WO2019087266A1 - 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法 - Google Patents

超音波振動子、超音波内視鏡、及び超音波振動子の製造方法 Download PDF

Info

Publication number
WO2019087266A1
WO2019087266A1 PCT/JP2017/039194 JP2017039194W WO2019087266A1 WO 2019087266 A1 WO2019087266 A1 WO 2019087266A1 JP 2017039194 W JP2017039194 W JP 2017039194W WO 2019087266 A1 WO2019087266 A1 WO 2019087266A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
wiring
electrode
piezoelectric element
ultrasonic
Prior art date
Application number
PCT/JP2017/039194
Other languages
English (en)
French (fr)
Inventor
勝裕 若林
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/039194 priority Critical patent/WO2019087266A1/ja
Priority to CN201780085641.3A priority patent/CN110381847A/zh
Publication of WO2019087266A1 publication Critical patent/WO2019087266A1/ja
Priority to US16/529,878 priority patent/US20190350555A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/0633Cylindrical array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/067Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface which is used as, or combined with, an impedance matching layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/084Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/101Piezoelectric or electrostrictive devices with electrical and mechanical input and output, e.g. having combined actuator and sensor parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/802Circuitry or processes for operating piezoelectric or electrostrictive devices not otherwise provided for, e.g. drive circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/875Further connection or lead arrangements, e.g. flexible wiring boards, terminal pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Definitions

  • the present invention relates to an ultrasonic transducer, an ultrasonic endoscope, and a method of manufacturing an ultrasonic transducer.
  • an ultrasonic endoscope which inserts a flexible and elongated insertion portion into a subject such as a person and observes the inside of the subject using an ultrasonic transducer provided at the tip of the insertion portion.
  • the ultrasonic transducer described in Patent Document 1 includes an ultrasonic transducer of an electronic radial scanning method, and includes a plurality of piezoelectric elements regularly arranged to form a cylinder. More specifically, the ultrasonic transducer has a structure in which a backing material, a piezoelectric element, and an acoustic matching layer are integrally laminated, and an acoustic lens is attached to the outer surface side of the acoustic matching layer.
  • the piezoelectric element is a flat piezoelectric body, an upper electrode formed on one of the plate surfaces of the piezoelectric body located on the outer surface side of the ultrasonic transducer, and a lower portion formed on the other plate surface. And an electrode. Further, lead wires are respectively conductively connected to the upper and lower electrodes. Then, an ultrasonic wave generated by the piezoelectric element in accordance with the electrical signal input through the lead wire is converged by the acoustic lens through the acoustic matching layer and irradiated to the inside of the subject. Further, the ultrasonic wave reflected in the object is incident on the piezoelectric element through the acoustic lens and the acoustic matching layer, converted into an electric signal by the piezoelectric element, and output through the lead wire.
  • the proximal side means the side separated from the front-end
  • the upper and lower electrodes have a length in the insertion axis direction along the extension direction of the insertion portion longer than that of the piezoelectric body, and project proximally with respect to the piezoelectric body.
  • a dummy substrate having the same thickness as the piezoelectric body and having no piezoelectric function is sandwiched between the portions of the upper and lower electrodes projecting to the proximal end side.
  • a wire protection layer sandwiching the upper electrode with the dummy substrate is adjacent to the base end side of the acoustic matching layer.
  • the boundary between the wiring protective layer and the acoustic matching layer is located more proximal than the proximal end of the acoustic lens.
  • each lead wire is electrically conductively connected to the position of the end face side rather than the boundary of a wiring protection layer and an acoustic matching layer in the portion which projected on the end face side in upper and lower electrodes.
  • the path length of the approach path of the drug or the like to the junction between the acoustic lens, the boundary between the wire protective layer and the acoustic matching layer, the upper portion, and the lower electrode and each lead wire becomes long. It is difficult to reach the junctions between the upper and lower electrodes and the lead wires. That is, the durability to a drug or the like is improved.
  • the present invention has been made in view of the above, and provides an ultrasonic transducer, an ultrasonic endoscope, and a method of manufacturing an ultrasonic transducer that can be miniaturized while securing durability.
  • the purpose is to
  • the ultrasonic transducer is an ultrasonic transducer that transmits and receives ultrasonic waves, and emits ultrasonic waves according to an input electric signal.
  • a piezoelectric element for converting an ultrasonic wave incident from the outside into an electric signal a first surface of the piezoelectric element located on the outer surface side of the ultrasonic transducer, and one intersection crossing the first surface
  • a second wiring connected conductively to the second electrode, and a second wiring connected conductively to a portion of the first electrode formed on the intersection surface is characterized by
  • the first wiring is a ground wiring to be a ground
  • the second wiring is the electricity that causes the piezoelectric element to emit the ultrasonic wave. It is characterized in that it is a signal wiring for supplying a signal.
  • the second electrode extends to the intersecting surface side with respect to the center of the second surface in the second surface
  • the second wiring is conductively connected to a portion of the second electrode that extends on the cross surface side with respect to the center of the second surface.
  • the piezoelectric element is constituted by a long rectangular parallelepiped linearly extending in a first direction, and the first surface and the first surface
  • the second plane is a plane parallel to the first direction
  • the intersecting plane is a plane orthogonal to the first direction.
  • the ultrasonic transducer in the above invention, is an array-type ultrasonic transducer in which a plurality of the piezoelectric elements are arrayed.
  • the ultrasonic transducer according to the present invention is an electronic radial scanning ultrasonic transducer in which the plurality of piezoelectric elements are regularly arranged to form a cylinder. It is characterized by being.
  • At least one of the first wiring and the second wiring is a conductive layer provided on a flexible printed circuit.
  • the flexible printed circuit board is provided in an electrically insulated state with respect to the insulating board and the board, and the first printed circuit board is provided. It is characterized by comprising two conductive layers respectively configured as a wire and the second wire.
  • the two conductive layers are respectively provided on one surface of the substrate and the other surface opposite to the one surface; One of the two conductive layers is conductively connected to the first electrode or the second electrode in a state of being bent relative to the substrate.
  • the conductive layer configured as the first wiring is provided with a bulging portion which is electrically connected to the conductive layer and bulges from the conductive layer.
  • the bulging portion is conductively connected to the portion of the first electrode in a state of being in contact with the portion formed on the intersecting surface.
  • An ultrasonic endoscope is an ultrasonic endoscope provided with an insertion portion inserted into a subject, and provided with an ultrasonic transducer at the tip of the insertion portion, wherein the ultrasonic vibration is The child is characterized by being the above-mentioned ultrasonic transducer.
  • the piezoelectric element is disposed in a posture in which the intersecting surface faces the proximal end side of the insertion portion.
  • a first surface of a base material for a piezoelectric element constituting a piezoelectric element and two surfaces of one intersecting surface intersecting the first surface are continuously provided.
  • a first wiring step of electrically connecting a first wiring to a portion of the first thin film forming the first electrode formed on the intersection surface, and the first in the base material for a piezoelectric element A second wiring step of conductively connecting a second wiring to a second thin film forming a second electrode formed on a second surface opposite to the first surface;
  • the first wiring and at least one of said second wiring is characterized in that a conductive layer provided on a flexible printed board.
  • the ultrasonic endoscope According to the ultrasonic transducer, the ultrasonic endoscope, and the method for producing an ultrasonic transducer according to the present invention, it is possible to achieve downsizing while securing durability.
  • FIG. 1 is a view schematically showing an endoscope system according to the present embodiment.
  • FIG. 2 is a diagram showing the configuration of the ultrasonic transducer.
  • FIG. 3 is a diagram showing the configuration of the ultrasonic transducer.
  • FIG. 4 is a diagram showing the configuration of the ultrasonic transducer.
  • FIG. 5 is a diagram showing the configuration of the ultrasonic transducer.
  • FIG. 6 is a flowchart showing a method of manufacturing an ultrasonic transducer.
  • FIG. 7A is a view for explaining a method of manufacturing an ultrasonic transducer.
  • FIG. 7B is a view for explaining the method of manufacturing an ultrasonic transducer.
  • FIG. 7C is a view for explaining the method of manufacturing an ultrasonic transducer.
  • FIG. 7A is a view for explaining a method of manufacturing an ultrasonic transducer.
  • FIG. 7B is a view for explaining the method of manufacturing an ultrasonic transducer.
  • FIG. 7D is a view for explaining the method of manufacturing an ultrasonic transducer.
  • FIG. 7E is a view for explaining the method of manufacturing an ultrasonic transducer.
  • FIG. 7F is a view for explaining the method of manufacturing an ultrasonic transducer.
  • 7G is a figure explaining the manufacturing method of an ultrasonic transducer
  • FIG. 8 is a view showing an ultrasonic transducer according to a modification 1 of the present embodiment.
  • FIG. 9 is a view showing an ultrasonic transducer according to Modification 2 of the present embodiment.
  • FIG. 10 is a view showing an ultrasonic transducer according to a third modification of the present embodiment.
  • FIG. 11 is a view showing a molding member according to a modification 4 of the present embodiment.
  • FIG. 1 is a view schematically showing an endoscope system 1 according to the present embodiment.
  • the endoscope system 1 is a system that performs ultrasound diagnosis in a subject such as a person using an ultrasound endoscope.
  • the endoscope system 1 includes an ultrasound endoscope 2, an ultrasound observation device 3, an endoscope observation device 4, and a display device 5, as shown in FIG.
  • the ultrasound endoscope 2 enables a portion of the ultrasound endoscope 2 to be inserted into the subject, transmits an ultrasound pulse (acoustic pulse) toward the body wall in the subject, and reflects the ultrasound echo reflected by the subject. It has a function of receiving and outputting an echo signal, and a function of imaging the inside of a subject and outputting an image signal.
  • the detailed configuration of the ultrasound endoscope 2 will be described later.
  • the ultrasound observation apparatus 3 is electrically connected to the ultrasound endoscope 2 via the ultrasound cable 31 (FIG. 1), and outputs a pulse signal to the ultrasound endoscope 2 via the ultrasound cable 31. And an echo signal from the ultrasound endoscope 2. Then, the ultrasonic observation apparatus 3 performs predetermined processing on the echo signal to generate an ultrasonic image.
  • An endoscope connector 9 (FIG. 1) to be described later of the ultrasonic endoscope 2 is detachably connected to the endoscope observation device 4.
  • the endoscope observation device 4 includes a video processor 41 and a light source device 42 as shown in FIG.
  • the video processor 41 inputs an image signal from the ultrasound endoscope 2 through the endoscope connector 9.
  • the video processor 41 performs predetermined processing on the image signal to generate an endoscopic image.
  • the light source device 42 supplies illumination light for illuminating the inside of the subject to the ultrasound endoscope 2 through the endoscope connector 9.
  • the display device 5 is configured using liquid crystal or organic EL (Electro Luminescence), and an ultrasound image generated by the ultrasound observation device 3, an endoscope image generated by the endoscope observation device 4, etc. Display
  • the ultrasound endoscope 2 includes an insertion unit 6, an operation unit 7, a universal cord 8, and an endoscope connector 9.
  • the “tip side” described below means the tip side of the insertion portion 6 (the tip side in the insertion direction into the subject).
  • proximal side” described below means a side separated from the distal end of the insertion portion 6.
  • the insertion portion 6 is a portion to be inserted into the subject. As shown in FIG.
  • the insertion portion 6 includes the ultrasonic transducer 10 provided on the distal end side, the rigid member 61 connected to the proximal end side of the ultrasonic transducer 10, and the proximal end of the rigid member 61. , And a flexible tube 63 connected to the base end side of the curved portion 62 and having flexibility.
  • the detailed configuration of the ultrasonic transducer 10, which is an essential part of the present invention, will be described later.
  • the operation unit 7 is connected to the proximal end side of the insertion unit 6 and is a portion that receives various operations from a doctor or the like. As shown in FIG. 1, the operation unit 7 includes a bending knob 71 for bending the bending portion 62 and a plurality of operation members 72 for performing various operations.
  • the universal cord 8 extends from the operation unit 7 and is a light guide (not shown) for transmitting the illumination light supplied from the light source device 42, a transducer cable (not shown) for transmitting the pulse signal and the echo signal described above, And a signal cable (not shown) or the like for transmitting the image signal described above.
  • the endoscope connector 9 is provided at the end of the universal cord 8. The endoscope connector 9 is connected to the video processor 41 and the light source device 42 by being connected to the ultrasonic cable 31 and inserted into the endoscope observation device 4.
  • FIG. 2 is the perspective view which looked at the ultrasonic transducer
  • FIG. 3 is a perspective view of the ultrasonic transducer 10 with the first and second electrodes 12 and 13, the first and second acoustic matching layers 15 and 16, the acoustic lens 17, and the locking member 19 omitted.
  • FIG. 4 is a cross-sectional view of the ultrasonic transducer 10 cut along a plane along the insertion axis Ax.
  • FIG. 5 is an enlarged view of a part of FIG. 4.
  • the ultrasonic transducer 10 is an electronic radial scanning ultrasonic transducer (array-type ultrasonic transducer), and has a plurality of piezoelectric elements 11 (FIG. 3) regularly arranged to form a cylinder. Have. Then, the ultrasonic transducer 10 transmits ultrasonic pulses radially from the cylinder, and scans the ultrasonic pulses in a 360 ° rotation direction about the central axis of the cylinder.
  • the ultrasonic transducer 10, as shown in FIGS. 2 to 5, includes a plurality of piezoelectric elements 11 (FIGS. 3 to 5) and a plurality of first and second electrodes 12 and 13 (FIGS. 4 and 5).
  • FPC board 14 flexible printed circuit board 14
  • first and second acoustic matching layers 15 and 16 (FIGS. 4 and 5), and acoustic lens 17 (FIGS. 2 and 4) 5
  • backing material 18 FIGGS. 3 to 5
  • locking member 19 (FIGS. 2, 4 and 5).
  • the piezoelectric element 11 is constituted by a long rectangular parallelepiped extending linearly along the direction along the insertion axis Ax (corresponding to the first direction according to the present invention). ing. Further, as shown in FIG. 4 or 5, the first and second electrodes 12 and 13 are formed on the outer surface of the piezoelectric element 11. Then, the piezoelectric element 11 converts a pulse signal (corresponding to an electric signal according to the present invention) input through the above-described transducer cable (not shown), the FPC board 14 and the second electrode 13 into an ultrasonic pulse. And transmit to the subject.
  • a pulse signal corresponding to an electric signal according to the present invention
  • the piezoelectric element 11 converts an ultrasonic echo reflected by the object into an electrical echo signal (corresponding to an electrical signal according to the present invention) that represents the voltage change, and outputs the signal.
  • the piezoelectric element 11 is formed using PMN-PT single crystal, PMN-PZT single crystal, PZN-PT single crystal, PIN-PZN-PT single crystal, or relaxor material.
  • PMN-PT single crystal is an abbreviation of a solid solution of magnesium niobate and lead titanate.
  • PMN-PZT single crystal is an abbreviation of a solid solution of magnesium niobate and lead zirconate titanate.
  • PZN-PT single crystal is an abbreviation for a solid solution of lead zinc niobate and lead titanate.
  • PIN-PZN-PT single crystal is an abbreviation of a solid solution of lead indium niobate, lead zinc niobate and lead titanate.
  • the relaxor-based material is a generic term for a ternary piezoelectric material in which a lead-based composite perovskite, which is a relaxor material, is added to lead zirconate titanate (PZT) for the purpose of increasing the piezoelectric constant and the dielectric constant.
  • Lead-based complex perovskite is represented by Pb (B1, B2) O 3 , B1 is either magnesium, zinc, indium or scandium, B2 is either niobium, tantalum or tungsten. These materials have an excellent piezoelectric effect. For this reason, the value of the electrical impedance can be lowered even if the size is reduced, which is preferable from the viewpoint of impedance matching between the first and second electrodes 12 and 13.
  • the first electrode 12 is made of a conductive metal material or resin material, and is formed on the following outer surface of the piezoelectric element 11. That is, as shown in FIG. 4 or 5, the first electrode 12 is parallel to the insertion axis Ax on the outer surface of the piezoelectric element 11, and the outer surface side of the ultrasonic transducer 10 (cylindrical ultrasonic transducer On the entire surface of the first surface 111 located on the side away from the central axis of 10 and the entire surface of the cross surface 113 on the base end side (orthogonal to the insertion axis Ax) orthogonal (intersecting) to the first surface 111 It is formed continuously.
  • the first electrode 12 is conductively connected to the first conductive layer 142 provided on the FPC board 14 and functions as a ground electrode.
  • the second electrode 13 is made of a conductive metal material or resin material, and is formed on the following outer surface of the piezoelectric element 11. That is, as shown in FIG. 4 or FIG. 5, the second electrode 13 is formed on the second surface 112 opposite to the first surface 111 on the outer surface of the piezoelectric element 11. More specifically, the second electrode 13 is a region Ar2 other than the partial region Ar1 (FIGS. 4 and 5) on the side of the cross surface 113 over the entire second surface 112 (FIGS. 4 and 5). Is formed. That is, the second electrode 13 is formed apart from the first electrode 12.
  • the second electrode 13 is conductively connected to the second conductive layer 143 provided on the FPC board 14, and functions as a signal electrode for inputting and outputting a signal to the piezoelectric element 11.
  • the FPC board 14 is a portion that electrically connects the above-described vibrator cable (not shown) and the first and second electrodes 12 and 13. As shown in FIG. 4 or 5, the FPC board 14 includes a substrate 141, a first conductive layer 142, a plurality of second conductive layers 143, and a bonding electrode 144.
  • the substrate 141 is a flexible substrate formed of an insulating material such as polyimide.
  • the first conductive layer 142 is a ground wiring serving as a ground, and is uniformly provided on one surface of the substrate 141 (see FIG. 7A).
  • the first conductive layer 142 is conductively connected to the portion of the first electrode 12 formed on the intersecting surface 113 in a state where the tip end side is bent from the substrate 141. That is, the first conductive layer 142 corresponds to the first wiring according to the present invention.
  • the plurality of second conductive layers 143 transmit the above-described pulse signal and echo signal between the above-described vibrator cable (not shown) and the respective second electrodes 13 provided on the plurality of piezoelectric elements 11. It is signal wiring.
  • the plurality of second conductive layers 143 are configured as wiring patterns so that they are arranged in the direction orthogonal to the longitudinal direction of the FPC board 14 on the other side opposite to the above-described one side of the substrate 141. (See FIG. 7A).
  • the bonding electrode 144 is provided at the tip of the FPC board 14, extends in a direction orthogonal to the longitudinal direction of the FPC board 14, and is electrically connected to the plurality of second conductive layers 143 (see FIG. 7A).
  • the bonding electrode 144 is conductively connected to a portion of the second electrode 13 that extends closer to the cross surface 113 than the center of the second surface 112.
  • the second conductive layer 143 is conductively connected to the second electrode 13 via the bonding electrode 144, and corresponds to a second wiring according to the present invention.
  • the first and second conductive layers 142 and 143 and the bonding electrode 144 described above are made of, for example, a conductive material such as copper.
  • the first acoustic matching layer 15 is provided on the first surface 111 side with respect to the piezoelectric element 11 as shown in FIG. 4 or 5.
  • the second acoustic matching layer 16 is made of a material different from that of the first acoustic matching layer 15, and provided on the outer surface side of the ultrasonic transducer 10 with respect to the first acoustic matching layer 15. .
  • the first and second acoustic matching layers 15 and 16 are formed of the piezoelectric element 11 and the subject in order to efficiently transmit sound (ultrasound) between the piezoelectric element 11 and the subject. A member for matching the acoustic impedance between them.
  • the present embodiment is described as having two acoustic matching layers (first and second acoustic matching layers 15 and 16), it may be a single layer according to the characteristics of the piezoelectric element 11 and the subject, Alternatively, three or more layers may be used.
  • the acoustic matching layer may be an ultrasonic transducer without the acoustic matching layer as long as the acoustic impedance matching with the subject is obtained.
  • the acoustic lens 17 is made of, for example, a silicone resin or the like, and has a substantially cylindrical shape whose outer peripheral surface is curved in a convex shape, as shown in FIG. 2, FIG. 4 or FIG. Located on the outer surface.
  • the acoustic lens 17 has a function of focusing the ultrasonic pulse transmitted from the piezoelectric element 11 through the first and second acoustic matching layers 15 and 16.
  • the acoustic lens 17 can be optionally provided, and the acoustic lens 17 may not be provided.
  • the backing material 18 is a member that is provided on the second surface 112 side with respect to the piezoelectric element 11 as shown in FIGS.
  • the backing material 18 is formed using a material having a high damping rate, for example, an epoxy resin in which a filler such as alumina or zirconia is dispersed, or a rubber in which the filler described above is dispersed.
  • the locking member 19 is a portion that supports the respective members 11 to 18 described above and is attached to the hard member 61.
  • the locking member 19 includes a distal locking member 191 and first and second proximal locking members 192 and 193, as shown in FIG. 2, FIG. 4 or FIG.
  • the distal end side locking member 191 is, as shown in FIG. 4, a cylindrical body 191A extending along the insertion axis Ax, and an end portion on the tip side of the cylindrical body 191A (outside of the central axis of the cylinder 191A And an overhanging portion 191B configured by an annular plate extending at a right angle to the side away from As shown in FIG.
  • the first proximal end locking member 192 has an inside diameter larger than the outside diameter of the cylindrical body 191A, and has an outside dimension substantially the same as the outside diameter of the overhanging portion 191B. It comprises an annular plate having.
  • the second proximal locking member 193 has an inner diameter substantially the same as the inner diameter of the cylindrical body 191A, and is larger than the inner diameter of the first proximal locking member 192. It comprises an annular plate having a small outside diameter.
  • the thickness dimension of the second proximal end locking member 193 is the same as the thickness dimension of the first proximal end locking member 192.
  • the second proximal locking member 193 is disposed inside the first proximal locking member 192.
  • the first and second proximal end locking members 192 and 193 are disposed on the proximal end side of the cylindrical body 191A so as to face the overhanging portion 191B.
  • the members 11 to 18 described above are disposed in a space surrounded by the cylindrical body 191A, the overhang portion 191B, and the first and second proximal end locking members 192 and 193.
  • a balloon holding groove 194 for attaching a balloon (not shown) is formed on the outer peripheral surface of the overhang portion 191B and the outer peripheral surface of the first proximal end locking member 192 so as to cover the acoustic lens 17. It is done.
  • the ultrasound endoscope 2 is configured as a direct-view type endoscope that observes the direction along the insertion axis Ax.
  • the ultrasound endoscope 2 may be configured by a mirror.
  • FIG. 6 is a flowchart showing a method of manufacturing the ultrasonic transducer 10.
  • 7A to 7G are diagrams for explaining the method of manufacturing the ultrasonic transducer 10.
  • the operator places the first acoustic matching layer base material 150 and the first acoustic matching layer base material on the side of one plate surface (corresponding to the first surface 111) of the flat plate-like base material 110 for piezoelectric elements.
  • the two acoustic matching layers 16 are sequentially stacked to produce the forming member 100 (step S1: forming member forming step).
  • the first acoustic matching layer base material 150 and the second acoustic matching layer 16 correspond to the laminated members according to the present invention.
  • the base material 110 for piezoelectric elements is formed using the material which comprises the piezoelectric element 11, and as shown to FIG. 7A, it is comprised by the flat plate of rectangular shape planar view. Then, the entire first plate surface (corresponding to the first surface 111) in the base material 110 for a piezoelectric element, and the entire end surface (corresponding to the intersecting surface 113) orthogonal (crossing) to the first plate surface
  • the first thin film 120 made of the same material as the electrode 12 is continuously formed.
  • the first acoustic matching layer base material 150 is a member made of the same material as the first acoustic matching layer 15.
  • step S2 first wiring step
  • step S3 second wiring step
  • steps S1 to S3 described above is not limited to the order described above, and any step of the steps S1 to S3 may be performed.
  • the forming member 100 to which the FPC board 14 is connected is described as a forming member 200 with FPC (FIG. 7A) in steps S1 to S3.
  • step S4 forming step. Specifically, the operator rotates the blade of a precision cutting machine such as a dicing saw DS along the cutting path DP (FIGS. 7B and 7C) extending along the longitudinal direction (insertion axis Ax direction) of the FPC board 14 While being moved, the molding member 100 is cut to a depth in the middle of the second acoustic matching layer 16, and a part of the tip side of the FPC board 14 (including the bonding electrode 144) is cut.
  • a precision cutting machine such as a dicing saw DS along the cutting path DP (FIGS. 7B and 7C) extending along the longitudinal direction (insertion axis Ax direction) of the FPC board 14
  • the molding member 100 is cut to a depth in the middle of the second acoustic matching layer 16, and a part of the tip side of the FPC board 14 (including the bonding electrode 144) is cut.
  • the plurality of piezoelectric elements 11 including the first and second electrodes 12 and 13
  • the plurality of first acoustic matching layers 15 are formed.
  • the bonding electrode 144 by cutting the bonding electrode 144, the plurality of second conductive layers 143 are electrically separated.
  • the FPC-attached forming member 200 cut in step S4 will be referred to as a cut-off forming member 300 (FIG. 7D).
  • the operator is arranged such that the plurality of piezoelectric elements 11 are arranged to form a cylinder, and the second acoustic matching layer 16 is positioned on the outer peripheral side.
  • the member 300 is curved in a cylindrical shape, and the curved cut molding member 300 is inserted into the acoustic lens 17 to fix the cut molding member 300 and the acoustic lens 17 (step S5).
  • step S5 the one formed in advance as the acoustic lens 17 is adopted.
  • the present invention is not limited to this, and the cut forming member 300 curved in a cylindrical shape is put in a mold and the mold Alternatively, the liquid resin material may be filled and the acoustic lens 17 may be cast directly onto the cut molding member 300.
  • a cylindrical unit in which the cut molding member 300 and the acoustic lens 17 are fixed is described as a radial array 400 (FIG. 7E).
  • the operator inserts the cylindrical body 191A into the cylindrical radial array 400 from the front end side, and centers the radial array 400 and the front end side locking member 191.
  • the radial array 400 and the distal end side locking member 191 are fixed (Step S6).
  • the worker inserts the FPC board 14 into the first proximal locking member 192, and the centers of the radial array 400 and the first proximal locking member 192.
  • the radial array 400 and the first proximal locking member 192 are fixed (step S7).
  • the worker performs first proximal locking on the unit to which the distal locking member 191, the radial array 400, and the first proximal locking member 192 are fixed.
  • the posture is such that the member 192 is positioned upward.
  • the worker fills the space surrounded by the cylindrical body 191A, the overhang portion 191B, and the radial array 400 with the material (the backing material base material 180 (FIG. 7F)) that constitutes the backing material 18 (step S8). ).
  • the worker places the FPC board 14 between the inner peripheral surface of the first proximal end locking member 192 and the outer peripheral surface of the second proximal end locking member 193.
  • step S9 The second proximal end locking member 193 is fixed to the proximal end of the cylindrical body 191A so as to be inserted (step S9). Finally, the backing material base material 180 filled in step S8 is cured (step S10), whereby the ultrasonic transducer 10 is manufactured.
  • the first electrode 12 is continuously formed on two surfaces of the first surface 111 and the intersecting surface 113 in the piezoelectric element 11.
  • the second electrode 13 is formed on the second surface 112 of the piezoelectric element 11.
  • the first conductive layer 142 is conductively connected to the portion of the first electrode 12 formed on the cross surface 113.
  • the second conductive layer 143 is conductively connected to the second electrode 13. Therefore, the bonding portion between the first electrode 12 and the first conductive layer 142 and the bonding portion between the second electrode 13 and the second conductive layer 143 are separated from the outer surface of the ultrasonic transducer 10.
  • the above-described bonding portions are reached through the interfaces (gaps) between the locking members 19 and the end portions on the distal end side and the proximal end side of the acoustic lens 17 and the first and second acoustic matching layers 15 and 16.
  • the route length of the entry route of the drug or the like can be set long, so that the drug or the like can not easily reach the junction portion described above. That is, the durability to a drug or the like can be improved.
  • the length in the insertion axis Ax direction in the ultrasonic transducer 10 It can be shortened. That is, the insertability of the insertion portion 6 into the subject can be improved.
  • vibrator 10 which concerns on this Embodiment, it is effective in the ability to achieve size reduction, ensuring durability.
  • the first conductive layer 142 is a ground wiring which is to be a ground.
  • the second conductive layer 143 is a signal wiring that supplies a pulse signal that causes the piezoelectric element 11 to emit an ultrasonic pulse. That is, it is possible to position the junction of the signal wiring, which needs to consider the influence on the drug or the like, more distant from the outer surface of the ultrasonic transducer 10 than the junction of the ground wiring.
  • the second conductive layer 143 is a portion of the second electrode 13 that extends to the cross surface 113 side of the center of the second surface 112. Conductively connected. Therefore, the first and second wirings according to the present invention can be collectively routed from the cross surface 113 side to the base end side, and the wiring operation can be easily performed. Further, since the first and second wires can be collectively routed, the first and second wires can be formed of the FPC board 14.
  • the forming step S4 is performed after the forming member manufacturing step S1, the first wiring step S2, and the second wiring step S3 are performed. Therefore, for example, after cutting the base material 110 for a piezoelectric element to form a plurality of piezoelectric elements 11, a comparison is made with a case where wiring is sequentially performed on each first electrode 12 and each second electrode 13 Thus, the wiring operation at a narrow pitch can be easily carried out.
  • FIG. 8 is a diagram corresponding to FIG. 5 and is a diagram showing an ultrasonic transducer 10A according to the first modification of the present embodiment.
  • an acoustic lens 17A is used instead of the acoustic lens 17 with respect to the ultrasonic transducer 10 (FIG. 5) described in the above embodiment. Is adopted.
  • the acoustic lens 17A differs from the acoustic lens 17 only in shape.
  • the acoustic lens 17A includes a lens portion 171 and a pair of projecting portions 172, as shown in FIG.
  • the lens portion 171 has a substantially cylindrical shape whose outer peripheral surface is curved in a convex shape, and is positioned on the outer surface side of the ultrasonic transducer 10A with respect to the second acoustic matching layer 16.
  • the pair of projecting portions 172 has an annular shape that is bent at a right angle toward the central axis of the cylindrical lens portion 171 from each end on the distal end side and the proximal end side of the lens portion 171 and extends. Then, as shown in FIG.
  • the pair of projecting portions 172 is each end of the distal end side and the proximal end side of the plurality of piezoelectric elements 11, the plurality of first acoustic matching layers 15, and the second acoustic matching layer 16. It faces each part.
  • the first conductive layer 142 is conductively connected to a portion of the first electrode 12 formed on the cross surface 113 in the acoustic lens 17A.
  • one surface and the other surface of the substrate 141 are made of an insulating material such as polyimide, and only the junctions with the first and second electrodes 12 and 13 are provided. Are provided so as to expose the first and second conductive layers 142 and 143, respectively.
  • the path length of the approach path of the drug or the like reaching the bonding portion described above via the interface (gap) between the acoustic lens 17A and the locking member 19 is set longer. can do. Therefore, it becomes a structure which a chemical
  • FIG. 9 is a diagram corresponding to FIG. 5 and is a diagram showing an ultrasonic transducer 10B according to a second modification of the present embodiment.
  • an acoustic lens 17B is used instead of the acoustic lens 17 with respect to the ultrasonic transducer 10 (FIG. 5) described in the above-described embodiment. Is adopted.
  • the acoustic lens 17B includes a lens portion 171 and a pair of projecting portions 172, similarly to the acoustic lens 17A (FIG. 8) according to the above-described modification 1.
  • the projection dimension from the lens section 171 of the pair of projecting portions 172 according to the second modification is set longer than that of the pair of projections 172 according to the above-described first modification.
  • the pair of projecting portions 172 is the tip end side of the backing material 18 in addition to the plurality of piezoelectric elements 11, the plurality of first acoustic matching layers 15, and the second acoustic matching layer 16. And the end portions on the proximal side respectively.
  • the protective layer 145 is provided in the same manner as the FPC board 14A according to the first modification with respect to the FPC board 14 described in the above-described embodiment.
  • the bonding electrode 144 B having a shape different from that of the bonding electrode 144 is employed. As shown in FIG. 9, the bonding electrode 144B extends along the insertion axis Ax and is bent substantially at a right angle from the end on the proximal end toward the central axis of the cylindrical ultrasonic transducer 10B. It is formed in a substantially L-shaped cross section extending. According to the ultrasonic transducer 10B according to the second modification, the ultrasonic transducer 10A according to the first modification described above is described above via the interface (clearance) between the acoustic lens 17B and the locking member 19 It is possible to set the path length of the entry path of the drug or the like leading to the junction further longer. Therefore, it becomes a structure which a chemical
  • FIG. 10 is a diagram corresponding to FIG. 5 and is a diagram showing an ultrasonic transducer 10C according to the third modification of the present embodiment.
  • the second acoustic matching layer 16, the acoustic lens 17, and the locking member 19 are omitted for the sake of convenience of the description.
  • a bulging portion 146 is formed on the FPC board 14 with respect to the ultrasonic transducer 10 (FIG. 5) described in the above-described embodiment.
  • the added FPC board 14C is adopted.
  • the bulging portion 146 is formed using a conductive material such as copper or nickel, and is electrically connected to the first conductive layer 142.
  • the bulging portion 146 bulges from the first conductive layer 142 so as to be separated from the substrate 141 on the tip end side of the first conductive layer 142. And the bulging part 146 is conductively connected to the said part in the state contact
  • the bulging portion 146 is formed by electrolytic plating after patterning of the signal wiring portion in the manufacturing process of the FPC board 14C. By using general photolithography, the bulging portion 146 can be formed with an accuracy of several ⁇ m, and conductive connection can be performed with high accuracy.
  • the bulging portion 146 is brought into contact with the cross surface 113 (first electrode 12).
  • the FPC board 14C can be easily positioned with respect to the molding member 100.
  • the bonding electrode 144 and the bulging portion 146 can be conductively connected by soldering in the positioned state, and the wiring operation can be easily performed.
  • FIG. 11 is a view corresponding to FIG. 7C, showing a forming member 100D according to the fourth modification of the present embodiment.
  • the first acoustic matching layer base material 150 and the second acoustic matching layer 16 are sequentially stacked on the first surface 111 side of the piezoelectric element base material 110 in the molding member production step S1.
  • the molding member 100 is manufactured, the present invention is not limited to this.
  • a molding member according to the present invention a molding member 100D (FIG. 11) according to the present modification 4 may be adopted.
  • the forming member 100D has the backing material 18 provided on the second surface 112 side of the flat-plate-like base material 110 for a piezoelectric element. That is, the backing material 18 corresponds to the laminating member according to the present invention.
  • the first and second wiring steps, the forming member preparation step, and the forming step according to the present invention are as follows. First, in a state where the tip side of the first conductive layer 142 is bent at a substantially right angle from the substrate 141, the worker solders the tip side to the portion of the first thin film 120 formed on the intersection surface 113. Conductive connection (first wiring step). Next, the worker conductively connects the bonding electrode 144 by soldering to a portion of the second thin film 130 that extends closer to the cross surface 113 than the center of the second surface 112 (second wiring step) ).
  • the worker provides the backing material 18 on the second surface 112 side of the piezoelectric element base material 110 to which the FPC board 14 is connected, to produce the forming member 100D (forming member forming process).
  • the operator rotates the blade of a precision cutting machine such as a dicing saw DS along a cutting path DP extending along the longitudinal direction (insertion axis Ax direction) of the FPC board 14 as shown in FIG.
  • the movable member 100D is moved to a depth in the middle of the backing material 18, and at the same time, a part (including the bonding electrode 144) on the tip side of the FPC board 14 is cut (forming step).
  • a plurality of piezoelectric elements 11 including the first and second electrodes 12 and 13
  • the plurality of second conductive layers 143 are electrically separated.
  • the first and second wirings according to the present invention are configured by the flexible printed circuit board, but the present invention is not limited to this.
  • at least one of the wires may be formed of a lead wire or the like.
  • the first and second wires according to the present invention may be respectively formed by different flexible substrates.
  • the ultrasonic transducer according to the present invention is applied to the ultrasonic endoscope 2 in the above-described embodiment and the first to fourth modifications thereof, the present invention is not limited to this. It may be applied to an extracorporeal ultrasound probe that emits In the embodiment described above and the first to fourth modifications thereof, the ultrasonic transducer of the electronic radial scanning method is adopted as the ultrasonic transducer according to the present invention, but the present invention is not limited to this. It may be configured as an ultrasonic transducer of Further, not only the method of electronically scanning an ultrasonic pulse but also a method of mechanically scanning may be adopted.
  • the endoscope system 1 has both the function of generating an ultrasound image and the function of generating an endoscope image, but is limited thereto Alternatively, it may be configured to have only the function of generating an ultrasound image.
  • the endoscope system 1 may be an endoscope system for observing the inside of a subject such as a mechanical structure in the industrial field, not limited to the medical field. Absent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Gynecology & Obstetrics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波振動子10は、入力した電気信号に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する圧電素子11と、圧電素子11における当該超音波振動子10の外表面側に位置する第1の面111、及び当該第1の面に交差する1つの交差面113の2つの面に連続して形成された第1の電極12と、圧電素子11における第1の面111とは反対側の第2の面112に第1の電極12から離間して形成された第2の電極13と、第1の電極12のうち交差面113に形成された部分に導電接続される第1の配線142と、第2の電極13に導電接続される第2の配線143とを備える。

Description

超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
 本発明は、超音波振動子、超音波内視鏡、及び超音波振動子の製造方法に関する。
 従来、柔軟で細長い挿入部を人等の被検体内に挿入し、当該挿入部の先端に設けられた超音波振動子を用いて当該被検体内を観察する超音波内視鏡が知られている(例えば、特許文献1参照)。
 特許文献1に記載の超音波振動子は、電子ラジアル走査方式の超音波振動子で構成され、円筒を形成するように規則的に配列された複数の圧電素子を有する。より具体的に、当該超音波振動子は、バッキング材と、圧電素子と、音響整合層とが一体に積層されるとともに、当該音響整合層に対して外表面側に音響レンズが取り付けられた構成を有する。
 ここで、圧電素子は、平板状の圧電体と、当該圧電体における超音波振動子の外表面側に位置する一方の板面に形成された上部電極と、他方の板面に形成された下部電極とを備える。また、上,下部電極には、リード線がそれぞれ導電接続される。そして、リード線を介して入力した電気信号に応じて圧電素子で発生した超音波は、音響整合層を介し、音響レンズにて収束されて被検体内に照射される。また、被検体内で反射された超音波は、音響レンズ及び音響整合層を介して圧電素子に入射し、当該圧電素子にて電気信号に変換されてリード線を介して出力される。
 ところで、上,下部電極と各リード線との接合部分が音響レンズに近接している場合には、音響レンズを透過した薬剤等により当該接合部分が腐食し、上,下部電極と各リード線とが不導通となる虞がある。
 そこで、特許文献1に記載の超音波振動子では、薬剤等に対する耐久性を向上させるために、以下の構成を採用している。なお、以下で記載する「基端側」は、挿入部の先端から離間する側を意味する。
 上,下部電極は、挿入部の延在方向に沿う挿入軸方向の長さが圧電体よりも長く、当該圧電体に対して基端側に突出している。また、上,下部電極における基端側に突出した各部分の間には、圧電体と同じ厚みで圧電機能を持たないダミー基板が挟み込まれている。さらに、ダミー基板との間で上部電極を挟み込む配線保護層が音響整合層の基端側に隣接されている。この配線保護層と音響整合層との境界は、音響レンズにおける基端側の端部よりも基端側に位置する。そして、各リード線は、上,下部電極における基端側に突出した部分において、配線保護層と音響整合層との境界よりも基端側の位置にそれぞれ導電接続される。
 以上のように構成することにより、音響レンズ~配線保護層と音響整合層との境界~上,下部電極と各リード線との接合部分に至る薬剤等の進入経路の経路長が長くなり、薬剤等が上,下部電極と各リード線との接合部分に到達し難い構造となる。すなわち、薬剤等に対する耐久性が向上する。
特開2009-297118号公報
 しかしながら、特許文献1に記載の超音波振動子では、配線保護層やダミー基板を設けるとともに、上,下部電極を基端側に延長する必要があり、超音波振動子における挿入軸方向の長さ寸法が長くなってしまう、という問題がある。
 このため、耐久性を確保しつつ、小型化を図ることができる技術が要望されている。
 本発明は、上記に鑑みてなされたものであって、耐久性を確保しつつ、小型化を図ることができる超音波振動子、超音波内視鏡、及び超音波振動子の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る超音波振動子は、超音波を送受する超音波振動子であって、入力した電気信号に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する圧電素子と、前記圧電素子における当該超音波振動子の外表面側に位置する第1の面、及び当該第1の面に交差する1つの交差面の2つの面に連続して形成された第1の電極と、前記圧電素子における前記第1の面とは反対側の第2の面に前記第1の電極から離間して形成された第2の電極と、前記第1の電極のうち、前記交差面に形成された部分に導電接続される第1の配線と、前記第2の電極に導電接続される第2の配線とを備えることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記第1の配線は、グラウンドとなるグラウンド配線であり、前記第2の配線は、前記圧電素子に前記超音波を出射させる前記電気信号を供給する信号配線であることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記第2の電極は、前記第2の面において、当該第2の面の中心よりも前記交差面側に延在し、前記第2の配線は、前記第2の電極のうち、前記第2の面の中心よりも前記交差面側に延在した部分に導電接続されることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記圧電素子は、第1の方向に沿って直線状に延在する長尺状の直方体で構成され、前記第1の面及び前記第2の面は、前記第1の方向に平行となる面であり、前記交差面は、前記第1の方向に直交する面であることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、当該超音波振動子は、複数の前記圧電素子が配列されたアレイ型の超音波振動子であることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、当該超音波振動子は、円筒を形成するように前記複数の圧電素子が規則的に配列された電子ラジアル走査方式の超音波振動子であることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記第1の配線及び前記第2の配線の少なくとも一方は、フレキシブルプリント基板に設けられた導電層であることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記フレキシブルプリント基板は、絶縁性の基板と、前記基板に対して互いに電気的に絶縁された状態でそれぞれ設けられ、前記第1の配線及び前記第2の配線としてそれぞれ構成される2つの前記導電層とを備えることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記2つの導電層は、前記基板の一方の面、及び当該一方の面とは反対側の他方の面にそれぞれ設けられ、前記2つの導電層の一方は、前記基板に対して折り曲げられた状態で、前記第1の電極または前記第2の電極に導電接続されることを特徴とする。
 また、本発明に係る超音波振動子では、上記発明において、前記第1の配線として構成される前記導電層には、当該導電層に導通し、当該導電層から膨出した膨出部が設けられ、前記膨出部は、前記第1の電極のうち前記交差面に形成された部分に当接した状態で、当該部分に導電接続されることを特徴とする。
 本発明に係る超音波内視鏡は、被検体内に挿入される挿入部を備え、当該挿入部の先端に超音波振動子が設けられた超音波内視鏡であって、前記超音波振動子は、上述した超音波振動子であることを特徴とする。
 また、本発明に係る超音波内視鏡では、上記発明において、前記圧電素子は、前記交差面が前記挿入部の基端側に向いた姿勢で配設されることを特徴とする。
 本発明に係る超音波振動子の製造方法は、圧電素子を構成する圧電素子用母材における第1の面、及び当該第1の面に交差する1つの交差面の2つの面に連続して形成された第1の電極を構成する第1の薄膜のうち、前記交差面に形成された部分に第1の配線を導電接続する第1配線工程と、前記圧電素子用母材における前記第1の面とは反対側の第2の面に形成された第2の電極を構成する第2の薄膜に第2の配線を導電接続する第2配線工程と、前記第1の面側または前記第2の面側に積層部材を積層して成形用部材を作製する成形用部材作製工程と、前記第1配線工程、前記第2配線工程、及び前記成形用部材作製工程の後、前記積層部材の途中の深さまで前記成形用部材を裁断し、複数の前記圧電素子を成形する成形工程とを含み、前記第1の配線及び前記第2の配線の少なくとも一方は、フレキシブルプリント基板に設けられた導電層であることを特徴とする。
 本発明に係る超音波振動子、超音波内視鏡、及び超音波振動子の製造方法によれば、耐久性を確保しつつ、小型化を図ることができる、という効果を奏する。
図1は、本実施の形態に係る内視鏡システムを模式的に示す図である。 図2は、超音波振動子の構成を示す図である。 図3は、超音波振動子の構成を示す図である。 図4は、超音波振動子の構成を示す図である。 図5は、超音波振動子の構成を示す図である。 図6は、超音波振動子の製造方法を示すフローチャートである。 図7Aは、超音波振動子の製造方法を説明する図である。 図7Bは、超音波振動子の製造方法を説明する図である。 図7Cは、超音波振動子の製造方法を説明する図である。 図7Dは、超音波振動子の製造方法を説明する図である。 図7Eは、超音波振動子の製造方法を説明する図である。 図7Fは、超音波振動子の製造方法を説明する図である。 図7Gは、超音波振動子の製造方法を説明する図である。 図8は、本実施の形態の変形例1に係る超音波振動子を示す図である。 図9は、本実施の形態の変形例2に係る超音波振動子を示す図である。 図10は、本実施の形態の変形例3に係る超音波振動子を示す図である。 図11は、本実施の形態の変形例4に係る成形用部材を示す図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には同一符号を付している。
 〔内視鏡システムの概略構成〕
 図1は、本実施の形態に係る内視鏡システム1を模式的に示す図である。
 内視鏡システム1は、超音波内視鏡を用いて人等の被検体内の超音波診断を行うシステムである。この内視鏡システム1は、図1に示すように、超音波内視鏡2と、超音波観測装置3と、内視鏡観察装置4と、表示装置5とを備える。
 超音波内視鏡2は、一部を被検体内に挿入可能とし、被検体内の体壁に向けて超音波パルス(音響パルス)を送信するとともに被検体にて反射された超音波エコーを受信してエコー信号を出力する機能、及び被検体内を撮像して画像信号を出力する機能を有する。
 なお、超音波内視鏡2の詳細な構成については、後述する。
 超音波観測装置3は、超音波ケーブル31(図1)を介して超音波内視鏡2に電気的に接続し、超音波ケーブル31を介して超音波内視鏡2にパルス信号を出力するとともに超音波内視鏡2からエコー信号を入力する。そして、超音波観測装置3では、当該エコー信号に所定の処理を施して超音波画像を生成する。
 内視鏡観察装置4には、超音波内視鏡2の後述する内視鏡用コネクタ9(図1)が着脱自在に接続される。この内視鏡観察装置4は、図1に示すように、ビデオプロセッサ41と、光源装置42とを備える。
 ビデオプロセッサ41は、内視鏡用コネクタ9を介して超音波内視鏡2からの画像信号を入力する。そして、ビデオプロセッサ41は、当該画像信号に所定の処理を施して内視鏡画像を生成する。
 光源装置42は、内視鏡用コネクタ9を介して被検体内を照明する照明光を超音波内視鏡2に供給する。
 表示装置5は、液晶または有機EL(Electro Luminescence)を用いて構成され、超音波観測装置3にて生成された超音波画像や、内視鏡観察装置4にて生成された内視鏡画像等を表示する。
 〔超音波内視鏡の構成〕
 次に、超音波内視鏡2の構成について説明する。
 超音波内視鏡2は、図1に示すように、挿入部6と、操作部7と、ユニバーサルコード8と、内視鏡用コネクタ9とを備える。
 なお、以下に記載する「先端側」は、挿入部6の先端側(被検体内への挿入方向の先端側)を意味する。また、以下に記載する「基端側」は、挿入部6の先端から離間する側を意味する。
 挿入部6は、被検体内に挿入される部分である。この挿入部6は、図1に示すように、先端側に設けられる超音波振動子10と、超音波振動子10の基端側に連結される硬性部材61と、硬性部材61の基端側に連結され湾曲可能とする湾曲部62と、湾曲部62の基端側に連結され可撓性を有する可撓管63とを備える。
 なお、本発明の要部である超音波振動子10の詳細な構成については、後述する。
 操作部7は、挿入部6の基端側に連結され、医師等から各種操作を受け付ける部分である。この操作部7は、図1に示すように、湾曲部62を湾曲操作するための湾曲ノブ71と、各種操作を行うための複数の操作部材72とを備える。
 ユニバーサルコード8は、操作部7から延在し、光源装置42から供給された照明光を伝送するライトガイド(図示略)、上述したパルス信号やエコー信号を伝送する振動子ケーブル(図示略)、及び上述した画像信号を伝送する信号ケーブル(図示略)等が配設されたコードである。
 内視鏡用コネクタ9は、ユニバーサルコード8の端部に設けられている。そして、内視鏡用コネクタ9は、超音波ケーブル31が接続されるとともに、内視鏡観察装置4に挿し込まれることでビデオプロセッサ41及び光源装置42に接続する。
 〔超音波振動子の構成〕
 次に、超音波振動子10の構成について説明する。
 図2ないし図5は、超音波振動子10の構成を示す図である。具体的に、図2は、超音波振動子10を先端側から見た斜視図である。図3は、超音波振動子10から第1,第2の電極12,13、第1,第2の音響整合層15,16、音響レンズ17、及び係止部材19を省略した斜視図である。図4は、挿入軸Axに沿う平面にて超音波振動子10を切断した断面図である。図5は、図4の一部を拡大した図である。
 超音波振動子10は、電子ラジアル走査方式の超音波振動子(アレイ型の超音波振動子)であり、円筒を形成するように規則的に配列された複数の圧電素子11(図3)を有する。そして、超音波振動子10は、当該円筒から放射状に超音波パルスを送信するとともに、当該円筒の中心軸を中心とした360°の回転方向に超音波パルスを走査する。
 そして、超音波振動子10は、図2ないし図5に示すように、複数の圧電素子11(図3~図5)と、複数の第1,第2の電極12,13(図4,図5)と、フレキシブルプリント基板14(以下、FPC基板14と記載)と、第1,第2の音響整合層15,16(図4,図5)と、音響レンズ17(図2,図4,図5)と、バッキング材18(図3~図5)と、係止部材19(図2,図4,図5)とを備える。
 圧電素子11は、図3ないし図5に示すように、挿入軸Axに沿う方向(本発明に係る第1の方向に相当)に沿って直線状に延在する長尺状の直方体で構成されている。また、圧電素子11の外面には、図4または図5に示すように、第1,第2の電極12,13が形成されている。そして、圧電素子11は、上述した振動子ケーブル(図示略)、FPC基板14、及び第2の電極13を介して入力したパルス信号(本発明に係る電気信号に相当)を超音波パルスに変換して被検体に送信する。また、圧電素子11は、被検体で反射された超音波エコーを電圧変化で表現する電気的なエコー信号(本発明に係る電気信号に相当)に変換して出力する。
 ここで、圧電素子11は、PMN-PT単結晶、PMN-PZT単結晶、PZN-PT単結晶、PIN-PZN-PT単結晶またはリラクサー系材料を用いて形成される。
 なお、PMN-PT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PMN-PZT単結晶は、マグネシウム・ニオブ酸鉛及びチタン酸ジルコン酸鉛の固溶体の略称である。PZN-PT単結晶は、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。PIN-PZN-PT単結晶は、インジウム・ニオブ酸鉛、亜鉛・ニオブ酸鉛及びチタン酸鉛の固溶体の略称である。リラクサー系材料は、圧電定数や誘電率を増加させる目的でリラクサー材料である鉛系複合ペロブスカイトをチタン酸ジルコン酸鉛(PZT)に添加した三成分系圧電材料の総称である。鉛系複合ペロブスカイトは、Pb(B1、B2)Oで表され、B1はマグネシウム、亜鉛、インジウムまたはスカンジウムのいずれかであり、B2はニオブ、タンタルまたはタングステンのいずれかである。これらの材料は、優れた圧電効果を有している。このため、小型化しても電気的なインピーダンスの値を低くすることができ、第1,第2の電極12,13との間のインピーダンスマッチングの観点から好ましい。
 第1の電極12は、導電性を有する金属材料または樹脂材料で構成され、圧電素子11における以下の外面に形成されている。
 すなわち、第1の電極12は、図4または図5に示すように、圧電素子11の外面において、挿入軸Axに平行となり、超音波振動子10の外表面側(円筒状の超音波振動子10の中心軸から離間する側)に位置する第1の面111全面と、当該第1の面111に直交(交差)する(挿入軸Axに直交する)基端側の交差面113全面とに連続して形成されている。
 そして、第1の電極12は、FPC基板14に設けられた第1の導電層142と導電接続し、グラウンド電極として機能する。
 第2の電極13は、第1の電極12と同様に、導電性を有する金属材料または樹脂材料で構成され、圧電素子11における以下の外面に形成されている。
 すなわち、第2の電極13は、図4または図5に示すように、圧電素子11の外面において、第1の面111とは反対側に位置する第2の面112に形成されている。より具体的に、第2の電極13は、第2の面112全面において、交差面113側の一部の領域Ar1(図4,図5)を除く他の領域Ar2(図4,図5)に形成されている。すなわち、第2の電極13は、第1の電極12から離間して形成されている。
 そして、第2の電極13は、FPC基板14に設けられた第2の導電層143と導電接続し、圧電素子11への信号の入出力を行う信号電極として機能する。
 FPC基板14は、上述した振動子ケーブル(図示略)と第1,第2の電極12,13とを電気的に接続する部分である。このFPC基板14は、図4または図5に示すように、基板141と、第1の導電層142と、複数の第2の導電層143と、接合用電極144とを備える。
 基板141は、ポリイミド等の絶縁材料から構成された可撓性を有する基板である。
 第1の導電層142は、グラウンドとなるグラウンド配線であり、基板141の一方の面に一様に設けられている(図7A参照)。そして、第1の導電層142は、先端側が基板141から折り曲げられた状態で、第1の電極12のうち、交差面113に形成された部分に導電接続される。すなわち、第1の導電層142は、本発明に係る第1の配線に相当する。
 複数の第2の導電層143は、上述した振動子ケーブル(図示略)と複数の圧電素子11にそれぞれ設けられた各第2の電極13との間で上述したパルス信号やエコー信号を伝送する信号配線である。そして、複数の第2の導電層143は、基板141における上述した一方の面とは反対側の他方の面において、FPC基板14の長手方向に直交する方向に並ぶように、配線パターンとしてそれぞれ構成されている(図7A参照)。
 なお、具体的な図示は省略したが、基板141における上述した一方の面及び他方の面には、ポリイミド等の絶縁材料から構成され、第1,第2の導電層142,143を保護する保護層がそれぞれ設けられている。
 接合用電極144は、FPC基板14の先端に設けられ、当該FPC基板14の長手方向に直交する方向に延在し、複数の第2の導電層143にそれぞれ導通する(図7A参照)。そして、接合用電極144は、第2の電極13のうち、第2の面112の中心よりも交差面113側に延在した部分に導電接続される。すなわち、第2の導電層143は、接合用電極144を介して第2の電極13に導電接続され、本発明に係る第2の配線に相当する。
 以上説明した第1,第2の導電層142,143及び接合用電極144は、例えば、銅等の導電性材料を用いて構成されている。
 第1の音響整合層15は、図4または図5に示すように、圧電素子11に対して第1の面111側に設けられている。また、第2の音響整合層16は、第1の音響整合層15とは異なる材料で構成され、第1の音響整合層15に対して超音波振動子10の外表面側に設けられている。
 より具体的に、第1,第2の音響整合層15,16は、圧電素子11と被検体との間で音(超音波)を効率よく透過させるために、圧電素子11と被検体との間の音響インピーダンスをマッチングさせる部材である。
 なお、本実施の形態では、2つの音響整合層(第1,第2の音響整合層15,16)を有するものとして説明するが、圧電素子11と被検体との特性により一層としてもよく、あるいは、三層以上としても構わない。また、音響整合層は、被検体との音響インピーダンスの整合が取れていれば、当該音響整合層を有しない超音波振動子としても構わない。
 音響レンズ17は、例えば、シリコーン樹脂等を用いて構成され、図2、図4または図5に示すように、外周面が凸状に湾曲した略円筒形状を有し、超音波振動子10の外表面に位置する。そして、音響レンズ17は、圧電素子11から送信され、第1,第2の音響整合層15,16を介した超音波パルスを収束させる機能を有する。なお、音響レンズ17は、任意に設けることができ、当該音響レンズ17を有しない構成としても構わない。
 バッキング材18は、図3ないし図5に示すように、圧電素子11に対して第2の面112側に設けられ、圧電素子11の動作によって生じる不要な超音波振動を減衰させる部材である。このバッキング材18は、減衰率の大きい材料、例えば、アルミナやジルコニア等のフィラーを分散させたエポキシ樹脂や、上述したフィラーを分散したゴムを用いて形成される。
 係止部材19は、上述した各部材11~18を支持するとともに、硬性部材61に取り付けられる部分である。この係止部材19は、図2、図4または図5に示すように、先端側係止部材191と、第1,第2の基端側係止部材192,193とを備える。
 先端側係止部材191は、図4に示すように、挿入軸Axに沿って延在する円筒状の筒体191Aと、筒体191Aの先端側の端部から外側(筒体191Aの中心軸から離間する側)に直角に屈曲して延在する円環状の板体で構成される張出部191Bとを備える。
 第1の基端側係止部材192は、図4に示すように、筒体191Aの外径寸法よりも大きい内径寸法を有し、張出部191Bの外径寸法と略同一の外形寸法を有する円環状の板体で構成される。
 第2の基端側係止部材193は、図4に示すように、筒体191Aの内径寸法と略同一の内径寸法を有し、第1の基端側係止部材192の内径寸法よりも小さい外径寸法を有する円環状の板体で構成される。なお、第2の基端側係止部材193の厚み寸法は、第1の基端側係止部材192の厚み寸法と同一である。
 そして、第2の基端側係止部材193は、第1の基端側係止部材192の内側に配設される。また、第1,第2の基端側係止部材192,193は、張出部191Bに対向するように、筒体191Aの基端側に配設される。そして、筒体191A、張出部191B、及び第1,第2の基端側係止部材192,193で囲まれる空間に、上述した各部材11~18が配設される。
 また、張出部191Bの外周面、及び第1の基端側係止部材192の外周面には、音響レンズ17を覆うようにバルーン(図示略)を取り付けるためのバルーン保持溝194がそれぞれ形成されている。
 ここで、円筒状の超音波振動子10内(筒体191A内)には、具体的な図示は省略したが、上述したライトガイドの出射端側、当該ライトガイドの出射端から出射された照明光を挿入軸Axに沿って被検体内に照射する照明レンズ、当該被検体内で反射された光(被写体像)を集光する対物光学系、及び当該対物光学系にて集光された被写体像を撮像する撮像素子が配設されている。そして、当該撮像素子にて撮像された画像信号は、上述した信号ケーブルを介して内視鏡観察装置4(ビデオプロセッサ41)に伝送される。
 すなわち、本実施の形態に係る超音波内視鏡2は、挿入軸Axに沿う方向を観察する直視タイプの内視鏡として構成されている。なお、直視タイプの内視鏡に限らず、挿入軸Axに対して鋭角で交差する方向を観察する斜視タイプの内視鏡や、挿入軸Axに直交する方向を観察する側視タイプの内視鏡で超音波内視鏡2を構成しても構わない。
 〔超音波振動子の製造方法〕
 次に、上述した超音波振動子10の製造方法について説明する。
 図6は、超音波振動子10の製造方法を示すフローチャートである。図7Aないし図7Gは、超音波振動子10の製造方法を説明する図である。
 先ず、作業者は、図7Aに示すように、平板状の圧電素子用母材110における一方の板面(第1の面111に相当)側に第1の音響整合層用母材150及び第2の音響整合層16を順に積層して、成形用部材100を作製する(工程S1:成形用部材作製工程)。
 すなわち、第1の音響整合層用母材150及び第2の音響整合層16は、本発明に係る積層部材に相当する。
 ここで、圧電素子用母材110は、圧電素子11を構成する材料を用いて形成され、図7Aに示すように、平面視長方形状の平板で構成されている。そして、圧電素子用母材110における一方の板面(第1の面111に相当)全体、及び当該一方の板面に直交(交差)する端面(交差面113に相当)全体には、第1の電極12と同一の材料で構成された第1の薄膜120が連続して形成されている。また、圧電素子用母材110における他方の板面(第2の面112に相当)全体において、上述した端面(交差面113に相当)に近接する側の領域Ar1を除く他の領域Ar2には、第2の電極13と同一の材料で構成された第2の薄膜130が形成されている。
 また、第1の音響整合層用母材150は、第1の音響整合層15と同一の材料で構成された部材である。
 次に、作業者は、図7Aに示すように、第1の導電層142の先端側を基板141から略直角に折り曲げた状態で、第1の薄膜120のうち、上述した端面(交差面113に相当)に形成された部分に当該先端側を半田付けにより導電接続する(工程S2:第1配線工程)。
 次に、作業者は、図7Aに示すように、第2の薄膜130のうち、上述した他方の面(第2の面112に相当)の中心よりも上述した端面(交差面113に相当)側に延在した部分に接合用電極144を半田付けにより導電接続する(工程S3:第2配線工程)。
 なお、上述した工程S1~S3の順序は、上述した順序に限らず、工程S1~S3のいずれの工程から実施しても構わない。
 以下では、説明の便宜上、工程S1~S3により、FPC基板14が接続された成形用部材100をFPC付き成形用部材200(図7A)と記載する。
 次に、作業者は、図7Bまたは図7Cに示すように、ダイシングソーDSを用いて、FPC付き成形用部材200を裁断する(工程S4:成形工程)。
 具体的に、作業者は、FPC基板14の長手方向(挿入軸Ax方向)に沿って延びる裁断経路DP(図7B,図7C)に沿ってダイシングソーDS等の精密裁断機の刃を回転させながら移動させ、第2の音響整合層16の途中の深さまで成形用部材100を裁断するとともに、FPC基板14における先端側の一部(接合用電極144を含む)を裁断する。その結果、複数の圧電素子11(第1,第2の電極12,13を含む)、及び複数の第1の音響整合層15がそれぞれ成形される。また、接合用電極144が裁断されることで、複数の第2の導電層143がそれぞれ電気的に分断される。
 以下では、説明の便宜上、工程S4により、裁断されたFPC付き成形用部材200を裁断済み成形用部材300(図7D)と記載する。
 次に、作業者は、図7Dに示すように、複数の圧電素子11が円筒を形成するように配列され、かつ、第2の音響整合層16が外周側に位置するように裁断済み成形用部材300を円筒状に湾曲させ、当該湾曲させた裁断済み成形用部材300を音響レンズ17内に挿通して、当該裁断済み成形用部材300と音響レンズ17とを固着する(工程S5)。
 なお、本実施の形態では、工程S5において、音響レンズ17として事前に成形したものを採用したが、これに限らず、円筒状に湾曲させた裁断済み成形用部材300を型に入れ、当該型に液体状の樹脂材料を充填し、裁断済み成形用部材300に対して音響レンズ17を直接、注型しても構わない。
 以下では、説明の便宜上、裁断済み成形用部材300と音響レンズ17とを固着した円筒状のユニットをラジアルアレイ400(図7E)と記載する。
 次に、作業者は、図7Eに示すように、円筒状のラジアルアレイ400内に先端側から筒体191Aを挿通し、ラジアルアレイ400と先端側係止部材191との中心を合わせた状態で、ラジアルアレイ400と先端側係止部材191とを固着する(工程S6)。
 次に、作業者は、図7Eに示すように、第1の基端側係止部材192内にFPC基板14を挿通し、ラジアルアレイ400と第1の基端側係止部材192との中心を合わせた状態で、ラジアルアレイ400と第1の基端側係止部材192とを固着する(工程S7)。
 次に、作業者は、図7Fに示すように、先端側係止部材191、ラジアルアレイ400、及び第1の基端側係止部材192が固着されたユニットを第1の基端側係止部材192が上方に位置する姿勢とする。そして、作業者は、筒体191A、張出部191B、及びラジアルアレイ400で囲まれる空間に、バッキング材18を構成する材料(バッキング材用母材180(図7F))を充填する(工程S8)。
 次に、作業者は、図7Gに示すように、第1の基端側係止部材192の内周面と第2の基端側係止部材193の外周面との間にFPC基板14が挿通されるように、第2の基端側係止部材193を筒体191Aの基端側の端部に固着する(工程S9)。
 最後に、工程S8で充填したバッキング材用母材180を硬化させる(工程S10)ことで、超音波振動子10は製造される。
 以上説明した本実施の形態に係る超音波振動子10によれば、以下の効果がある。
 本実施の形態に係る超音波振動子10では、第1の電極12は、圧電素子11における第1の面111及び交差面113の2つの面に連続して形成されている。また、第2の電極13は、圧電素子11における第2の面112に形成されている。そして、第1の導電層142は、第1の電極12のうち、交差面113に形成された部分に導電接続される。また、第2の導電層143は、第2の電極13に導電接続される。
 このため、第1の電極12及び第1の導電層142の接合部分と、第2の電極13及び第2の導電層143の接合部分とを超音波振動子10の外表面から離れた位置に位置付けることができる。したがって、音響レンズ17及び第1,第2の音響整合層15,16における先端側及び基端側の各端部と係止部材19との界面(隙間)を介して上述した各接合部分に至る薬剤等の進入経路の経路長を長く設定し、薬剤等が上述した接合部分に到達し難い構造とすることができる。すなわち、薬剤等に対する耐久性を向上させることができる。
 また、従来の構成のように第1,第2の電極12,13を圧電素子11に対して基端側に延長する必要がないため、超音波振動子10における挿入軸Ax方向の長さを短くすることができる。すなわち、被検体内への挿入部6の挿入性を向上させることができる。
 以上のことから、本実施の形態に係る超音波振動子10によれば、耐久性を確保しつつ、小型化を図ることができる、という効果を奏する。
 また、本実施の形態に係る超音波振動子10では、第1の導電層142は、グラウンドとなるグラウンド配線である。また、第2の導電層143は、圧電素子11に超音波パルスを出射させるパルス信号を供給する信号配線である。すなわち、薬剤等に対する影響をより考慮する必要のある信号配線の接合部分をグラウンド配線の接合部分よりも超音波振動子10の外表面から離れた位置に位置付けることができる。
 また、本実施の形態に係る超音波振動子10では、第2の導電層143は、第2の電極13のうち、第2の面112の中心よりも交差面113側に延在した部分に導電接続される。このため、本発明に係る第1,第2の配線を交差面113側から基端側に纏めて引き回すことができ、配線作業を容易に実施することができる。また、当該第1,第2の配線を纏めて引き回すことができるため、当該第1,第2の配線をFPC基板14で構成することができる。
 また、本実施の形態に係る超音波振動子10の製造方法では、成形用部材作製工程S1、第1配線工程S2、及び第2配線工程S3を実施した後に、成形工程S4を実施する。
 このため、例えば、圧電素子用母材110を裁断して複数の圧電素子11を成形した後に、各第1の電極12及び各第2の電極13に順次、配線を実施していく場合と比較して、狭ピッチでの配線作業を容易に実施することができる。
(その他の実施形態)
 ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。
 図8は、図5に対応した図であって、本実施の形態の変形例1に係る超音波振動子10Aを示す図である。
 本変形例1に係る超音波振動子10Aでは、図8に示すように、上述した実施の形態で説明した超音波振動子10(図5)に対して、音響レンズ17の代わりに音響レンズ17Aを採用している。
 音響レンズ17Aは、音響レンズ17に対して形状のみ異なる。この音響レンズ17Aは、図8に示すように、レンズ部171と、一対の突出部172とを備える。
 レンズ部171は、外周面が凸状に湾曲した略円筒形状を有し、第2の音響整合層16に対して超音波振動子10Aの外表面側に位置する。
 一対の突出部172は、レンズ部171における先端側及び基端側の各端部から円筒状のレンズ部171の中心軸に向けて直角に屈曲してそれぞれ延在した円環形状を有する。そして、一対の突出部172は、図8に示すように、複数の圧電素子11、複数の第1の音響整合層15、及び第2の音響整合層16における先端側及び基端側の各端部にそれぞれ対向する。
 そして、第1の導電層142は、音響レンズ17Aの内部において、第1の電極12のうち交差面113に形成された部分に導電接続される。また、本変形例1に係るFPC基板14Aでは、基板141における一方の面及び他方の面には、ポリイミド等の絶縁材料から構成され、第1,第2の電極12,13との接合部分のみが露出するように、第1,第2の導電層142,143を保護する保護層145がそれぞれ設けられている。
 本変形例1に係る超音波振動子10Aによれば、音響レンズ17Aと係止部材19との界面(隙間)を介して上述した接合部分に至る薬剤等の進入経路の経路長をさらに長く設定することができる。したがって、薬剤等が上述した接合部分にさらに到達し難い構造となり、薬剤等に対する耐久性をさらに向上させることができる。
 図9は、図5に対応した図であって、本実施の形態の変形例2に係る超音波振動子10Bを示す図である。
 本変形例2に係る超音波振動子10Bでは、図9に示すように、上述した実施の形態で説明した超音波振動子10(図5)に対して、音響レンズ17の代わりに音響レンズ17Bを採用している。
 音響レンズ17Bは、図9に示すように、上述した変形例1に係る音響レンズ17A(図8)と同様に、レンズ部171と、一対の突出部172とを備える。
 本変形例2に係る一対の突出部172は、上述した変形例1に係る一対の突出部172よりもレンズ部171からの突出寸法が長く設定されている。そして、当該一対の突出部172は、図9に示すように、複数の圧電素子11、複数の第1の音響整合層15、及び第2の音響整合層16の他、バッキング材18における先端側及び基端側の端部にそれぞれ対向する。
 また、本変形例2に係るFPC基板14Bは、上述した実施の形態で説明したFPC基板14に対して、上述した変形例1に係るFPC基板14Aと同様に保護層145が設けられているとともに、接合用電極144とは形状の異なる接合用電極144Bが採用されている。この接合用電極144Bは、図9に示すように、挿入軸Axに沿って延在するとともに、基端側の端部から円筒状の超音波振動子10Bの中心軸に向けて略直角に屈曲して延在する断面略L字状に形成されている。
 本変形例2に係る超音波振動子10Bによれば、上述した変形例1に係る超音波振動子10Aに対して、音響レンズ17Bと係止部材19との界面(隙間)を介して上述した接合部分に至る薬剤等の進入経路の経路長をさらに長く設定することができる。したがって、薬剤等が上述した接合部分にさらに到達し難い構造となり、薬剤等に対する耐久性をさらに向上させることができる。
 図10は、図5に対応した図であって、本実施の形態の変形例3に係る超音波振動子10Cを示す図である。なお、図10では、説明の便宜上、第2の音響整合層16、音響レンズ17、及び係止部材19を省略している。
 本変形例3に係る超音波振動子10Cでは、図10に示すように、上述した実施の形態で説明した超音波振動子10(図5)に対して、FPC基板14に膨出部146を追加したFPC基板14Cを採用している。
 膨出部146は、銅やニッケル等の導電性材料を用いて構成され、第1の導電層142に導通する。より具体的に、膨出部146は、第1の導電層142の先端側において、基板141から離間するように当該第1の導電層142から膨出する。そして、膨出部146は、第1の電極12のうち、交差面113に形成された部分に当接した状態で、当該部分に導電接続される。この膨出部146は、FPC基板14Cの作製工程で、信号配線部のパターニング後に電界めっきにより形成する。一般的なフォトリソを利用することで数μm単位の精度で膨出部146を形成可能であり、精度良く導電接続が可能となる。
 本変形例3に係る超音波振動子10Cによれば、第1,第2配線工程S2,S3を実施する際に、膨出部146を交差面113(第1の電極12)に当接させれば、成形用部材100に対してFPC基板14Cを容易に位置決めすることができる。そして、当該位置決めした状態で接合用電極144及び膨出部146を半田付けにより導電接続することができ、配線作業を容易に実施することができる。
 図11は、図7Cに対応した図であって、本実施の形態の変形例4に係る成形用部材100Dを示す図である。
 上述した実施の形態では、成形用部材作製工程S1において、圧電素子用母材110における第1の面111側に第1の音響整合層用母材150及び第2の音響整合層16を順に積層して、成形用部材100を作製していたが、これに限らない。本発明に係る成形用部材として、本変形例4に係る成形用部材100D(図11)を採用しても構わない。
 成形用部材100Dは、図11に示すように、平板状の圧電素子用母材110における第2の面112側にバッキング材18が設けられたものである。
 すなわち、バッキング材18は、本発明に係る積層部材に相当する。
 このような成形用部材100Dを用いる場合には、本発明に係る第1,第2配線工程、成形用部材作製工程、及び成形工程は、以下の通りである。
 先ず、作業者は、第1の導電層142の先端側を基板141から略直角に折り曲げた状態で、第1の薄膜120のうち、交差面113に形成された部分に当該先端側を半田付けにより導電接続する(第1配線工程)。
 次に、作業者は、第2の薄膜130のうち、第2の面112の中心よりも交差面113側に延在した部分に接合用電極144を半田付けにより導電接続する(第2配線工程)。
 次に、作業者は、FPC基板14が接続された圧電素子用母材110における第2の面112側にバッキング材18を設けて、成形用部材100Dを作製する(成形用部材作製工程)。
 次に、作業者は、図11に示すように、FPC基板14の長手方向(挿入軸Ax方向)に沿って延びる裁断経路DPに沿ってダイシングソーDS等の精密裁断機の刃を回転させながら移動させ、バッキング材18の途中の深さまで成形用部材100Dを裁断するとともに、FPC基板14における先端側の一部(接合用電極144を含む)を裁断する(成形工程)。その結果、複数の圧電素子11(第1,第2の電極12,13を含む)がそれぞれ成形される。また、接合用電極144が裁断されることで、複数の第2の導電層143がそれぞれ電気的に分断される。
 上述した実施の形態及びその変形例1~4では、本発明に係る第1,第2の配線をフレキシブルプリント基板で構成していたが、これに限らず、本発明に係る第1,第2の配線の少なくとも一方をリード線等で構成しても構わない。また、本発明に係る第1,第2の配線を別々のフレキシブル基板でそれぞれ構成しても構わない。
 上述した実施の形態及びその変形例1~4では、本発明に係る超音波振動子を超音波内視鏡2に適用していたが、これに限らず、被検体の体表から超音波パルスを照射する体外式超音波プローブに適用しても構わない。
 上述した実施の形態及びその変形例1~4では、本発明に係る超音波振動子として、電子ラジアル走査方式の超音波振動子を採用していたが、これに限らず、電子コンベックス走査方式等の超音波振動子として構成しても構わない。また、超音波パルスを電子的に走査する方式に限らず、メカ的に走査する方式を採用しても構わない。
 上述した実施の形態及びその変形例1~4では、内視鏡システム1は、超音波画像を生成する機能、及び内視鏡画像を生成する機能の双方を有していたが、これに限らず、超音波画像を生成する機能のみを有する構成としても構わない。
 上述した実施の形態及びその変形例1~4において、内視鏡システム1は、医療分野に限らず、工業分野において、機械構造物等の被検体の内部を観察する内視鏡システムとしても構わない。
 1 内視鏡システム
 2 超音波内視鏡
 3 超音波観測装置
 4 内視鏡観察装置
 5 表示装置
 6 挿入部
 7 操作部
 8 ユニバーサルコード
 9 内視鏡用コネクタ
 10,10A~10C 超音波振動子
 11 圧電素子
 12,13 第1,第2の電極
 14 フレキシブルプリント基板
 14A~14C FPC基板
 15,16 第1,第2の音響整合層
 17,17A,17B 音響レンズ
 18 バッキング材
 19 係止部材
 31 超音波ケーブル
 41 ビデオプロセッサ
 42 光源装置
 61 硬性部材
 62 湾曲部
 63 可撓管
 71 湾曲ノブ
 72 操作部材
 100,100D 成形用部材
 110 圧電素子用母材
 111,112 第1,第2の面
 113 交差面
 120,130 第1,第2の薄膜
 141 基板
 142,143 第1,第2の導電層
 144,144B 接合用電極
 145 保護層
 146 膨出部
 150 第1の音響整合層用母材
 171 レンズ部
 172 突出部
 180 バッキング材用母材
 191 先端側係止部材
 191A 筒体
 191B 張出部
 192,193 第1,第2の基端側係止部材
 194 バルーン保持溝
 200 FPC付き成形用部材
 300 裁断済み成形用部材
 400 ラジアルアレイ
 Ar1,Ar2 領域
 Ax 挿入軸
 DS ダイシングソー
 DP 裁断経路

Claims (13)

  1.  超音波を送受する超音波振動子であって、
     入力した電気信号に応じて超音波を出射するとともに、外部から入射した超音波を電気信号に変換する圧電素子と、
     前記圧電素子における当該超音波振動子の外表面側に位置する第1の面、及び当該第1の面に交差する1つの交差面の2つの面に連続して形成された第1の電極と、
     前記圧電素子における前記第1の面とは反対側の第2の面に前記第1の電極から離間して形成された第2の電極と、
     前記第1の電極のうち、前記交差面に形成された部分に導電接続される第1の配線と、
     前記第2の電極に導電接続される第2の配線とを備える
     ことを特徴とする超音波振動子。
  2.  前記第1の配線は、
     グラウンドとなるグラウンド配線であり、
     前記第2の配線は、
     前記圧電素子に前記超音波を出射させる前記電気信号を供給する信号配線である
     ことを特徴とする請求項1に記載の超音波振動子。
  3.  前記第2の電極は、
     前記第2の面において、当該第2の面の中心よりも前記交差面側に延在し、
     前記第2の配線は、
     前記第2の電極のうち、前記第2の面の中心よりも前記交差面側に延在した部分に導電接続される
     ことを特徴とする請求項1または2に記載の超音波振動子。
  4.  前記圧電素子は、
     第1の方向に沿って直線状に延在する長尺状の直方体で構成され、
     前記第1の面及び前記第2の面は、
     前記第1の方向に平行となる面であり、
     前記交差面は、
     前記第1の方向に直交する面である
     ことを特徴とする請求項1~3のいずれか一つに記載の超音波振動子。
  5.  当該超音波振動子は、
     複数の前記圧電素子が配列されたアレイ型の超音波振動子である
     ことを特徴とする請求項1~4のいずれか一つに記載の超音波振動子。
  6.  当該超音波振動子は、
     円筒を形成するように前記複数の圧電素子が規則的に配列された電子ラジアル走査方式の超音波振動子である
     ことを特徴とする請求項5に記載の超音波振動子。
  7.  前記第1の配線及び前記第2の配線の少なくとも一方は、
     フレキシブルプリント基板に設けられた導電層である
     ことを特徴とする請求項1~6のいずれか一つに記載の超音波振動子。
  8.  前記フレキシブルプリント基板は、
     絶縁性の基板と、
     前記基板に対して互いに電気的に絶縁された状態でそれぞれ設けられ、前記第1の配線及び前記第2の配線としてそれぞれ構成される2つの前記導電層とを備える
     ことを特徴とする請求項7に記載の超音波振動子。
  9.  前記2つの導電層は、
     前記基板の一方の面、及び当該一方の面とは反対側の他方の面にそれぞれ設けられ、
     前記2つの導電層の一方は、
     前記基板に対して折り曲げられた状態で、前記第1の電極または前記第2の電極に導電接続される
     ことを特徴とする請求項8に記載の超音波振動子。
  10.  前記第1の配線として構成される前記導電層には、
     当該導電層に導通し、当該導電層から膨出した膨出部が設けられ、
     前記膨出部は、
     前記第1の電極のうち前記交差面に形成された部分に当接した状態で、当該部分に導電接続される
     ことを特徴とする請求項7または8に記載の超音波振動子。
  11.  被検体内に挿入される挿入部を備え、当該挿入部の先端に超音波振動子が設けられた超音波内視鏡であって、
     前記超音波振動子は、
     請求項1~10のいずれか一つに記載の超音波振動子である
     ことを特徴とする超音波内視鏡。
  12.  前記圧電素子は、
     前記交差面が前記挿入部の基端側に向いた姿勢で配設される
     ことを特徴とする請求項11に記載の超音波内視鏡。
  13.  圧電素子を構成する圧電素子用母材における第1の面、及び当該第1の面に交差する1つの交差面の2つの面に連続して形成された第1の電極を構成する第1の薄膜のうち、前記交差面に形成された部分に第1の配線を導電接続する第1配線工程と、
     前記圧電素子用母材における前記第1の面とは反対側の第2の面に形成された第2の電極を構成する第2の薄膜に第2の配線を導電接続する第2配線工程と、
     前記第1の面側または前記第2の面側に積層部材を積層して成形用部材を作製する成形用部材作製工程と、
     前記第1配線工程、前記第2配線工程、及び前記成形用部材作製工程の後、前記積層部材の途中の深さまで前記成形用部材を裁断し、複数の前記圧電素子を成形する成形工程とを含み、
     前記第1の配線及び前記第2の配線の少なくとも一方は、
     フレキシブルプリント基板に設けられた導電層である
     ことを特徴とする超音波振動子の製造方法。
PCT/JP2017/039194 2017-10-30 2017-10-30 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法 WO2019087266A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/039194 WO2019087266A1 (ja) 2017-10-30 2017-10-30 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
CN201780085641.3A CN110381847A (zh) 2017-10-30 2017-10-30 超声波振子、超声波内窥镜以及超声波振子的制造方法
US16/529,878 US20190350555A1 (en) 2017-10-30 2019-08-02 Ultrasonic transducer, ultrasonic endoscope, and method of manufacturing ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039194 WO2019087266A1 (ja) 2017-10-30 2017-10-30 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,878 Continuation US20190350555A1 (en) 2017-10-30 2019-08-02 Ultrasonic transducer, ultrasonic endoscope, and method of manufacturing ultrasonic transducer

Publications (1)

Publication Number Publication Date
WO2019087266A1 true WO2019087266A1 (ja) 2019-05-09

Family

ID=66332944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039194 WO2019087266A1 (ja) 2017-10-30 2017-10-30 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法

Country Status (3)

Country Link
US (1) US20190350555A1 (ja)
CN (1) CN110381847A (ja)
WO (1) WO2019087266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220409174A1 (en) * 2020-03-26 2022-12-29 Fujifilm Corporation Ultrasonic endoscope

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570657B2 (ja) * 2016-01-14 2019-09-04 オリンパス株式会社 撮像装置、内視鏡および撮像装置の製造方法
KR20230004190A (ko) 2021-06-30 2023-01-06 엘지디스플레이 주식회사 진동 장치와 이를 포함하는 장치 및 운송 장치
KR20230004192A (ko) * 2021-06-30 2023-01-06 엘지디스플레이 주식회사 진동 장치 및 이를 포함하는 장치
US20240073624A1 (en) * 2022-08-31 2024-02-29 Halliburton Energy Services, Inc. Downhole transducer with a piezoelectric crystal material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207594A (ja) * 2003-04-01 2010-09-24 Olympus Corp 超音波振動子の製造方法
JP2012235925A (ja) * 2011-05-12 2012-12-06 Olympus Medical Systems Corp 超音波振動子、超音波振動子の製造方法、超音波内視鏡

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810009A (en) * 1994-09-27 1998-09-22 Kabushiki Kaisha Toshiba Ultrasonic probe, ultrasonic probe device having the ultrasonic probe, and method of manufacturing the ultrasonic probe
JP4484044B2 (ja) * 2004-07-29 2010-06-16 富士フイルム株式会社 超音波内視鏡
US7913561B2 (en) * 2008-02-05 2011-03-29 Olympus Medical Systems Corp. Ultrasonic wave vibrating apparatus
JP5055641B2 (ja) * 2008-06-02 2012-10-24 セイコーインスツル株式会社 情報記録再生装置
JP2009297118A (ja) * 2008-06-11 2009-12-24 Fujinon Corp 超音波トランスデューサ及び超音波探触子
JP2013545556A (ja) * 2010-12-03 2013-12-26 リサーチ・トライアングル・インスティチュート 超音波デバイスおよび関連するケーブル組立体
CN103828395B (zh) * 2011-09-30 2017-05-17 株式会社村田制作所 超声波传感器
KR101370387B1 (ko) * 2012-07-05 2014-03-17 (주) 래트론 초음파 발생용 압전 소자
JP6229431B2 (ja) * 2013-10-28 2017-11-15 セイコーエプソン株式会社 超音波デバイス、超音波プローブヘッド、超音波プローブ、電子機器および超音波画像装置
JP6064098B1 (ja) * 2015-04-30 2017-01-18 オリンパス株式会社 超音波振動子および超音波プローブ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207594A (ja) * 2003-04-01 2010-09-24 Olympus Corp 超音波振動子の製造方法
JP2012235925A (ja) * 2011-05-12 2012-12-06 Olympus Medical Systems Corp 超音波振動子、超音波振動子の製造方法、超音波内視鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220409174A1 (en) * 2020-03-26 2022-12-29 Fujifilm Corporation Ultrasonic endoscope

Also Published As

Publication number Publication date
CN110381847A (zh) 2019-10-25
US20190350555A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019087266A1 (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
JP6141551B2 (ja) 超音波振動子、超音波プローブおよび超音波振動子の製造方法
CN103300883B (zh) 超声波探头及超声波探头的制造方法
JP5705386B1 (ja) 超音波振動子及び超音波振動子の製造方法
JP6588630B2 (ja) 超音波振動子ユニット
US20170303893A1 (en) Ultrasound probe and method for manufacturing the same
WO2006040962A1 (ja) 超音波振動子およびその製造方法
JP6571870B2 (ja) 超音波内視鏡
JP6157795B2 (ja) 超音波振動子および超音波プローブ
US20190110773A1 (en) Ultrasound endoscope and methods of manufacture thereof
WO2018003232A1 (ja) 超音波内視鏡、及びその製造方法
JP6596159B2 (ja) 超音波内視鏡
JP7085636B2 (ja) 超音波プローブ及び超音波内視鏡
US11369344B2 (en) Ultrasound transducer and ultrasound endoscope
JP2018064744A (ja) 超音波振動子、超音波内視鏡、及び超音波振動子の製造方法
JP2006212077A (ja) 電子ラジアル型超音波プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP