JP2017164409A - 超音波プローブ - Google Patents

超音波プローブ Download PDF

Info

Publication number
JP2017164409A
JP2017164409A JP2016054950A JP2016054950A JP2017164409A JP 2017164409 A JP2017164409 A JP 2017164409A JP 2016054950 A JP2016054950 A JP 2016054950A JP 2016054950 A JP2016054950 A JP 2016054950A JP 2017164409 A JP2017164409 A JP 2017164409A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic probe
transducer
transducers
ultrasonic transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016054950A
Other languages
English (en)
Inventor
西脇 学
Manabu Nishiwaki
学 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016054950A priority Critical patent/JP2017164409A/ja
Priority to US15/447,566 priority patent/US20170265844A1/en
Publication of JP2017164409A publication Critical patent/JP2017164409A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】複数の超音波振動子を高密度に実装した小型の超音波プローブを実現すること。
【解決手段】周方向に配列された超音波振動子5と、前記超音波振動子5上に設けられた音響整合層41と、前記周方向に隣接する前記超音波振動子5間に設けられ、当該隣接する超音波振動子5の電極となる電極層を有する屈曲部47と、を備えた超音波プローブ1である。さらに、前記屈曲部47において前記電極層が露出してなる超音波プローブ1を構成してもよい。
【選択図】図1

Description

本発明は、超音波を送受信する超音波プローブに関する。
従来から、被検体の体内に導入されて使用される小型の超音波プローブが知られている。例えば特許文献1には、超音波を送受信する探触子(超音波振動子)を本体の内部外周面に沿って複数配置した超音波カプセル内視鏡が開示されている。
特開2007−181592号公報
ところで、特許文献1の技術のようなカプセル型の小型の超音波プローブに複数の超音波振動子を内蔵する場合、配置スペースが限られるためそれらの高密度実装が求められる。しかし、特許文献1には、複数の超音波振動子の配置について記載はあるものの、その具体的な実装方法については記載されていない。そこで本発明は、複数の超音波振動子を高密度に実装した小型の超音波プローブを実現することを目的とする。
上記課題を解決するための第1の発明は、周方向に配列された超音波振動子と、前記超音波振動子上に設けられた音響整合層と、前記周方向に隣接する前記超音波振動子間に設けられ、当該隣接する超音波振動子の電極となる電極層を有する屈曲部と、を備えた超音波プローブである。
第1の発明によれば、周方向に隣接する超音波振動子間に当該超音波振動子の電極となる電極層を設けて屈曲させることで、超音波振動子の周方向への配置を実現できる。電極層が隣接する超音波振動子間の電極となることによって超音波振動子の配置間隔を狭小化することができ、且つ、その電極層によって隣接する超音波振動子間を接続する結合力の維持と屈曲性との両立が図られる。したがって、複数の超音波振動子を高密度に実装することができ、超音波プローブの一層の小型化が図れる。
第2の発明は、前記屈曲部において前記電極層が露出してなる、第1の発明の超音波プローブである。
第2の発明によれば、周方向に隣接する超音波振動子間で電極層を露出させることができる。
第3の発明は、前記音響整合層は、前記超音波振動子上および前記超音波振動子間に設けられ、可撓性を有する材料で形成されており、前記屈曲部は、厚み方向の主要素が前記音響整合層および前記電極層で構成されている、第1又は第2の発明の超音波プローブである。
また、第4の発明は、前記屈曲部は、厚み方向において一端側に前記電極層を有し、他端側の端面に屈曲性を向上させるための溝部を有する、第1〜第3の何れかの発明の超音波プローブである。
第3の発明によれば、屈曲部の屈曲性を高めることができる。そして、第4の発明により、当該屈曲性をより一層高めることができる。
第5の発明は、前記超音波振動子を、超音波放射方向を外方に向けて環状に配列して備え、全周にわたり超音波が送受可能に構成された第1〜第4の何れかの発明の超音波プローブである。
また、第6の発明は、前記超音波振動子と前記音響整合層と前記屈曲部とを有する素子部を、前記周方向にN個(N≧2)配列することで、前記超音波振動子の前記環状の配列を構成した、第5の発明の超音波プローブである。
第5の発明によれば、環状に配列された複数の超音波振動子からその全周の方向に超音波を送受することができる。そして、第6の発明によれば、超音波振動子の環状の配列を、超音波振動子と音響整合層と屈曲部とを有する素子部の配列によって実現できる。
第7の発明は、体腔内に導入するために全体を内包する外郭部を更に備えた、第1〜第6の何れかの発明の超音波プローブである。
第7の発明によれば、体腔内に導入可能な超音波プローブを実現できる。
第8の発明は、前記外郭部は長手形状を有し、前記超音波振動子を前記外郭部の胴部に備え、前記外郭部の長手方向から見て放射状に超音波を放射するように構成された、第7の発明の超音波プローブである。
第8の発明によれば、体腔内において、外郭部の長手方向から見て超音波を放射状に放射することができる。
第9の発明は、前記外郭部はカプセル形状を有する、第7又は第8の発明の超音波プローブである。
第9の発明によれば、カプセル型の超音波プローブを実現できる。
実施形態の超音波プローブの内部構成例を示す模式図。 図1のA−A矢視端面を模式的に示す図。 振動子板の製造工程を示す断面図。 振動子板の他の製造工程を示す断面図。 振動子板の他の製造工程を示す断面図。 振動子板の他の製造工程を示す断面図。 組立手順を示す斜視図。 組立手順を示す他の斜視図。 組立手順を示す他の斜視図。 組立手順を示す他の斜視図。 変形例の超音波プローブの断面図。 変形例の固定部材を示す斜視図。 他の変形例の超音波プローブの内部構成例を示す模式図。 振動子板を模式的に示す斜視図。 振動子板の展開された状態を示す平面図。
以下、図面を参照して、本発明の好適な実施形態について説明する。以下では、人が飲み込む態様で使用されるカプセル型の超音波プローブを例示する。なお、以下説明する実施形態によって本発明が限定されるものではなく、本発明を適用可能な形態が以下の実施形態に限定されるものでもない。また、図面の記載において、同一部分には同一の符号を付す。
図1は、本実施形態における超音波プローブ1の内部構成例を示す模式図であり、外郭部としてのカプセル型筐体10の側面を切り欠いて内部の様子を示している。この超音波プローブ1は、被検体の体腔内に導入され、体腔内で超音波を送受して超音波測定を行う。得られた反射波の受信信号は、測定結果として体外の受信機(不図示)に随時無線送信される。受信機で受信された測定結果は、例えばこの受信機と通信接続された画像生成装置で随時画像化され、診断等に用いられる。また、内蔵するIC(Integrated Circuit)メモリーに受信信号を時系列に格納する構成とし、体外に排出された超音波プローブ1から受信信号を読み出して画像化等に用いることとしてもよい。
カプセル型筐体10は、人が飲み込むことのできる程度の大きさとされ、超音波プローブ1の内部構成要素(内蔵部品)を収容(内包)して保護する。例えば、カプセル型筐体10は、その胴部を形成する円筒状の筒状部材11と、筒状部材11の両端に嵌合して開口を塞ぐ半球状のカバー部材131,133とで構成される。内部構成要素の収容時には内部の間隙に樹脂材料15等が充填されて各内部構成要素が固定され、筒状部材11とカバー部材131,133との嵌合部分が接着されて内部が封止される。なお、カプセル型筐体10は、胴部を有する長手形状であればよく、その外形は、図示した「長楕円形」とも呼ばれる両端が半球状の円筒形に限らず、断面形状が楕円形の「フットボール型」等のカプセル形状としてもよい。また、カプセル型筐体10を筒状部材11と上下のカバー部材131,133との3ピース構造としたが、例えばカバー部材131,133のうちのどちらかを筒状部材11と一体の構造とした2ピース構造としてもよい。
筒状部材11の側壁には、その内部空間において周方向に配列された超音波振動子5と同数の音響レンズ2が嵌め込まれている。音響レンズ2を嵌め込む位置は、超音波振動子5の各々と対向する位置とされる。各音響レンズ2は超音波振動子5と平面視略同形同大を有し、対向する超音波振動子5の全面を別個に覆う。
このカプセル型筐体10には、主要な内部構成要素として、素子部としての超音波送受信ユニット3が2組と、電池8とが収容される。超音波送受信ユニット3は、振動子板4と、制御基板71と、フレキシブル配線基板(FPC:Flexible Printed Circuits)73とで構成される。電池8は、ケーブル9を介して各組の制御基板71と接続され、超音波プローブ1の動作に必要な電力を供給する。
振動子板4は、超音波の送受信部である平面視長方形状の複数の超音波振動子5が配列された板状体である。各組の振動子板4は、各々がその超音波送受信ユニット3の組み立て時において半円筒状に成形され、互いの端面が向き合うように配置されて全体として円筒状とされる。そして、それらの外周側の各面が筒状部材11の内周面に沿うようにカプセル型筐体10に収容され、これによって複数の超音波振動子5を周方向に環状に配列させた構成を実現している。
なお、超音波送受信ユニット3の数は2つに限定されるものではなく、超音波振動子5を環状に配列できればよい。例えば、超音波送受信ユニット3の数を3つ以上とし、3枚以上の振動子板を組み合わせて全体を円筒状としてもよい。あるいは、超音波送受信ユニット3の数を1つとし、1枚の振動子板を円筒状に成形するのでもよい。また、超音波振動子5は、平面視長方形状を有する構成に限らず、当該長方形状の領域内に複数の超音波振動子5を1列又は複数列に並べた構成としてもよい。
制御基板71には、CPU(Central Processing Unit)やASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、各種集積回路の他、IC(Integrated Circuit)メモリー等の記憶媒体、測定結果である反射波の受信信号等を体外の受信機に送信するための送受信回路といった必要な電子部品が搭載される。この制御基板71においてCPU等が記憶媒体に記憶されているプログラムを実行することで、超音波測定機能や、測定結果(反射波の受信信号等)の無線送信機能といった超音波プローブ1の諸機能が実現される。
フレキシブル配線基板73は、振動子板4と制御基板71とを電気的に接続する。このフレキシブル配線基板73を通じて、制御基板71が各超音波振動子5に駆動信号を出力して超音波信号を発信させるとともに、各超音波振動子5が受信した反射波の受信信号が制御基板71へ伝送される。
図2は、振動子板4を含む超音波プローブ1の図1に示すA−A矢視端面を模式的に示す図である。図2では、便宜上断面を示すハッチングを一部省略している。
図2に示すように、振動子板4は、周方向に配列された超音波振動子5の上面側を覆う音響整合層41と、超音波振動子5の下方に延在して超音波振動子5と音響整合層41とを支持する支持体43とを備え、対となる隣接する支持体43間の空洞部(キャビティ)45の上に超音波振動子5を配置したメンブレン構造を有する。
超音波振動子5は、例えば、圧電体501の片面(図2では下面)に弾性板502を設けたユニモルフ型の超音波振動子である。なお、ユニモルフ型に限らず、バイモルフ型の超音波振動子を用いてもよい。圧電体501は、下部電極(下部電極層ともいう)51と、薄膜圧電素子(ピエゾ)52と、上部電極53とが積層されて構成される。下部電極51は、各超音波振動子5に共通の電極層(下部電極層)として形成され、隣接する超音波振動子5間でその一部が振動子板4の下面に露出している。一方、弾性板502は、シリコン熱酸化膜等の酸化膜54上にジルコニア薄膜等の金属薄膜(振動板)55が積層されて構成される。
音響整合層41は、筒状部材11に設けられて各超音波振動子5と対向配置された音響レンズ2とともに、超音波振動子5と体腔内の部位との間の音響インピーダンスの整合や、超音波ビームを収束する役割を担う。
なお、図2では、振動子板4等を部分的に示しているが、振動子板4は、上記したように2枚を半円筒状に成形して組み合わせることで円筒状とされ、複数の超音波振動子5を筒状部材11の内周面に沿って全周に環状に配列させている。したがって、超音波プローブ1は、個々の超音波振動子5が外方に向かう超音波放射方向A1(図2の白矢印方向)に超音波を送信することで、超音波を放射状に放射することができる。これによれば、超音波プローブ1が体腔内に導入されて超音波測定を行う際に、カプセル型筐体10の長手方向から見て(長手方向を軸として)周囲の全方位で超音波測定が行える。
ここで、音響整合層41は、可撓性を有する樹脂材料で形成された樹脂層であり、超音波振動子5の上方を覆うとともに、隣接する超音波振動子5間にも樹脂層を介在させた構成となっている。つまり音響整合層41は、音響レンズ2とともに果たす本来の機能に加えて、振動子板4に可撓性を持たせる機能を有し、超音波振動子5間において振動子板4の下面に露出している下部電極層51の部分とともに屈曲が容易な屈曲部47を形成する。したがって、振動子板4に対して上方向に撓ませる外力を加えると、振動子板4は主として屈曲部47で屈曲する。また、振動子板4の全体に占める音響整合層41の面積が広いことから、振動子板4の全体も緩やかに撓む。
また、下部電極層51に着目すると、下部電極層51によって隣接する超音波振動子5間の電極(下部電極)を構成できるため、隣接する超音波振動子5間の配置間隔の狭小化に寄与する。更に、隣接する超音波振動子5間を接続しているために、隣接する超音波振動子5間を接続する結合力を維持することができ、下部電極層51の厚さは薄くて十分であるため屈曲性を阻害することもない。したがって、超音波振動子5の高密度実装に寄与すると言える。
さらに本実施形態では、音響整合層41は、屈曲部47となる位置の上面側(隣接する超音波振動子5間の上方となる音響整合層41の上面位置)に溝部411を有する。この溝部411は、上から見ると、隣接する超音波振動子5間において超音波振動子5の長手方向と平行に形成される(図7を参照)。この溝部411によれば、屈曲部47の屈曲性を向上させることができる。このように、振動子板4は、複数の超音波振動子5を高密度に実装しつつ、各超音波振動子5を周方向に配列させることができる。
実際の超音波送受信ユニット3の組み立て時には、各振動子板4の内側に円筒状の固定部材63を配置し、シート状の接着部材(接着フィルム)61を用いて固定部材63の外周面に支持体43の下面を接着する。これにより、振動子板4は、半円筒形の形状を保って固定される。固定部材63の内側には、制御基板71と電池8との間を接続するケーブル9が通される。
次に、超音波送受信ユニット3を組み立てて超音波プローブ1を作製する手順について説明する。超音波送受信ユニット3は、フレキシブル配線基板73を介して振動子板4と制御基板71とを接続した後、振動子板4を円筒状に成形することで組み立てられる。これに先立ち、振動子板4等の各内部構成要素が用意される。
図3〜図6は、振動子板4の製造工程を段階的に示す断面図である。先ず、シリコン基板56の主面(表面)上にシリコン熱酸化膜(SiO)を形成し、その上面にジルコニア薄膜(ZrO)を形成する。そして、図3に示すように、エッチングによってシリコン基板56の上面に達する開口561を形成する。これにより、後段の工程で屈曲部47となる所定の間隔を隔てて、シリコン熱酸化膜(SiO)でなる酸化膜54上に、ジルコニア薄膜(ZrO)でなる金属薄膜55を配置した各超音波振動子5の弾性板502が得られる。
次に、図4に示すように、金属薄膜55の上面に電極膜を製膜して下部電極層51を形成する。その際、下部電極層51をフレキシブル配線基板73の配線パターンと接続するための必要な配線(下部電極用配線)を形成しておく。そして、下部電極層51の上面に薄膜圧電(ピエゾ)素子となる薄膜圧電素子層520を形成し、薄膜圧電素子層520の上面に電極膜を製膜して上部電極膜530を製膜する。
次に、図5に示すように、エッチングによって各素子間について下部電極層51の上面に達する開口を形成して素子分離する。残された薄膜圧電素子層520(図4を参照)が薄膜圧電素子52に、上部電極膜530(図4を参照)が上部電極53となる。またその際、上部電極53の各々をフレキシブル配線基板73の配線パターンと接続するための上部電極用配線を形成しておく。この上部電極用配線は、超音波送受信ユニット3の組み立て時においてフレキシブル配線基板73が接続される当該振動子板4の一方の短軸方向端部(接続側端部)において、後述する余白部分481を避けて形成される(図7を参照)。上記した下部電極用配線も同様である。これにより、下部電極51、薄膜圧電素子52、および上部電極53を積層した圧電体501を弾性板502上に配置した超音波振動子5が得られる。その後、超音波振動子5の上面側の全域に樹脂材料を充填し、音響整合層41を形成する。
続いて、図6に示すように、シリコン基板56の裏面を研削加工し、超音波振動子5の下方で弾性板502を露出させてキャビティ45を形成するとともに、隣接する超音波振動子5間の下部電極層51を露出させて支持体43を形成して、屈曲部47を得る。また、屈曲部47となる音響整合層41の上面位置に、溝部411を形成する。
超音波送受信ユニット3の組立手順の説明に移る。図7〜図10は、組立手順を段階的に示す斜視図である。なお、超音波振動子5等の構成は簡略的に示している。
先ず、図7に示すように、振動子板4の下面に接着フィルム61を貼付する(接着工程)。この接着フィルム61には、予め適当な方法で位置合わせ用のマーカーが付されている。より詳細には、接着フィルム61には、振動子板4との位置合わせ用の第1マーカーM11と、後段の成形工程で用いる固定部材63との位置合わせ用の第2マーカーM13とが付されている。一方、振動子板4の上面にも、予め適所に接着フィルム61との位置合わせ用の振動子板側マーカーM2が付されている。接着工程では、振動子板側マーカーM2の指示先に第1マーカーM11の指示先が合うように振動子板4の下面側に接着フィルム61を配置し、接着フィルム61の表面に支持体43の底面を貼り付ける。
ここで、上記したように、振動子板4の上面側は音響整合層41が配置され、その上面には溝部411が形成されるが、この溝部411は、振動子板4の短軸方向両端に所定幅の余白部分481を残して形成される。端面まで溝を形成してしまうと平面状態を保てなくなり、接着工程や、後段の接続工程の作業性が悪化するためである。また、上記した上部電極用配線および下部電極用配線は、接続側端部においてこの余白部分481よりも内側の配線形成領域49に形成される。なお、振動子板4の短軸方向両端(図7の上面視における長辺)に添え木とする棒状部材を分離可能に仮設するなどして作業性を別途の方法で担保することにより、溝部411を端面まで形成することとしてもよい。
続く接続工程では、図8に示すように、振動子板4をフレキシブル配線基板73の一端側に接続する。その際、配線形成領域49の下部電極用配線および上部電極用配線をフレキシブル配線基板73の配線パターンと接続する。なお、フレキシブル配線基板73の他端側は制御基板71が接続される。この接続工程により、振動子板4と制御基板71とがフレキシブル配線基板73を介して電気的に接続される。
接続工程を終えたならば、図9に示すように、レーザースクライブ装置等の加工装置を用い、余白部分481を切断して除去する。
続いて、図10に示す成形工程に移る。成形工程では、固定部材63の外周面に対し、接着フィルム61の裏面を貼り付けることで振動子板4を接着する。固定部材63には、予め適所に固定部材側マーカーM3が付されている。なお、固定部材63にはもう1組の超音波送受信ユニット3を構成する振動子板4が同様の要領で接着されるため、固定部材側マーカーM3と180°隔てた反対位置にも同じように固定部材側マーカーが付されている。
そして、第2マーカーM13の指示先に一方の固定部材側マーカーM3の指示先が合うように接着フィルム61の下方に固定部材63を配置し、接着フィルム61の裏面に固定部材63の外周面を貼り付ける。その際、フレキシブル配線基板73は、振動子板4と制御基板71との間で適宜変形してそれらの接続状態を維持する。これにより、振動子板4は半円筒状とされて固定される。
以上で、1組の超音波送受信ユニット3の組み立てを終える。残り1組の超音波送受信ユニット3についても同様に組み立てるが、その場合の成形工程は、先に振動子板4が接着された固定部材63に振動子板4を接着することで行う。その作業は、他方の固定部材側マーカーを目印に行う。その後は、各組の制御基板71を電池8と繋ぐケーブル9を固定部材63の内側に通し、他の内部構成要素とともにカプセル型筐体10に収容する。
以上説明したように、本実施形態によれば、超音波振動子5を高密度に実装して周方向に沿って環状に配置することができ、一層の小型化を図った超音波プローブ1を実現できる。一層の小型化により、従来のものに比べて、被検者が超音波プローブ1を飲み込む際の負担を軽減できる。また、超音波振動子5の高密度積載が可能となることから、高精細な超音波画像を得ることが可能となる。
なお、上記した実施形態で説明した構成の超音波振動子5は、図2中の矢印A1とは反対の破線で示す矢印の方向にも超音波が送信される。そのため、図2と逆、すなわち、超音波振動子5の弾性板502を上、圧電体501を下にした構成も可能である。
図11は、本変形例における振動子板4bを含む超音波プローブ1bの断面図である。図11中、上記実施形態と同様の構成には同一の符号を付している。図11に示すように、本変形例の振動子板4bは、隣接する支持体43間に樹脂材料が充填される。これにより、上に向けられた各超音波振動子5を構成する弾性板502の上方に樹脂材料でなる音響整合層41bが配置されるとともに、隣接する超音波振動子5間の屈曲部47bが形成される。屈曲部47bは、上記した実施形態と同様に、隣接する超音波振動子5間で露出した下部電極層51の部分を含む。上面には、溝部411bが形成される。
図12は、本変形例の固定部材63bを示す斜視図である。本変形例では、振動子板4bを接着して固定する固定部材63bの側面が凹部631を備える。下に向けられた各超音波振動子5の圧電体501が固定部材63bと接触しないようにするためである。凹部631には、振動子板4bの下面側の超音波振動子5が配列された領域(振動子領域)が位置付けられる。
本変形例の固定部材63bは、上記した実施形態と同様に2つの振動子板4bを組み合わせて円筒状とする場合を想定しており、その側面には、2枚の各振動子板4b用に2つの凹部631が形成されている。そして、超音波送受信ユニットの組み立て時には、凹部631の開口を囲うように額縁状の接着フィルム61bが配置され、振動子板4bの外周縁部が固定部材63bと接着されて固定される。
また、上記した実施形態では、体腔内に導入される超音波プローブ1について説明したが、測定対象は特に限定されるものではなく、生体でなくてもよい。
また、カプセル型に限らず、体表面に接触させて超音波測定を行う超音波プローブにも適用が可能である。すなわち、上記実施形態で説明した振動子板4は、隣接する超音波振動子5間の屈曲部47で屈曲可能である。したがって、振動子板4を用いて接触式の超音波プローブを構成すれば、超音波測定に際し、超音波プローブを例えば腕や指、腹部等、所望の測定部位の体表面に沿わせて密着させることができるので、使い勝手がよい。
また、小型化の観点からいえば、血管内超音波検査用や内視鏡用等のカテーテル型の超音波プローブにも適用できる。図13は、本変形例にかかるカテーテル型の超音波プローブ1cの内部構成例を示す模式図であり、一部の構成を断面で示して内部の様子を示している。
図13に示すように、本変形例の超音波プローブ1cは、複数の超音波振動子5を配置した振動子板4cと、制御基板71cと、フレキシブル配線基板73cとを外装ケース10cに収容して備え、柔軟性を有する挿入管の内部先端に装着される。外装ケース10cには、各超音波振動子5と対向する位置に音響レンズ2が嵌め込まれている。また、内部には樹脂材料15cが充填され、これにより各超音波振動子5上に音響層が配置される。フレキシブル配線基板73cは、振動子板4cと、制御基板71cとを電気的に接続する。
図14は、振動子板4cを模式的に示す斜視図であり、図15は、図14に示す状態に組み立てられる前の振動子板4cの展開された状態を示す平面図である。図14に示すように、振動子板4cは、胴部が多角柱状で先端部が多角錐状の外形を有し、後端面を除く各面に超音波振動子5が配置されている。なお、各面に配置される超音波振動子5の数は特に限定されず、全ての面に1つずつであってもよいし、複数並べてもよい。
この超音波プローブ1cによれば、各面に超音波振動子5を配置した多角柱状の胴部によって超音波振動子5の周方向の配列が実現できる。さらに本変形例では、先端部にも超音波振動子5を配置することで、使用時に挿入管の挿入方向前方に向けて超音波を送受することができる。
この振動子板4cは、例えば図15に示すように、1枚の板を破線位置で切断することで得られる。具体的には、上記した実施形態と同様の要領でシリコン基板上に超音波振動子5を形成した後、切断する。その際、組み立て時に辺となる位置に切り込み(スリット)412cを形成して折り曲げ容易とし、切り込み412cの部分で折り曲げることで振動子板4cの組み立てが可能である。実際の組み立て時には、図13に示す先端側が振動子板4cの外形と同形の固定部材63cを内側に配置し、固定部材63cの側面に振動子板4cの内側となる各面を接着して固定する。
また、本変形例のように、振動子板4cの胴部および先端部の形状を多角柱状および多角錐状とする場合は、図15に示すように、切断前の板の幅を2枚分の胴部の長さに先端部の側面を形成する三角形の高さを加えた幅とすることで、2枚の振動子板4cを無駄なく得ることができる。ただし、胴部および先端部の形状はこれに限定されるものではなく、円柱状および円錐状等としてもよいし、先端部を角錐台状あるいは円錐台状等とし、平坦な面にも超音波振動子を配置した構成でもよい。
1,1b,1c…超音波プローブ、10…カプセル型筐体、10c…外装ケース、11…筒状部材、131,133…カバー部材、2…音響レンズ、3…超音波送受信ユニット、4,4b,4c…振動子板、41,41b…音響整合層、411,411b…溝部、43…支持体43、47,47b…屈曲部、5…超音波振動子、501…圧電体、502…弾性板、61…接着フィルム、63,63b,63c…固定部材、71,71c…制御基板、73,73c…フレキシブル配線基板、8…電池

Claims (9)

  1. 周方向に配列された超音波振動子と、
    前記超音波振動子上に設けられた音響整合層と、
    前記周方向に隣接する前記超音波振動子間に設けられ、当該隣接する超音波振動子の電極となる電極層を有する屈曲部と、
    を備えた超音波プローブ。
  2. 前記屈曲部において前記電極層が露出してなる、
    請求項1に記載の超音波プローブ。
  3. 前記音響整合層は、前記超音波振動子上および前記超音波振動子間に設けられ、可撓性を有する材料で形成されており、
    前記屈曲部は、厚み方向の主要素が前記音響整合層および前記電極層で構成されている、
    請求項1又は2に記載の超音波プローブ。
  4. 前記屈曲部は、厚み方向において一端側に前記電極層を有し、他端側の端面に屈曲性を向上させるための溝部を有する、
    請求項1〜3の何れか一項に記載の超音波プローブ。
  5. 前記超音波振動子を、超音波放射方向を外方に向けて環状に配列して備え、
    全周にわたり超音波が送受可能に構成された、
    請求項1〜4の何れか一項に記載の超音波プローブ。
  6. 前記超音波振動子と前記音響整合層と前記屈曲部とを有する素子部を、前記周方向にN個(N≧2)配列することで、前記超音波振動子の前記環状の配列を構成した、
    請求項5に記載の超音波プローブ。
  7. 体腔内に導入するために全体を内包する外郭部を更に備えた、
    請求項1〜6の何れか一項に記載の超音波プローブ。
  8. 前記外郭部は長手形状を有し、
    前記超音波振動子を前記外郭部の胴部に備え、
    前記外郭部の長手方向から見て放射状に超音波を放射するように構成された、
    請求項7に記載の超音波プローブ。
  9. 前記外郭部はカプセル形状を有する、
    請求項7又は8に記載の超音波プローブ。
JP2016054950A 2016-03-18 2016-03-18 超音波プローブ Pending JP2017164409A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016054950A JP2017164409A (ja) 2016-03-18 2016-03-18 超音波プローブ
US15/447,566 US20170265844A1 (en) 2016-03-18 2017-03-02 Ultrasonic probe and ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016054950A JP2017164409A (ja) 2016-03-18 2016-03-18 超音波プローブ

Publications (1)

Publication Number Publication Date
JP2017164409A true JP2017164409A (ja) 2017-09-21

Family

ID=59848091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016054950A Pending JP2017164409A (ja) 2016-03-18 2016-03-18 超音波プローブ

Country Status (2)

Country Link
US (1) US20170265844A1 (ja)
JP (1) JP2017164409A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518230A (ja) * 2018-03-23 2021-08-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. センサアレイを有する医療装置及び測定に対するシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312420B1 (ja) * 2022-07-26 2023-07-21 本多電子株式会社 計測機器用の超音波振動子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602684A (ja) * 1983-06-20 1985-01-08 Permelec Electrode Ltd 不溶性電極の再活性化方法
US20110130658A1 (en) * 2007-08-16 2011-06-02 Rdc Ltd. Ultrasonic capsule
US20150087988A1 (en) * 2013-09-20 2015-03-26 General Electric Company Ultrasound transducer arrays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021518230A (ja) * 2018-03-23 2021-08-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. センサアレイを有する医療装置及び測定に対するシステム
JP7480055B2 (ja) 2018-03-23 2024-05-09 コーニンクレッカ フィリップス エヌ ヴェ センサアレイを有する医療装置及び測定に対するシステム

Also Published As

Publication number Publication date
US20170265844A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
CN106269451B (zh) 使用微圆顶阵列的压电式换能器
JP4909115B2 (ja) 超音波用探触子
JP6157795B2 (ja) 超音波振動子および超音波プローブ
JP4516451B2 (ja) 超音波プローブ、および超音波プローブの作製方法
JP2006254406A (ja) 振動子アレイの構造、およびその作製方法、並びに超音波プローブ
JP2008079909A (ja) 超音波用探触子及び超音波撮像装置
EP3305203A1 (en) Ultrasonic probe
JP4562555B2 (ja) 超音波プローブ、および超音波プローブの作製方法
WO2019087266A1 (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
JP2000358299A (ja) 超音波探触子用送受波素子及びその製造方法並びに該送受波素子を用いた超音波探触子
JP2017164409A (ja) 超音波プローブ
JP5179836B2 (ja) 超音波探触子
US9056333B2 (en) Ultrasound probe and method of producing the same
WO2016009689A1 (ja) 超音波観察装置
JPWO2018025679A1 (ja) 超音波振動子モジュールの製造方法および超音波内視鏡
JP2011124997A (ja) 超音波プローブ及びその製造方法
JP4632478B2 (ja) 超音波探触子及び超音波診断装置
JP3787725B2 (ja) 超音波振動子及びその製造方法
JP2011077572A (ja) 超音波トランスデューサ及びその製造方法、並びに超音波プローブ
JP2010258602A (ja) 超音波探触子およびその製造方法
JP6697962B2 (ja) 超音波振動子および超音波内視鏡
WO2013187158A1 (ja) 超音波ユニットおよび超音波内視鏡
JP6800035B2 (ja) 超音波振動子、超音波プローブ、及び超音波内視鏡
CN112912138A (zh) 超声波辐射器具以及超声波装置
WO2022210887A1 (ja) 超音波プローブヘッド、超音波プローブ、及び超音波診断装置