視光では模様の輝度変化を観測できるが、赤外光では模様の輝度変化を観測できない場合が多く発生する。このような場合に上述の「大きなエッジを選択する機能」を用いることにより、可視光が非常に微弱な領域では赤外光の高周波信号を用い、可視光がある程度以上に大きな領域では可視光の高周波信号を用いることができる。このように、高周波の可視光信号および赤外光信号の混合比率を、低周波の可視光信号および赤外光信号の混合比率と独立させることにより、被写体の視認性を確保することができる。
高周波信号加算部242は、低周波信号合成部230により出力された低周波輝度信号と高周波信号生成部241により生成された高周波信号とを加算するものである。この加算は、低周波輝度信号を構成する赤色画像信号(R_CNV)、緑色画像信号(G_CNV)および青色画像信号(B_CNV)のそれぞれに高周波信号を加算することにより行うことができる。これにより、図7において説明したローパスフィルタ#1(222)乃至#3(224)において除去された画像信号の高周波数成分を補完することができ、画像のエッジ部分のぼけを防ぐことができる。高周波信号加算部242は、高周波数成分が補完された合成信号(R_CNV'、G_CNV'およびB_CNV')を画像信号切替部250に対して出力する。
なお、上述の加算の最も簡単な例として次式に基づく方式を挙げることができる。
R_CNV'=R_CNV+HF
G_CNV'=G_CNV+HF
B_CNV'=B_CNV+HF
ここで、HFは、高周波信号生成部241により生成された高周波信号を表す。
[画像信号切替部の構成]
図10は、本技術の第1の実施の形態における画像信号切替部250の構成例を示す図である。この画像信号切替部250は、混合部252および253を備える。
混合部252は、分離部34から出力された赤外光輝度信号Yirと高周波信号補完部240から出力された合成信号(R_CNV'、G_CNV'およびB_CNV')とを混合するものである。混合は、図8において説明した混合部236と同様にアルファブレンドにより行うことができる。具体的には、次のように行うことができる。可視光フレームの画像が所定の照度、例えば0.1ルクス(lx)未満の場合には、赤外光輝度信号Yirの比率を値「1.0」にする。可視光フレームの画像が0.1乃至0.5ルクスの範囲の照度の場合には、混合部252は、赤外光輝度信号Yirの比率を値「1.0」から低下させ、合成信号の比率を上昇させて混合を行う。可視光フレームの画像の照度が0.5ルクスを超える場合には、混合部252は、合成信号の混合比率を値「1.0」にする。この場合には、合成信号のみが出力される。
混合部253は、混合部252から出力された画像信号とホワイトバランス調整部37から出力された可視光信号(R_NR'、G_NR'およびB_NR')とを混合するものである。この混合部253は、可視光フレームの画像が所定の照度、例えば、8ルクス未満の場合、混合部252から出力された画像信号を出力する。可視光フレームの画像の照度が8乃至10ルクスの範囲の場合には、混合部252から出力された画像信号と可視光信号とを混合する。この際、混合部252から出力された画像信号の混合比率を徐々に低下させて混合を行う。可視光フレームの画像の照度が10ルクスを超える場合には、混合部253は、可視光信号のみを出力する。
これら混合部252および253により、画像信号の切替えが行われる。なお、画像信号の混合の際の混合比率を図1において説明した制御部14の制御に基づいて変更することも可能である。
[混合比率α1の生成]
図11は、本技術の実施の形態における混合比率の一例を示す図である。同図は、図8において説明した混合比率生成部234における混合比率α1の生成に使用する変換テーブルの例を表したものである。この変換テーブルは、低周波可視光信号および低周波非可視光信号を混合比率に変換するものである。同図においては、規格化された低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFを混合比率α1に変換する。ここで、低周波可視光信号が所定の閾値より小さい場合に混合比率を所定の値に制限して混合信号を低周波非可視光信号より小さくすることができる。同図の例では、低周波可視光輝度信号Y_LFが所定の閾値より小さい場合には、混合比率α1を所定の値に制限して混合信号である低周波輝度信号を低周波非可視光信号より小さくすることができる。例えば、同図における範囲411により表したように、上記所定の閾値を値「0.1」に設定し、低周波可視光輝度信号Y_LFがこの閾値より小さい場合には、混合比率α1を所定の値、例えば値「0.25」に制限することができる。これにより、視認性を向上させることができ、画質の低下を防止することができる。
また、低周波可視光信号または低周波非可視光信号の何れが大きいかに基づいて混合比率を生成することもできる。同図の例では、低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFの何れが大きいかに基づいて前記混合比率を生成することができる。例えば、同図における領域412(網掛けが付された領域)のように、低周波可視光輝度信号Y_LFが低周波赤外光輝度信号Yir_LFより小さい場合に、混合比率α1を略0にすることができる。すなわち、低周波非可視光信号の混合比率を略0にすることができる。これにより、色再現性を向上させた低周波輝度信号を生成することができ、画質の低下を防止することができる。
また、例えば、同図における領域413(斜線が付された領域)のように、低周波可視光輝度信号Y_LFが低周波赤外光輝度信号Yir_LFより大きい場合に、混合比率α1を0.5にすることができる。すなわち、低周波可視光信号および低周波非可視光信号の比率を略等しくすることができる。これにより、低周波可視光信号が飽和した際の視認性の低下を防止することができる。また、ノイズ成分の少ない低周波赤外光輝度信号Yir_LFを加えることにより、ノイズが少ない低周波輝度信号を生成することができ、画質の低下を防止することができる。
このように、低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFに基づいて混合比率α1を生成することにより、合成信号の視認性や色再現性を向上させることができ、画質の低下を防止することができる。なお、混合比率α1の生成方法は、上述の例に限定されるものではない。例えば、同図において説明した変換テーブルと同様の混合比率α1を出力する関数を使用する構成にすることもできる。
[低周波信号生成処理]
図12は、本技術の実施の形態における低周波輝度信号生成処理の処理手順の一例を示す図である。まず、輝度色差信号変換部221が、可視光輝度信号Yを生成する(ステップS901)。次に、ローパスフィルタ#2(223)が低周波可視光輝度信号Y_LFを生成する(ステップS902)。次に、ローパスフィルタ#3(224)が低周波赤外光輝度信号Yir_LFを生成する(ステップS903)。次に、混合比率生成部234が、低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFに基づいて混合比率α1を生成する(ステップS904)。次に、混合部236が低周波可視光輝度信号Y_LFおよび低周波赤外光輝度信号Yir_LFを混合比率α1に基づいて混合し(ステップS905)、低周波輝度信号を生成する。
このように、本技術の第1の実施の形態では、低周波可視光輝度信号および低周波赤外光輝度信号に基づいて混合比率が生成される。この混合比率に基づいて低周波可視光輝度信号および低周波赤外光輝度信号が混合されて低周波合成信号が生成される。このため、可視光信号と比較して赤外光信号の値が大きい場合、色再現性を向上させる混合比率を選択することができる。また、可視光または赤外光の何れか一方のみが被写体から届く場合であっても最適な輝度信号を選択することができ、高い視認性を得ることができる。
さらに、本技術の第1の実施の形態では、可視光信号の高周波数成分である高周波可視光信号と非可視光信号の高周波数成分である高周波非可視光信号とを混合して高周波数成分を補完する際、これらのうち大きなエッジを有する信号を選択する。または、これらのうち大きなエッジを有する信号の比率を高めて混合する。これにより、可視光および赤外光の何れかにエッジが存在する場合において被写体の視認性を確保することができる。
<2.第2の実施の形態>
上述の実施の形態では、ローパスフィルタ#1(222)等により画像信号の高周波数成分を除去していた。これに対し、本技術の第2の実施の形態では、2次元ノイズリダクション部35および36において高周波数成分の除去を行う。これにより、信号処理部13の構成を簡略化することができる。
[合成部の構成]
図13は、本技術の第2の実施の形態における合成部200の構成例を示す図である。同図の合成部200は、図6おいて説明した合成部200と比較して、帯域分離部220および高周波信号補完部240の代わりに帯域分離部260および高周波信号補完部270を備える。また、同図の低周波信号合成部230は、輝度信号Y、2次元ノイズリダクション部36から出力された赤外光輝度信号Yir_NRならびに色差信号CrおよびCbから低周波合成信号を生成する。すなわち、図6における信号Yir_LF、Y_LF、Cr_LFおよびCb_LFがそれぞれ同図の信号Yir_NR、Y、CrおよびCbに対応する。
帯域分離部260は、高周波信号補完部270に対して高周波赤外光輝度信号Yir_HFのみを出力する。また、帯域分離部260は、低周波可視光輝度信号Y_LFと低周波色差信号Cr_LFおよびCb_LFとに代えて可視光輝度信号Yと色差信号CrおよびCbとを低周波信号合成部230に対して出力する。なお、低周波信号合成部230には、低周波赤外光輝度信号Yir_LFに代えて2次元ノイズリダクション部36から出力された赤外光輝度信号Yir_NRが入力される。なお、本技術の第2の実施の形態における2次元ノイズリダクション部35および36(図4において説明)は、画像信号の高周波数成分を除去することによりノイズを除去する2次元ノイズリダクション処理を行う。なお、2次元ノイズリダクション部35および36は、特許請求の範囲に記載のノイズリダクション部の一例である。
[帯域分離部の構成]
図14は、本技術の第2の実施の形態における帯域分離部260の構成例を示す図である。この帯域分離部260は、図7において説明した帯域分離部220と比較して、ローパスフィルタ#1(222)乃至#3(224)および減算部#2(226)を備える必要はない。同図の減算部226は、分離部34から出力された赤外光輝度信号Yirから2次元ノイズリダクション部36から出力された赤外光輝度信号Yir_NRを減算して高周波赤外光輝度信号Yir_HFを生成する。また、輝度色差信号変換部221が生成した輝度信号Yと色差信号CrおよびCbは、低周波信号合成部230に対して出力される。このように、2次元ノイズリダクション部35および36において画像信号の高周波数成分の除去が行われるため、ローパスフィルタ#1(222)乃至#3(224)を省略することができる。
[高周波信号補完部の構成]
図15は、本技術の第2の実施の形態における高周波信号補完部270の構成例を示す図である。この高周波信号補完部270は、図9において説明した高周波信号補完部240と比べて、高周波信号生成部241を備える必要はない。同図の高周波信号加算部242は、低周波信号合成部230により出力された低周波合成信号(R_CNV、G_CNVおよびB_CNV)と帯域分離部260から出力された高周波赤外光輝度信号Yir_HFとを加算する。なお、3次元ノイズリダクション部100と2次元ノイズリダクション部35および36とにおいて画像のエッジ部分が保全される方式のノイズリダクション処理を行う際には、上述の高周波信号の補完を省略することもできる。
これ以外の撮像装置10の構成は本技術の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
このように、本技術の第2の実施の形態によれば、画像信号の高周波数成分を除去する2次元ノイズリダクション部35および36を使用することにより、ローパスフィルタ#1(222)乃至#3(224)を省略することができる。これにより、信号処理部13の構成を簡略化することができる。
<変形例>
上述の実施の形態では、W+IR信号に対してデモザイク処理を行うことにより生成された信号を赤外光輝度信号Yirとして処理を行っていたが、赤外光に対応する画像信号(IR信号)を赤外光輝度信号Yirとして処理を行ってもよい。これにより、W+IR画素を含まない撮像素子12を使用する場合であっても、本技術を適用することができる。例えば、赤色光に対応する赤色画素(R画素)、緑色光に対応する緑色画素(G画素)、青色光に対応する青色画素(B画素)および赤外光に対応する赤外光画素(IR画素)を有する撮像素子12を使用する場合が該当する。この場合、R、GおよびB画素により生成された可視光信号(R、GおよびB信号)の低周波数成分である低周波可視光信号と赤外光信号(IR信号)の低周波数成分である低周波赤外光信号とに基づいて混合比率α1を生成する。この生成された混合比率α1に基づいて低周波可視光信号および低周波赤外光信号の混合を行うことができる。なお、混合比率α1の生成は、図11において説明した方式により行うことができる。
なお、撮像素子12としてCMOS(Complementary Metal Oxide Semiconductor)型およびCCD(Charge Coupled Device)型の撮像素子を使用することができる。また、図3においてローリングシャッタ方式の撮像素子12の使用を想定したが、グローバルシャッタ方式の撮像素子を使用することも可能である。さらに、赤外光以外の光、例えば、紫外光を非可視光信号として処理することも可能である。
これ以外の撮像装置10の構成は本技術の第1の実施の形態において説明した撮像装置10の構成と同様であるため、説明を省略する。
上述のように、本技術の実施の形態では、低周波可視光信号および低周波赤外光信号に基づいて混合比率が生成され、この混合比率に基づいて低周波可視光信号および低周波赤外光信号が混合されて、画像信号が生成される。このため、赤外光を照射しながら可視光信号と赤外光信号とを混合して画像信号を生成する場合において、生成された画像信号の画質の低下を防止することができる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
なお、本技術は以下のような構成もとることができる。
(1)可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成部と、
前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合部と
を具備する信号処理装置。
(2)前記混合比率生成部は、前記低周波可視光信号または前記低周波非可視光信号の何れが大きいかに基づいて前記混合比率を生成する前記(1)に記載の信号処理装置。
(3)前記混合比率生成部は、前記低周波可視光信号が前記低周波非可視光信号より小さい場合に前記混合における前記低周波非可視光信号の比率を略0にする前記混合比率を生成する前記(2)に記載の信号処理装置。
(4)前記混合比率生成部は、前記低周波可視光信号が前記低周波非可視光信号より大きい場合に前記混合における前記低周波可視光信号および前記低周波非可視光信号の比率を略等しくする前記混合比率を生成する前記(2)に記載の信号処理装置。
(5)前記混合比率生成部は、前記低周波可視光信号が所定の閾値より小さい場合に前記混合比率を所定の値に制限して前記混合信号を前記低周波非可視光信号より小さくする前記(1)に記載の信号処理装置。
(6)前記非可視光信号の高周波数成分である高周波非可視光信号を前記混合信号に加算する高周波信号加算部をさらに具備する前記(1)から(5)のいずれかに記載の信号処理装置。
(7)前記高周波信号加算部は、前記可視光信号の高周波数成分である高周波可視光信号と前記高周波非可視光信号とを前記混合信号に加算する前記(6)に記載の信号処理装置。
(8)前記可視光信号から前記低周波可視光信号を生成する可視光信号フィルタと、
前記非可視光信号から前記低周波非可視光信号を生成する非可視光信号フィルタと
をさらに具備し、
前記混合比率生成部は、前記生成された低周波可視光信号と前記生成された低周波非可視光信号とに基づく前記混合比率を生成し、
前記混合部は、前記生成された低周波可視光信号と前記生成された低周波非可視光信号とを混合する
前記(1)から(7)のいずれかに記載の信号処理装置。
(9)前記可視光信号フィルタは、ローパスフィルタにより構成される前記(8)に記載の信号処理装置。
(10)前記非可視光信号フィルタは、ローパスフィルタにより構成される前記(8)に記載の信号処理装置。
(11)前記可視光信号フィルタは、前記可視光信号のノイズを除去するノイズリダクション部により構成される前記(8)に記載の信号処理装置。
(12)前記非可視光信号フィルタは、前記非可視光信号のノイズを除去するノイズリダクション部により構成される前記(8)に記載の信号処理装置。
(13)前記低周波可視光信号は、可視光輝度信号の低周波数成分である低周波可視光輝度信号であり、
前記混合比率生成部は、前記低周波可視光輝度信号と前記低周波非可視光信号とに基づいて前記混合比率を生成し、
前記混合部は、前記低周波可視光輝度信号および前記低周波非可視光信号を混合する
前記(1)から(12)のいずれかに記載の信号処理装置。
(14)前記低周波非可視光信号は、赤外光に対応する赤外光信号の低周波数成分である低周波赤外光信号である前記(1)から(13)のいずれかに記載の信号処理装置。
(15)可視光信号および非可視光信号を生成する撮像素子と、
前記生成された可視光信号の低周波数成分である低周波可視光信号と前記生成された非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成部と、
前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合部と
を具備する撮像装置。
(16)可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成手順と、
前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合手順と
を具備する信号処理方法。
10 撮像装置
11 レンズ
12 撮像素子
13 信号処理部
14 制御部
15 赤外光照射部
31、32 デモザイク部
33、34 分離部
35、36 2次元ノイズリダクション部
37 ホワイトバランス調整部
38 補正部
39、221 輝度色差信号変換部
100 3次元ノイズリダクション部
110、130 フレームメモリ
120 可視光フレームノイズリダクション部
140 赤外光照射フレームノイズリダクション部
200 合成部
210 利得調整部
220、260 帯域分離部
222〜224 ローパスフィルタ
226、226 減算部
230 低周波信号合成部
231 色差信号レベル変換部
232 画像信号変換部
234 混合比率生成部
236 混合部
237 赤外光信号利得調整部
240、270 高周波信号補完部
241 高周波信号生成部
242 高周波信号加算部
250 画像信号切替部
252、253 混合部
401 画素

Claims (16)

  1. 可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成部と、
    前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合部と
    を具備する信号処理装置。
  2. 前記混合比率生成部は、前記低周波可視光信号または前記低周波非可視光信号の何れが大きいかに基づいて前記混合比率を生成する請求項1記載の信号処理装置。
  3. 前記混合比率生成部は、前記低周波可視光信号が前記低周波非可視光信号より小さい場合に前記混合における前記低周波非可視光信号の比率を略0にする前記混合比率を生成する請求項2記載の信号処理装置。
  4. 前記混合比率生成部は、前記低周波可視光信号が前記低周波非可視光信号より大きい場合に前記混合における前記低周波可視光信号および前記低周波非可視光信号の比率を略等しくする前記混合比率を生成する請求項2記載の信号処理装置。
  5. 前記混合比率生成部は、前記低周波可視光信号が所定の閾値より小さい場合に前記混合比率を所定の値に制限して前記混合信号を前記低周波非可視光信号より小さくする請求項1記載の信号処理装置。
  6. 前記非可視光信号の高周波数成分である高周波非可視光信号を前記混合信号に加算する高周波信号加算部をさらに具備する請求項1記載の信号処理装置。
  7. 前記高周波信号加算部は、前記可視光信号の高周波数成分である高周波可視光信号と前記高周波非可視光信号とを前記混合信号に加算する請求項6記載の信号処理装置。
  8. 前記可視光信号から前記低周波可視光信号を生成する可視光信号フィルタと、
    前記非可視光信号から前記低周波非可視光信号を生成する非可視光信号フィルタと
    をさらに具備し、
    前記混合比率生成部は、前記生成された低周波可視光信号と前記生成された低周波非可視光信号とに基づく前記混合比率を生成し、
    前記混合部は、前記生成された低周波可視光信号と前記生成された低周波非可視光信号とを混合する
    請求項1記載の信号処理装置。
  9. 前記可視光信号フィルタは、ローパスフィルタにより構成される請求項8記載の信号処理装置。
  10. 前記非可視光信号フィルタは、ローパスフィルタにより構成される請求項8記載の信号処理装置。
  11. 前記可視光信号フィルタは、前記可視光信号のノイズを除去するノイズリダクション部により構成される請求項8記載の信号処理装置。
  12. 前記非可視光信号フィルタは、前記非可視光信号のノイズを除去するノイズリダクション部により構成される請求項8記載の信号処理装置。
  13. 前記低周波可視光信号は、可視光輝度信号の低周波数成分である低周波可視光輝度信号であり、
    前記混合比率生成部は、前記低周波可視光輝度信号と前記低周波非可視光信号とに基づいて前記混合比率を生成し、
    前記混合部は、前記低周波可視光輝度信号および前記低周波非可視光信号を混合する
    請求項1記載の信号処理装置。
  14. 前記低周波非可視光信号は、赤外光に対応する赤外光信号の低周波数成分である低周波赤外光信号である請求項1記載の信号処理装置。
  15. 可視光信号および非可視光信号を生成する撮像素子と、
    前記生成された可視光信号の低周波数成分である低周波可視光信号と前記生成された非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成部と、
    前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合部と
    を具備する撮像装置。
  16. 可視光信号の低周波数成分である低周波可視光信号と非可視光信号の低周波数成分である低周波非可視光信号とを混合する際の比率である混合比率を前記低周波可視光信号および前記低周波非可視光信号に基づいて生成する混合比率生成手順と、
    前記低周波可視光信号および前記低周波非可視光信号を前記混合比率に基づいて混合して混合信号を生成する混合手順と
    を具備する信号処理方法。
JP2016050084A 2016-03-14 2016-03-14 信号処理装置、撮像装置および信号処理方法 Pending JP2017168925A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016050084A JP2017168925A (ja) 2016-03-14 2016-03-14 信号処理装置、撮像装置および信号処理方法
US16/080,912 US10887530B2 (en) 2016-03-14 2017-01-23 Signal processing apparatus, imaging pickup apparatus, and signal processing method
PCT/JP2017/002081 WO2017159041A1 (ja) 2016-03-14 2017-01-23 信号処理装置、撮像装置および信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016050084A JP2017168925A (ja) 2016-03-14 2016-03-14 信号処理装置、撮像装置および信号処理方法

Publications (1)

Publication Number Publication Date
JP2017168925A true JP2017168925A (ja) 2017-09-21

Family

ID=59850653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016050084A Pending JP2017168925A (ja) 2016-03-14 2016-03-14 信号処理装置、撮像装置および信号処理方法

Country Status (3)

Country Link
US (1) US10887530B2 (ja)
JP (1) JP2017168925A (ja)
WO (1) WO2017159041A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200108790A (ko) * 2019-03-11 2020-09-21 캐논 가부시끼가이샤 화상 처리 장치, 화상 처리 장치의 제어 방법, 및 비일시적인 컴퓨터 판독가능한 저장 매체
JP2021016132A (ja) * 2019-07-16 2021-02-12 株式会社リコー 画像処理装置、画像処理方法およびプログラム
JP2022105382A (ja) * 2021-01-04 2022-07-14 東芝テリー株式会社 可視画像と熱画像のデータ処理装置及び処理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10366471B2 (en) * 2015-12-02 2019-07-30 Texas Instruments Incorporated Universal and adaptive de-mosaicing (CFA) system
CN107918929B (zh) * 2016-10-08 2019-06-21 杭州海康威视数字技术股份有限公司 一种图像融合方法、装置及系统
CN108965654B (zh) * 2018-02-11 2020-12-25 浙江宇视科技有限公司 基于单传感器的双光谱摄像机系统和图像处理方法
US11284044B2 (en) * 2018-07-20 2022-03-22 Nanolux Co. Ltd. Image generation device and imaging device
CN110830675B (zh) * 2018-08-10 2022-05-03 株式会社理光 读取装置、图像形成装置及读取方法
EP3704668A4 (en) * 2018-12-17 2021-04-07 SZ DJI Technology Co., Ltd. IMAGE PROCESSING METHOD AND APPARATUS

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328865B2 (ja) * 2003-01-24 2009-09-09 竹中エンジニアリング株式会社 赤外線照明内蔵型監視用デイナイトカメラ
JP5021061B2 (ja) * 2009-12-08 2012-09-05 株式会社 資生堂 非可視化情報埋込装置、非可視化情報認識装置、非可視化情報埋込方法、非可視化情報認識方法、非可視化情報埋込プログラム、及び非可視化情報認識プログラム
US9294740B2 (en) * 2010-06-07 2016-03-22 Konica Minolta Advanced Layers, Inc. Imaging device having a color image generator generating a color image using edge data and a fake color suppressing coefficient
JP6055681B2 (ja) 2013-01-10 2016-12-27 株式会社 日立産業制御ソリューションズ 撮像装置
US9232151B1 (en) * 2014-06-30 2016-01-05 Amazon Technologies, Inc. Single sensor two-sided camera
US9113096B1 (en) * 2014-06-30 2015-08-18 Amazon Technologies, Inc. Single sensor two-sided camera
JP2016025439A (ja) 2014-07-18 2016-02-08 ソニー株式会社 信号処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200108790A (ko) * 2019-03-11 2020-09-21 캐논 가부시끼가이샤 화상 처리 장치, 화상 처리 장치의 제어 방법, 및 비일시적인 컴퓨터 판독가능한 저장 매체
KR102557794B1 (ko) 2019-03-11 2023-07-21 캐논 가부시끼가이샤 화상 처리 장치, 화상 처리 장치의 제어 방법, 및 비일시적인 컴퓨터 판독가능한 저장 매체
JP2021016132A (ja) * 2019-07-16 2021-02-12 株式会社リコー 画像処理装置、画像処理方法およびプログラム
JP7351124B2 (ja) 2019-07-16 2023-09-27 株式会社リコー 画像処理装置、画像処理方法およびプログラム
JP2022105382A (ja) * 2021-01-04 2022-07-14 東芝テリー株式会社 可視画像と熱画像のデータ処理装置及び処理方法
JP7301893B2 (ja) 2021-01-04 2023-07-03 東芝テリー株式会社 可視画像と熱画像のデータ処理装置及び処理方法

Also Published As

Publication number Publication date
US20190124271A1 (en) 2019-04-25
WO2017159041A1 (ja) 2017-09-21
US10887530B2 (en) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2017159041A1 (ja) 信号処理装置、撮像装置および信号処理方法
US11244209B2 (en) Image processing device, imaging device, and image processing method
JP6492055B2 (ja) 双峰性の画像を取得するための装置
EP2410734B1 (en) Image synthesizing device, image synthesizing method and computer readable medium
JP5451782B2 (ja) 画像処理装置および画像処理方法
US10321022B2 (en) Signal processing device to generate low noise image signal in low light intensity environment
JP2010500659A (ja) イメージ情報にフィルタをかけるための適応空間イメージフィルタ
RU2557067C1 (ru) Устройство обработки изображения и способ управления для устройства обработки изображения
JP5430379B2 (ja) 撮像装置及びその制御方法及びプログラム
US9007494B2 (en) Image processing apparatus, method for controlling the same and storage medium
JP4949766B2 (ja) 画像信号処理装置
JP2008177724A (ja) 画像入力装置、信号処理装置および信号処理方法
KR101714641B1 (ko) 이미지의 선명도 증강이 가능한 카메라, 이미지의 선명도 증강방법 및 그 기록매체
WO2015156045A1 (ja) 画像処理装置、撮像装置および撮像方法
JP2016082390A (ja) 信号処理装置
JP4970425B2 (ja) 信号処理方法および信号処理回路
CN105450909B (zh) 一种信息处理方法及电子设备
JP2006245916A (ja) 色分離処理回路および色分離処理方法
JP5935649B2 (ja) 画像処理装置及び画像処理方法
JP2009017583A (ja) 画像処理装置
JP2015179951A (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JP2006166030A (ja) 色雑音低減手法およびカラー撮像装置
JP2010103817A (ja) 撮像装置
JP2008079301A (ja) 撮像装置
JP2015136014A (ja) 撮像装置及び撮像方法