JP2017147406A - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP2017147406A
JP2017147406A JP2016030105A JP2016030105A JP2017147406A JP 2017147406 A JP2017147406 A JP 2017147406A JP 2016030105 A JP2016030105 A JP 2016030105A JP 2016030105 A JP2016030105 A JP 2016030105A JP 2017147406 A JP2017147406 A JP 2017147406A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
adhesive layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016030105A
Other languages
Japanese (ja)
Inventor
彰一 新関
Shoichi Niizeki
彰一 新関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2016030105A priority Critical patent/JP2017147406A/en
Publication of JP2017147406A publication Critical patent/JP2017147406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48237Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a light emitting device having a semiconductor light emitting element.SOLUTION: A light emitting device 10 includes: a light emitting element 20 which emits ultraviolet light; and a housing 12 which houses the light emitting element 20 therein. The housing 12 has: a substrate 30 having a mounting area C1 on which the light emitting element 20 is mounted; a cover 40 in which at least part thereof is formed by a window member 42 which transmits the ultraviolet light; and an adhesion layer 50 which adheres the substrate 30 and the cover 40 to each other at the outer side of the mounting area C1. The adhesion layer 50 contains a resin material and light shielding particles having ultraviolet light transmissivity lower than that of the resin material. A portion of the cover 40 is, which contacts with the adhesion layer, is formed by a light shielding material having ultraviolet light transmissivity lower than that of the resin material.SELECTED DRAWING: Figure 1

Description

本発明は、発光装置に関し、特に、半導体発光素子を有する発光装置に関する。   The present invention relates to a light emitting device, and more particularly to a light emitting device having a semiconductor light emitting element.

近年、青色光を出力する発光ダイオードやレーザダイオード等の半導体発光素子が実用化されており、さらに波長の短い深紫外光を出力する発光素子の開発が進められている。深紫外光は高い殺菌能力を有することから、深紫外光の出力が可能な半導体発光素子は、医療や食品加工の現場における水銀フリーの殺菌用光源として注目されている。また、出力波長を問わず、より発光強度の高い半導体発光素子の開発が進められている。   In recent years, semiconductor light-emitting elements such as light-emitting diodes and laser diodes that output blue light have been put into practical use, and development of light-emitting elements that output deep ultraviolet light having a shorter wavelength is being promoted. Since deep ultraviolet light has a high sterilizing ability, semiconductor light-emitting elements capable of outputting deep ultraviolet light have attracted attention as mercury-free light sources for sterilization in medical and food processing sites. In addition, development of semiconductor light emitting devices with higher emission intensity is underway regardless of the output wavelength.

半導体発光素子は、外部環境から素子を保護するためのパッケージ内に収容される。例えば、半導体発光素子を配置する支持基板と、その支持基板に配置される被覆部材とを接着することで、支持基板と被覆部材とからなる中空部に半導体発光素子が収納される構造が挙げられる。被覆部材を支持基板に接着する接着剤として、金属材料、樹脂材料、ガラス材料などが用いられる(例えば、特許文献1参照)。   The semiconductor light emitting device is accommodated in a package for protecting the device from the external environment. For example, there is a structure in which a semiconductor light emitting element is accommodated in a hollow portion formed of a support substrate and a covering member by bonding a supporting substrate on which the semiconductor light emitting element is disposed and a covering member disposed on the supporting substrate. . As an adhesive for adhering the covering member to the support substrate, a metal material, a resin material, a glass material, or the like is used (for example, see Patent Document 1).

特開2006−93372号公報JP 2006-93372 A

紫外光や深紫外光といった波長のより短い光を出力する発光素子の場合、出力光のエネルギーが高いため、接着剤として樹脂材料を用いると発光素子が発する光によって樹脂が光分解を起こして劣化するという懸念がある。金属材料やガラス材料を接着剤として用いれば、紫外光による劣化の懸念が少ないが、樹脂を硬化させる場合と比べて比較的高い温度での処理が必要となり、高温処理による発光素子への影響が懸念される。   In the case of a light-emitting element that outputs light having a shorter wavelength, such as ultraviolet light or deep ultraviolet light, the energy of the output light is high. Therefore, if a resin material is used as an adhesive, the resin causes photodegradation due to the light emitted from the light-emitting element. There is concern to do. If a metal material or glass material is used as an adhesive, there is less concern about deterioration due to ultraviolet light, but processing at a relatively high temperature is required compared to the case of curing the resin, and the effect of high temperature processing on the light-emitting element is affected. Concerned.

本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、半導体発光素子を有する発光装置の信頼性を高める技術を提供することにある。   The present invention has been made in view of these problems, and one of exemplary purposes thereof is to provide a technique for improving the reliability of a light emitting device having a semiconductor light emitting element.

上記課題を解決するために、本発明のある態様の発光装置は、紫外光を発する発光素子と、発光素子を内部に収容する筐体とを備える。筐体は、発光素子が実装される実装領域を有する基板と、少なくとも一部が紫外光を透過する窓部材で構成されるカバーと、実装領域の外側において基板とカバーを接着する接着層とを有する。接着層は、樹脂材料と、樹脂材料よりも紫外光の透過率の低い遮光粒子とを含む。カバーは、接着層と接する部分が樹脂材料よりも紫外光の透過率の低い遮光性材料で形成される。   In order to solve the above problems, a light-emitting device according to an aspect of the present invention includes a light-emitting element that emits ultraviolet light, and a housing that houses the light-emitting element. The housing includes a substrate having a mounting area on which the light emitting element is mounted, a cover formed of a window member that at least partially transmits ultraviolet light, and an adhesive layer that bonds the substrate and the cover outside the mounting area. Have. The adhesive layer includes a resin material and light shielding particles having a lower ultraviolet light transmittance than the resin material. The cover is formed of a light-shielding material whose portion in contact with the adhesive layer has a lower ultraviolet light transmittance than the resin material.

この態様によると、筐体内に発光素子を封止するために樹脂材料の接着剤を用いるため、金属やガラスで接着する場合と比べて低い温度で部材間を接着できる。また、接着層に遮光粒子が含まれるため、発光素子からの紫外光により接着層を構成する樹脂材料が全体にわたって劣化する影響を軽減できる。さらに、カバーのうち接着層と接する部分が遮光性材料で形成されるため、発光装置の照射対象から反射されて接着層に向かう紫外光を遮光性材料で遮ることができ、反射紫外光に起因する樹脂材料の劣化を抑制できる。   According to this aspect, since the adhesive of the resin material is used to seal the light emitting element in the housing, the members can be bonded at a lower temperature compared to the case of bonding with metal or glass. Moreover, since the light shielding particles are included in the adhesive layer, it is possible to reduce the influence that the resin material constituting the adhesive layer is deteriorated over the entire surface by the ultraviolet light from the light emitting element. Furthermore, since the portion of the cover that contacts the adhesive layer is formed of a light-shielding material, the ultraviolet light that is reflected from the irradiation target of the light-emitting device and travels toward the adhesive layer can be blocked by the light-shielding material. It is possible to suppress the deterioration of the resin material to be performed.

発光素子は、波長350nm以下の深紫外光を出力する半導体発光素子であってもよい。   The light emitting element may be a semiconductor light emitting element that outputs deep ultraviolet light having a wavelength of 350 nm or less.

遮光粒子は、金属粒子、無機粒子または金属材料もしくは無機材料をシェル材とするコアシェル粒子であってもよい。   The light shielding particles may be metal particles, inorganic particles, or core-shell particles having a metal material or an inorganic material as a shell material.

遮光粒子は、紫外光の吸収による光触媒作用の低い材料で構成されてもよい。   The light shielding particles may be made of a material having a low photocatalytic action due to absorption of ultraviolet light.

接着層は、遮光粒子の含有率が20体積%以上、70体積%以下であってもよい。   The adhesive layer may have a light shielding particle content of 20% by volume to 70% by volume.

遮光性材料は、金属、金属酸化物または金属窒化物であってもよい。   The light shielding material may be a metal, a metal oxide, or a metal nitride.

カバーは、窓部材と、窓部材の外周に設けられる枠体とを有してもよい。枠体は、遮光性材料で形成され、接着層と接する部分を有してもよい。   The cover may include a window member and a frame provided on the outer periphery of the window member. The frame may be formed of a light shielding material and have a portion in contact with the adhesive layer.

本発明の別の態様もまた、発光装置である。この装置は、紫外光を発する発光素子と、発光素子を内部に収容する筐体とを備える。筐体は、発光素子が実装される実装領域を有する基板と、少なくとも一部が紫外光を透過する窓部材で構成されるカバーと、実装領域の外側において基板とカバーを接着する接着層とを有する。接着層は、樹脂材料と、樹脂材料よりも紫外光の透過率の低い遮光粒子とを含み、遮光粒子が接着層の全体に分散されている。   Another embodiment of the present invention is also a light emitting device. This apparatus includes a light emitting element that emits ultraviolet light and a housing that houses the light emitting element. The housing includes a substrate having a mounting area on which the light emitting element is mounted, a cover formed of a window member that at least partially transmits ultraviolet light, and an adhesive layer that bonds the substrate and the cover outside the mounting area. Have. The adhesive layer includes a resin material and light shielding particles having a lower ultraviolet light transmittance than the resin material, and the light shielding particles are dispersed throughout the adhesive layer.

この態様においても、筐体内に発光素子を封止するために樹脂材料の接着剤を用いるため、金属やガラスで接着する場合と比べて低い温度で部材間を接着できる。また、接着層の樹脂材料中に遮光粒子が分散されているため、発光素子からの紫外光により接着層を構成する樹脂材料が全体にわたって劣化する影響を軽減できる。   Also in this aspect, since the adhesive of the resin material is used to seal the light emitting element in the housing, the members can be bonded at a lower temperature than when bonding with metal or glass. Further, since the light shielding particles are dispersed in the resin material of the adhesive layer, it is possible to reduce the influence that the resin material constituting the adhesive layer is deteriorated throughout by the ultraviolet light from the light emitting element.

本発明によれば、半導体発光素子を有する発光装置の信頼性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the reliability of the light-emitting device which has a semiconductor light-emitting element can be improved.

第1の実施の形態に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on 1st Embodiment. 図1の発光装置の上面図である。It is a top view of the light-emitting device of FIG. 接着層の構成を概略的に示す断面図である。It is sectional drawing which shows the structure of an contact bonding layer roughly. 発光装置が奏する効果を概略的に示す図である。It is a figure which shows schematically the effect which a light-emitting device show | plays. 変形例に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on a modification. 変形例に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on a modification. 第2の実施の形態に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on 2nd Embodiment. 変形例に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on a modification. 変形例に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on a modification. 変形例に係る発光装置を概略的に示す断面図である。It is sectional drawing which shows schematically the light-emitting device which concerns on a modification.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、説明の理解を助けるため、各図面における各構成要素の寸法比は、必ずしも実際の発光素子の寸法比と一致しない。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. In order to facilitate understanding of the description, the dimensional ratio of each component in each drawing does not necessarily match the dimensional ratio of an actual light emitting element.

(第1の実施の形態)
図1は、第1の実施の形態に係る発光装置10を概略的に示す断面図であり、図2は、図1の発光装置10の上面図である。発光装置10は、筐体12と、発光素子20とを備える。発光素子20は、筐体12の内部に収容され、紫外光を発する。筐体12は、発光素子20が実装される基板30と、紫外光を透過する窓部材42を含むカバー40と、基板30とカバー40の間を接着する接着層50とを有する。
(First embodiment)
FIG. 1 is a cross-sectional view schematically showing a light emitting device 10 according to the first embodiment, and FIG. 2 is a top view of the light emitting device 10 of FIG. The light emitting device 10 includes a housing 12 and a light emitting element 20. The light emitting element 20 is accommodated in the housing 12 and emits ultraviolet light. The housing 12 includes a substrate 30 on which the light emitting element 20 is mounted, a cover 40 including a window member 42 that transmits ultraviolet light, and an adhesive layer 50 that bonds between the substrate 30 and the cover 40.

発光素子20は、中心波長λが約355nm以下となる「深紫外光」を発するように構成されるLED(Light Emitting Diode)チップである。このような波長の深紫外光を出力するため、発光素子20は、バンドギャップが約3.4eV以上となる窒化アルミニウムガリウム(AlGaN)系半導体材料で構成される。本実施の形態では、特に、中心波長λが約240nm〜350nmの深紫外光を発する場合について示す。   The light emitting element 20 is an LED (Light Emitting Diode) chip configured to emit “deep ultraviolet light” having a center wavelength λ of about 355 nm or less. In order to output deep ultraviolet light having such a wavelength, the light emitting element 20 is made of an aluminum gallium nitride (AlGaN) based semiconductor material having a band gap of about 3.4 eV or more. In the present embodiment, particularly, a case where deep ultraviolet light having a center wavelength λ of about 240 nm to 350 nm is emitted is shown.

発光素子20は、半導体積層構造22と、光出射面24と、第1素子電極26と、第2素子電極27とを有する。   The light emitting element 20 includes a semiconductor multilayer structure 22, a light emitting surface 24, a first element electrode 26, and a second element electrode 27.

半導体積層構造22は、光出射面24となる基板上に積層されるテンプレート層、n型クラッド層、活性層、p型クラッド層などを含む。発光素子20が深紫外光を出力するように構成される場合、光出射面24となる基板としてサファイア(Al)基板が用いられ、半導体積層構造22のテンプレート層として窒化アルミニウム(AlN)層が用いられる。また、半導体積層構造22のクラッド層や活性層はAlGaN系半導体材料で構成される。 The semiconductor multilayer structure 22 includes a template layer, an n-type cladding layer, an active layer, a p-type cladding layer, and the like that are stacked on a substrate that becomes the light emitting surface 24. When the light emitting element 20 is configured to output deep ultraviolet light, a sapphire (Al 2 O 3 ) substrate is used as a substrate that becomes the light emitting surface 24, and aluminum nitride (AlN) is used as a template layer of the semiconductor multilayer structure 22. Layers are used. The cladding layer and the active layer of the semiconductor multilayer structure 22 are made of an AlGaN-based semiconductor material.

第1素子電極26および第2素子電極27は、半導体積層構造22の活性層にキャリアを供給するための電極であり、それぞれがアノード電極またはカソード電極として機能する。第1素子電極26および第2素子電極27は、光出射面24と反対側に設けられる。第1素子電極26は、基板30の第1内側電極36に取り付けられ、第2素子電極27は、基板30の第2内側電極37に取り付けられる。   The first element electrode 26 and the second element electrode 27 are electrodes for supplying carriers to the active layer of the semiconductor multilayer structure 22, and each function as an anode electrode or a cathode electrode. The first element electrode 26 and the second element electrode 27 are provided on the side opposite to the light emitting surface 24. The first element electrode 26 is attached to the first inner electrode 36 of the substrate 30, and the second element electrode 27 is attached to the second inner electrode 37 of the substrate 30.

基板30は、金属材料、無機材料または樹脂材料などをベースとしたパッケージ基材である。基板30は、耐熱性、熱伝導性、耐光性、気密性の高い材料で構成されることが好ましく、金属基板または無機基板であることが好ましい。無機材料の基板30として、例えば、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、窒化ケイ素(SiN)、炭化ケイ素(SiC)、酸化ケイ素(SiO)、シリコン(Si)、水晶、サファイアなどを用いることができる。また、金属材料の基板30として、例えば、銅(Cu)、アルミニウム(Al)、鉄(Fe)またはこれらを含む合金などを用いることができる。基板30は、無機材料と金属材料を組み合わせた複合材であってもよく、いわゆるセラミック多層基板などでもよい。 The substrate 30 is a package base material based on a metal material, an inorganic material, a resin material, or the like. The substrate 30 is preferably made of a material having high heat resistance, thermal conductivity, light resistance, and airtightness, and is preferably a metal substrate or an inorganic substrate. Examples of the inorganic material substrate 30 include aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (SiN), silicon carbide (SiC), silicon oxide (SiO 2 ), silicon (Si), quartz, Sapphire or the like can be used. Further, as the metal material substrate 30, for example, copper (Cu), aluminum (Al), iron (Fe), or an alloy containing these can be used. The substrate 30 may be a composite material combining an inorganic material and a metal material, or may be a so-called ceramic multilayer substrate.

基板30の上面31には、発光素子20を収容するための凹部34が設けられる。凹部34の底面には、発光素子20を取り付けるための第1内側電極36および第2内側電極37が設けられる。基板30の下面32には、発光装置10を外部基板などに実装するための第1外側電極38および第2外側電極39とが設けられる。   A recess 34 for accommodating the light emitting element 20 is provided on the upper surface 31 of the substrate 30. A first inner electrode 36 and a second inner electrode 37 for attaching the light emitting element 20 are provided on the bottom surface of the recess 34. A first outer electrode 38 and a second outer electrode 39 for mounting the light emitting device 10 on an external substrate or the like are provided on the lower surface 32 of the substrate 30.

凹部34は、発光素子20が実装される実装領域C1に設けられる。実装領域C1は、図2に示されるように、基板30の略中央に設けられる矩形の領域である。なお、実装領域C1の形状は、矩形に限られず、円形、多角形またはこれらを組み合わせたような不規則な形状であってもよい。実装領域C1の外側は、外周領域C2である。基板30は、外周領域C2においてカバー40と接着される。   The recess 34 is provided in the mounting region C1 where the light emitting element 20 is mounted. As shown in FIG. 2, the mounting area C <b> 1 is a rectangular area provided in the approximate center of the substrate 30. The shape of the mounting area C1 is not limited to a rectangle, and may be a circle, a polygon, or an irregular shape such as a combination thereof. The outer side of the mounting area C1 is an outer peripheral area C2. The substrate 30 is bonded to the cover 40 in the outer peripheral region C2.

カバー40は、発光素子20および基板30の上を覆うように設けられる保護部材である。カバー40は、窓部材42と、遮光層48とを有する。窓部材42は、発光素子20が発する紫外光を透過する材料で構成され、例えば、ガラス、樹脂、石英、水晶、サファイアなどを用いることができる。窓部材42は、特に深紫外光の透過率が高く、耐熱性および気密性の高い材料で構成されることが好ましく、ガラスや石英で構成されることが望ましい。発光素子20が発する紫外光は、窓部材42を介して窓部材42の外面43から外部へと出力される。   The cover 40 is a protective member provided so as to cover the light emitting element 20 and the substrate 30. The cover 40 includes a window member 42 and a light shielding layer 48. The window member 42 is made of a material that transmits ultraviolet light emitted from the light emitting element 20, and for example, glass, resin, quartz, quartz, sapphire, or the like can be used. The window member 42 is preferably made of a material having particularly high deep ultraviolet light transmittance and high heat resistance and airtightness, and is preferably made of glass or quartz. The ultraviolet light emitted from the light emitting element 20 is output from the outer surface 43 of the window member 42 to the outside through the window member 42.

窓部材42の内面44の一部領域には遮光層48が設けられる。遮光層48は、接着層50と接する部分に設けられ、基板30の外周領域C2に対応した矩形枠状の領域に設けられる。遮光層48は、発光素子20が発する紫外光の透過率が低い材料で構成され、金属材料や無機材料で構成される。遮光層48は、例えば、亜鉛(Zn)、アルミニウム(Al)、イリジウム(Ir)、金(Au)、銀(Ag)、クロム(Cr)、ケイ素(Si)、コバルト(Co)、スズ(Sn)、タングステン(W)、チタン(Ti)、ニオブ(Nb)、ニッケル(Ni)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)や、これらを含む窒化物または酸化物などにより形成することができ、例えば、上述の材料からなる単一の層または複数層の積層体により形成することができる。なお、遮光層48は、紫外光の透過率が50%以下であることが好ましく、このような透過率が実現されるように材料および膜厚を定めることが望ましい。遮光層48は、例えば、蒸着やスパッタリングなどの方法により形成できる。   A light shielding layer 48 is provided in a partial region of the inner surface 44 of the window member 42. The light shielding layer 48 is provided in a portion in contact with the adhesive layer 50, and is provided in a rectangular frame region corresponding to the outer peripheral region C <b> 2 of the substrate 30. The light shielding layer 48 is made of a material having a low transmittance of ultraviolet light emitted from the light emitting element 20, and is made of a metal material or an inorganic material. The light shielding layer 48 is made of, for example, zinc (Zn), aluminum (Al), iridium (Ir), gold (Au), silver (Ag), chromium (Cr), silicon (Si), cobalt (Co), tin (Sn). ), Tungsten (W), titanium (Ti), niobium (Nb), nickel (Ni), palladium (Pd), ruthenium (Ru), rhodium (Rh), and nitrides or oxides containing them. For example, it can be formed of a single layer or a multi-layered stack of the above-described materials. The light shielding layer 48 preferably has an ultraviolet light transmittance of 50% or less, and it is desirable to determine the material and film thickness so that such a transmittance is realized. The light shielding layer 48 can be formed by a method such as vapor deposition or sputtering, for example.

接着層50は、基板30の上面31と遮光層48の間に設けられ、外周領域C2において基板30とカバー40を接着する。図3は、接着層50の構成を概略的に示す断面図である。接着層50は、樹脂材料52と、遮光粒子54とを含む。樹脂材料52は、接着層50のいわゆる基材である。接着層50に用いる樹脂材料52として、例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、フッ素樹脂などを用いることができる。   The adhesive layer 50 is provided between the upper surface 31 of the substrate 30 and the light shielding layer 48, and adheres the substrate 30 and the cover 40 in the outer peripheral region C2. FIG. 3 is a cross-sectional view schematically showing the configuration of the adhesive layer 50. The adhesive layer 50 includes a resin material 52 and light shielding particles 54. The resin material 52 is a so-called base material of the adhesive layer 50. As the resin material 52 used for the adhesive layer 50, for example, an epoxy resin, an acrylic resin, a silicone resin, a urethane resin, a polyimide resin, a polyamide resin, a polyester resin, a melamine resin, a phenol resin, a fluorine resin, or the like can be used.

遮光粒子54は、樹脂材料52よりも紫外光の透過率が低い粒子状物質であり、少なくとも粒子表面が樹脂材料52よりも紫外光透過率の低い材料で構成される。遮光粒子54は、金属粒子、無機粒子または金属材料もしくは無機材料をシェル材とするコアシェル粒子であってよい。遮光粒子54が金属粒子である場合、アルミニウム(Al)、鉄(Fe)、ニッケル(Ni)、金(Au)、銀(Ag)、銅(Cu)、チタン(Ti)、タングステン(W)、コバルト(Co)、スズ(Sn)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、またはこれらを含む合金などを用いることができる。特に、経済性に優れるアルミニウム(Al)、鉄(Fe)、ニッケル(Ni)などで構成される金属粒子が好ましい。また、遮光粒子54が無機粒子である場合、チタンブラック、フェライト、マグネタイトなどを用いることができる。遮光粒子54がコアシェル粒子である場合、コア材として任意の金属、無機、有機材料を用いることがき、シェル材として上述の金属材料または無機材料を用いることができる。遮光粒子54として材料等の異なる二種類以上の粒子を組み合わせて用いてもよい。また、遮光粒子54の形状は、図示するような球形状であってもよいし、楕円体状、板状、針状などの任意の形状のものを用いてもよいし、形状の異なる二種類以上の粒子を組み合わせてもよい。遮光粒子54の大きさは、接着層50の厚さよりも小さければよく、50nm〜20μm程度の粒径のものを用いればよい。遮光粒子54の大きさは接着層50の全体にわたって均一であってもよいし、ばらつきがあってもよい。   The light shielding particle 54 is a particulate substance having a lower ultraviolet light transmittance than the resin material 52, and at least the particle surface is made of a material having a lower ultraviolet light transmittance than the resin material 52. The light shielding particles 54 may be metal particles, inorganic particles, or core-shell particles using a metal material or an inorganic material as a shell material. When the light shielding particles 54 are metal particles, aluminum (Al), iron (Fe), nickel (Ni), gold (Au), silver (Ag), copper (Cu), titanium (Ti), tungsten (W), Cobalt (Co), tin (Sn), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), or an alloy containing these can be used. In particular, metal particles composed of aluminum (Al), iron (Fe), nickel (Ni), etc., which are excellent in economic efficiency, are preferable. When the light shielding particles 54 are inorganic particles, titanium black, ferrite, magnetite, or the like can be used. When the light-shielding particles 54 are core-shell particles, any metal, inorganic, or organic material can be used as the core material, and the above-described metal materials or inorganic materials can be used as the shell material. As the light shielding particles 54, two or more kinds of particles having different materials may be used in combination. Further, the shape of the light shielding particle 54 may be a spherical shape as shown in the figure, an arbitrary shape such as an ellipsoidal shape, a plate shape, or a needle shape, or two types having different shapes. You may combine the above particle | grains. The size of the light-shielding particles 54 may be smaller than the thickness of the adhesive layer 50, and a particle size of about 50 nm to 20 μm may be used. The size of the light shielding particles 54 may be uniform over the entire adhesive layer 50 or may vary.

遮光粒子54は、少なくとも粒子表面が光触媒作用の低い材料で構成されることが好ましく、二酸化チタン(TiO)や酸化亜鉛(ZnO)といった光触媒作用の高い物質を避けることが望ましい。遮光粒子54として光触媒作用を有する物質を樹脂材料52に含有させると、発光素子20からの紫外光の吸収に起因する光触媒作用によって樹脂材料52が劣化しやすくなるおそれがあるためである。光触媒作用の低い材料として、上述の金属材料や無機材料を用いることができる。 The light shielding particles 54 are preferably made of a material having a low photocatalytic activity at least on the particle surface, and it is desirable to avoid substances having a high photocatalytic activity such as titanium dioxide (TiO 2 ) and zinc oxide (ZnO). This is because if the resin material 52 contains a substance having a photocatalytic action as the light-shielding particles 54, the resin material 52 may be easily deteriorated due to the photocatalytic action caused by absorption of ultraviolet light from the light emitting element 20. As the material having a low photocatalytic action, the above-described metal materials and inorganic materials can be used.

遮光粒子54は、接着層50に入射する紫外光を減衰させて樹脂材料52の劣化を好適に軽減できる程度の割合で接着層50に含まれることが好ましい。具体的には、遮光粒子54の含有率を20体積%以上とすればよく、好ましくは30体積%以上とすればよい。遮光粒子54は、樹脂材料52に起因する接着力が確保できる程度の割合で接着層50に含まれることが好ましい。具体的には、遮光粒子54の含有率を70体積%以下とすればよく、好ましくは60体積%以下とすればよい。なお遮光粒子54は、接着層50の全体に含まれることが好ましく、全体にわたってほぼ均一に分散されることが望ましい。   The light shielding particles 54 are preferably included in the adhesive layer 50 at such a ratio that the ultraviolet light incident on the adhesive layer 50 can be attenuated to suitably reduce the deterioration of the resin material 52. Specifically, the content of the light shielding particles 54 may be 20% by volume or more, and preferably 30% by volume or more. It is preferable that the light shielding particles 54 are included in the adhesive layer 50 in such a ratio that the adhesive force due to the resin material 52 can be secured. Specifically, the content of the light shielding particles 54 may be 70% by volume or less, and preferably 60% by volume or less. The light-shielding particles 54 are preferably included in the entire adhesive layer 50, and are desirably dispersed substantially uniformly throughout.

つづいて、発光装置10の製造方法について説明する。まず、基板30の実装領域C1に発光素子20を実装し、基板30の外周領域C2に上述の樹脂材料52と遮光粒子54を適切な割合で混合させた接着剤を塗布する。次に、基板30の上にカバー40を接着させて接着剤を硬化させる。接着剤の硬化には、熱融着、熱硬化、光硬化、溶媒乾燥などの方法を用いることができる。このとき、発光素子20の耐熱温度よりも低い温度で接着剤を硬化させることにより、発光素子20の信頼性を高めることができる。   Next, a method for manufacturing the light emitting device 10 will be described. First, the light emitting element 20 is mounted on the mounting region C1 of the substrate 30, and an adhesive obtained by mixing the resin material 52 and the light shielding particles 54 at an appropriate ratio is applied to the outer peripheral region C2 of the substrate 30. Next, the cover 40 is bonded onto the substrate 30 to cure the adhesive. For the curing of the adhesive, methods such as thermal fusion, thermal curing, photocuring, and solvent drying can be used. At this time, the reliability of the light emitting element 20 can be improved by curing the adhesive at a temperature lower than the heat resistant temperature of the light emitting element 20.

図4は、発光装置10が奏する効果を概略的に示す図であり、照射対象物Sに向けて紫外光を照射する様子を示す。図示されるように、発光素子20が発する紫外光の多くは、窓部材42を透過して筐体12の外部に出力され、対向する照射対象物Sに照射される。一方で、発光素子20が発する紫外光の一部L1は、基板30とカバー40を接着する接着層50に向かう。接着層50を構成する樹脂材料52は、一般に紫外光に弱く、波長350nm以下のエネルギーの高い深紫外光を受けると、樹脂分子の結合が切断されて劣化しうる。しかしながら、接着層50には紫外光透過率の低い遮光粒子54が含まれるため、筐体12の内側から外側へ向けて接着層50を透過しようとする紫外光の強度を遮光粒子54により減衰させることができる。これにより、比較的強度の高い紫外光が照射される範囲を筐体12の内部空間に露出する局所的な領域Rに限定することができる。したがって、本実施の形態に係る接着層50によれば、発光素子20からの紫外光が直接照射されて樹脂材料52が劣化する範囲を限定し、接着層50が全体にわたって劣化し、接着層50の接着性または封止性が損なわれてしまうことを防ぐことができる。これにより、耐光性の低い安価な樹脂材料を用いる場合であっても、発光装置10の信頼性を高めることができる。   FIG. 4 is a diagram schematically showing the effect produced by the light emitting device 10 and shows a state in which the irradiation object S is irradiated with ultraviolet light. As shown in the drawing, most of the ultraviolet light emitted from the light emitting element 20 passes through the window member 42 and is output to the outside of the housing 12, and is irradiated to the opposite irradiation object S. On the other hand, a part L1 of the ultraviolet light emitted from the light emitting element 20 goes to the adhesive layer 50 that bonds the substrate 30 and the cover 40 together. The resin material 52 constituting the adhesive layer 50 is generally weak against ultraviolet light, and when it receives deep ultraviolet light having a high energy with a wavelength of 350 nm or less, the bond between resin molecules may be broken and deteriorated. However, since the adhesive layer 50 includes the light-shielding particles 54 having a low ultraviolet light transmittance, the light-shielding particles 54 attenuate the intensity of the ultraviolet light that attempts to pass through the adhesive layer 50 from the inside to the outside of the housing 12. be able to. Thereby, the range irradiated with ultraviolet light having relatively high intensity can be limited to the local region R exposed to the internal space of the housing 12. Therefore, according to the adhesive layer 50 according to the present embodiment, the range in which the resin material 52 is deteriorated by being directly irradiated with the ultraviolet light from the light emitting element 20 is limited, and the adhesive layer 50 is deteriorated over the entire area. It is possible to prevent the adhesiveness or sealing property of the resin from being impaired. Thereby, even if it is a case where the cheap resin material with low light resistance is used, the reliability of the light-emitting device 10 can be improved.

また、発光素子20が発する紫外光の一部L2は、照射対象物Sにより反射されて窓部材42を再度透過して接着層50に向かう。例えば、照射対象物Sに高強度の紫外光を照射するために発光装置10を照射対象物Sに接近させて配置する場合、照射対象物Sからの反射光L2の強度も大きくなる。そうすると、反射光L2による接着層50の劣化が懸念される。しかしながら、本実施の形態によれば、窓部材42と接着層50の間に遮光層48が設けられるため、接着層50に向かう反射光L2を遮光層48により遮蔽し、反射光L2に起因する樹脂材料52の劣化を防ぐことができる。これにより、発光装置10の信頼性をより高めることができる。   Further, part of the ultraviolet light L <b> 2 emitted from the light emitting element 20 is reflected by the irradiation object S, passes through the window member 42 again, and travels toward the adhesive layer 50. For example, when the light emitting device 10 is disposed close to the irradiation object S in order to irradiate the irradiation object S with high-intensity ultraviolet light, the intensity of the reflected light L2 from the irradiation object S also increases. Then, there is a concern about the deterioration of the adhesive layer 50 due to the reflected light L2. However, according to the present embodiment, since the light shielding layer 48 is provided between the window member 42 and the adhesive layer 50, the reflected light L2 toward the adhesive layer 50 is shielded by the light shielding layer 48, resulting from the reflected light L2. The deterioration of the resin material 52 can be prevented. Thereby, the reliability of the light-emitting device 10 can be further improved.

以下、実施例に基づいて本実施の形態を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this Embodiment is described based on an Example, this Embodiment is not limited at all by these Examples.

[実施例1]
接着層50として、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル(Ni)粒子を混合させた熱硬化性の接着剤を用いた。発光素子20として、中心波長λ=300nmの紫外光を発するLEDチップを用いた。遮光層48として、厚さt=1μmのアルミニウム膜を形成した。作成した発光装置10を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 1]
As the adhesive layer 50, a thermosetting property in which about 70% by volume (25% by weight) of epoxy resin and about 30% by volume (75% by weight) of nickel (Ni) particles having a 50% average particle diameter of 10 μm are mixed. The adhesive was used. As the light emitting element 20, an LED chip that emits ultraviolet light having a center wavelength λ = 300 nm was used. An aluminum film having a thickness t = 1 μm was formed as the light shielding layer 48. The produced light emitting device 10 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

つづいて、上記実施例に対する比較例について説明する。   Next, a comparative example for the above embodiment will be described.

[比較例1]
接着層として、遮光粒子を含まないエポキシ樹脂の接着剤を用いた。発光素子として、実施例1と同様に、中心波長λ=300nmの紫外光を発するLEDチップを用いた。なお、遮光層は設けず、後述する図7に示す実施の形態と同様に、基板と窓部材の間に接着剤を設けた。作成した発光装置を20mWの出力で500時間の紫外光照射実験を行った結果、接着層にクラックが発生してカバーの剥離が確認された。
[Comparative Example 1]
As the adhesive layer, an epoxy resin adhesive containing no light shielding particles was used. As the light emitting element, an LED chip that emits ultraviolet light having a center wavelength λ = 300 nm was used in the same manner as in Example 1. In addition, the light shielding layer was not provided, and an adhesive was provided between the substrate and the window member as in the embodiment shown in FIG. 7 described later. As a result of conducting an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW on the produced light emitting device, cracks occurred in the adhesive layer, and peeling of the cover was confirmed.

[比較例2]
接着層として、遮光粒子を含まないシリコーン樹脂の接着剤を用いた点を除いて、上述の比較例1と同様に発光装置を形成して紫外光照射実験を行った。照射実験の結果、接着層にクラックが発生してカバーの剥離が確認された。
[Comparative Example 2]
A light emitting device was formed in the same manner as in Comparative Example 1 except that a silicone resin adhesive containing no light shielding particles was used as the adhesive layer, and an ultraviolet light irradiation experiment was performed. As a result of the irradiation experiment, cracks occurred in the adhesive layer, and peeling of the cover was confirmed.

[比較例3]
接着層として、遮光粒子を含まないシアノアクリレート樹脂の接着剤を用いた点を除いて、上述の比較例1と同様に発光装置を形成して紫外光照射実験を行った。照射実験の結果、接着層にクラックが発生してカバーの剥離が確認された。
[Comparative Example 3]
A light emitting device was formed in the same manner as in Comparative Example 1 except that a cyanoacrylate resin adhesive containing no light shielding particles was used as the adhesive layer, and an ultraviolet light irradiation experiment was performed. As a result of the irradiation experiment, cracks occurred in the adhesive layer, and peeling of the cover was confirmed.

(変形例1)
図5は、変形例1に係る発光装置110を概略的に示す断面図である。本変形例に係る発光装置110は、窓部材142の外周に遮光枠148が取り付けられている点で上述の実施の形態と相違する。以下、発光装置110について相違点を中心に説明する。
(Modification 1)
FIG. 5 is a cross-sectional view schematically showing a light emitting device 110 according to the first modification. The light emitting device 110 according to this modification is different from the above embodiment in that a light shielding frame 148 is attached to the outer periphery of the window member 142. Hereinafter, the light emitting device 110 will be described focusing on the differences.

発光装置110は、筐体112と、発光素子20とを備える。筐体112は、基板130と、カバー140と、接着層50とを有する。発光素子20および接着層50は、上述の実施の形態と同様に構成される。   The light emitting device 110 includes a housing 112 and the light emitting element 20. The housing 112 includes a substrate 130, a cover 140, and an adhesive layer 50. The light emitting element 20 and the adhesive layer 50 are configured in the same manner as in the above-described embodiment.

基板130は、上述の実施の形態と同様に、第1内側電極136、第2内側電極137、第1外側電極138、第2外側電極139を有する。また基板130は、発光素子20を収容するための凹部134を有する。基板130は、上述の実施の形態と比べて下面132から上面131までの厚みが小さく、凹部134が浅い。その結果、発光素子20は、光出射面24が上面131の上側にはみ出るように基板130に実装される。本変形例では、凹部134を浅くすることで、発光素子20を実装領域C1に配置する作業が簡便化されるようにしている。   The substrate 130 includes a first inner electrode 136, a second inner electrode 137, a first outer electrode 138, and a second outer electrode 139, as in the above embodiment. Further, the substrate 130 has a recess 134 for accommodating the light emitting element 20. The substrate 130 has a small thickness from the lower surface 132 to the upper surface 131 and a shallow concave portion 134 as compared to the above-described embodiment. As a result, the light emitting element 20 is mounted on the substrate 130 such that the light emitting surface 24 protrudes above the upper surface 131. In this modification, the operation of disposing the light emitting element 20 in the mounting region C1 is simplified by making the recess 134 shallow.

カバー140は、窓部材142と、遮光枠148を有する。窓部材142は、基板130の実装領域C1に対応する大きさを有する。遮光枠148は、窓部材142の側面145の外周に取り付けられ、基板130の外周領域C2に対応した矩形の枠形状を有する。いいかえれば、遮光枠148の内側の開口に窓部材142が嵌め込まれている。遮光枠148は、窓部材142よりも厚さがあり、窓部材142の内面144よりも下方に突出している。これにより、カバー140は、発光素子20を収容するための凹部146を形成している。   The cover 140 includes a window member 142 and a light shielding frame 148. The window member 142 has a size corresponding to the mounting area C <b> 1 of the substrate 130. The light shielding frame 148 is attached to the outer periphery of the side surface 145 of the window member 142 and has a rectangular frame shape corresponding to the outer peripheral region C <b> 2 of the substrate 130. In other words, the window member 142 is fitted into the opening inside the light shielding frame 148. The light shielding frame 148 is thicker than the window member 142 and protrudes downward from the inner surface 144 of the window member 142. Thereby, the cover 140 forms a recess 146 for accommodating the light emitting element 20.

遮光枠148は、上述の実施の形態に係る遮光層48と同様に紫外光の透過率が低い材料で構成されることが好ましく、また、窓部材142を機械的に支持することのできる強度を有する材料で構成されることが好ましい。遮光枠148は、例えば、鉄(Fe)、アルミニウム(Al)、銅(Cu)、ステンレス、コバールなどの金属材料や、酸化アルミニウム(Al)、窒化アルミニウム(AlN)などの無機材料で構成することができる。窓部材142として石英やガラスを用いる場合には、これらの材料と熱膨張率の近いコバールにて遮光枠148を形成することが好ましい。この場合、例えば、熱融着により窓部材142を遮光枠148に取り付けることができる。なお、遮光枠148をガラス材料で形成し、少なくとも接着層50と接する表面を金属材料や無機材料で被覆することにより、遮光枠148が機械的強度と遮光性を兼ね備えるようにしてもよい。 The light shielding frame 148 is preferably made of a material having a low ultraviolet light transmittance as in the case of the light shielding layer 48 according to the above-described embodiment, and has a strength capable of mechanically supporting the window member 142. It is preferable to be comprised with the material which has. The light shielding frame 148 is made of, for example, a metal material such as iron (Fe), aluminum (Al), copper (Cu), stainless steel, or Kovar, or an inorganic material such as aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN). Can be configured. When quartz or glass is used for the window member 142, the light shielding frame 148 is preferably formed of Kovar having a thermal expansion coefficient close to those materials. In this case, for example, the window member 142 can be attached to the light shielding frame 148 by heat sealing. Note that the light shielding frame 148 may be formed of a glass material, and at least a surface in contact with the adhesive layer 50 may be covered with a metal material or an inorganic material so that the light shielding frame 148 has both mechanical strength and light shielding properties.

接着層50は、基板130の上面131と、カバー140の遮光枠148の間を接着する。接着層50は、基板130の凹部134と、カバー140の凹部146がつながって一つの内部空間を形成するようにして基板130とカバー140を接着する。   The adhesive layer 50 adheres between the upper surface 131 of the substrate 130 and the light shielding frame 148 of the cover 140. The adhesive layer 50 bonds the substrate 130 and the cover 140 such that the concave portion 134 of the substrate 130 and the concave portion 146 of the cover 140 are connected to form one internal space.

本変形例によれば、上述の実施の形態と同様の効果を奏することができる。つまり、接着層50に入射しようとする紫外光を遮光粒子54および遮光枠148によって減衰させ又は遮光することができ、接着層50を構成する樹脂材料52の劣化を軽減させることができる。   According to this modification, the same effects as those of the above-described embodiment can be obtained. That is, the ultraviolet light that is about to enter the adhesive layer 50 can be attenuated or shielded by the light shielding particles 54 and the light shielding frame 148, and deterioration of the resin material 52 that constitutes the adhesive layer 50 can be reduced.

以下、実施例に基づいて本変形例を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this modification is demonstrated based on an Example, this Embodiment is not limited at all by these Examples.

[実施例2]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。遮光枠148として、コバールの枠体を用いた。作成した発光装置110を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 2]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. A Kovar frame was used as the light shielding frame 148. The produced light-emitting device 110 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

(変形例2)
図6は、変形例2に係る発光装置210を概略的に示す断面図である。本変形例に係る発光装置210は、窓部材242の側面245の外周に遮光枠248が取り付けられている点で上述の変形例と共通する。一方、基板230が平板形状であり、発光素子20を収容するための凹部が基板230に設けられない点で上述の実施の形態および変形例と相違する。以下、発光装置210について相違点を中心に説明する。
(Modification 2)
FIG. 6 is a cross-sectional view schematically showing a light emitting device 210 according to the second modification. The light emitting device 210 according to this modification is common to the above-described modification in that a light shielding frame 248 is attached to the outer periphery of the side surface 245 of the window member 242. On the other hand, the substrate 230 has a flat plate shape and is different from the above-described embodiment and modification in that the substrate 230 is not provided with a recess for accommodating the light emitting element 20. Hereinafter, the light emitting device 210 will be described focusing on the differences.

発光装置210は、筐体212と、発光素子20とを備える。筐体212は、基板230と、カバー240と、接着層50とを有する。発光素子20および接着層50は、上述の実施の形態と同様に構成される。   The light emitting device 210 includes a housing 212 and the light emitting element 20. The housing 212 includes a substrate 230, a cover 240, and an adhesive layer 50. The light emitting element 20 and the adhesive layer 50 are configured in the same manner as in the above-described embodiment.

基板230は、上述の実施の形態と同様に、第1内側電極236、第2内側電極237、第1外側電極238、第2外側電極239を有する。しかしながら、基板230は、凹部がなく、平板形状である。基板230を平板形状とすることにより、発光素子20を基板230に配置しようとする際に外周領域C2の枠部が支障にならないため、発光素子20を実装領域C1に配置する作業を簡便化できる。   The substrate 230 includes a first inner electrode 236, a second inner electrode 237, a first outer electrode 238, and a second outer electrode 239, as in the above embodiment. However, the substrate 230 has no recess and has a flat plate shape. By making the substrate 230 into a flat plate shape, the frame portion of the outer peripheral area C2 does not hinder when the light emitting element 20 is to be arranged on the substrate 230, so that the work of arranging the light emitting element 20 in the mounting area C1 can be simplified. .

カバー240は、窓部材242と、遮光枠248を有する。窓部材242は、上述の変形例1と同様に実装領域C1に対応する大きさを有する。遮光枠248は、窓部材242の外周に取り付けられる。遮光枠248は、発光素子20の高さよりも大きい厚みを有し、窓部材242とともに発光素子20が収容可能な凹部246を形成している。遮光枠248は、上述の変形例1に係る遮光枠148と同様の材料で構成される。   The cover 240 has a window member 242 and a light shielding frame 248. The window member 242 has a size corresponding to the mounting region C1 as in the first modification. The light shielding frame 248 is attached to the outer periphery of the window member 242. The light shielding frame 248 has a thickness larger than the height of the light emitting element 20, and forms a recess 246 that can accommodate the light emitting element 20 together with the window member 242. The light shielding frame 248 is made of the same material as that of the light shielding frame 148 according to the first modification described above.

接着層50は、基板230の上面231と、カバー240の遮光枠248の間を接着する。接着層50は、カバー240の凹部246により発光素子20の周りが囲われるようにして、カバー240を基板230の外周領域C2に接着する。   The adhesive layer 50 adheres between the upper surface 231 of the substrate 230 and the light shielding frame 248 of the cover 240. The adhesive layer 50 adheres the cover 240 to the outer peripheral region C <b> 2 of the substrate 230 such that the periphery of the light emitting element 20 is surrounded by the recess 246 of the cover 240.

本変形例によれば、上述の実施の形態と同様の効果を奏することができる。つまり、接着層50に入射しようとする紫外光を遮光粒子54および遮光枠248によって減衰させ又は遮光することができ、接着層50を構成する樹脂材料52の劣化を軽減させることができる。   According to this modification, the same effects as those of the above-described embodiment can be obtained. That is, the ultraviolet light that is about to enter the adhesive layer 50 can be attenuated or shielded by the light shielding particles 54 and the light shielding frame 248, and deterioration of the resin material 52 constituting the adhesive layer 50 can be reduced.

以下、実施例に基づいて本変形例を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this modification is demonstrated based on an Example, this Embodiment is not limited at all by these Examples.

[実施例3]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。遮光枠248として、コバールの枠体を用いた。作成した発光装置210を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 3]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. A Kovar frame was used as the light shielding frame 248. The produced light emitting device 210 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

(第2の実施の形態)
図7は、第2の実施の形態に係る発光装置310を概略的に示す断面図である。発光装置310は、上述の第1の実施の形態に係る発光装置10と同様の構成を有するが、遮光層48が設けられていない点で第1の実施の形態と相違する。以下、発光装置310について相違点を中心に説明する。
(Second Embodiment)
FIG. 7 is a cross-sectional view schematically showing a light emitting device 310 according to the second embodiment. The light emitting device 310 has the same configuration as the light emitting device 10 according to the first embodiment described above, but is different from the first embodiment in that the light shielding layer 48 is not provided. Hereinafter, the light emitting device 310 will be described focusing on the differences.

発光装置310は、筐体312と、発光素子20とを備える。筐体312は、基板30と、カバー340と、接着層50とを有する。発光素子20、基板30および接着層50は、上述の第1の実施の形態と同様に構成される。カバー340は、窓部材342を有する。窓部材342は、上述の第1の実施の形態の窓部材42と同様に構成されるが、遮光層48が設けられていない。したがって、窓部材342の内面344は、接着層50と直接接触する。   The light emitting device 310 includes a housing 312 and the light emitting element 20. The housing 312 includes the substrate 30, the cover 340, and the adhesive layer 50. The light emitting element 20, the substrate 30, and the adhesive layer 50 are configured in the same manner as in the first embodiment described above. The cover 340 has a window member 342. The window member 342 is configured in the same manner as the window member 42 of the first embodiment described above, but the light shielding layer 48 is not provided. Therefore, the inner surface 344 of the window member 342 is in direct contact with the adhesive layer 50.

本実施の形態においても、接着層50に遮光粒子54が含まれているため、接着層50に入射する紫外光を遮光粒子54により減衰させて接着層50を構成する樹脂材料52の劣化を軽減させることができる。これにより、耐光性の低い安価な樹脂材料を用いる場合であっても、発光装置310の信頼性を高めることができる。   Also in the present embodiment, since the light shielding particles 54 are included in the adhesive layer 50, the ultraviolet light incident on the adhesive layer 50 is attenuated by the light shielding particles 54 to reduce deterioration of the resin material 52 constituting the adhesive layer 50. Can be made. Accordingly, even when an inexpensive resin material with low light resistance is used, the reliability of the light-emitting device 310 can be increased.

以下、実施例に基づいて本実施の形態を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this Embodiment is described based on an Example, this Embodiment is not limited at all by these Examples.

[実施例4]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。作成した発光装置310を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 4]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. The created light emitting device 310 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

[実施例5]
接着層50として、約50体積%(10重量%)のエポキシ樹脂と、50%平均粒径が0.2μmである約50体積%(90重量%)の銀(Ag)粒子を混合させた熱硬化性の接着剤を用いた。発光素子20として、中心波長λ=300nmの紫外光を発するLEDチップを用いた。作成した発光装置310を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 5]
As the adhesive layer 50, heat in which about 50% by volume (10% by weight) of epoxy resin and about 50% by volume (90% by weight) of silver (Ag) particles having a 50% average particle diameter of 0.2 μm are mixed. A curable adhesive was used. As the light emitting element 20, an LED chip that emits ultraviolet light having a center wavelength λ = 300 nm was used. The created light emitting device 310 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

(変形例3)
図8は、変形例3に係る発光装置410を概略的に示す断面図である。本変形例に係る発光装置410は、基板230が平板形状であり、カバー440に発光素子20を収容するための凹部446が設けられる点で上述の変形例2と共通する。一方で、遮光枠248の代わりに紫外光を透過する枠部448が設けられる点で上述の変形例2と相違する。以下、発光装置410について相違点を中心に説明する。
(Modification 3)
FIG. 8 is a cross-sectional view schematically showing a light emitting device 410 according to Modification 3. The light emitting device 410 according to this modification is common to the above-described modification 2 in that the substrate 230 has a flat plate shape and the cover 440 is provided with a recess 446 for housing the light emitting element 20. On the other hand, it differs from the above-described modification 2 in that a frame portion 448 that transmits ultraviolet light is provided instead of the light shielding frame 248. Hereinafter, the light emitting device 410 will be described focusing on the differences.

発光装置410は、筐体412と、発光素子20とを備える。筐体412は、基板230と、カバー440と、接着層50とを有する。発光素子20、基板230および接着層50は、上述の実施の形態または変形例と同様に構成される。   The light emitting device 410 includes a housing 412 and the light emitting element 20. The housing 412 includes a substrate 230, a cover 440, and an adhesive layer 50. The light emitting element 20, the substrate 230, and the adhesive layer 50 are configured in the same manner as in the above-described embodiment or modification.

カバー440は、上板部442と、枠部448を有し、発光素子20が収容される凹部446を区画する。上板部442および枠部448は、紫外光を透過する材料で構成される。上板部442および枠部448として、例えば、ガラス、樹脂、石英、水晶、サファイアなどを用いることができるが、深紫外光の透過率が高く、耐熱性および気密性の高いガラスや石英を用いることが望ましい。上板部442および枠部448は、一体的に形成されてもよいし、別々に形成したものを接合して形成されてもよい。本変形例では、カバー440全体が紫外光を透過する窓部材として機能する。接着層50は、外周領域C2において枠部448と基板230を接着する。   The cover 440 includes an upper plate portion 442 and a frame portion 448, and defines a recess 446 in which the light emitting element 20 is accommodated. The upper plate portion 442 and the frame portion 448 are made of a material that transmits ultraviolet light. As the upper plate portion 442 and the frame portion 448, for example, glass, resin, quartz, crystal, sapphire, or the like can be used. However, glass or quartz that has high transmittance of deep ultraviolet light and high heat resistance and airtightness is used. It is desirable. The upper plate portion 442 and the frame portion 448 may be integrally formed, or may be formed by joining separately formed portions. In this modification, the entire cover 440 functions as a window member that transmits ultraviolet light. The adhesive layer 50 bonds the frame portion 448 and the substrate 230 in the outer peripheral region C2.

なお、カバー440は、図示するような直方体形状でなくてもよく、角錐台形状、半球形状またはドーム形状であってもよい。   Note that the cover 440 does not have to have a rectangular parallelepiped shape as illustrated, and may have a truncated pyramid shape, a hemispherical shape, or a dome shape.

本変形例においても、接着層50に遮光粒子54が含まれているため、接着層50に入射する紫外光を遮光粒子54により減衰させて接着層50を構成する樹脂材料52の劣化を軽減させることができる。これにより、耐光性の低い安価な樹脂材料を用いる場合であっても、発光装置310の信頼性を高めることができる。カバー440全体が紫外光を透過する材料で構成されているため、発光素子20が発する紫外光を効率的に外部に出力させることができる。基板230が平板形状であるため、発光素子20を実装する作業を簡便化できる。   Also in this modified example, since the light shielding particles 54 are included in the adhesive layer 50, the ultraviolet light incident on the adhesive layer 50 is attenuated by the light shielding particles 54 to reduce deterioration of the resin material 52 constituting the adhesive layer 50. be able to. Accordingly, even when an inexpensive resin material with low light resistance is used, the reliability of the light-emitting device 310 can be increased. Since the entire cover 440 is made of a material that transmits ultraviolet light, the ultraviolet light emitted from the light emitting element 20 can be efficiently output to the outside. Since the board | substrate 230 is flat form, the operation | work which mounts the light emitting element 20 can be simplified.

以下、実施例に基づいて本変形例を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this modification is demonstrated based on an Example, this Embodiment is not limited at all by these Examples.

[実施例6]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。作成した発光装置410を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 6]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. The created light emitting device 410 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

(変形例4)
図9は、変形例4に係る発光装置510を概略的に示す断面図である。発光装置510は、筐体512が上述の第2の実施の形態に係る筐体312と同様に構成される一方、発光素子520の構成が上述の発光素子20と相違する。以下、発光装置510について、相違点を中心に説明する。
(Modification 4)
FIG. 9 is a cross-sectional view schematically showing a light emitting device 510 according to Modification 4. In the light emitting device 510, the casing 512 is configured similarly to the casing 312 according to the second embodiment described above, but the configuration of the light emitting element 520 is different from the light emitting element 20 described above. Hereinafter, the light emitting device 510 will be described focusing on the differences.

発光装置510は、筐体512と、発光素子520とを備える。筐体512は、基板530と、カバー340と、接着層50とを有する。カバー340および接着層50は、上述の実施の形態と同様に構成される。基板530の上面531には、発光素子520を収容するための凹部534が設けられる。凹部534の底面には、発光素子520を取り付けるための第1内側電極536および第2内側電極537が設けられる。基板530の下面532には、発光装置510を外部基板などに実装するための第1外側電極538および第2外側電極539が設けられる。   The light emitting device 510 includes a housing 512 and a light emitting element 520. The housing 512 includes a substrate 530, a cover 340, and an adhesive layer 50. The cover 340 and the adhesive layer 50 are configured similarly to the above-described embodiment. A recess 534 for accommodating the light emitting element 520 is provided on the upper surface 531 of the substrate 530. A first inner electrode 536 and a second inner electrode 537 for attaching the light emitting element 520 are provided on the bottom surface of the recess 534. The lower surface 532 of the substrate 530 is provided with a first outer electrode 538 and a second outer electrode 539 for mounting the light emitting device 510 on an external substrate or the like.

発光素子520は、半導体積層構造522と、光出射面524と、第1素子電極526と、第2素子電極527とを有する。半導体積層構造522は、上述の半導体積層構造22と同様に構成されてもよい。第1素子電極526は、光出射面524と反対側に設けられ、第2素子電極527は、光出射面524に設けられる。第1素子電極526は、ハンダ付け等により第1内側電極536と接続される。第2素子電極527は、ボンディングワイヤ557により第2内側電極537と接続される。   The light emitting element 520 includes a semiconductor multilayer structure 522, a light emitting surface 524, a first element electrode 526, and a second element electrode 527. The semiconductor multilayer structure 522 may be configured similarly to the semiconductor multilayer structure 22 described above. The first element electrode 526 is provided on the side opposite to the light emitting surface 524, and the second element electrode 527 is provided on the light emitting surface 524. The first element electrode 526 is connected to the first inner electrode 536 by soldering or the like. The second element electrode 527 is connected to the second inner electrode 537 by a bonding wire 557.

本変形例においても、上述の第2の実施の形態と同様の効果を奏することができる。   Also in this modification, the same effects as those of the second embodiment described above can be obtained.

以下、実施例に基づいて本変形例を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this modification is demonstrated based on an Example, this Embodiment is not limited at all by these Examples.

[実施例7]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。作成した発光装置510を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 7]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. The created light emitting device 510 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

(変形例5)
図10は、変形例5に係る発光装置610を概略的に示す断面図である。発光装置610は、発光素子620の構成が上述の変形例4と相違する。以下、発光装置610について、相違点を中心に説明する。
(Modification 5)
FIG. 10 is a cross-sectional view schematically showing a light emitting device 610 according to Modification 5. The light emitting device 610 is different from the above-described modification 4 in the configuration of the light emitting element 620. Hereinafter, the light emitting device 610 will be described focusing on the differences.

発光装置610は、筐体512と、発光素子620とを備える。筐体512は、上述の変形例4と同様に構成される。発光素子620は、半導体積層構造622と、光出射面624と、第1素子電極626と、第2素子電極627とを有する。半導体積層構造622は、上述の半導体積層構造22と同様に構成されてもよい。第1素子電極626および第2素子電極627は、光出射面624に設けられる。第1素子電極626は、ボンディングワイヤ656により第1内側電極536と接続され、第2素子電極627は、ボンディングワイヤ657により第2内側電極537と接続される。   The light emitting device 610 includes a housing 512 and a light emitting element 620. The casing 512 is configured in the same manner as in the above-described fourth modification. The light emitting element 620 includes a semiconductor multilayer structure 622, a light emitting surface 624, a first element electrode 626, and a second element electrode 627. The semiconductor multilayer structure 622 may be configured similarly to the semiconductor multilayer structure 22 described above. The first element electrode 626 and the second element electrode 627 are provided on the light emitting surface 624. The first element electrode 626 is connected to the first inner electrode 536 by a bonding wire 656, and the second element electrode 627 is connected to the second inner electrode 537 by a bonding wire 657.

本変形例においても、上述の第2の実施の形態と同様の効果を奏することができる。   Also in this modification, the same effects as those of the second embodiment described above can be obtained.

以下、実施例に基づいて本変形例を説明するが、本実施の形態はこれらの実施例により何ら限定されるものではない。   Hereinafter, although this modification is demonstrated based on an Example, this Embodiment is not limited at all by these Examples.

[実施例8]
接着層50として、上述の実施例1と同様に、約70体積%(25重量%)のエポキシ樹脂と、50%平均粒径が10μmである約30体積%(75重量%)のニッケル粒子を混合させた熱硬化性の接着剤を用いた。作成した発光装置610を20mWの出力で500時間の紫外光照射実験を行った。照射試験の結果、カバーの剥離は確認されなかった。
[Example 8]
As the adhesive layer 50, about 70 volume% (25 weight%) epoxy resin and about 30 volume% (75 weight%) nickel particles having a 50% average particle diameter of 10 μm, as in Example 1 above. A mixed thermosetting adhesive was used. The produced light-emitting device 610 was subjected to an ultraviolet light irradiation experiment for 500 hours at an output of 20 mW. As a result of the irradiation test, peeling of the cover was not confirmed.

以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。   The present invention has been described based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, and various modifications are possible, and such modifications are within the scope of the present invention. It is a place.

上述の実施の形態および変形例では、発光装置の筐体内に発光素子のみを含める場合を示した。さらなる変形例においては、付加的な機能を持たせるために発光素子以外の電子部品をパッケージ内に組み込むこととしてもよい。例えば、電気的サージから発光素子を保護するためのツェナーダイオードを筐体内に組み込むこととしてもよい。また、発光素子が出力する光の波長を変換するための蛍光体を組み込んでもよいし、発光素子が発する光の配向を制御するための光学素子を組み込んでもよい。   In the above-described embodiment and modification, the case where only the light emitting element is included in the housing of the light emitting device is shown. In a further modification, an electronic component other than the light emitting element may be incorporated in the package in order to provide an additional function. For example, a Zener diode for protecting the light emitting element from an electrical surge may be incorporated in the housing. Further, a phosphor for converting the wavelength of light output from the light emitting element may be incorporated, or an optical element for controlling the orientation of light emitted from the light emitting element may be incorporated.

C1…実装領域、10…発光装置、12…筐体、20…発光素子、30…基板、40…カバー、42…窓部材、50…接着層、52…樹脂材料、54…遮光粒子。   C1 ... mounting region, 10 ... light emitting device, 12 ... housing, 20 ... light emitting element, 30 ... substrate, 40 ... cover, 42 ... window member, 50 ... adhesive layer, 52 ... resin material, 54 ... light shielding particle.

Claims (8)

紫外光を発する発光素子と、前記発光素子を内部に収容する筐体とを備え、
前記筐体は、前記発光素子が実装される実装領域を有する基板と、少なくとも一部が前記紫外光を透過する窓部材で構成されるカバーと、前記実装領域の外側において前記基板と前記カバーを接着する接着層とを有し、
前記接着層は、樹脂材料と、前記樹脂材料よりも前記紫外光の透過率の低い遮光粒子とを含み、
前記カバーは、前記接着層と接する部分が前記樹脂材料よりも前記紫外光の透過率の低い遮光性材料で形成されることを特徴とする発光装置。
A light emitting element that emits ultraviolet light, and a housing that houses the light emitting element therein,
The housing includes a substrate having a mounting region on which the light emitting element is mounted, a cover at least partly configured by a window member that transmits the ultraviolet light, and the substrate and the cover outside the mounting region. An adhesive layer to be bonded,
The adhesive layer includes a resin material and light shielding particles having a lower transmittance of the ultraviolet light than the resin material,
The cover is formed of a light-shielding material having a portion in contact with the adhesive layer that is lower in transmittance of the ultraviolet light than the resin material.
前記発光素子は、波長350nm以下の深紫外光を出力する半導体発光素子であることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the light-emitting element is a semiconductor light-emitting element that outputs deep ultraviolet light having a wavelength of 350 nm or less. 前記遮光粒子は、金属粒子、無機粒子または金属材料もしくは無機材料をシェル材とするコアシェル粒子であることを特徴とする請求項1または2に記載の発光装置。   The light-emitting device according to claim 1, wherein the light-shielding particle is a metal particle, an inorganic particle, or a core-shell particle using a metal material or an inorganic material as a shell material. 前記遮光粒子は、前記紫外光の吸収による光触媒作用の低い材料で構成されることを特徴とする請求項1から3のいずれか一項に記載の発光装置。   The light-emitting device according to any one of claims 1 to 3, wherein the light-shielding particles are made of a material having a low photocatalytic action due to absorption of the ultraviolet light. 前記接着層は、前記遮光粒子の含有率が20体積%以上、70体積%以下であることを特徴とする請求項1から4のいずれか一項に記載の発光装置。   5. The light-emitting device according to claim 1, wherein the adhesive layer has a content of the light-shielding particles of 20% by volume or more and 70% by volume or less. 前記遮光性材料は、金属、金属酸化物または金属窒化物であることを特徴とする請求項1から5のいずれか一項に記載の発光装置。   The light-emitting device according to claim 1, wherein the light-shielding material is a metal, a metal oxide, or a metal nitride. 前記カバーは、前記窓部材と、前記窓部材の外周に設けられる枠体とを有し、
前記枠体は、前記遮光性材料で形成され、前記接着層と接する部分を有することを特徴とする請求項1から6のいずれか一項に記載の発光装置。
The cover has the window member and a frame provided on the outer periphery of the window member,
The light emitting device according to claim 1, wherein the frame body is formed of the light shielding material and has a portion in contact with the adhesive layer.
紫外光を発する発光素子と、前記発光素子を内部に収容する筐体とを備え、
前記筐体は、前記発光素子が実装される実装領域を有する基板と、少なくとも一部が前記紫外光を透過する窓部材で構成されるカバーと、前記実装領域の外側において前記基板と前記カバーを接着する接着層とを有し、
前記接着層は、樹脂材料と、前記樹脂材料よりも前記紫外光の透過率の低い遮光粒子とを含み、前記遮光粒子が前記接着層の全体に分散されていることを特徴とする発光装置。
A light emitting element that emits ultraviolet light, and a housing that houses the light emitting element therein,
The housing includes a substrate having a mounting region on which the light emitting element is mounted, a cover at least partly configured by a window member that transmits the ultraviolet light, and the substrate and the cover outside the mounting region. An adhesive layer to be bonded,
The light-emitting device, wherein the adhesive layer includes a resin material and light-shielding particles having a lower ultraviolet light transmittance than the resin material, and the light-shielding particles are dispersed throughout the adhesive layer.
JP2016030105A 2016-02-19 2016-02-19 Light emitting device Pending JP2017147406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016030105A JP2017147406A (en) 2016-02-19 2016-02-19 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016030105A JP2017147406A (en) 2016-02-19 2016-02-19 Light emitting device

Publications (1)

Publication Number Publication Date
JP2017147406A true JP2017147406A (en) 2017-08-24

Family

ID=59681596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016030105A Pending JP2017147406A (en) 2016-02-19 2016-02-19 Light emitting device

Country Status (1)

Country Link
JP (1) JP2017147406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039440A1 (en) * 2017-08-23 2019-02-28 日本碍子株式会社 Transparent sealing member and optical component
JP2019216178A (en) * 2018-06-12 2019-12-19 パナソニックIpマネジメント株式会社 Light-emitting device
WO2020040401A1 (en) * 2018-08-24 2020-02-27 주식회사 케이티앤지 Light-emitting element and aerosol generation device comprising same
WO2020040143A1 (en) * 2018-08-22 2020-02-27 エーディーワイ株式会社 Ultraviolet light device package
WO2020075789A1 (en) * 2018-10-10 2020-04-16 日本碍子株式会社 Transparent sealing member and optical component
CN112490340A (en) * 2020-12-10 2021-03-12 鸿利智汇集团股份有限公司 Inorganic packaging method for LED
WO2023067863A1 (en) * 2021-10-22 2023-04-27 日本電気硝子株式会社 Production method for frame with film and production method for protective cap
JP7397687B2 (en) 2020-01-22 2023-12-13 スタンレー電気株式会社 Light emitting device that emits deep ultraviolet light and water sterilization device using it

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019039440A1 (en) * 2017-08-23 2020-08-20 日本碍子株式会社 Transparent sealing member and optical component
WO2019039440A1 (en) * 2017-08-23 2019-02-28 日本碍子株式会社 Transparent sealing member and optical component
US11195980B2 (en) 2017-08-23 2021-12-07 Ngk Insulators, Ltd. Transparent sealing member and optical component
JP2019216178A (en) * 2018-06-12 2019-12-19 パナソニックIpマネジメント株式会社 Light-emitting device
JP7149563B2 (en) 2018-06-12 2022-10-07 パナソニックIpマネジメント株式会社 light emitting device
JP7356983B2 (en) 2018-08-22 2023-10-05 エーディーワイ株式会社 UV element package
WO2020040143A1 (en) * 2018-08-22 2020-02-27 エーディーワイ株式会社 Ultraviolet light device package
KR20200023060A (en) * 2018-08-24 2020-03-04 주식회사 케이티앤지 Light emitting element and Aerosol generating device including the same
CN111295768A (en) * 2018-08-24 2020-06-16 韩国烟草人参公社 Light emitting element and aerosol generating device including the same
US11304449B2 (en) 2018-08-24 2022-04-19 Kt&G Corporation Light-emitting element and aerosol generation device comprising same
KR102094402B1 (en) * 2018-08-24 2020-03-27 주식회사 케이티앤지 Light emitting element and Aerosol generating device including the same
WO2020040401A1 (en) * 2018-08-24 2020-02-27 주식회사 케이티앤지 Light-emitting element and aerosol generation device comprising same
CN111295768B (en) * 2018-08-24 2023-10-20 韩国烟草人参公社 Light emitting element and aerosol generating device comprising same
JPWO2020075789A1 (en) * 2018-10-10 2021-09-24 日本碍子株式会社 Transparent sealing member and optical parts
WO2020075789A1 (en) * 2018-10-10 2020-04-16 日本碍子株式会社 Transparent sealing member and optical component
JP7221984B2 (en) 2018-10-10 2023-02-14 日本碍子株式会社 Transparent encapsulant and optical parts
JP7397687B2 (en) 2020-01-22 2023-12-13 スタンレー電気株式会社 Light emitting device that emits deep ultraviolet light and water sterilization device using it
CN112490340A (en) * 2020-12-10 2021-03-12 鸿利智汇集团股份有限公司 Inorganic packaging method for LED
WO2023067863A1 (en) * 2021-10-22 2023-04-27 日本電気硝子株式会社 Production method for frame with film and production method for protective cap

Similar Documents

Publication Publication Date Title
JP2017147406A (en) Light emitting device
JP5877487B1 (en) Light emitting device
US8029152B2 (en) Package for light-emitting device, light-emitting apparatus, and illuminating apparatus
JP5440010B2 (en) Optical semiconductor device and manufacturing method thereof
JP6048880B2 (en) LIGHT EMITTING ELEMENT PACKAGE AND LIGHT EMITTING DEVICE USING THE SAME
TWI495164B (en) Light emitting device
JP2013232477A (en) Light-emitting module
JP2010199357A (en) Light emitting device and method for manufacturing the same
JP6702349B2 (en) Light emitting device
JP6622032B2 (en) Light emitting device
JP2012074483A (en) Light-emitting device housing package
JP2017120837A (en) Ultraviolet light-emitting device
TW201431135A (en) Ultraviolet light emitting apparatus
JP2021141140A (en) Semiconductor light-emitting element and electronic apparatus
JP6431603B2 (en) Interposer
JP6602622B2 (en) Optical device apparatus and protective cover for covering optical device
JP2010232643A (en) Optical semiconductor device and method of manufacturing the same
JP6007891B2 (en) Optical semiconductor device and manufacturing method thereof
JP2010283063A (en) Light emitting device and light emitting module
US20220029065A1 (en) Semiconductor light emitting device
JP6920602B2 (en) Light emitting device and manufacturing method of light emitting device
JP2015065244A (en) Light emitting device
JP2009111131A (en) Light emitting device
JP5402264B2 (en) Light emitting device
TWI678817B (en) Optical semiconductor device package, optical semiconductor device, and manufacturing method of optical semiconductor device package