JP2017146121A - 光学式計測器、プラズマ処理装置および燃焼装置 - Google Patents

光学式計測器、プラズマ処理装置および燃焼装置 Download PDF

Info

Publication number
JP2017146121A
JP2017146121A JP2016026173A JP2016026173A JP2017146121A JP 2017146121 A JP2017146121 A JP 2017146121A JP 2016026173 A JP2016026173 A JP 2016026173A JP 2016026173 A JP2016026173 A JP 2016026173A JP 2017146121 A JP2017146121 A JP 2017146121A
Authority
JP
Japan
Prior art keywords
measuring instrument
optical measuring
plasma
unit
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016026173A
Other languages
English (en)
Other versions
JP6210117B2 (ja
Inventor
渡部 剛
Takeshi Watabe
剛 渡部
智光 渡部
Tomomitsu Watabe
智光 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasma Denshi Co Ltd
Original Assignee
Plasma Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasma Denshi Co Ltd filed Critical Plasma Denshi Co Ltd
Priority to JP2016026173A priority Critical patent/JP6210117B2/ja
Publication of JP2017146121A publication Critical patent/JP2017146121A/ja
Application granted granted Critical
Publication of JP6210117B2 publication Critical patent/JP6210117B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Plasma Technology (AREA)

Abstract

【課題】計測対象装置の出力調整に適した光学式計測器を提供することにある。
【解決手段】計測部43が光源LSのスペクトルから計測対象の活性種に応じて、バンドヘッド11を含む第1波長帯域13と、第1波長帯域13のスペクトルよりもエネルギー依存度が大きい、回転スペクトル12の一部を含む第2波長帯域14と、における発光強度の積分値の比を基にして活性種の活性度合を計測する光学式計測器4とする。
【選択図】図3

Description

本発明は、光源のスペクトルからプラズマ状態を計測する光学式計測器に関するものである。また、本発明は、光源のスペクトルからプラズマ状態を計測する光学式計測器を備えるプラズマ処理装置および燃焼装置に関するものである。
プラズマ処理装置や燃焼装置等、さまざまな装置でプラズマが利用されている。そして、これら装置の運転や保守においてプラズマ状態の計測が行われている。
プラズマ状態といった反応領域の状態を計測・解析する機器として、特許文献1に反応解析装置が開示されている。この反応解析装置は、反応領域から発せられた光の分光測定装置による結果から第1及び第2の波長成分の強度値を取得する。そのうえで第2の波長成分に対する第1の波長成分の相対強度を計測して反応領域の状態を解析する。
また、この反応解析装置は、反応状態における異なる粒子から発せられたそれぞれの発光強度のピークを、相対強度を計測するための波長成分としており、異常な反応状態の的確な検知を課題としている。
再公表特許2008−059976号公報
このように、プラズマ状態を計測する機器が提案されているものの、プラズマが利用されている装置(以下「計測対象装置」と記載する)の出力調整において、より適したプラズマ状態の把握手段が望まれている。
本発明は、このような点に鑑み、計測対象装置の出力調整に適した光学式計測器を提供することにある。
上記課題を解決すべく、第1観点の光学式計測器は、光源のスペクトルからプラズマ状態を計測する光学式計測器であって、光源のスペクトルから計測対象の活性種に応じて、第1波長帯域と第2波長帯域とにおける発光強度の積分値の比を基にして、プラズマ状態の計測値として活性種の活性度合を計測する計測部を備える。第1波長帯域はバンドヘッドを含む波長帯域であり、第2波長帯域は、第1波長帯域におけるスペクトルよりもエネルギー依存度が大きい、回転スペクトルの一部を含む波長帯域である。
また、第2観点の光学式計測器は、第1観点の光学式計測器であって、前記計測部が活性度合を経時的に連続して計測を行う。
また、第3観点の光学式計測器は、第2観点の光学式計測器であって、計測部が第1波長帯域および第2波長帯域を、それぞれの帯域内におけるピーク波長を基準に、経時的に連続してシフト補正を行う。
また、第4観点の光学式計測器は、第1観点〜第3観点のいずれかの光学式計測器であって、計測部が活性度に対応するガス温度のテーブルを参照して活性種のガス温度を計測する。
また、第5観点の光学式計測器は、第1観点〜第4観点のいずれかの光学式計測器であって、計測対象の活性種が窒素、水素、酸素、および炭素の原子、分子、化合物、イオン、およびラジカルの少なくともいずれかである。
また、第6観点の光学式計測器は、第1観点〜第5観点のいずれかの光学式計測器であって、計測部によって計測された計測値を出力する出力部を備える。
また、第7観点の光学式計測器は、第1観点〜第6観点のいずれかの光学式計測器であって、プラズマ発生源の周囲近傍に配置されると共に光源の発光を受光する複数の受光部を備える。また、この受光部の少なくとも一つは、ミラーを介しプラズマ発生源近傍の第1発光範囲の発光を受光し、少なくとも一つ以外の受光部は、第1発光範囲よりもプラズマ発生源から離れた第2発光範囲の発光を受光する。
また、第8観点の光学式計測器は、第1観点〜第6観点のいずれかの光学式計測器であって、プラズマ発生源の周囲近傍に配置されると共に光源の発光を受光する受光部を備える。また、この光学式計測器は、受光部に固定されて受光部の受光範囲を移動させる受光移動機構を備える。
また、第9観点のプラズマ処理装置は、第1観点〜第8観点のいずれかの光学式計測器を備える。また、このプラズマ処理装置は、光学式計測器が計測した活性種の活性度合を基にプラズマ出力を調整するプラズマ出力調整部を備える。
また、第10観点のプラズマ処理装置は、第7観点または第8観点のいずれかの光学式計測器を備える。また、このプラズマ処理装置は、プラズマ処理対象物であるワークの位置を、光学式計測器が計測した活性種の活性度合を基に調整するワーク移動機構を備える。
また、第11観点の燃焼装置は、第1観点〜第8観点のいずれかの光学式計測器を備える。また、この燃焼装置は、光学式計測器が計測した活性種の活性度合を基に燃焼出力を調整する燃焼出力調整部を備える。
第1観点の光学式計測器によれば、この光学式計測器は、計測部がバンドヘッドを含む第1波長帯域における発光強度の積分値を計測に用いている。バンドヘッド付近の第1波長帯域におけるスペクトルは、計測対象の活性種における粒子の量に大きく依存し、粒子の活性度合で大きく変動しない。この第1波長帯域におけるスペクトルは、エネルギー依存度が小さく、活性種の粒子の量を示す指標となる。
また、この光学式計測器は、計測部が回転スペクトルの一部を含む第2波長帯域における発光強度の積分値を計測に用いている。第2波長帯域は、回転スペクトルの中から選択されて、第1波長帯域のスペクトルよりもエネルギー依存度が大きい波長帯域である。この第2波長帯域におけるスペクトルは、エネルギー依存度が大きく、活性種の粒子の活性度合を示す指標となる。なお、回転スペクトルは、粒子の量にも依存する。
そして、この光学式計測器は、計測部が第1および第2波長帯域における発光強度の積分値の比を基にして活性種の活性度合を計測する。これにより、第1観点の光学式計測器は、粒子の量による変動分を補正した形で活性種の活性度合を計測することができる。
また、この光学式計測器は、単一波長における強度(いわゆる線スペクトル)ではなく、波長帯域における強度の積分値(いわゆる面スペクトル)を用いて計測している。このため、この光学式計測器は、プラズマ状態の変化や、外部環境の変化等の外乱に対応しやすい。
ここで、計測対象装置の出力調整は、活性種の粒子の量よりも仕事に寄与する反応力のある活性種の活動の状態、すなわち活性種の活性度合を基に調整すること好ましい。また、計測対象装置の出力調整は、プラズマ状態や外部環境の変化等の外乱に対応しやすいことが好ましい。したがって、第1観点によれば、計測対象装置の出力調整に適した光学式計測器を提供することができる。
第2観点の光学式計測器によれば、この光学式計測器は、計測部が連続計測を行うため、活性種の活性度合、すなわちプラズマの活性状態の連続的な変化を計測することができる。
第3観点の光学式計測器によれば、この光学式計測器は、計測部が第1波長帯域および第2波長帯域をそれぞれのピーク波長を基準に連続してシフト補正を行う。これにより、この光学式計測器は、外乱による変化に追従してプラズマの活性状態を計測することができる。
第4観点の光学式計測器によれば、この光学式計測器は、計測部が活性度に対応するガス温度のテーブルを参照して、活性種のガス温度を計測する。この光学式計測器は、このようにテーブルを参照することで高速処理をする。したがって、この光学式計測器は、リアルタイム計測に適している。
第5観点によれば、この光学式計測器は、プラズマ中の窒素、水素、酸素、および炭素の原子、分子、化合物、イオン、およびラジカルの少なくともいずれかの活性状態を計測することができる。
第6観点によれば、この光学式計測器は、出力部によって出力された計測値をモニタ確認やフィードバック制御に利用することができる。
第7観点によれば、この光学式計測器は、受光部を光源周囲に大きく張り出すことなく、プラズマ発生源の近傍の第1発光範囲および第1発光範囲より離れた第2発光範囲にわたって、プラズマ発生源からの距離に応じたプラズマの活性状態を計測することができる。
第8観点によれば、この光学式計測器は、受光部を光源周囲に大きく張り出すことなく、受光移動機構で受光範囲を移動させながら広い反応範囲にわたって、プラズマ発生源からの距離に応じたプラズマの活性状態を計測することができる。
第9観点によれば、このプラズマ処理装置は、活性種の活性度合を計測する光学式計測器を備えているため、仕事に寄与する反応力のある活性種の活性状態を基にして、適切にプラズマ出力を調整することができる。
第10観点によれば、このプラズマ処理装置は、広い範囲にわたってプラズマ発生源からの距離に応じた活性度を基にワークの位置を調整するワーク移動機構を備えているため、ワークに対して適切にプラズマ処理を行うことができる。
第11観点によれば、この燃焼装置は、活性種の活性度合を計測する光学式計測器を備えているため、仕事に寄与する反応力のある活性種の活性状態を基にして、適切に燃焼出力を調整することができる。
活性種のスペクトルを模式的に表した図である。 第1実施形態のプラズマ処理装置1の全体構成図である。 光学式計測器4のブロック図である。 光学式計測器4の受光部41の取り付け構造を説明する図である。 プラズマトーチ31からの距離と活性度との関係を示すグラフである。 第1実施形態のプラズマ計測方法のフローチャートである。 活性種のスペクトルから基準波長帯域13および活性化指標波長14を特定した図である。 活性度を計測するためのテーブルの基となるグラフである。 推定ガス温度を計測するためのテーブルの基となるグラフである。 第2実施形態の燃焼装置101の全体構成図である。
以下に、図面を参照して本発明の一実施形態を説明するが、本発明は、これらの実施形態に限定されるわけではない。
<プラズマ計測の概要>
本実施形態のプラズマ計測は、プラズマ状態における発光(光源)を波長成分によって分光して得たスペクトルからプラズマの状態を把握する、いわゆる発光分光法を用いたプラズマ計測である。プラズマ中には反応性の高い活性種が存在し、この活性種の反応力の強弱は、計測対象装置(プラズマが利用される装置)の仕事に影響を及ぼす。なお、本明細書において用いられる活性種の活性度合とは、活性種の反応性と同義である。
また、本実施形態では、計測対象の活性種は、少なくとも窒素、水素、酸素、および炭素等の原子、分子、化合物、イオン、およびラジカルのいずれかである。そして、本実施形態のプラズマ計測は、これらから選択された活性種の状態によって、プラズマの状態を把握する。
図1は、活性種のスペクトルを模式的に表したものであり、各活性種に対応した波長成分で観察される。実線で示されるグラフと破線で示されるグラフとは加えるエネルギーを異ならしている。図1に示すように、活性種のスペクトルでは、活性種固有の波長において、多くのスペクトルが重なり合って高い発光強度を示すバンドヘッド11と呼ばれるピークが観察される。このバンドヘッド11を含む波長帯域13における集合部分の発光強度は、エネルギー依存度が小さく、粒子の量的変化に大きく左右される。
また、バンドヘッド11の周辺には回転スペクトル(バンドスペクトル)12と呼ばれるドップラー広がりで発生する複数のピークをもった集合部分が観測される。この回転スペクトル12には、エネルギー依存度が大きく、加えるエネルギーによって大きく発光強度が変化する波長帯域がある。図1においては、バンドヘッド11付近の光強度変化11aよりも大きな光強度変化12aが回転スペクトルの一部の波長帯域14で観察される。このエネルギー依存度が大きい、回転スペクトルの一部は、粒子の質的変化の指標となる。なお、ここでいうエネルギーとしては、温度、電力、振動数等がある。
本実施形態においては、バンドヘッド11を含む波長帯域13を基準波長帯域(第1波長帯域)13、回転スペクトルの中で特定されたエネルギー依存度が大きい波長帯域14を活性化指標波長帯域(第2波長帯域)14として説明する。
なお、活性種のスペクトルにおけるピークの波長は、プラズマの状態変化や外部環境の変化等の外乱がなければ固有のものと考えられるが、多くのプラズマを利用する装置では外乱を完全に取り除くことは困難であり、変動してしまう。
ここで、従来のプラズマ計測では、ピーク波長の強度、いわゆる線スペクトルを基にプラズマの状態を把握するものが多い。対して、本実施形態のプラズマ計測では、基準波長帯域13と活性化指標波長帯域14とにおける強度の積分値の比、いわゆる面スペクトル比を基にした活性度という計測値によってプラズマの状態を把握する。
なお、燃焼反応における火炎中もプラズマ状態になっており、後述する第2実施形態における燃焼装置にもプラズマ計測が利用される。
<第1実施形態>
<<全体構成>>
図2は、第1実施形態のプラズマ処理装置1の全体構図である。プラズマ処理装置1は、ワークWにプラズマを照射し、表面状態を改質する装置である。このプラズマ処理装置1は、ワークWをセットする処理器2と、プラズマを発生させて照射するプラズマ照射器3と、プラズマの状態を計測する光学式計測器4と、光学式計測器4の計測値を基に各部を制御する制御器5とを備えている。
<<処理器>>
処理器2は、箱状で内部空間が形成されている筐体21と、筐体21内に設置されてワークWを上面で支持するテーブル22と、このテーブル22の下面を昇降可能に支持するワーク移動機構23とを備えている。
テーブル22は、矩形平板状で、処理器2の設置面に対し水平に広がっている。このテーブル22の上面にプラズマ処理を行いたいワークWが設置される。
ワーク移動機構23は、ラボジャッキや昇降ステージ等であり、支持するテーブル22を昇降させることが可能な昇降機構である。本実施形態では、ワーク移動機構23として電動昇降ステージが採用されている。このワーク移動機構23は、後述する制御器5からの指令によりテーブル22を昇降させる。これにより、ワークWは、適切なプラズマ照射距離で処理される。
<<プラズマ照射器>>
プラズマ照射器3は、プラズマを生成すると共にワークWにプラズマ照射するためのプラズマトーチ31と、プラズマトーチ31に電源を印加するプラズマ電源32と、プラズマトーチ31にプラズマガスを供給するプラズマガス供給器33と、を備えている。また、本実施形態のプラズマ照射器3は、プラズマを効率的に高エネルギー化するための添加剤を供給する添加剤供給器34をさらに備えている。
プラズマトーチ(プラズマ発生源)31は、一端から供給されたプラズマガス33を、中央部においてプラズマ電源32で電源を印加することによって、高エネルギー化、すなわちプラズマ状態にして、他端から照射する。このプラズマ電源32は、プラズマトーチ31に印加する電源を調整することで、プラズマ出力を調整するプラズマ出力調整部として機能する。本実施形態では、このプラズマ電源32は、後述する制御器5の指令によりプラズマトーチ31に印加する電源を調整する。
プラズマガスとしては、空気、窒素、酸素、ヘリウム、アルゴン等があり、プラズマガス供給器33は、供給路を介しプラズマガスをプラズマトーチ31に供給する。プラズマガスは、プラズマトーチ31でプラズマ化されて照射され、プラズマの場を形成する。プラズマガスの供給路の途中にはプラズマガス調整バルブ35が設けられており、このプラズマガス調整バルブ35は、プラズマガスの供給量を調整する。つまり、プラズマガス調整バルブ35は、プラズマガスの供給量を調整することで、プラズマ出力を調整するプラズマ出力調整部として機能する。本実施形態では、このプラズマガス調整バルブ35は、後述する制御器5の指令によりプラズマガスの供給量を調整する。
添加剤としては、窒素、水素、酸素、炭素等があり、添加剤供給器34は、供給路を介し添加剤をプラズマトーチ31に供給する。添加剤は、プラズマトーチ31からプラズマの場に供給されてプラズマ化し、活性種となる。また、本実施形態では、さまざまな処理に対応できるように、添加剤が複数種類搭載されている。これら複数種類の添加剤の供給路の途中には添加剤調整バルブ36が設けられており、この添加材調整バルブ36は、それぞれの添加剤の供給量を調整する。本実施形態では、この活性剤調整バルブ36は、電磁弁が採用されており、後述する制御器5の指令により添加剤の供給量を調整する。なお、本実施形態では、添加剤をプラズマガスとは別にプラズマトーチ31に供給してからプラズマの場に供給しているが、これに限らない。たとえば、添加剤を供給路でプラズマガスと混合してからプラズマトーチ31に供給してもよい。また、添加剤をプラズマトーチ31とは別に処理器2に取り付けた供給機器からプラズマ化している場に供給してもよい。また、使用するプラズマガスが所望の活性種ともなるのであれば、本実施形態のように添加剤供給器34等を別に設けなくてもよい。
<<光学式計測器>>
図3は、光学式計測器4を構成する各部のブロック図であり、以下に図2も参照しながら光学式計測器4の各部について説明する。
光学式計測器4は、光源(プラズマ発光)LSからの光を受光する受光部41と、受光した光を波長成分ごとに分光する分光部42と、分光して得られたスペクトルからプラズマの状態を計測する計測部43とを備える。また、光学式計測器4は、計測部43が計測の際にデータを保管したり、計測部43が参照するためのデータを格納したりするための記憶部44を備える。また、光学式計測器4は、計測結果等を出力するための出力部45を備え、モニタ表示する表示部46や外部の制御器5等に出力可能である。
受光部41は、レンズ41aと光ファイバ41bとを含み構成されている。受光部41は、光源LSからの光をレンズ41aで集光して光ファイバ41bで伝送する。なお、集光する範囲によっては、レンズ41aを設けずに直接光ファイバ41bで光源LSからの光を取り込んでもよい。
ここで、受光部41の取り付け状態について説明する。図4は、本実施形態における受光部41の取り付け構造を説明する図である。なお、本実施形態では、受光部41は2つ用いられており、図4においては、41M、41Rと符号を付している。また、図4において、上段に示す図と下段に示す図とでは、受光位置を異ならしている。
図4によれば、受光部41は、受光補助器6を介してプラズマトーチ31に取り付けられている。受光補助器6は、矩形ブロック状で中央においてプラズマトーチ31に取り付けられており、プラズマ照射方向に対して垂直方向に広がるベース61を有している。ベース61の一端側にはプラズマ照射方向に張り出してミラー62が固定されており、ベース61の他端側には回転テーブル(受光移動機構)63が固定されている。そして、一方の受光部41Mは、先端をプラズマ照射方向に向けてプラズマトーチ31の周囲近傍に配置されてベース61に固定されている。この受光部41Mは、図4の破線で示すように、ミラー62を介しプラズマトーチ31の先端に近い第1発光範囲LS1の発光を受光する。また、他方の受光部41Rは、先端を照射方向に対して斜めに向けてプラズマトーチ31の周囲近傍である回転テーブル63に固定されている。回転テーブル63は図4に示すように、受光部41Rの先端をプラズマ発光LSに向けつつ、プラズマ照射方向となす角を変更する方向Rに回転可能である。これにより、受光部41Rの先端を図4上段のように向けた場合には、受光部41Rは、第1発光範囲LS1よりもプラズマトーチ31から離れた第2発光範囲LS2の発光を受光する。また、受光部41Rの先端を図4下段のように向けた場合には、受光部41Rは、第2発光範囲LS2よりもプラズマトーチ31から離れた第3発光範囲LS3の発光を受光する。このように、回転テーブル63は、受光部41Rの受光範囲を移動させることが可能である。したがって、本実施形態の受光部41(41M、41R)は、プラズマトーチ31の先端から照射方向に向かって広い範囲の発光を受光する。なお、本実施形態では、受光部41として受光部41Mおよび受光部41Rを用いているが、受光部41は、受光部41Mおよび受光部41Rのいずれかのみでもよい。また、本実施形態では受光部41Rは、回転テーブル63に固定されているが、軸上を平行移動する移動機構に固定されていてもよい。
ここで、図5は、プラズマトーチ31からの距離と活性度との関係を示すグラフであり、入力エネルギー14を階段状に上げていったときのOHラジカル15およびN2ラジカル16の活性度を測定したグラフである。また、上段が第1発光範囲LS1、中段が、第2発光範囲LS2、下段が第3発光範囲LS3のスペクトルから計測して得られたグラフである。なお、活性度は、詳しくは後述するが、本実施形態の光学式計測器4の計測値であり、プラズマの状態を把握する指標となる。図5から、プラズマトーチ31からの距離と活性度との関係は比例関係にないことがわかる。また、プラズマトーチ31からの距離に活性度が大きく依存してしまう粒子があることもわかる。このことからも、光学式計測器4は、照射方向に広い範囲を計測できることが望ましい。
ふたたび図3にもどり説明を続けると、分光部42は、レンズ42a、回折格子42b、およびラインセンサー42cを含み構成されている。受光部41により受光された光は、レンズ42aを通り回折格子42bで波長成分によって分散されて、波長成分に対応する強度がラインセンサー42cによって検出される。これにより、分光部42は、光源LSのスペクトルを得る。なお、本実施形態では、分光部42は、回折格子を用いて構成されているが、これに限らない。たとえば、プリズムを用いて構成されていてもよい。
計測部43は、演算処理装置を備えた計算機であり、ピーク波長を設定する設定部43aと、分光部42からスペクトルデータを取得する取得部43bと、強度比率を計測する強度比率計測部43cと、活性度を計測する活性度計測部43dと、ガス温度を計測するガス温度計測部43eとを備える。
ここで、各部を説明する前に記憶部44について触れておくと、記憶部44は、長期的に大容量データの記憶が可能な記憶媒体であり、計測部43における測定結果を格納したり、計測部43が測定結果を計測する際に参照するデータをあらかじめ格納させておいたりするのに用いられる。なお後述するが、本実施形態において記憶部44には、強度比率と活性度との関連性とを示す活性度計測テーブル44a、および活性度と推定ガス温度との関連性を示すガス温度計測テーブル44bがあらかじめ格納されている。なお、本実施形態では、これらのテーブル44a、44bは、記憶部44に格納されているが、これに限らない。たとえば、通信回線を介し別の場所に格納されていてもよい。
計測部43の説明に戻ると、設定部43aは、計測値計測のために、基準波長帯域13におけるピーク波長(図1参照)と活性化指標波長帯域14におけるピーク波長(図1参照)とを計測対象の活性種に対応させて設定する部分である。また、設定部43aは、一度設定したピーク波長を補正する場合にピーク波長を再設定する部分でもある。取得部43bは、光源LSのスペクトルデータを分光部42から取得する部分である。強度比率計測部43cは、取得部43bが得たスペクトルデータから、設定部43aで設定されたピーク波長を基とした基準波長帯域13および活性化指標波長帯域14の強度の積分値を計測する部分である。また、強度比率計測部43cは、その計測したそれぞれの強度の積分値の比率を計測する部分である。活性度計測部43dは、記憶部44に記憶されている活性度計測テーブル44aを参照し、強度比率計測部43cが計測した強度の積分値の比率と対応する活性度を計測する部分である。ガス温度計測部43eは、記憶部44に記憶されているガス温度計測テーブル44bを参照し、活性度計測部43dが計測した活性度と対応する推定ガス温度を計測する部分である。その他計測部では、装置を制御するための装置制御情報や装置を運転するための装置運転情報を計測する場合がある。
出力部45は、計測部43が計測した活性度、推定ガス温度等の計測値や、その他装置制御情報、装置運転情報等を出力する各種出力部を備える。出力部45のインターフェースには、表示部46や外部制御器5等が接続され、これらの機器に対して計測値や各種情報が出力される。
表示部46は、内蔵されたモニタ表示画面や外部モニタ等の表示機器といったものであり、出力部45から出力される計測値や各種情報を表示する。
<<制御器>>
制御器5は、PLC等の制御機器であり、光学式計測器4の出力部45に接続されて、その計測値等を受信可能に構成されている。また、プラズマ照射器3のプラズマ電源32、プラズマガス調整バルブ35、添加剤調整バルブ36に接続されて、それらの出力や開閉量を調節可能に構成されている。また、処理器2のワーク移動機構23に接続されて、その昇降量を調整可能に構成されている。そして、光学計測器4が出力した計測値の一つである活性度が所望の値になるように、プラズマ出力調整部であるプラズマ電源32や各調整バルブ35、36をフィードバック制御している。また、光学計測器4が出力した計測値の一つである活性度が最大になるように、ワーク移動機構23をフィードバック制御している。
なお、本実施形態では、制御器5を設けて自動でプラズマトーチ31の出力等の各部を調整するように構成したが、制御器5を設けずに、操作者が光学式計測器4の計測値を目視して、その測定値に基づいて手動で調整してもよい。また、本実施形態では光学式計測器4と制御器5とが別体の機器として構成されているが、一体の機器として構成されていてもよい。つまり、光学式計測器4および制御器5は、光学式計測機能および制御機能を持った1の機器であってもよい。
<<計測方法>>
図6は、上述のように構成された光学式計測器4によるプラズマ計測方法のフローチャートである。図7は、活性種のスペクトルから基準波長帯域13および活性化指標波長帯域14を特定した図である。図8は、活性度を計測するためのテーブルの基となるグラフであり、OHラジカル15およびN2ラジカル16における強度比率と活性度との関係を示している。図9は、推定ガス温度を計測するためのテーブルの基となるグラフであり、OHラジカル15およびN2ラジカル16における活性度と推定ガス温度との関係を示している。また、図1はピーク波長特定工程ST1の説明で用いる。以下、図6を参照しながら図1並びに図7〜図9で補足して光学式計測器4を用いてのプラズマ計測方法について説明する。なお、本説明においては、光源LSから分光部42がスペクトルデータを得るまでの間は説明を省略する。また、各部名称については、あわせて図3を参照する。
本実施形態のプラズマ計測方法は、まず、ピーク波長設定工程ST1で、実験結果等から計測対象の活性種に応じて基準波長帯域13および活性化指標波長帯域14を特定する(図1参照)。活性化指標波長帯域14は、回転スペクトル12の中で、基準波長帯域13よりもエネルギー依存度が大きい波長帯域14を特定する。そして、それぞれの波長帯域13、14におけるピーク波長13b、14bを設定部43aに設定する。
次にスペクトル取得工程ST2で、取得部43bが分光器42から光源LSのスペクトルデータを取得する。
次にスペクトル判定工程ST3で、スペクトル取得工程ST2で取得したスペクトルが規定以上の強度を示しているかを判定し、規定以上でなければ再びスペクトル取得工程ST2に戻してスペクトルを再取得させ、規定以上であれば次の工程に進める。
次にピーク補正工程ST4で、図2に示すようにピーク波長設定工程ST1で特定した基準波長帯域13および活性化指標波長帯域14の範囲で、スペクトル判定工程ST3で得られたスペクトルのピーク波長を設定部43aが検出する。そして、設定部43aは、ピーク波長設定工程ST1で設定したピーク波長と検出したピーク波長とがずれていれば、ピーク波長を検出したピーク波長に再設定する。それに併せ、基準波長帯域13および活性化指標波長帯域14が再設定されたピーク波長を基準にしてシフト補正される。たとえば、それまで図7の細い実線のスペクトルを示しており基準波長帯域ではピーク波長13b、活性化指標波長帯域ではピーク波長14bが設定されていたとする。しかし、最新のスペクトル判定工程ST3から得られたスペクトルが基準波長帯域ではピーク波長13c、活性化指標波長帯域ではピーク波長14cを示す太い実線のスペクトルとなった場合、設定されているピーク波長は、最新のスペクトルのピーク波長13cおよびピーク波長14cに再設定される。それに併せて、基準波長帯域13および活性化指標波長帯域14がシフト補正される。
次に、積分工程ST5で、シフト補正された基準波長帯域13および活性化指標波長帯域14における光強度を積分し、それぞれの強度の積分値(強度面積)13S、14Sを得る。なお、それぞれの強度の積分値13S、14Sを積分回数で除算して、それぞれの平均を求め、これら平均を以下の工程において積分値13S、14Sの代わりに用いてもよい。
次に強度比率計測工程ST6で、基準波長帯域13における強度の積分値13Sを活性化指標波長帯域14における強度の積分値14Sで除算して強度比率を得る。
次に活性度計測工程ST7で、図8に示すようなグラフを基にした、記憶部44に記憶されている活性度計測テーブル44aを参照し、強度比率から活性種の活性度合の指標となる計測値を計測する。本明細書では、この計測値を「活性度」と称する。なお、関係テーブルではなく、関係式を用いて強度比率から活性度を計測してもよい。
次に推定ガス温度計測工程ST8で、図9に示すようなグラフを基にした、記憶部44に記憶されているガス温度計測テーブル44bを参照し、活性度から推定ガス温度を計測する。なお、関係テーブルではなく、関係式を用いて活性度から推定ガス温度を計測してもよい。
次にスムージング処理工程ST9で、各計測結果の連続的な経時変化をスムージング処理する。
次に出力工程ST10で、各計測結果等を表示部46や制御器5等に出力する。
次にフィードバック確認工程ST11で、制御器5の出力をフィードバック制御するか確認する。フィードバック制御する場合には、フィードバック制御工程ST12で、制御器5に対して目標の活性度に対する計測した活性度との差から計測される装置制御情報を出力する。
次に運転情報記録工程ST13で、制御器5の運転情報を記憶部44に出力する。
最後に連続計測確認工程ST14で、計測を終了するか確認し、計測を継続する場合は、スペクトル取得工程ST2に戻り連続計測を行う。
<<作用・効果>>
以上述べてきたように構成された光学式計測器4は、光源LSのスペクトルからプラズマ状態を計測する。光源LSのスペクトルから計測対象の活性種に応じて、基準波長帯域13と活性化指標波長帯域14とにおける発光強度の積分値13S、14Sの比から活性度を計測する計測部43を備える。基準波長帯域13はバンドヘッド11を含む帯域であり、第2波長帯域14はエネルギー依存度が大きい、回転スペクトル12の一部を含む帯域である。
このように、光学式計測器4は、基準波長帯域13における発光強度の積分値13Sを計測値の計測に用いている。基準波長帯域13におけるスペクトルは、計測対象の活性種における粒子の量に大きく依存し、粒子の活性度合で大きく変動しない。この第1波長帯域13におけるスペクトルは、エネルギー依存度が小さく、活性種の粒子の量を示す指標となる。
また、この光学式計測器4は、活性化指標波長帯域14における発光強度の積分値14Sを計測値の計測に用いている。活性化指標波長帯域14は、回転スペクトル12の中から選択されたエネルギー依存度の大きい波長帯域である。この活性化指標波長帯域14におけるスペクトルは、エネルギー依存度が大きく、活性種の粒子の活性度合を示す指標となる。なお、回転スペクトルは、粒子の量にも依存する。
そして、この光学式計測器4は、計測部43が基準波長帯域13および活性化指標波長帯域14における発光強度の積分値13S、14Sの比を基にして活性種の活性度合を計測する。これにより、光学式計測器4は、粒子の量による変動分を補正した形で活性種の活性度合を計測することができる。
また、この光学式計測器4は、単一波長における強度(いわゆる線スペクトル)ではなく、波長帯域における強度の積分値(いわゆる面スペクトル)を用いて活性度を計測している。したがって、光学式計測器4は、プラズマ状態の変化や、外部環境の変化等の外乱に対応しやすくできる。
ここで、制御器5は、活性種の粒子の量よりも仕事に寄与する反応力のある活性種の活動の状態、すなわち活性状態を基に調整することが好ましい。また、制御器5は、プラズマ状態の変化や外部環境の変化等の外乱に対応しやすいことが好ましい。このため、光学式計測器4は、プラズマ処理装置1の出力調整に適した光学式計測器となっている。
また、光学式計測器4は、計測部43が活性度合を経時的に連続して計測を行う。これにより、活性種の活性度合、すなわちプラズマの活性状態の連続的な変化を計測することができる。
また、光学式計測器4は、計測部43が基準波長帯域13および活性化指標波長帯域14を、それぞれの発光線のピークを基準に、連続してシフト補正を行う。したがって、光学式計測器4は、外乱による変化に追従してプラズマの活性状態を計測することができる。
また、光学式計測器4は、計測部が活性度に対応するガス温度のテーブルを参照して活性種のガス温度を計測する。光学式計測器4は、このようにテーブルを参照することで高速処理をする。したがって、この光学式計測器4は、リアルタイム計測に適している。
また、光学式計測器4は、プラズマ中の窒素、水素、酸素、および炭素の原子、分子、化合物、イオン、およびラジカルの少なくともいずれかの活性状態を計測対象にすることができる。
また、光学式計測器4は、計測部43によって計測された計測値を出力する出力部45を備える。これにより、出力部45によって出力された計測値をモニタ確認やフィードバック制御に利用することができる。
る。
また、光学式計測器4は、プラズマトーチ31の周囲近傍に配置されると共に光源LSの発光を受光する複数の受光部41を備える。また、この受光部41の少なくとも一つは、ミラー62を介しプラズマトーチ31近傍の第1発光範囲LS1の発光を受光し、少なくとも一つ以外の受光部41は、第1発光範囲LS1よりもプラズマ発生源から離れた第2発光範囲LS2、LS3の発光を受光する。このため、この光学式計測器4は、受光部41を光源LS周囲に大きく張り出すことなく、プラズマトーチ31の近傍の第1発光範囲LS1および第1発光範囲LS1より離れた第2発光範囲LS2にわたって、プラズマトーチ31からの距離に応じたプラズマの活性状態を計測することができる。
また、光学式計測器4は、プラズマトーチ31の周囲近傍に配置されると共に光源LSの発光を受光する受光部41を備える。また、この光学式計測器4は、受光部41に固定されて受光部41の受光範囲を移動させる回転テーブル63を備える。これにより、この光学式計測器4は、受光部41を光源LS周囲に大きく張り出すことなく、回転テーブル63で受光範囲を移動させながら広い反応範囲にわたって、プラズマトーチ31からの距離に応じたプラズマの活性状態を計測することができる。
また、プラズマ処理装置1は、光学式計測器4と光学式計測器4が計測した活性度を基にプラズマ出力を調整するプラズマ電源32、プラズマガス調整バルブ35、添加剤調整バルブ35といったプラズマ出力調整部を備えている。このプラズマ処理装置1は、活性種の活性度を計測する光学式計測器4を備えていることによって、仕事に寄与する反応力のある活性種の活性状態を基にして、適切にプラズマ出力を調整することができる。
また、プラズマ処理装置1は、プラズマ処理対象物であるワークWの位置を、光学式計測器4が計測した活性度を基に調整する昇降テーブル23を備えている。これにより、ワークWに対して適切にプラズマ処理を行うことができる。
<第2実施形態>
<<全体構成>>
図10は、第2実施形態の燃焼装置101の全体構成図である。このような燃焼装置は、蒸気タービン発電機、産業用ボイラ、焼却炉等、多くの施設で利用される。燃焼装置101は、燃料と酸化剤とを供給して燃焼器(ボイラ)102内で燃焼反応させてエネルギーを得るものである。この燃焼反応下においては前述したようにプラズマ状態となっており、火炎として観察される。この燃焼装置101は、内部で燃焼反応をさせる反応器102と、先端から火炎を照射する主燃焼器103と、火炎(プラズマ)の状態を計測する光学式計測器4と、光学式計測器の計測値を基に各部を制御する制御器5とを備えている。なお、光学式計測器4および制御器5は、第1実施形態のプラズマ処理装置1と同様であるため、同一の符号付して説明を省略する。
<<燃焼器>>
反応器102は、箱状で内部空間が形成されている燃焼室121と燃焼室121内から外部に引き出される環状の排気口122とを備えている。排気口122からは排気ガスが外部に排出される。また、反応器102には環状のエネルギー引出口(不図示)が接続されており、ここからエネルギーを引き出し、タービン等の動力源となる。
<<燃焼器>>
主燃焼器103は、燃焼室121の壁面に固定されて先端から燃料等を噴射する燃焼バーナ131(プラズマ発生源)と、燃焼バーナ131に燃料を供給するための燃料供給器132と、燃焼バーナ131に酸化剤を供給するための酸化剤供給器133とを備えている。また、主燃焼器103は、燃焼反応を効率的に高エネルギー化するための高エネルギー化活性剤を供給するための活性剤供給器134をさらに備えている。また、主燃焼器103は、燃焼室121の壁面に固定されて、燃焼バーナ131から噴射された燃料に着火するための着火バーナ135を備えている。
燃焼バーナ131は、一端から供給された燃料および酸化剤を混合して他端から燃焼室121内に噴射する。この噴射した燃料等に着火バーナ135で着火すると燃焼反応がはじまり、光源である火炎LSが観察される。
燃料としては、LPG,LNG,油、石炭、バイオマス、廃棄物等といったものがあるが、燃料供給器132は、供給路を介し燃焼バーナ131に燃料を供給する。燃料の供給路の途中には燃料調整バルブ136が設けられており、この燃料調整バルブ136は、燃料の供給量を調整する。つまり、燃料調整バルブ136は、燃料の供給量を調整することで、燃焼出力を調整する燃焼出力調整部として機能する。なお、固体の燃料の場合は、直接燃焼室121に投入されることもある。
酸化剤としては、一般的には空気であり、酸化剤供給器133は、供給路を介し燃焼バーナ131に酸化剤を供給する。酸化剤の供給路の途中には酸化剤調整バルブ137が設けられており、この酸化剤調整バルブ137は、酸化剤の供給量を調整する。つまり、酸化剤調整バルブ137は、酸化剤の供給量を調整することで、燃焼出力を調整する燃焼出力調整部として機能する。
高エネルギー化活性剤としては、水蒸気、水素、水素酸素ガス等があり、活性剤供給器134は、供給路を介して高エネルギー化活性剤を先に混合部139で酸化剤と混合してから燃焼バーナ131に供給する。また、本実施形態では、さまざまな燃料に対応できるように、高エネルギー化活性剤が複数種類備えられている。これら複数種類の高エネルギー化活性剤の供給路の途中には、高エネルギー化活性剤調整バルブ138が設けられており、この高エネルギー化活性剤調整バルブ138は、それぞれの高エネルギー化活性剤の供給量を調整する。つまり、高エネルギー化活性剤調整バルブ138は、高エネルギー化活性剤の供給量を調整することで、燃焼出力を調整する燃焼出力調整部として機能する。なお、本実施形態では、高エネルギー化活性剤を混合部139で酸化剤と混合してから燃焼バーナ131に供給しているが、燃焼バーナ131に直接供給したり、燃焼バーナ131内で混合したりしてもよい。また、別にトーチ等の助燃器を設けて燃焼室121内に直接供給してもよい。
上記、燃焼出力調整部として機能する燃料調整バルブ136、酸化剤調整バルブ137、および高エネルギー化活性剤調整バルブ138は、第1実施形態と同様に、光学式計測器4が計測した活性度を基に制御器5により調整される。
<<燃焼反応測定>>
前述したように、燃焼反応における火炎LSはプラズマ状態であるため、本実施形態においては、第1実施形態にプラズマ処理装置1の例で説明したのと同様に、光学式計測器4を用いて燃焼反応の状態(プラズマ状態)を計測している。また、燃焼室121には燃焼室監視機器104が接続され、温度、圧力、流量等を計測するさまざまな運転状態を計測している。また、光学式計測器4と燃焼室監視機器104とは互いに接続されており、連動して装置の制御情報を定めて、制御器5に制御情報を送っている。
以上述べてきたように構成された燃焼装置101は、光学式計測器4が計測した活性度を基に燃焼出力を調整する燃焼出力調整部である燃料調整バルブ136、酸化剤調整バルブ137、および高エネルギー化活性剤調整バルブ138を備える。このように、この燃焼装置101は、活性種の活性度を計測する光学式計測器4を備えており、反応力のある活性種の活性状態を基にして、適切に燃焼出力を調整することができる。
1‥プラズマ処理装置
4‥光学式計測器
11‥バンドヘッド
12‥回転スペクトル
13‥基準波長帯域(第1波長帯域)
14‥活性化指標波長帯域(第2波長帯域)
23‥昇降テーブル(ワーク移動機構)
31‥プラズマトーチ(プラズマ発生源)
32‥プラズマ電源(プラズマ出力調整部)
35‥プラズマガス調整バルブ(プラズマ出力調整部)
36‥活性剤調整バルブ(プラズマ出力調整部)
41、41M、41R‥受光部
43‥計測部
44‥記憶部
44a‥活性度計測テーブル、44b‥ガス温度計測テーブル
45‥出力部
62‥ミラー
63‥回転テーブル(受光移動機構)
101‥燃焼装置
131‥燃焼バーナ(プラズマ発生源)
136‥燃料調整バルブ(燃焼出力調整部)
137‥酸化剤調整バルブ(燃焼出力調整部)
138‥活性剤調整バルブ(燃焼出力調整部)
139‥混合部
LS‥光源(火炎)
LS1‥第1発光範囲
LS2‥第2発光範囲
LS3‥第3発光範囲
R‥回転方向
また、第5観点の光学式計測器は、第1観点〜第4観点のいずれかの光学式計測器であって、計測対象の活性種が窒素、水素、酸素、および炭素の少なくともいずれかを構成に含む、原子、分子、化合物、イオン、およびラジカルの少なくともいずれかである。
第5観点によれば、この光学式計測器は、プラズマ中の窒素、水素、酸素、および炭素の少なくともいずれかを構成に含む、原子、分子、化合物、イオン、およびラジカルの少なくともいずれかの活性状態を計測することができる。
また、本実施形態では、計測対象の活性種は、少なくとも窒素、水素、酸素、および炭素等の少なくともいずれかを構成に含む、原子、分子、化合物、イオン、およびラジカルのいずれかである。そして、本実施形態のプラズマ計測は、これらから選択された活性種の状態によって、プラズマの状態を把握する。
また、光学式計測器4は、プラズマ中の窒素、水素、酸素、および炭素の少なくともいずれかを構成に含む、原子、分子、化合物、イオン、およびラジカルの少なくともいずれかの活性状態を計測対象にすることができる。

Claims (11)

  1. 光源のスペクトルからプラズマ状態を計測する光学式計測器であって、
    前記スペクトルから計測対象の活性種に応じて、バンドヘッドを含む第1波長帯域と、前記第1波長帯域のスペクトルよりもエネルギー依存度が大きい、回転スペクトルの一部を含む第2波長帯域と、における発光強度の積分値の比を基にして、前記プラズマ状態の計測値として前記活性種の活性度合を計測する計測部を備える光学式計測器。
  2. 請求項1に記載の光学式計測器であって、
    前記計測部は、前記活性度合を経時的に連続して計測を行う光学式計測器。
  3. 請求項2に記載の光学式計測器であって、
    前記計測部は、前記第1波長帯域および前記第2波長帯域を、それぞれの帯域内におけるピーク波長を基準に、経時的に連続してシフト補正を行う光学式計測器。
  4. 請求項1ないし請求項3のいずれか一項に記載の光学式計測器であって、
    前記計測部は、前記活性度に対応するガス温度のテーブルを参照して前記活性種のガス温度を計測する光学式計測器。
  5. 請求項1ないし請求項4のいずれか一項に記載の光学式計測器であって、
    前記計測対象の活性種は、窒素、水素、酸素、および炭素の原子、分子、化合物、イオン、およびラジカルの少なくともいずれかである光学式計測器。
  6. 請求項1ないし請求項5のいずれか一項に記載の光学式計測器であって、
    前記計測部によって計測された計測値を出力する出力部を備える光学式計測器。
  7. 請求項1ないし請求項6のいずれか一項に記載の光学式計測器であって、
    プラズマ発生源の周囲近傍に配置されると共に前記光源の発光を受光する複数の受光部を備え、
    前記受光部の少なくとも一つは、ミラーを介し前記プラズマ発生源近傍の第1発光範囲の発光を受光し、
    前記少なくとも一つ以外の受光部は、前記第1発光範囲よりも前記プラズマ発生源から離れた第2発光範囲の発光を受光する光学式計測器。
  8. 請求項1ないし請求項6のいずれか一項に記載の光学式計測器であって、
    プラズマ発生源の周囲近傍に配置されると共に前記光源の発光を受光する受光部と、
    前記受光部に固定されて当該受光部の受光範囲を移動させる受光移動機構と、を備える光学式計測器。
  9. 請求項1ないし請求項8のいずれか一項に記載の光学式計測器と、
    前記光学式計測器が計測した前記活性種の前記活性度合を基にプラズマ出力を調整するプラズマ出力調整部と、を備えるプラズマ処理装置。
  10. 請求項7または請求項8に記載の光学式計測器と、
    プラズマ処理対象物であるワークの位置を、前記光学式計測器が計測した前記活性種の前記活性度合を基に調整するワーク移動機構と、を備えるプラズマ処理装置。
  11. 請求項1ないし請求項8のいずれか一項に記載の光学式計測器と、
    前記光学式計測器が計測した前記活性種の前記活性度合を基に燃焼出力を調整する燃焼出力調整部と、を備える燃焼装置。
JP2016026173A 2016-02-15 2016-02-15 光学式計測器、プラズマ処理装置および燃焼装置 Active JP6210117B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026173A JP6210117B2 (ja) 2016-02-15 2016-02-15 光学式計測器、プラズマ処理装置および燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026173A JP6210117B2 (ja) 2016-02-15 2016-02-15 光学式計測器、プラズマ処理装置および燃焼装置

Publications (2)

Publication Number Publication Date
JP2017146121A true JP2017146121A (ja) 2017-08-24
JP6210117B2 JP6210117B2 (ja) 2017-10-11

Family

ID=59682160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026173A Active JP6210117B2 (ja) 2016-02-15 2016-02-15 光学式計測器、プラズマ処理装置および燃焼装置

Country Status (1)

Country Link
JP (1) JP6210117B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118826A (ja) * 1993-10-20 1995-05-09 Limes:Kk 金属部材のイオン窒化方法
JP2006024764A (ja) * 2004-07-08 2006-01-26 Canon Inc プラズマ発光強度分布計測方法及びプラズマ処理装置
JP2008241293A (ja) * 2007-03-26 2008-10-09 Univ Nagoya 原子分析装置
WO2008123186A1 (ja) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ電子温度の測定方法および装置
JP2008261729A (ja) * 2007-04-12 2008-10-30 Toppan Printing Co Ltd プラズマ内励起種測定方法、およびプラズマ内励起種測定装置
JP2013171847A (ja) * 2012-02-17 2013-09-02 Tokyo Electron Ltd プラズマ処理装置及びプラズマのモニタリング方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118826A (ja) * 1993-10-20 1995-05-09 Limes:Kk 金属部材のイオン窒化方法
JP2006024764A (ja) * 2004-07-08 2006-01-26 Canon Inc プラズマ発光強度分布計測方法及びプラズマ処理装置
JP2008241293A (ja) * 2007-03-26 2008-10-09 Univ Nagoya 原子分析装置
WO2008123186A1 (ja) * 2007-03-30 2008-10-16 Mitsui Engineering & Shipbuilding Co., Ltd. プラズマ電子温度の測定方法および装置
US20100131226A1 (en) * 2007-03-30 2010-05-27 Mitsui Engineering & Shipbuilding Co., Ltd. Plasma electron temperature measuring method and device
JP2008261729A (ja) * 2007-04-12 2008-10-30 Toppan Printing Co Ltd プラズマ内励起種測定方法、およびプラズマ内励起種測定装置
JP2013171847A (ja) * 2012-02-17 2013-09-02 Tokyo Electron Ltd プラズマ処理装置及びプラズマのモニタリング方法

Also Published As

Publication number Publication date
JP6210117B2 (ja) 2017-10-11

Similar Documents

Publication Publication Date Title
RU2413083C2 (ru) Способ и устройство для регулирования линии режима работы камеры сгорания газовой турбины
JP4995169B2 (ja) ガスタービン制御方法及び装置
CA2744091C (en) System and method for controlling fired heater operations
JP4995182B2 (ja) ガスタービン制御方法及び装置
WO2016115804A1 (zh) 一种锅炉燃烧火焰中的气相碱金属浓度的在线检测方法
EP2128301A1 (en) Carburizing apparatus and carburizing method
KR20080103440A (ko) 가스 터빈의 연소 제어 방법 및 장치
JP2018091331A (ja) ガスタービンに使用される燃料のための燃料組成を決定するためのシステムおよび方法
WO2016157610A1 (ja) ガス分析装置、燃焼設備の制御システム及び制御支援システム、並びに、ガス分析方法
JP6210117B2 (ja) 光学式計測器、プラズマ処理装置および燃焼装置
JP6947823B2 (ja) 大気圧プラズマ処理機
Devid et al. Dry reforming of methane under mild conditions using radio frequency plasma
JP2016194440A (ja) シーケンシャル型icp発光分光分析装置および測定波長補正方法
JP2013113183A (ja) レーザ着火エンジン及びレーザ着火エンジンにおける混合気の調整方法
JP7080083B2 (ja) 熱量計測装置及び熱量計測方法
JP2010286291A (ja) 赤外線分光器および赤外線分光測定装置
KR20060124116A (ko) 다단 공기 공급 연소 시스템의 제어 장치
JPWO2014068781A1 (ja) 原子吸光光度計及びこれに用いられる信号電圧最適化方法
CN108119237B (zh) 无模型燃烧动力自动调谐
JP2006153660A (ja) レーザーアブレーション装置及び方法、試料分析装置及び方法
JP2021103008A (ja) 空気比推定システム、空気比制御システム、並びに未燃検知システム又は失火検知システム
JP2003270150A (ja) 燃料比計測装置及び方法
JP2017142034A (ja) 燃焼装置および燃焼方法
JP6447184B2 (ja) 分光感度測定装置
JP7215632B1 (ja) レーザ式ガス分析計

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6210117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250