JP2017168358A - Intercellular connection member and cell for solid oxide fuel cell - Google Patents

Intercellular connection member and cell for solid oxide fuel cell Download PDF

Info

Publication number
JP2017168358A
JP2017168358A JP2016053940A JP2016053940A JP2017168358A JP 2017168358 A JP2017168358 A JP 2017168358A JP 2016053940 A JP2016053940 A JP 2016053940A JP 2016053940 A JP2016053940 A JP 2016053940A JP 2017168358 A JP2017168358 A JP 2017168358A
Authority
JP
Japan
Prior art keywords
cell
inter
protective film
base material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016053940A
Other languages
Japanese (ja)
Other versions
JP5996137B1 (en
Inventor
将和 依田
Masakazu Yoda
将和 依田
井上 修一
Shuichi Inoue
修一 井上
孝之 中尾
Takayuki Nakao
孝之 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016053940A priority Critical patent/JP5996137B1/en
Application granted granted Critical
Publication of JP5996137B1 publication Critical patent/JP5996137B1/en
Publication of JP2017168358A publication Critical patent/JP2017168358A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell for a solid oxide fuel cell (SOFC) which suppresses growth of an oxide film on an alloy surface which causes an increase in electrical resistance, and has high power generation performance.SOLUTION: In an intercellular connection member 1 having a base material 11 and a protective film 12 formed on the surface of the base material 11, the base material 11 contains Cr, an alloy whose content of Si is less than 0.39 mass%, preferably, 015 to 30 mass% is a main material, and a protective film 12 has a spinel type metal oxide as a main material. The protective film is mainly composed of a metal oxide containing Zn, Mn, and Co.SELECTED DRAWING: Figure 3

Description

本発明は、セル間接続部材および固体酸化物形燃料電池用セルに関する。   The present invention relates to an inter-cell connecting member and a solid oxide fuel cell.

かかる固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルは、電解質膜の一方面側に空気極を接合すると共に、同電解質膜の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子伝導性の合金等により挟み込んだ構造を有する。
そして、このようなSOFC用セルでは、例えば700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用することができる。
Such a solid oxide fuel cell (hereinafter referred to as “SOFC” as appropriate) cell has an air electrode joined to one side of the electrolyte membrane and a fuel electrode joined to the other side of the electrolyte membrane. The single cell is sandwiched between a pair of electron conductive alloys that exchange electrons with the air electrode or the fuel electrode.
And in such a cell for SOFC, for example, it operates at an operating temperature of about 700 to 900 ° C., and with the movement of oxide ions through the electrolyte membrane from the air electrode side to the fuel electrode side, the pair of electrodes An electromotive force is generated in the meantime, and the electromotive force can be taken out and used.

このようなSOFC用セルで利用される合金は、電子伝導性及び耐熱性に優れたCrを含有する材料で製作される。また、このような合金の耐熱性は、この合金の表面に形成されるクロミア(Cr23)の緻密な被膜に由来する。 An alloy used in such a SOFC cell is manufactured from a material containing Cr having excellent electron conductivity and heat resistance. Further, the heat resistance of such an alloy is derived from a dense film of chromia (Cr 2 O 3 ) formed on the surface of the alloy.

また、SOFC用セルは、その製造工程において、合金等と空気極及び燃料極との間の接触抵抗をできるだけ小さくするなどの目的で、それらを積層した状態で、作動温度よりも高い1000℃〜1250℃程度の焼成温度で焼成する焼成処理を行う場合がある(例えば、特許文献1を参照。)。   In addition, in the manufacturing process of the SOFC cell, for the purpose of minimizing the contact resistance between the alloy, etc., the air electrode and the fuel electrode as much as possible, in a state where they are laminated, the operating temperature is higher than 1000 ° C. There is a case where a baking treatment is performed at a baking temperature of about 1250 ° C. (see, for example, Patent Document 1).

一方、SOFC用セルで利用される合金の表面に、単一系酸化物に不純物をドープしてなるn型半導体被膜を形成し、このような被膜形成処理を行うことによって、合金中に含まれるCrが飛散し易い6価の酸化物へと酸化されることを抑制しようとする技術もあった(例えば、特許文献2を参照。)。   On the other hand, an n-type semiconductor film formed by doping impurities into a single oxide is formed on the surface of the alloy used in the SOFC cell, and is included in the alloy by performing such a film forming process. There has also been a technique for suppressing the oxidation of Cr into a hexavalent oxide that easily scatters (see, for example, Patent Document 2).

上述したようにCrを含有する合金等と空気極とを接合してなるSOFC用セルでは、作動時等において合金等が高温にさらされることで、その合金等に含まれるCrが空気極側に飛散して、空気極のCr被毒が発生するという問題がある。
このような空気極のCr被毒は、空気極における酸化物イオンの生成のための酸素の還元反応を阻害し、空気極の電気抵抗を増加させ、更には合金等のCr濃度を減少させることにより合金等自体の耐熱性の低下などの問題を引き起こし、結果、SOFCの性能低下を招く場合がある。
As described above, in an SOFC cell formed by joining an alloy containing Cr and the air electrode, when the alloy is exposed to a high temperature during operation or the like, Cr contained in the alloy or the like is moved to the air electrode side. There is a problem that air poisoning causes Cr poisoning.
Such Cr poisoning of the air electrode inhibits the oxygen reduction reaction for the generation of oxide ions in the air electrode, increases the electrical resistance of the air electrode, and further decreases the Cr concentration of alloys and the like. This may cause problems such as a decrease in the heat resistance of the alloy itself, resulting in a decrease in SOFC performance.

また、特許文献1のように、合金等と空気極とを接合した状態で焼成する焼成処理を行う場合には、作動温度よりも高い焼成温度にさらされることにより、Cr(VI)の酸化物が生成され、蒸発して空気極と反応して、Cr化合物が生成され、空気極のCr被毒が発生する。   In addition, as in Patent Document 1, when performing a firing process in which an alloy or the like and an air electrode are joined, the oxide of Cr (VI) is exposed to a firing temperature higher than the operating temperature. Is generated and reacts with the air electrode to generate a Cr compound, and Cr poisoning of the air electrode occurs.

特開2004−259643号公報JP 2004-259634 A 国際公開第2007/083627号International Publication No. 2007/083627

上述した空気極におけるCr被毒の問題を幾分でも回避するために、合金等の表面を金属酸化物からなる保護膜で覆うことが考えられている。その場合、SOFC用セルの製造の段階で運転温度(例えば650℃〜900℃)よりも高温(1000℃以上)の酸化雰囲気(空気雰囲気)に曝される。そうすると、表面に保護膜を設けている場合でも、多少なりとも合金表面の酸化が生じ、すなわち酸化被膜が形成され、電気抵抗が増加する。この電気抵抗が大きいと、燃料電池の発電性能が低いものとなる。   In order to avoid the above-described problem of Cr poisoning in the air electrode, it is considered to cover the surface of an alloy or the like with a protective film made of a metal oxide. In this case, the SOFC cell is exposed to an oxidizing atmosphere (air atmosphere) at a higher temperature (1000 ° C. or higher) than the operating temperature (for example, 650 ° C. to 900 ° C.) at the stage of manufacturing the SOFC cell. Then, even when a protective film is provided on the surface, oxidation of the alloy surface occurs to some extent, that is, an oxide film is formed, and the electrical resistance increases. When this electrical resistance is large, the power generation performance of the fuel cell is low.

本発明は上述の課題に鑑みてなされたものであり、その目的は、電気抵抗の増加の原因となる合金表面の酸化被膜の成長を抑制し、発電性能の高いSOFC用セルを提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a SOFC cell having high power generation performance by suppressing the growth of an oxide film on the surface of an alloy that causes an increase in electrical resistance. is there.

上記目的を達成するための本発明に係るセル間接続部材の特徴構成は、基材と、前記基材の表面に形成された保護膜とを有するセル間接続部材であって、前記基材は、Crを含有し、Siの含有率が0.39質量%未満である合金を主材料とし、前記保護膜がスピネル型金属酸化物を主材料とする点にある。   The characteristic configuration of the inter-cell connecting member according to the present invention for achieving the above object is an inter-cell connecting member having a base material and a protective film formed on the surface of the base material, An alloy containing Cr and a Si content of less than 0.39% by mass is the main material, and the protective film is a spinel metal oxide as the main material.

発明者らは鋭意検討の末、セル間接続部材の基材に含まれるSiの量が、保護膜が形成された状態でのセル間接続部材の電気抵抗に大きく影響することを見いだした。そして実験により、Siの含有率が0.39質量%未満である合金を主材料とすることで、電気抵抗を大きく低減できることを確認した。これは、Siに由来する酸化被膜(SiO2)の成長が抑制されたことによると考えられる。 As a result of intensive studies, the inventors have found that the amount of Si contained in the base material of the inter-cell connection member greatly affects the electrical resistance of the inter-cell connection member in the state where the protective film is formed. Experiments confirmed that the electrical resistance can be greatly reduced by using an alloy having a Si content of less than 0.39% by mass as a main material. This is considered to be because the growth of the oxide film (SiO 2 ) derived from Si was suppressed.

すなわち上記の特徴構成によれば、基材と、基材の表面に形成された保護膜とを有するセル間接続部材において、基材は、Crを含有し、Siの含有率が0.39質量%未満である合金を主材料とし、保護膜がスピネル型金属酸化物を主材料とすることにより、セル間接続部材の電気抵抗を大きく低減して、発電性能の高いSOFC用セルを実現することが可能となる。   That is, according to the above characteristic configuration, in the inter-cell connecting member having the base material and the protective film formed on the surface of the base material, the base material contains Cr and the Si content rate is 0.39 mass. % Of the alloy is the main material, and the protective film is the spinel metal oxide as the main material, so that the electrical resistance of the inter-cell connection member is greatly reduced to realize a SOFC cell with high power generation performance. Is possible.

前記合金のSiの含有率を0.30質量%以下とすると、セル間接続部材の電気抵抗をより低減することができ好適である。 When the Si content of the alloy is 0.30% by mass or less, the electrical resistance of the inter-cell connecting member can be further reduced, which is preferable.

本発明に係るセル間接続部材の別の特徴構成は、前記合金のSiの含有率が0.15質量%より大きい点にある。   Another characteristic configuration of the inter-cell connecting member according to the present invention is that the Si content of the alloy is greater than 0.15% by mass.

合金のSi含有率を低減するには、合金の製造工程にて高いコストを必要とする。合金のSiの含有率を0.15質量%より大きくすることで、コストの上昇を抑制した上で、電気抵抗の低減も可能となる。すなわち上記の特徴構成によれば、コストと性能とを両立したセル間接続部材を提供することができる。   To reduce the Si content of the alloy, a high cost is required in the alloy manufacturing process. By making the Si content of the alloy greater than 0.15 mass%, it is possible to reduce the electrical resistance while suppressing an increase in cost. That is, according to said characteristic structure, the connection member between cells which can make cost and performance compatible can be provided.

本発明に係るセル間接続部材の別の特徴構成は、前記保護膜がZnとMnとCoとを含む金属酸化物を主材料とする点にある。   Another characteristic configuration of the inter-cell connecting member according to the present invention is that the protective film is mainly composed of a metal oxide containing Zn, Mn, and Co.

上記の特徴構成によれば、保護膜がZnとMnとCoとを含む金属酸化物を主材料とすることで、保護膜の熱膨張率と基材や空気極の熱膨張率との不一致を小さくすることができ、SOFC用セルの耐久性を高めることができ好適である。保護膜がZnx(CoyMn(1-y)(3-x)4(0<x<1、0<y×(3−x)≦2)を主材料とすると更に好適である。また保護膜がZnCoMnO4を主材料とすると、Siの含有率を0.39質量%未満とした基材と組合せて構成したセル間接続部材にてSi含有率に応じて抵抗値を低減できることが実験で確かめられている。 According to the above characteristic configuration, the protective film is mainly composed of a metal oxide containing Zn, Mn, and Co, so that the thermal expansion coefficient of the protective film and the thermal expansion coefficient of the base material and the air electrode are inconsistent. It can be made small, and the durability of the SOFC cell can be increased, which is preferable. More preferably, the protective film is mainly composed of Zn x (Co y Mn (1-y) ) (3-x) O 4 (0 <x <1, 0 <y × (3-x) ≦ 2). . Further, when the protective film is mainly made of ZnCoMnO 4 , the resistance value can be reduced according to the Si content rate in the inter-cell connecting member configured in combination with the base material having the Si content rate of less than 0.39% by mass. It has been confirmed by experiments.

本発明に係るセル間接続部材の別の特徴構成は、前記保護膜が電着塗装により形成されている点にある。   Another characteristic configuration of the inter-cell connecting member according to the present invention is that the protective film is formed by electrodeposition coating.

上記特徴構成によれば、緻密で強固な保護膜を実現することができ、好適である。   According to the above characteristic configuration, a dense and strong protective film can be realized, which is preferable.

上記目的を達成するための本発明に係る固体酸化物形燃料電池用セルの特徴構成は、上述のセル間接続部材と空気極とを接合してなる点にある。   In order to achieve the above object, the characteristic configuration of the solid oxide fuel cell according to the present invention resides in that the inter-cell connecting member and the air electrode are joined.

上記の特徴構成によれば、上述のセル間接続部材と空気極とを接合して固体酸化物形燃料電池用セルが構成されるので、セル間接続部材の電気抵抗を大きく低減して、発電性能の高いSOFC用セルを実現することが可能となる。   According to the above characteristic configuration, since the cell for a solid oxide fuel cell is configured by joining the inter-cell connecting member and the air electrode, the electric resistance of the inter-cell connecting member is greatly reduced to generate power. A high-performance SOFC cell can be realized.

固体酸化物形燃料電池用セルの概略図Schematic diagram of solid oxide fuel cell 固体酸化物形燃料電池の作動時の反応の説明図Explanatory diagram of reaction during operation of solid oxide fuel cell セル間接続部材接合構造の断面図Cross-sectional view of inter-cell connecting member joint structure 電圧降下の温度変化を示すグラフGraph showing voltage drop temperature change

以下、本実施形態に係るセル間接続部材および固体酸化物形燃料電池セルについて説明する。なお以下、好適な実施例を記すが、これら実施例は、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Hereinafter, the inter-cell connection member and the solid oxide fuel cell according to the present embodiment will be described. In the following, preferred examples will be described, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

<固体酸化物形燃料電池>
本発明にかかるSOFC用セル間接続部材およびその製造方法の実施の形態について、図面に基づいて説明する。
図1および図2に示すSOFC用セルCは、酸化物イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸化物イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
<Solid oxide fuel cell>
An embodiment of an inter-cell connecting member for SOFC and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
The SOFC cell C shown in FIGS. 1 and 2 has an air electrode made of an oxide ion and an electron conductive porous body on one side of an electrolyte membrane 30 made of a dense oxide oxide conductive solid oxide. 31 and a single cell 3 formed by joining a fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30.

さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなる基材11に保護膜12を形成してあるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。そして、空気極31側の上記溝2が、空気極31とセル間接続部材1とが密着配置されることで、空気極31に空気を供給するための空気流路2aとして機能し、一方、燃料極32側の上記溝2が、燃料極32とセル間接続部材1とが密着配置されることで、燃料極32に水素を供給するための燃料流路2bとして機能する。   Further, the SOFC cell C exchanges electrons with the single cell 3 with respect to the air electrode 31 or the fuel electrode 32, and at the same time, a pair of electron conductive materials having grooves 2 for supplying air and hydrogen. It has a structure in which a gas seal body is appropriately sandwiched between outer peripheral edges by an inter-cell connecting member 1 in which a protective film 12 is formed on a base material 11 made of an alloy or oxide. And the said groove | channel 2 by the side of the air electrode 31 functions as the air flow path 2a for supplying air to the air electrode 31, because the air electrode 31 and the inter-cell connection member 1 are closely arranged, The groove 2 on the fuel electrode 32 side functions as a fuel flow path 2 b for supplying hydrogen to the fuel electrode 32 by arranging the fuel electrode 32 and the inter-cell connecting member 1 in close contact with each other.

なお、上記SOFC用セルCを構成する各要素で利用される一般的な材料について説明を加えると、たとえば、上記空気極31の材料としては、LaMO3(たとえばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができ、上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 In addition, when a general material used in each element constituting the SOFC cell C is described, for example, the material of the air electrode 31 is LaMO 3 (for example, M = Mn, Fe, Co). A perovskite oxide of (La, AE) MO 3 in which a part of La of Al is substituted with an alkaline earth metal AE (AE = Sr, Ca) can be used. And yttria-stabilized zirconia (YSZ) can be used, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30.

セル間接続部材1の材料としては、フェライト系ステンレス鋼であるFe−Cr合金や、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などのように、Crを含有する合金が利用される。本実施形態では特に、Siの含有率が0.39質量%未満である合金を主材料とするセル間接続部材が用いられる。   As the material of the inter-cell connection member 1, Fe-Cr alloy that is ferritic stainless steel, Fe-Cr-Ni alloy that is austenitic stainless steel, Ni-Cr alloy that is nickel-based alloy, and the like, An alloy containing Cr is used. Especially in this embodiment, the connection member between cells which uses as a main material the alloy whose Si content rate is less than 0.39 mass% is used.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、かかる積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本願発明は、その他の構造のSOFCについても適用可能である。
In a state where a plurality of SOFC cells C are arranged in a stacked manner, a pressing force is applied in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the inter-cell connecting members 1 disposed at both ends in the stacking direction may be any one in which only one of the fuel flow path 2b or the air flow path 2a is formed, and is disposed in the other middle. As the inter-cell connecting member 1, a member in which the fuel channel 2b is formed on one surface and the air channel 2a is formed on the other surface can be used. In the cell stack having such a laminated structure, the inter-cell connecting member 1 may be referred to as a separator.
An SOFC having such a cell stack structure is generally called a flat-plate SOFC. In the present embodiment, a flat SOFC will be described as an example. However, the present invention is applicable to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、たとえば800℃程度の作動温度で作動する。すると、空気極31においてO2が電子e-と反応してO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。 When the SOFC having such a SOFC cell C is operated, air is passed through the air flow path 2a formed in the inter-cell connecting member 1 adjacent to the air electrode 31, as shown in FIG. While supplying, hydrogen is supplied through the fuel flow path 2b formed in the inter-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of about 800 ° C., for example. Then, the air electrode 31 O 2 electrons e - are reacting with O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, H 2 supplied in the fuel electrode 32 Reacts with the O 2− to generate H 2 O and e , so that an electromotive force E is generated between the pair of inter-cell connecting members 1, and the electromotive force E is taken out and used. be able to.

<セル間接続部材>
セル間接続部材1は、図1、図3に示すように、例えば、フェライト系ステンレス合金製の基材11の表面に保護膜12を設けて構成してある。そして、各単セル3の間に空気流路2a、燃料流路2bを形成しつつ単セル間を接続可能にする、溝板状に形成してある。
<Cell connecting member>
As shown in FIGS. 1 and 3, the inter-cell connection member 1 is configured, for example, by providing a protective film 12 on the surface of a base material 11 made of a ferritic stainless alloy. And it forms in the shape of a groove plate which makes it possible to connect between single cells, forming the air flow path 2a and the fuel flow path 2b between each single cell 3. FIG.

前記保護膜12は、導電性セラミックス材料を含有する塗膜形成用材料を、前記基材11に電着塗装することにより保護膜12を厚膜として形成してある。   The protective film 12 is formed as a thick film by electrodeposition coating a base material 11 with a coating film-forming material containing a conductive ceramic material.

<保護膜>
前記保護膜12は、基材11の表面に、例えばZnCoMnO4等の金属酸化物微粒子とポリアクリル酸等のアニオン型樹脂とを質量比で(金属酸化物微粒子:アニオン型樹脂)=(0.5:1)〜(1.7:1)の割合で含有している混合液を用いて、アニオン電着塗装法により電着塗膜を形成する電着工程を行い、前記電着塗膜を焼成して前記電着塗膜中の樹脂成分を焼失させた焼成被膜を形成する焼成工程を行い、さらに前記焼成被膜を焼結させて金属酸化物からなる保護膜12を形成する焼結工程を行うことにより形成されている。なお、前記の混合液が、アニオン電着塗装法により電着塗膜を形成するために使用される電着塗料である。以下の説明では「混合液」に記載を統一するが、保護膜12の形成には前記の混合液、すなわち当該混合液からなる電着塗料を用いることとなる。
<Protective film>
The protective film 12 has, on the surface of the base material 11, a metal oxide fine particle such as ZnCoMnO 4 and an anionic resin such as polyacrylic acid in a mass ratio (metal oxide fine particle: anionic resin) = (0. 5: 1) to (1.7: 1) is used to perform an electrodeposition step of forming an electrodeposition coating film by an anionic electrodeposition coating method using a mixed solution containing the ratio of the electrodeposition coating film. Performing a firing step of firing to form a fired coating in which the resin component in the electrodeposition coating is burned off, and further sintering the fired coating to form a protective film 12 made of a metal oxide It is formed by doing. In addition, the said liquid mixture is an electrodeposition coating material used in order to form an electrodeposition coating film by the anion electrodeposition coating method. In the following description, the description of “mixed liquid” is unified, but for forming the protective film 12, the above-described mixed liquid, that is, an electrodeposition paint composed of the mixed liquid is used.

ここで熱膨張率を検証すると、ZnCoMnO4は、11×10-6-1であり、ZnCo24の9.3×10-6-1に比べて、主に基材として使用されるフェライト系ステンレス鋼(熱膨張率:11×10-6-1)や、接合して使用される空気極材料である(La,Sr)(Co,Fe)O3(熱膨張率:15〜21×10-6-1)、(La,Sr)MnO3(熱膨張率:11×10-6-1)に比較的近いものである。 When the thermal expansion coefficient is verified here, ZnCoMnO 4 is 11 × 10 −6 K −1, which is mainly used as a base material compared to 9.3 × 10 −6 K −1 of ZnCo 2 O 4. Ferritic stainless steel (thermal expansion coefficient: 11 × 10 −6 K −1 ) and (La, Sr) (Co, Fe) O 3 (thermal expansion coefficient: 15) which is an air electrode material used by joining. ˜21 × 10 −6 K −1 ) and (La, Sr) MnO 3 (thermal expansion coefficient: 11 × 10 −6 K −1 ).

以下に前記保護膜12の具体的な製造方法を詳述するが、本発明は、以下の実施例に限定されるものではない。   Although the specific manufacturing method of the said protective film 12 is explained in full detail below, this invention is not limited to a following example.

(1)アニオン型樹脂の合成
1,4ジオキサン50部を、還流冷却器と温度計と撹拌機と滴下ロートとを付けた4つ口フラスコ中で約82℃に加熱し、撹拌しながら滴下ロートから下記表1に示す混合物と1,4ジオキサン50部を3時間かけて連続滴下する。
滴下完了後同温度でさらに3時間反応を続行して、アニオン性をもつアクリル樹脂(固形分50質量%)を合成する。得られたアニオン型樹脂のTgは、−27℃(計算上の推定値)、分子量MW12万〜15万であった。
(1) Synthesis of anionic resin 50 parts of 1,4 dioxane was heated to about 82 ° C. in a four-necked flask equipped with a reflux condenser, a thermometer, a stirrer, and a dropping funnel, and the dropping funnel was stirred. To the mixture shown in Table 1 below and 50 parts of 1,4 dioxane are continuously added dropwise over 3 hours.
After completion of the dropwise addition, the reaction is continued for 3 hours at the same temperature to synthesize an anionic acrylic resin (solid content 50 mass%). The obtained anion type resin had a Tg of −27 ° C. (calculated estimate) and a molecular weight MW of 120,000 to 150,000.

Figure 2017168358
表1中のAIBNは、重合開始剤である。L−SHは、連鎖移動剤である。
Figure 2017168358
AIBN in Table 1 is a polymerization initiator. L-SH is a chain transfer agent.

アニオン型樹脂の化学的性状については、Tg:−50℃〜+25℃および分子量(MW質量平均分子量):5万〜20万の範囲内が好適である。一般にアニオン型樹脂のTgは+20℃前後、MWは3万〜7万程度である。なお、多量の無機微粒子を電気泳動共析させて、電解ガスを局所発生させて共析率を向上するためには、低Tgで高分子量のアニオン型樹脂とすることが好ましい。Tgが−50℃以下の場合、析出塗膜の粘性が強すぎ焼付硬化後に流動が大きく、+25℃以上になると流動性が低下しZnCoMnO4微粒子共析時に発生したガス跡を消すことができずピンホール状となる。MWが5万以下ではZnCoMnO4微粒子の分散性が低下する。また20万以上になると流動性が低下し塗膜中のZnCoMnO4微粒子の均一な分散が悪くなり、見た目も不均一な外観となる。 The chemical properties of the anionic resin are preferably Tg: −50 ° C. to + 25 ° C. and molecular weight (MW mass average molecular weight): 50,000 to 200,000. In general, the Tg of an anionic resin is around + 20 ° C., and the MW is about 30,000 to 70,000. In order to improve the eutectoid rate by electrophoretically coagulating a large amount of inorganic fine particles and generating an electrolytic gas locally, it is preferable to use an anionic resin having a low Tg and a high molecular weight. If Tg is -50 ° C. or less, precipitation coating viscosity greater fluidity after bake hardening too strong, + 25 and liquidity ° C. becomes higher can not be erased gas traces generated in reduced ZnCoMnO 4 particles both analysis time It becomes a pinhole shape. When the MW is 50,000 or less, the dispersibility of the ZnCoMnO 4 fine particles decreases. On the other hand, when it is 200,000 or more, the fluidity is lowered, the uniform dispersion of the ZnCoMnO 4 fine particles in the coating film is deteriorated, and the appearance is not uniform.

また後述のシラン系カップリング剤を用いて、アニオン型樹脂と金属酸化物微粒子とをカップリング反応させると、ZnCoMnO4微粒子に代表される金属酸化物微粒子の析出効率を飛躍的に向上させることができる。 In addition, when an anionic resin and metal oxide fine particles are subjected to a coupling reaction using a silane coupling agent described later, the deposition efficiency of metal oxide fine particles represented by ZnCoMnO 4 fine particles can be dramatically improved. it can.

(2)混合液の作成
シラン系カップリング剤として、イソシアネート官能性シラン(OCN−C36−Si(OC253)を用い、この溶剤nMP(nメチルピロリドン)3質量部と(1)で作成したアニオン型樹脂120質量部と溶剤nMP(nメチルピロリドン)60部を混ぜた後、スズ系触媒(DBTDL0.2部)を添加し60℃で1時間反応させることにより、シラン系カップリング剤のイソシアネート基とアニオン型樹脂のOH基が反応しシラン系カップリング剤がアニオン型樹脂に付加する。(表2第一成分)
(2) as a mixture of creating a silane coupling agent, with isocyanate-functional silane (OCN-C 3 H 6 -Si (OC 2 H 5) 3), the solvent nMP (n-methyl pyrrolidone) and 3 parts by weight After mixing 120 parts by mass of the anionic resin prepared in (1) and 60 parts of the solvent nMP (n-methylpyrrolidone), a tin-based catalyst (DBTDL 0.2 part) was added and reacted at 60 ° C. for 1 hour, whereby silane The isocyanate group of the coupling agent reacts with the OH group of the anionic resin, and the silane coupling agent is added to the anionic resin. (Table 2 first component)

Figure 2017168358
Figure 2017168358

ZnCoMnO4微粒子(平均粒径0.5μm)100質量部と溶剤nMP(nメチルピロリドン)200部と3ミリ径のジルコニアビーズ750質量部を混合し、撹拌機で湿式分散を行いスラリー状のZnCoMnO4微粒子を得る。(表3第二成分) 100 parts by weight of ZnCoMnO 4 fine particles (average particle size 0.5 μm), 200 parts of solvent nMP (n-methylpyrrolidone) and 750 parts by weight of zirconia beads having a diameter of 3 mm are mixed and wet dispersed with a stirrer to form slurry-like ZnCoMnO 4. Get fine particles. (Table 3 second component)

Figure 2017168358
Figure 2017168358

前記第二成分の中に前記第一成分を添加し均一混合する。
さらに、トリエチルアミン1.4質量部と溶剤nMP(nメチルピロリドン)10質量部と消泡剤(サーフィノール104)10質量部を添加し攪拌する。
均一混合した後、イオン交換水500質量部を少しずつ加えて、ZnCoMnO4微粒子とアニオン型樹脂との混合液を作成する。24時間攪拌し、シラン系カップリング剤の加水分解反応を促したのち、イオン交換処理で不純物を除去し、pH9.0±0.2浴電導度200±50μS/cmの混合液が得られる。得られた分散液は、ZnCoMnO4微粒子:樹脂=1:1(質量比)の混合液として用いられる。
The first component is added to the second component and mixed uniformly.
Further, 1.4 parts by mass of triethylamine, 10 parts by mass of a solvent nMP (n-methylpyrrolidone) and 10 parts by mass of an antifoaming agent (Surfinol 104) are added and stirred.
After uniform mixing, 500 parts by mass of ion-exchanged water is added little by little to prepare a mixed solution of ZnCoMnO 4 fine particles and an anionic resin. After stirring for 24 hours to promote hydrolysis reaction of the silane coupling agent, impurities are removed by ion exchange treatment, and a mixed solution having a pH of 9.0 ± 0.2 bath conductivity of 200 ± 50 μS / cm is obtained. The obtained dispersion is used as a mixed liquid of ZnCoMnO 4 fine particles: resin = 1: 1 (mass ratio).

なお、下記の配合物第一成分および第二成分の混合割合を変えることでZnCoMnO4微粒子:樹脂=0.5:1(質量比)〜1.7:1(質量比)の作成ができる。 Note that in ZnCoMnO 4 microparticles changing the mixing ratio of the first component and the second component blend of the following: resin = 0.5: 1 (weight ratio) 1.7: can create a 1 (mass ratio).

(3) 電着塗装
上記(2)で作成したアニオン型分散剤組成物をその中の分散剤粒子が、電着液1リットル当り100gになるように分散させ、25℃の溶液において、直流電圧40Vで30秒間、スターラ撹拌(20rpm)下で電着塗装を行った。
なお、電着塗装は下記のようにして行った。
(3) Electrodeposition coating The anionic dispersant composition prepared in (2) above is dispersed so that the dispersant particles in the electrodeposition solution are 100 g per liter of electrodeposition solution, and a direct current voltage is applied in a solution at 25 ° C. Electrodeposition coating was performed at 40 V for 30 seconds under stirring with a stirrer (20 rpm).
Electrodeposition coating was performed as follows.

形状が断面長方形の単純形状である基材11の試験片に、必要に応じて脱脂処理、酸洗処理などを施した後、前記混合液に被処理品を浸漬し、通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。   By performing degreasing treatment, pickling treatment, etc., if necessary, on the test piece of the base material 11 having a simple shape with a rectangular cross-section, immersing the article to be treated in the mixed solution, and conducting electricity, An uncured electrodeposition coating film is formed on the surface of the substrate 11.

(3−1) 前処理
なお、各電極には以下の1〜7を順に行う前処理を行った。
1. 電解洗浄剤による陰極電解
(アクチベータS(シミズ社製)100g/L、40℃、10A/dm2、30秒)
2. 水洗
3. 電解洗浄剤による陽極極電解
(アクチベータS(シミズ社製)100g/L、40℃、10A/dm2、30秒)
4. 水洗
5. 酸中和(硝酸200mL/L)
6. 水洗
7. 純水洗
(3-1) Pretreatment In addition, the pretreatment which performs the following 1-7 in order on each electrode was performed.
1. Cathodic electrolysis with electrolytic cleaner (Activator S (manufactured by Shimizu) 100 g / L, 40 ° C., 10 A / dm 2, 30 seconds)
2. 2. Washing with water Anode electrode electrolysis with electrolytic cleaner (Activator S (manufactured by Shimizu) 100 g / L, 40 ° C., 10 A / dm 2, 30 seconds)
4). 5. Washing with water Acid neutralization (Nitric acid 200mL / L)
6). 6. Washing with water Pure water washing

また、陽極とする基材11の試験片には、別途、脱脂処理、酸洗処理などを施してもよい。
脱脂処理は、たとえば、基材11の表面にアルカリ水溶液を供給することにより行われる。アルカリ水溶液の供給は、たとえば、基材11にアルカリ水溶液を噴霧するかまたは基材11をアルカリ水溶液に浸漬させることにより行われる。アルカリとしては金属の脱脂に常用されるものを使用でき、たとえば、リン酸ナトリウム、リン酸カリウムなどのアルカリ金属のリン酸塩などが挙げられる。アルカリ水溶液中のアルカリ濃度は、たとえば、処理する金属の種類、基材11の汚れの度合いなどに応じて適宜決定される。さらにアルカリ水溶液には、陰イオン性界面活性剤、非イオン性界面活性剤などの界面活性剤の適量が含まれていてもよい。脱脂は、20〜50℃程度の温度下(アルカリ水溶液の液温)に行われ、1〜5分程度で終了する。
Moreover, you may perform a degreasing process, a pickling process, etc. separately to the test piece of the base material 11 used as an anode.
A degreasing process is performed by supplying alkaline aqueous solution to the surface of the base material 11, for example. The supply of the alkaline aqueous solution is performed, for example, by spraying the alkaline aqueous solution onto the base material 11 or immersing the base material 11 in the alkaline aqueous solution. As the alkali, those commonly used for metal degreasing can be used, and examples include alkali metal phosphates such as sodium phosphate and potassium phosphate. The alkali concentration in the aqueous alkali solution is appropriately determined according to, for example, the type of metal to be treated, the degree of contamination of the substrate 11, and the like. Furthermore, the alkaline aqueous solution may contain an appropriate amount of a surfactant such as an anionic surfactant and a nonionic surfactant. Degreasing is performed at a temperature of about 20 to 50 ° C. (liquid temperature of the alkaline aqueous solution) and is completed in about 1 to 5 minutes.

脱脂後、基材11を水洗され、次の酸洗処理に供される。その他、酸性浴に浸漬する脱脂、気泡性浸漬脱脂、電解脱脂などを適宜組み合わせて実施することもできる。酸洗処理は、たとえば、基材11の表面に酸水溶液を供給することにより行われる。酸水溶液の供給は、脱脂処理におけるアルカリ水溶液の供給と同様に、基材11への酸水溶液の噴霧、基材11の酸水溶液への浸漬などにより行われる。酸としては金属の酸洗に常用されるものを使用でき、たとえば、硫酸、硝酸、リン酸などが挙げられる。酸水溶液中の酸濃度は、たとえば、基材11の種類などに応じて適宜決定される。酸洗処理は、20〜30℃程度の温度下(酸水溶液の液温)に行われ、15〜60秒程度で終了する。脱脂処理および酸洗処理のほかに、スケール除去処理、下地処理、防錆処理などを施してもよい。これらの処理の後、基材11を70〜120℃程度の温度下に乾燥させて次の電着塗装に供する。   After degreasing, the substrate 11 is washed with water and subjected to the next pickling treatment. In addition, degreasing to be immersed in an acidic bath, bubbling immersion degreasing, electrolytic degreasing, and the like can be appropriately combined. The pickling treatment is performed, for example, by supplying an acid aqueous solution to the surface of the substrate 11. The supply of the acid aqueous solution is performed by spraying the acid aqueous solution on the base material 11 or immersing the base material 11 in the acid aqueous solution, as in the case of supplying the alkaline aqueous solution in the degreasing treatment. As the acid, those commonly used for metal pickling can be used, and examples thereof include sulfuric acid, nitric acid, and phosphoric acid. The acid concentration in the acid aqueous solution is appropriately determined according to, for example, the type of the substrate 11. The pickling treatment is performed at a temperature of about 20 to 30 ° C. (liquid temperature of the acid aqueous solution) and is completed in about 15 to 60 seconds. In addition to the degreasing treatment and pickling treatment, scale removal treatment, ground treatment, rust prevention treatment, and the like may be performed. After these treatments, the base material 11 is dried at a temperature of about 70 to 120 ° C. and used for the next electrodeposition coating.

(3−2)電着工程
このようにして、前処理を行った基材11の試験片を、25℃の溶液において、基材11をプラス、対極としてSUS304の極板をマイナスの極性とし、直流電圧40Vで30秒間、スターラ撹拌(20rpm)して通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。
(3-2) Electrodeposition process In this way, in the 25 ° C. solution, the test piece of the base material 11 subjected to the pretreatment was made positive with the base material 11 as a counter electrode and the SUS304 electrode plate with a negative polarity. An uncured electrodeposition coating film is formed on the surface of the substrate 11 by energizing with a stirrer stirring (20 rpm) for 30 seconds at a DC voltage of 40V.
In addition, the film thickness of the electrodeposition coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time.

電着工程後の基材11は、通電槽から取り出され、加熱処理が施される。この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成されたセル接続部材1が得られる。   The base material 11 after the electrodeposition process is taken out from the energization tank and subjected to heat treatment. By heating the base material 11 on which the uncured electrodeposition coating film is formed, the cell connection member 1 on which the cured electrodeposition coating film is formed on the surface of the base material 11 is obtained.

電着塗装は、公知の方法に従い、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜50℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜45℃とすればよい。
The electrodeposition coating is carried out according to a known method, for example, by immersing the base material 11 completely or partially in an energization tank filled with the mixed solution as an anode and energizing.
Electrodeposition coating conditions are not particularly limited, and a wide range is available depending on various conditions such as the type of metal that is the substrate 11, the type of the mixed solution, the size and shape of the current-carrying tank, and the use of the resulting cell connection member 1. Usually, the bath temperature (mixed solution temperature) is about 10 to 50 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 45 ° C. do it.

加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。予備乾燥は、60〜140℃程度の加熱下に行われ、3〜30分程度で終了する。硬化加熱は、150〜220℃程度の加熱下に行われ、10〜60分程度で終了する。このようにして、前記混合液による電着塗膜が得られる。   The heat treatment includes preliminary drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the preliminary drying. The preliminary drying is performed under heating at about 60 to 140 ° C. and is completed in about 3 to 30 minutes. Curing heating is performed under heating at about 150 to 220 ° C. and is completed in about 10 to 60 minutes. Thus, the electrodeposition coating film by the said liquid mixture is obtained.

(3−3)(焼成工程および焼結工程)
前記混合液としてZnCoMnO4微粒子:樹脂=1:1(質量比)のものを用いて形成した電着塗膜を、500℃で2hr保持してアクリル樹脂を焼き飛ばす焼成工程を行った後、1000℃まで昇温して2hr保持することでZnCoMnO4粒子の焼結および基材11の試験片の表面との反応を起こさせる焼結工程を行い、基材11に対して密着力があり、かつ緻密な保護膜12を形成した。
(3-3) (Firing process and sintering process)
An electrodeposition coating film formed using ZnCoMnO 4 fine particles: resin = 1: 1 (mass ratio) as the mixed liquid was held at 500 ° C. for 2 hours and subjected to a baking step in which the acrylic resin was burned off, and then 1000 A sintering process for causing the ZnCoMnO 4 particles to sinter and react with the surface of the test piece of the base material 11 by raising the temperature to 0 ° C. and holding it for 2 hours; A dense protective film 12 was formed.

<Si含有率と電気抵抗の関係>
Si含有率の異なる5種のフェライト系ステンレス合金(SUS445J1)を用いて、基材11を作成した。そして上述の方法により基材11の表面にZnCoMnO4を主材料とする保護膜12を形成し、実施例1〜4および比較例1に係るセル間接続部材のサンプルを作成した。各サンプルのSi含有率を表4に示す。
<Relationship between Si content and electrical resistance>
The base material 11 was created using five types of ferritic stainless steel alloys (SUS445J1) having different Si contents. Then the ZnCoMnO 4 on the surface of the substrate 11 by the methods described above to form a protective film 12 to the main material, samples were prepared in the intercell connection member according to Examples 1 to 4 and Comparative Example 1. Table 4 shows the Si content of each sample.

Figure 2017168358
Figure 2017168358

上述のサンプルを、固体酸化物形燃料電池の運転温度を模した600℃〜850℃の6種類の温度環境に置き、0.32A/cm-2の直流電流を流した際の電圧降下を測定した。6種類の温度環境は、600℃、650℃、700℃、750℃、800℃、850℃である。結果を図4に示す。 The above sample was placed in six temperature environments of 600 ° C to 850 ° C simulating the operating temperature of a solid oxide fuel cell, and the voltage drop when a DC current of 0.32 A / cm -2 was passed was measured. did. The six temperature environments are 600 ° C., 650 ° C., 700 ° C., 750 ° C., 800 ° C., and 850 ° C. The results are shown in FIG.

図4のグラフは、横軸に温度、縦軸に電圧降下をとって、各サンプルの電圧降下をプロットしたものである。電流を一定として電圧降下を測定しているので、電圧降下が大きいサンプルは抵抗値が高いといえる。比較例1は、他の実施例1〜4に比べ、電圧降下が大きくなった。例えば650℃では、他の実施例1〜4に比べて、50mV以上電圧降下が大きくなっている。実施例1〜4については、電圧降下の値に大きな差は生じなかったが、Si含有率が小さくなるにつれて電圧降下が小さくなる傾向が見られる。なお各サンプルは、温度が上昇するにつれて電圧降下が減少(すなわち抵抗値が増加)している。このことから図4に示される電圧降下は、半導体を主要因とするものであり、SiO2等の金属酸化物によるものと考えられる。以上の結果から、Siの含有率が0.39質量%未満である合金を主材料とする基材を用いることで、電気抵抗の増加の原因となる合金表面の酸化被膜の成長を抑制し、もってセル間接続部材の電気抵抗を低減して、発電性能の高いSOFC用セルを提供できることが示された。なお合金のSi含有率は、0.30質量%以下が好ましく、0.25質量%以下がより好ましく、0.20質量%以下であると更に好ましい。 The graph of FIG. 4 plots the voltage drop of each sample with the horizontal axis representing temperature and the vertical axis representing voltage drop. Since the voltage drop is measured with a constant current, a sample with a large voltage drop has a high resistance value. The voltage drop of the comparative example 1 became large compared with the other Examples 1-4. For example, at 650 ° C., a voltage drop of 50 mV or more is larger than in other Examples 1 to 4. About Examples 1-4, although the big difference did not arise in the value of a voltage drop, the tendency for a voltage drop to become small is seen as Si content rate becomes small. In each sample, the voltage drop decreases (that is, the resistance value increases) as the temperature increases. From this, the voltage drop shown in FIG. 4 is mainly caused by the semiconductor, and is considered to be caused by a metal oxide such as SiO 2 . From the above results, by using a base material whose main material is an alloy having a Si content of less than 0.39% by mass, the growth of the oxide film on the surface of the alloy causing an increase in electrical resistance is suppressed, Thus, it has been shown that the SOFC cell having high power generation performance can be provided by reducing the electrical resistance of the inter-cell connecting member. The Si content of the alloy is preferably 0.30% by mass or less, more preferably 0.25% by mass or less, and further preferably 0.20% by mass or less.

1 :セル接続部材
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
11 :基材
12 :保護膜
30 :電解質膜
31 :空気極
32 :燃料極
C :SOFC用セル
1: Cell connecting member 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 11: Base material 12: Protective film 30: Electrolyte film 31: Air electrode 32: Fuel electrode C: Cell for SOFC

上記目的を達成するための本発明に係るセル間接続部材の特徴構成は、基材と、前記基材の表面に形成された保護膜とを有するセル間接続部材であって、前記基材は、Crを含有し、Siの含有率が0.39質量%未満である合金を主材料とし、前記保護膜がZnCoMnO 4 を主材料とする点にある。 The characteristic configuration of the inter-cell connecting member according to the present invention for achieving the above object is an inter-cell connecting member having a base material and a protective film formed on the surface of the base material, An alloy containing Cr and a Si content of less than 0.39% by mass is the main material, and the protective film is ZnCoMnO 4 as the main material.

すなわち上記の特徴構成によれば、基材と、基材の表面に形成された保護膜とを有するセル間接続部材において、基材は、Crを含有し、Siの含有率が0.39質量%未満である合金を主材料とし、保護膜がZnCoMnO 4 を主材料とすることにより、セル間接続部材の電気抵抗を大きく低減して、発電性能の高いSOFC用セルを実現することが可能となる。なお保護膜がZnCoMnO 4 を主材料とすると、Siの含有率を0.39質量%未満とした基材と組合せて構成したセル間接続部材にてSi含有率に応じて抵抗値を低減できることが実験で確かめられている。 That is, according to the above characteristic configuration, in the inter-cell connecting member having the base material and the protective film formed on the surface of the base material, the base material contains Cr and the Si content rate is 0.39 mass. The main material is an alloy that is less than 100 %, and the protective film is made of ZnCoMnO 4. As a result, it is possible to greatly reduce the electrical resistance of the inter-cell connecting member and realize a SOFC cell with high power generation performance. Become. When the protective film is made of ZnCoMnO 4 as a main material, the resistance value can be reduced according to the Si content in the inter-cell connecting member configured in combination with the base material having the Si content of less than 0.39% by mass. It has been confirmed by experiments.

Claims (8)

基材と、前記基材の表面に形成された保護膜とを有するセル間接続部材であって、前記基材は、Crを含有し、Siの含有率が0.39質量%未満である合金を主材料とし、前記保護膜がスピネル型金属酸化物を主材料とするセル間接続部材。   An inter-cell connecting member having a base material and a protective film formed on the surface of the base material, wherein the base material contains Cr, and an Si content is less than 0.39% by mass An inter-cell connecting member whose main material is spinel type metal oxide. 前記合金のSiの含有率が0.30質量%以下である請求項1に記載のセル間接続部材。   The inter-cell connecting member according to claim 1, wherein the Si content of the alloy is 0.30 mass% or less. 前記合金のSiの含有率が0.15質量%より大きい請求項1または2に記載のセル間接続部材。   The inter-cell connection member according to claim 1 or 2, wherein the Si content of the alloy is greater than 0.15 mass%. 前記保護膜がZnとMnとCoとを含む金属酸化物を主材料とする請求項1〜3のいずれか1項に記載のセル間接続部材。   The inter-cell connection member according to any one of claims 1 to 3, wherein the protective film is mainly composed of a metal oxide containing Zn, Mn, and Co. 前記保護膜がZnx(CoyMn(1-y)(3-x)4(0<x<1、0<y×(3−x)≦2)を主材料とする請求項1〜4のいずれか1項に記載のセル間接続部材。 2. The main material of the protective film is Zn x (Co y Mn (1-y) ) (3-x) O 4 (0 <x <1, 0 <y × (3-x) ≦ 2). The inter-cell connecting member according to any one of -4. 前記保護膜がZnCoMnO4を主材料とする請求項1〜5のいずれか1項に記載のセル間接続部材。 The inter-cell connection member according to claim 1, wherein the protective film is mainly composed of ZnCoMnO 4 . 前記保護膜が電着塗装により形成されている請求項1〜6のいずれか1項に記載のセル間接続部材。   The inter-cell connecting member according to claim 1, wherein the protective film is formed by electrodeposition coating. 請求項1〜7のいずれか1項に記載のセル間接続部材と空気極とを接合してなる固体酸化物形燃料電池用セル。   A cell for a solid oxide fuel cell formed by joining the inter-cell connecting member according to any one of claims 1 to 7 and an air electrode.
JP2016053940A 2016-03-17 2016-03-17 Inter-cell connecting member and solid oxide fuel cell Active JP5996137B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053940A JP5996137B1 (en) 2016-03-17 2016-03-17 Inter-cell connecting member and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053940A JP5996137B1 (en) 2016-03-17 2016-03-17 Inter-cell connecting member and solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JP5996137B1 JP5996137B1 (en) 2016-09-21
JP2017168358A true JP2017168358A (en) 2017-09-21

Family

ID=56960919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053940A Active JP5996137B1 (en) 2016-03-17 2016-03-17 Inter-cell connecting member and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP5996137B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
EP2299526A1 (en) * 2009-09-17 2011-03-23 Korea Institute of Science and Technology Fuel cell interconnector having excellent electrical conductivity, oxidation resistance, and low chromium volatility and method of manufacturing the same
JP2011099159A (en) * 2009-11-09 2011-05-19 Ngk Insulators Ltd Coating body
JP2013118177A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2014209452A (en) * 2013-03-26 2014-11-06 大阪瓦斯株式会社 Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
EP2299526A1 (en) * 2009-09-17 2011-03-23 Korea Institute of Science and Technology Fuel cell interconnector having excellent electrical conductivity, oxidation resistance, and low chromium volatility and method of manufacturing the same
JP2011099159A (en) * 2009-11-09 2011-05-19 Ngk Insulators Ltd Coating body
JP2013118177A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP2014209452A (en) * 2013-03-26 2014-11-06 大阪瓦斯株式会社 Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof

Also Published As

Publication number Publication date
JP5996137B1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
JP5731683B2 (en) Cell connecting member, cell for solid oxide fuel cell, and electrodeposition coating used for production thereof
JP5691144B2 (en) Gas decomposition element, ammonia decomposition element, power generation device and electrochemical reaction device
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
JP6742105B2 (en) Method for manufacturing member for fuel cell
JP5572146B2 (en) Protective film forming method, cell connecting member, and solid oxide fuel cell
JP6735568B2 (en) Cell stack manufacturing method
CN109860657A (en) The preparation method of metal connector surface spinelle coating in a kind of solid oxide fuel cell
CN107275656A (en) SOFC spinelle/metal connector composite and preparation method thereof
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
WO2019176911A1 (en) Method for producing metal material, method for producing separator for fuel cells, and stainless steel material
JP5832405B2 (en) Method for forming protective film, method for manufacturing cell connecting member, and method for manufacturing cell for solid oxide fuel cell
JP5996137B1 (en) Inter-cell connecting member and solid oxide fuel cell
JP2016066581A (en) Cell-to-cell connection member joining method, cell-to-cell connection member joining structure, and manufacturing method of solid oxide fuel battery cell
CN105304917A (en) Metal connector for medium-temperature flat plate type solid oxide fuel cell
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6173074B2 (en) Method for forming protective film
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
Seabaugh et al. Oxide Protective Coatings for Solid Oxide Fuel Cell Interconnects
CN110073039B (en) Deposition of coatings on interconnects for solid oxide cell stacks
JP6165051B2 (en) Manufacturing method of fuel cell member
JP2015201422A (en) Method of manufacturing cell for solid oxide fuel cell, method for joining inter-cell connection member, and joining method
Nakao et al. Development of Electrodeposition Coating for SOFC Interconnector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5996137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150