JP2017145606A - Aseismatic structure using plywood web bearing seismic control wall, and method for forming the same - Google Patents

Aseismatic structure using plywood web bearing seismic control wall, and method for forming the same Download PDF

Info

Publication number
JP2017145606A
JP2017145606A JP2016027695A JP2016027695A JP2017145606A JP 2017145606 A JP2017145606 A JP 2017145606A JP 2016027695 A JP2016027695 A JP 2016027695A JP 2016027695 A JP2016027695 A JP 2016027695A JP 2017145606 A JP2017145606 A JP 2017145606A
Authority
JP
Japan
Prior art keywords
earthquake
structural frame
satiety
control device
vibration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016027695A
Other languages
Japanese (ja)
Other versions
JP6765822B2 (en
Inventor
健二 宮沢
Kenji Miyazawa
健二 宮沢
収一 佐藤
Shuichi Sato
収一 佐藤
力 大川
Tsutomu Okawa
力 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DOMUSU SEKKEI JIMUSHO KK
SATOU KK
Original Assignee
DOMUSU SEKKEI JIMUSHO KK
SATOU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DOMUSU SEKKEI JIMUSHO KK, SATOU KK filed Critical DOMUSU SEKKEI JIMUSHO KK
Priority to JP2016027695A priority Critical patent/JP6765822B2/en
Publication of JP2017145606A publication Critical patent/JP2017145606A/en
Application granted granted Critical
Publication of JP6765822B2 publication Critical patent/JP6765822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an aseismatic structure of a wall surface of a woody building, which can legally secure the degree of freedom of design planning by wall thickness equal to that of a conventional bearing wall and which combines bearing performance with seismic control performance, and a method for forming the same.SOLUTION: A full web member 130 fixed to a stringer 210 forms a bearing seismic control structure, which combines seismic control performance with bearing performance for attenuating a horizontal force P generated by an earthquake, by a seismic control device 110 fixed to the stringer 210 and connected to the full web member 130, against the horizontal force P generated by the earthquake.SELECTED DRAWING: Figure 2

Description

本発明は、耐震構造、およびその形成方法に関し、特に縦材、および横材で構成される建家の構造枠内に耐力制震部材を有する耐震構造に関する。   The present invention relates to a seismic structure and a method for forming the seismic structure, and more particularly to a seismic structure having a load-bearing damping member in a structural frame of a building composed of vertical members and cross members.

従来から、巨大地震災害を背景に耐震構造の建築物の開発が進められている。特に木質系建家では損壊抑制を目的とする耐震部材を用いた耐力壁や制震部材を用いた制震壁が知られている。   Conventionally, building of earthquake-resistant structure has been promoted against the backdrop of a huge earthquake disaster. Especially in wooden buildings, bearing walls using earthquake-resistant members for the purpose of damage prevention and damping walls using damping members are known.

耐力壁とは、構造枠を構成する二本の縦材の隅角部間に筋かいを入れる構造、または構造用合板を構造枠全体に釘留めする構造である。このように構造枠内に筋かいを入れる構造や、構造用合板を構造枠全体に釘留めする構造をとることで、構造枠が変形しないようにすることができ、地震力や風圧力による水平方向の力に対抗することができるようにする構造を耐震構造という。   The bearing wall is a structure in which a brace is inserted between the corners of two longitudinal members constituting the structural frame, or a structural plywood is nailed to the entire structural frame. By adopting a structure in which a brace is put in the structure frame or a structure in which a structural plywood is nailed to the entire structure frame, the structure frame can be prevented from being deformed, and horizontal force due to seismic force or wind pressure can be prevented. A structure that can resist directional force is called an earthquake resistant structure.

また一方で制震壁とは、例えば構造枠に取付けられた制震装置に鋼管部材などで形成された補助部材を取り付け、補助部材を介して制震装置に水平力を伝達させる構造である。このように構造枠に取り付けられた補助部材を介して制震装置に水平力を伝達させるので、建家に地震や風による水平力が作用した時に、制震装置がこの作用力を減衰させることで建家の変位を軽減する構造を制震構造という(たとえば、特許文献1参照)。   On the other hand, the damping wall is a structure in which, for example, an auxiliary member formed of a steel pipe member or the like is attached to a damping device attached to a structural frame, and a horizontal force is transmitted to the damping device via the auxiliary member. Since the horizontal force is transmitted to the vibration control device through the auxiliary member attached to the structural frame in this way, when the horizontal force due to an earthquake or wind acts on the building, the vibration control device attenuates this force. A structure that reduces the displacement of the building is called a vibration control structure (see, for example, Patent Document 1).

上記のように、耐力壁は地震に対して建家が耐えられるように強くする構造であり、制震壁は建家に伝わった地震の揺れを少なくしようとする構造であって、耐力壁と制震壁は異なった構成と作用効果をもった構造である。   As mentioned above, the bearing wall is a structure that strengthens the building so that it can withstand earthquakes, and the damping wall is a structure that tries to reduce the shaking of the earthquake transmitted to the building. Damping walls have different structures and effects.

特開2013−019233号公報JP 2013-019233 A

これらの耐力壁や制震壁による耐震構造においては、壁体内部に耐震部材が存在するため、窓などの開口部を設置することが困難となるので、耐震壁は開口部を避けて耐震性能が確保できるように配置する必要がある。   In the seismic structure with these bearing walls and damping walls, since there are seismic members inside the walls, it is difficult to install openings such as windows. It is necessary to arrange so that can be secured.

ところが、建家の変形挙動の抑制または制御の手段として用いられることの多い制震壁は、現在の建築基準法上ではあくまで補助的な手段として扱われているため、地震などの水平力に対して耐震性を確保するには、主に法的に有効な耐力壁が使われている。また制震壁は変形減衰用として、あくまで補助的な手段として使用されている。耐力壁および制震壁は、それぞれ別個に働くものとしてその併用を行なわざるを得ない。このように耐力壁および制震壁を併用すると、開口部を設置できる壁面が減少してしまい必然的に閉鎖壁面の比率が増加してしまう。このように閉鎖壁面の比率が増加すると設計の自由度は著しく低下し、設計プランニング的に生活の利便性を損なうこととなる。   However, damping walls, which are often used as a means to control or control the deformation behavior of a building, are treated as auxiliary means under the current Building Standards Law, so they are resistant to horizontal forces such as earthquakes. In order to ensure earthquake resistance, legally effective bearing walls are mainly used. Damping walls are used only as auxiliary means for deformation damping. The bearing wall and the seismic wall must be used together as they work separately. When the bearing wall and the vibration control wall are used together in this way, the wall surface on which the opening can be installed decreases, and the ratio of the closed wall surface inevitably increases. Thus, when the ratio of the closed wall surface is increased, the degree of freedom in design is remarkably lowered, and the convenience of living is impaired in terms of design planning.

これらの対策として、耐力壁や制震壁の配置場所を少なくしても必要十分な耐震性能を得るために、耐力壁と制震壁を平面的に同じ位置に重ねて配置する方法も考えられる。しかし、制震壁の法的な評価が与えられない以上、構造計算上では両者の干渉・共振などから単純に必要な壁の量が半分になる訳ではない。また、耐震部材と制震部材を同じ位置の壁に重ねるようにして用いるため、壁が厚くなってしまい、結果として生活空間が狭くなってしまう問題も生じる。   In order to obtain the necessary and sufficient seismic performance even if the location of the bearing walls and damping walls is reduced as a countermeasure against these, a method of placing the bearing walls and damping walls in the same position in a plane can be considered. . However, as long as no legal evaluation of the damping wall is given, the required amount of wall is not halved in terms of structural calculations due to interference and resonance between the two. In addition, since the earthquake-resistant member and the vibration-damping member are used so as to overlap the wall at the same position, the wall becomes thick, resulting in a problem that the living space becomes narrow.

本発明はこのような点に鑑みてなされたものであり、耐力壁に制震機能を付加した新しい耐震構造とその形成方法に関するものである。木質系建家の壁面の耐震構造において、従来の耐力壁と同じ壁の厚さで、合法的に設計プランニングの自由度を確保でき、耐力性能と制震性能を兼ね備えた耐力制震構造、およびその形成方法を提供することを目的とする。   The present invention has been made in view of these points, and relates to a new earthquake-resistant structure in which a damping function is added to a bearing wall and a method for forming the same. With the same wall thickness as the conventional load-bearing wall in the seismic structure of the wooden building wall, it is possible to legally ensure freedom of design planning, load-bearing seismic structure that combines load-bearing performance and vibration control performance, and An object is to provide a method for forming the same.

本発明では上記問題を解決するために、縦材および横材で構成される建家の構造枠内に制震部材を有する耐力耐震構造において、前記構造枠部材内の対向した面に設けられる固定部と、前記固定部を介して前記構造枠と連結された充腹材とを備え、前記固定部のうち少なくとも1つが制震デバイスであることを特徴とする耐力耐震構造が提供される。   In the present invention, in order to solve the above-described problem, in a load-bearing earthquake-resistant structure having a vibration control member in a structural frame of a building composed of vertical members and cross members, fixings provided on opposing surfaces in the structural frame member There is provided a load-bearing earthquake-resistant structure comprising a portion and a filling material connected to the structural frame via the fixing portion, wherein at least one of the fixing portions is a vibration control device.

これにより、地震によって構造枠を変形する力が加わると、固定部を介して構造枠に備えられた充腹材が地震による応力に対抗し、固定部のうち少なくとも1つに備えられた制震デバイスが地震による応力を減衰させる。   As a result, when a force that deforms the structural frame is applied by an earthquake, the satiety material provided in the structural frame via the fixed portion resists the stress caused by the earthquake, and the vibration control provided in at least one of the fixed portions. The device attenuates the stress caused by the earthquake.

また、本発明では、縦材および横材で構成される建家の構造枠内に制震部材を有する耐力耐震構造において、前記構造枠内に固定部を設ける工程と、前記固定部のうち少なくとも1つに制震デバイスを設ける工程と、前記構造枠に前記固定部を介して前記充腹材を連結する工程とを備えることを特徴とする耐力耐震構造の形成方法が提供される。   Further, in the present invention, in a load-proof and earthquake-resistant structure having a vibration control member in a structural frame of a building composed of vertical members and cross members, a step of providing a fixing portion in the structural frame, and at least of the fixing portion There is provided a method for forming a load-bearing and earthquake-resistant structure, comprising a step of providing a vibration control device in one and a step of connecting the satiety material to the structural frame via the fixing portion.

これにより、耐力耐震構造に加わった地震による応力が構造枠に伝わると、構造枠に固定部を介して備えられた充腹材が地震による応力に対抗し、固定部の少なくとも1つに備えられた制震デバイスデバイスが地震による応力を減衰させる。   As a result, when stress due to an earthquake applied to the load-bearing seismic structure is transmitted to the structural frame, the filling material provided to the structural frame via the fixing portion counters the stress due to the earthquake and is provided in at least one of the fixing portions. The damping device that damps the stress caused by the earthquake.

本発明の耐力耐震構造によれば、耐力耐震構造に加わった地震による応力が構造枠に伝わると、構造枠に固定部を介して備えられた充腹材が地震による応力に対抗し、固定部の少なくとも1つに備えられた制震デバイスが上下方向に摺動して地震による応力を減衰させるので、現在の建築基準法上で補助的な手段として扱われている制震壁に減衰由来の剛性と耐力を与えることが確認されている。
また、制震壁と耐力壁とが一元化できるので、閉鎖壁面の比率が減少し、その分だけ開口部を増やすことができる。これにより設計の自由度、生活の合理性や利便性を向上させることができる
According to the load-bearing earthquake-resistant structure of the present invention, when stress due to an earthquake applied to the load-bearing earthquake-resistant structure is transmitted to the structural frame, the filling material provided to the structural frame via the fixed portion counteracts the stress caused by the earthquake, and the fixed portion Because the vibration control device provided in at least one of the above slides in the vertical direction to attenuate the stress caused by the earthquake, the vibration control wall is treated as an auxiliary means in the current Building Standards Law. It has been confirmed to give rigidity and yield strength.
Moreover, since the damping wall and the bearing wall can be unified, the ratio of the closed wall surface is reduced, and the opening can be increased by that amount. This can improve design freedom, life rationality and convenience.

図1は、第1の実施の形態に係る耐震構造を示す正面図である。FIG. 1 is a front view showing an earthquake-resistant structure according to the first embodiment. 第1の実施の形態の構造枠に、地震による水平力が加わった様子を示す図である。It is a figure which shows a mode that the horizontal force by the earthquake was added to the structure frame of 1st Embodiment. 図3は、制震デバイスの詳細を示す斜視図である。FIG. 3 is a perspective view showing details of the vibration control device. 図4は、第1の実施の形態に係る固定金具の詳細を示す斜視図である。FIG. 4 is a perspective view showing details of the fixing metal fitting according to the first embodiment. 図5は、第1の実施の形態に係る充腹材の形状を示す正面図である。FIG. 5 is a front view showing the shape of the satiety material according to the first embodiment. 図6は、縦材および充腹材に連結された制震デバイスに水平力が加わる様を示す図である。FIG. 6 is a diagram illustrating a state in which a horizontal force is applied to the vibration control device connected to the longitudinal member and the satiety member. 図7は、第2の実施の形態に係る耐震構造を示す正面図である。FIG. 7 is a front view showing the seismic structure according to the second embodiment. 図8は、第2の実施の形態の構造枠に水平力が加わった様子を示す図である。FIG. 8 is a diagram illustrating a state in which a horizontal force is applied to the structure frame of the second embodiment. 図9は、第2の実施の形態に係る固定金具の詳細を示す斜視図である。FIG. 9 is a perspective view showing details of the fixing metal fitting according to the second embodiment. 図10は、第2の実施の形態に係る充腹材の形状を示す正面図である。FIG. 10 is a front view showing the shape of the satiety material according to the second embodiment.

以下、以下、本発明の実施の形態を図面を参照して詳細に説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る耐震構造を示す正面図である。
図1に示すように、耐震部材100は、制震デバイス110、固定金具120、および表裏2枚の充腹材130を備えている。なお便宜上、図1において構造枠200内手前側の斜線で示される充腹材130を第一充腹材130とし、もう一方の構造枠200内奥側充腹材130を第二充腹材130とする。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
FIG. 1 is a front view showing an earthquake-resistant structure according to the first embodiment.
As shown in FIG. 1, the earthquake-resistant member 100 includes a vibration control device 110, a fixing bracket 120, and two front and back satiety members 130. For the sake of convenience, the satiety material 130 indicated by the oblique lines on the front side in the structural frame 200 in FIG. 1 is referred to as the first satiety material 130, and the back satiety material 130 in the other structural frame 200 is defined as the second satisfiable material 130. And

また木質系建家の構造枠200は、左右二本の縦材210と、両者をつなぐ上下2本の横材220とが固定され形成されている。縦材120の間隔は、建屋の構造計画によって広幅にも細幅にも設定可能である。   Further, the structural frame 200 of the wooden building is formed by fixing two left and right vertical members 210 and two upper and lower horizontal members 220 connecting the two. The interval between the vertical members 120 can be set to be wide or narrow depending on the structural plan of the building.

耐震部材100の設置方法は、例えば以下の手順で設置を行う。
2本の縦材210の長手方向三分割点に、制震デバイス110を構造枠200の中心方向に向けて、図示しない複数のネジ例えば角ビットビスで固定する。
The installation method of the earthquake-resistant member 100 is installed in the following procedures, for example.
The vibration control device 110 is fixed to a longitudinal three-part dividing point of the two vertical members 210 with a plurality of screws (not shown), for example, square bit screws, toward the center direction of the structural frame 200.

次に2本の縦材210の中央と、2本の縦材210の両端部のやや中央寄りとに、固定金具120を制震デバイス110と対面する方向に向けて、図示しないネジ例えば角ビットビスで固定する。   Next, a screw (not shown), for example, a square bit screw, is placed at the center of the two vertical members 210 and slightly toward the center of both ends of the two vertical members 210 so that the fixing bracket 120 faces the vibration control device 110. Secure with.

次に構造枠200の内側に沿った形状に加工した第一充腹材130を、第一充腹材130が構造枠200と干渉しないように構造枠200の図1における手前側から建て込む。一方の縦材210に固定された2つの制震デバイス110と、他方の縦材210に固定された3つの固定金具120とに、図示しないネジ例えばコーススレッドビスで第一充腹材130を固定する。これにより、第一充腹材130は、制震デバイス110および固定金具120を介して構造枠200と連結される。また、表裏2枚の充腹材130と、制震デバイス110および固定金具120が干渉する部分は、あらかじめ切り欠いておく必要があるが、切り欠き加工する形状については後述する。   Next, the first satiety member 130 processed into a shape along the inside of the structural frame 200 is built from the front side of the structural frame 200 in FIG. 1 so that the first satiety member 130 does not interfere with the structural frame 200. The first satiety member 130 is fixed to two seismic control devices 110 fixed to one longitudinal member 210 and three fixing brackets 120 fixed to the other longitudinal member 210 with screws (not shown) such as coarse thread screws. To do. Thereby, the first satiety member 130 is connected to the structural frame 200 via the vibration control device 110 and the fixing bracket 120. In addition, it is necessary to cut out the portions where the front and back satiety members 130 interfere with the vibration control device 110 and the fixing bracket 120 in advance, but the shape to be cut will be described later.

次に構造枠200の内側に沿った形状に加工した第二充腹材130を、第二充腹材130が構造枠200と干渉しないように構造枠200の図1における奥側から建て込む。第一充腹材130に固定されていない2つの制震デバイス110および3つの固定金具120に、図示しないネジ例えばコーススレッドビスで第二充腹材130を固定する。これにより、第二充腹材130は、制震デバイス110および固定金具120を介して構造枠200と連結される。よって耐震部材100は、制震デバイス110および固定金具120を介して構造枠200と連結される。   Next, the second satiety material 130 processed into a shape along the inside of the structural frame 200 is erected from the back side of the structural frame 200 in FIG. 1 so that the second satisfiable material 130 does not interfere with the structural frame 200. The second satiety material 130 is fixed to the two seismic control devices 110 and the three fixing brackets 120 that are not fixed to the first satiety material 130 with screws (not shown) such as coarse thread screws. Thereby, the second satiety member 130 is connected to the structural frame 200 via the vibration control device 110 and the fixing bracket 120. Therefore, the earthquake-resistant member 100 is connected to the structural frame 200 via the vibration control device 110 and the fixing bracket 120.

表裏2枚の充腹材130は、地震による応力を受けた構造枠200が歪むことで、構造枠200、制震デバイス110および固定金具120と干渉する部分がでてくる恐れがあるので、干渉する部分はあらかじめ切り欠いておく必要がある。切り欠く部分については後述する。   The two front and back satiety members 130 may interfere with the structural frame 200, the vibration control device 110, and the fixing bracket 120 due to distortion of the structural frame 200 that receives stress due to the earthquake. It is necessary to cut out the part to be cut in advance. The notched portion will be described later.

表裏2枚の充腹材130は、耐力性を備えた板状体例えば構造用合板であって、構造枠200に固定金具120および制震デバイス110を介して固定することで地震による応力に抵抗することが出来る。また、縦材120の間隔や制震デバイスの数量によって特に耐力を要する場合には、充腹材130の厚さを厚くすることで、地震による応力に抵抗する抵抗力を増加させることができる。   The two front and back filling members 130 are plate-like bodies having strength, such as structural plywood, and are fixed to the structural frame 200 via the fixing bracket 120 and the vibration control device 110 to resist stress caused by earthquakes. I can do it. Further, when the proof strength is particularly required depending on the interval between the vertical members 120 and the number of the vibration control devices, the resistance to resist stress caused by the earthquake can be increased by increasing the thickness of the satiety material 130.

また、1枚の充腹材130の形状寸法については、構造用合板の規格サイズである厚さ12mm〜24mmの構造用合板を加工して使用することが望ましい。   Moreover, about the shape dimension of the single filling material 130, it is desirable to process and use the structural plywood of thickness 12mm-24mm which is the standard size of the structural plywood.

また、制震デバイス110および固定金具120を縦材210に固定する際、後で固定される表裏2枚の充腹材130が縦材210の高さ方向の中心線の延長線上にくるように調節して固定することが望ましい。   Further, when the vibration control device 110 and the fixing bracket 120 are fixed to the vertical member 210, the two front and back satiety members 130 to be fixed later are on the extension of the center line in the height direction of the vertical member 210. It is desirable to adjust and fix.

また、第1の実施の形態では、充腹材130は図3および図4に示すように構造枠200に取付けられた制震デバイス110および固定金具120の充腹材取付板115,122を挟みこむように、それぞれ表裏から固定される。   In the first embodiment, the satiety material 130 sandwiches the satiety device 110 attached to the structural frame 200 and the satiety material mounting plates 115 and 122 of the fixing bracket 120 as shown in FIGS. 3 and 4. Each is fixed from the front and back.

図2は、第1の実施の形態の構造枠に、地震による水平力が加わった様子を示す図である。
構造枠200に地震による水平力Pが加わると、2本の縦材210に水平力Pによる応力が伝わり、縦材210に固定された制震デバイス110および固定金具120を介して、表裏2枚の充腹材130にその応力が伝わる。表裏2枚の充腹材130は、制震デバイス110および固定金具120を挟むようにして構造枠200に固定されているので、充腹材130に加わった正負交番で反対向きの水平力Pによる応力は、表裏2枚の充腹材130にそれぞれ圧縮側は圧縮方向に、引張り側は引張り方向に、表裏個別に充腹材130の全体に均一に広がり、応力の向きによって構造枠200を水平方向に傾斜変形させつつ充腹材130全体で構造枠200を支えて正負交番の水平力Pに抵抗する。
FIG. 2 is a diagram illustrating a state in which a horizontal force due to an earthquake is applied to the structural frame of the first embodiment.
When a horizontal force P due to an earthquake is applied to the structural frame 200, the stress due to the horizontal force P is transmitted to the two vertical members 210, and two sheets are attached to the front and back through the vibration control device 110 and the fixing bracket 120 fixed to the vertical member 210. The stress is transmitted to the filling material 130. Since the two front and back satin members 130 are fixed to the structural frame 200 so as to sandwich the vibration control device 110 and the fixing bracket 120, the stress due to the horizontal force P in the opposite direction is positive and negative alternating applied to the satin member 130. The compression side of each of the two front and back satin members 130 is compressed in the compression direction, the tension side is uniformly in the tension direction, and the front and back sides of the satiety member 130 are spread evenly. The structure frame 200 is supported by the entire filling material 130 while being inclined and resists the horizontal force P of positive and negative alternating.

また、充腹材130に伝わる水平力Pによる垂直分力は、充腹材130を傾かせる過程で発生するベクトルである。充腹材130に伝わった垂直分力は、表裏の2枚の充腹材130に連結された制震デバイス110に伝わり、制震デバイス110が上下方向に摺動することで、それぞれの垂直分力を減衰させる。また充腹材130によって水平力Pによる応力が分散されるため、過度の応力が集中して制震デバイス110に伝わり難く、構造枠200にかかった正負交番の水平力Pを、制震デバイス110で効率よく吸収減衰させることができる。構造枠200の縦材120の間隔が細幅Wの場合、地震水平力Pによって派生する垂直分力PvはPv=P/Wで表され、W>1mの場合には垂直分力Pv>Pとなるので、制震デバイス110の数量を割り増しして対処することができる。   Further, the vertical component force due to the horizontal force P transmitted to the satiety material 130 is a vector generated in the process of tilting the satiety material 130. The vertical component force transmitted to the satiety member 130 is transmitted to the vibration control device 110 connected to the two front and back satiety members 130, and the vertical vibration component 110 slides in the vertical direction. Damping force. Further, since stress due to the horizontal force P is dispersed by the filling material 130, excessive stress is concentrated and is difficult to be transmitted to the vibration control device 110, and the positive and negative alternating horizontal force P applied to the structural frame 200 is applied to the vibration control device 110. Can be efficiently absorbed and attenuated. When the interval between the vertical members 120 of the structural frame 200 is narrow W, the vertical component force Pv derived from the seismic horizontal force P is expressed by Pv = P / W, and when W> 1 m, the vertical component force Pv> P Therefore, the quantity of the vibration control device 110 can be increased and dealt with.

図3は、制震デバイスの詳細を示す正面図である。
図3に示すように、制震デバイス110はΩ型の形状をしている。この制震デバイス110は、低降伏点鋼帯状鋼板からなる制震素子111と、縦材に取り付けるための普通鋼製のベースプレートと、充腹材130を取り付けるための充腹材取付板115とを備える。
FIG. 3 is a front view showing details of the vibration control device.
As shown in FIG. 3, the vibration control device 110 has an Ω shape. The vibration control device 110 includes a vibration control element 111 made of a steel plate having a low yield point, a base plate made of ordinary steel for mounting on a vertical member, and a filling material mounting plate 115 for mounting a filling material 130. Prepare.

制震素子111は、加力が弾性限界を超えると塑性変形する低降伏点鋼帯状鋼板で構成され、縦材210に取り付けられる普通鋼製のベースプレート112と、ベースプレート112に取り付けられる2つの取付面113と、取付面113の内側端部から立ち上がる2つの立上部114と、2つの立上部114の間を繋ぎ、構造枠200から伝達される水平力Pによる応力を充腹材130および充腹材取付板115を介して受ける上辺面116とを備える。   The damping element 111 is composed of a low yield point steel strip steel plate that plastically deforms when the applied force exceeds the elastic limit, and a base plate 112 made of ordinary steel that is attached to the longitudinal member 210 and two attachment surfaces that are attached to the base plate 112. 113, the two uprights 114 rising from the inner end of the mounting surface 113, and the two uprights 114 are connected, and stress due to the horizontal force P transmitted from the structural frame 200 is applied to the filling material 130 and the filling material. And an upper side surface 116 received via the mounting plate 115.

上辺面116の両端は、立上部114の外側に突出しており、取付面113方向にΩ状に折り曲げられた形状をしている。   Both ends of the upper side surface 116 protrude to the outside of the upright portion 114 and have a shape bent in an Ω shape toward the mounting surface 113.

制震素子111の延長線状の2つの取付面113はベースプレート112に溶着されており、充腹材取付板115は一般鋼材製で、制震素子111の延長線状の上辺面116の長手方向中心線上に垂直かつベースプレート112短手方向の断面がT形になるように溶着されている。   The two extension line-shaped attachment surfaces 113 of the vibration control element 111 are welded to the base plate 112, the filling material attachment plate 115 is made of a general steel material, and the longitudinal direction of the extension line-like upper side surface 116 of the vibration control element 111 is made. The base plate 112 is welded so that the cross section in the short direction of the base plate 112 is T-shaped on the center line.

充腹材取付板115には、充腹材130をネジで固定するためのネジ穴117が複数開けられており、充腹材130を固定する際は、充腹材取付板115側からネジを締め付け、充腹材取付板115と充腹材130とを固定する。これは、充腹材130側からネジで固定しようとすると、充腹材取付板115に開けられているネジ穴117の場所が不明確であり、充腹材取付板115と充腹材130とを固定する際の位置ずれを防止するためである。   A plurality of screw holes 117 for fixing the satiety material 130 with screws are formed in the satiety material attaching plate 115, and when fixing the satiety material 130, screws are inserted from the satiety material attaching plate 115 side. Fastening and filling material mounting plate 115 and filling material 130 are fixed. If it tries to fix with the screw from the filling material 130 side, the location of the screw hole 117 opened in the filling material attachment plate 115 is unclear, and the filling material attachment plate 115, the filling material 130, This is to prevent positional displacement when fixing the.

図4は、第1の実施の形態に係る固定金具の詳細を示す斜視図である。
図4に示すように、第1の実施形態において固定金具120は縦材210に取り付けるためのベースプレート121と、充腹材130を固定するための充腹材取付板122とを備える。充腹材取付板122は、ベースプレート121の長手方向中心線上に垂直かつベースプレート121短手方向の断面がT形になるように溶着されている。
FIG. 4 is a perspective view showing details of the fixing metal fitting according to the first embodiment.
As shown in FIG. 4, in the first embodiment, the fixing bracket 120 includes a base plate 121 for attaching to the longitudinal member 210 and a filling material attachment plate 122 for fixing the filling member 130. The satiety material mounting plate 122 is welded so that the cross section in the short direction of the base plate 121 is perpendicular to the longitudinal center line of the base plate 121 and has a T shape.

充腹材取付板122には、充腹材130をネジで固定するためのネジ穴123が複数開けられており、充腹材130を固定する際は、充腹材取付板122側からネジを締め付け、充腹材取付板122と充腹材130とを固定する。これは、充腹材130側からネジで固定しようとすると、充腹材取付板122に開けられているネジ穴123の場所が不明確であり、充腹材取付板122と充腹材130とを固定する際の位置ずれを防止するためである。   A plurality of screw holes 123 for fixing the satiety material 130 with screws are formed in the satiety material mounting plate 122. When fixing the satiety material 130, screws are inserted from the side of the satiety material mounting plate 122. Fastening, the satiety material mounting plate 122 and the satiety material 130 are fixed. If it tries to fix with the screw from the filling material 130 side, the location of the screw hole 123 opened in the filling material attachment plate 122 is unclear, and the filling material attachment plate 122, the filling material 130, This is to prevent positional displacement when fixing the.

図5は、第1の実施の形態に係る充腹材の形状を示す正面図である。
図5に示すように、切り欠いた充腹材130の形状は概ね船体側面状の形状をしている。表裏2枚の充腹板130は同形状で逆対称のものである。
FIG. 5 is a front view showing the shape of the satiety material according to the first embodiment.
As shown in FIG. 5, the shape of the notched satiety material 130 is generally a hull side surface shape. The two front and back filling plates 130 have the same shape and are inversely symmetric.

切欠部131は、充腹材取付板に表裏に重ね合わせて取付けた充腹材130と縦材210とを連結する固定金具120が表裏互いに干渉しないように、あらかじめ切り欠いておく必要がある。   The notch 131 needs to be cut out in advance so that the fixing bracket 120 that connects the filling member 130 and the longitudinal member 210 that are attached to the filling member attachment plate so as to overlap each other does not interfere with each other.

また切欠部132は、重ねあわせる充腹材130と縦材210とを連結する制震デバイス110が互いに干渉するため、あらかじめ切り欠いておく必要がある。   Moreover, since the vibration control device 110 which connects the filling material 130 and the longitudinal member 210 to be overlapped with each other interferes with the cutout portion 132, it is necessary to cut out the cutout portion 132 in advance.

切欠部分の形状は特に指定はないが、切欠面積を大きくすると、応力によって充腹材130が変形する可能性があるので、切欠部分は必要十分に取ることが望ましい。   Although the shape of the notch portion is not particularly specified, if the notch area is increased, the satiety material 130 may be deformed by stress. Therefore, it is desirable to take the notch portion as necessary and sufficient.

図6は、縦材および充腹材に連結された制震デバイスに水平力が加わる様子を示す図である。   FIG. 6 is a diagram illustrating a state in which a horizontal force is applied to the vibration control device connected to the longitudinal member and the satiety member.

(a)は、水平力が加わる前の状態を示す図である。
(a)に示すように、水平力が加わらなければ、固定された状態を保っている。
(A) is a figure which shows the state before a horizontal force is added.
As shown in (a), when a horizontal force is not applied, the fixed state is maintained.

(b)は、水平力Paが矢印の方向に加わった時の様子を示す図である。
(b)に示すように、水平力Paが矢印方向から加わると、充腹材130を介し制震デバイス110に伝わった水平力Paからの応力により、弾性限界を超えると制震素子111は塑性変形し、(b)のように、上部の立上部114が制震素子111の外側に湾曲し、下部の立上部114が制震素子111の内側に湾曲する。
(B) is a figure which shows a mode when the horizontal force Pa is added to the direction of the arrow.
As shown in (b), when the horizontal force Pa is applied from the direction of the arrow, if the elastic limit is exceeded by the stress from the horizontal force Pa transmitted to the vibration control device 110 via the filling material 130, the vibration control element 111 is plastic. As shown in FIG. 5B, the upper rising portion 114 is bent outward from the vibration control element 111 and the lower rising portion 114 is bent inside the vibration control element 111.

(c)は、水平力Pbが矢印の方向に加わった様子を示す図である。
(b)の様な水平力Paが加わったことによる反動で、逆方向の水平力Pbが加わると、充腹材130を介し制震デバイス110に伝わった水平力Pbからの応力により、弾性限界を超えると制震素子111は塑性変形し、(c)のように、上部の立上部114が制震素子111の内側に湾曲し、下部の立上部114が制震素子111の外側に湾曲する。
(C) is a figure which shows a mode that the horizontal force Pb was added to the direction of the arrow.
When the horizontal force Pb in the reverse direction is applied due to the reaction caused by the application of the horizontal force Pa as in (b), the elastic limit is caused by the stress from the horizontal force Pb transmitted to the vibration control device 110 via the filling material 130. If the upper limit is exceeded, the damping element 111 is plastically deformed, and the upper rising part 114 is bent inside the damping element 111 and the lower rising part 114 is bent outside the damping element 111 as shown in FIG. .

上記のように、制震素子111の塑性変形により制震デバイス110が上下方向に摺動することで水平力PaおよびPbを減衰させることができる。   As described above, the horizontal forces Pa and Pb can be attenuated by the vibration control device 110 sliding in the vertical direction by plastic deformation of the vibration control element 111.

〔第2の実施の形態〕
次に、本発明の第2の実施の形態について説明する。本実施の形態の耐震構造は、充腹材の枚数が1枚となること以外は、第1の実施の形態で示した構成とほぼ同様である。このため、上記第1の実施の形態とほぼ同様の構成部分については同一の符号を付すなどして適宜その説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. The seismic structure of the present embodiment is substantially the same as the configuration shown in the first embodiment except that the number of satiety materials is one. For this reason, about the component similar to the said 1st Embodiment, the same code | symbol is attached | subjected etc., and the description is abbreviate | omitted suitably.

図7は、第2の実施の形態に係る耐震構造を示す正面図である。
図7に示すように、耐震部材100は、制震デバイス110、固定金具120、および充腹材130を備えている。固定金具120には第1の実施の形態の固定金具120と異なり充腹材130取付用のためのボルト孔が1つ明けられている。
FIG. 7 is a front view showing the seismic structure according to the second embodiment.
As shown in FIG. 7, the earthquake-resistant member 100 includes a vibration control device 110, a fixing bracket 120, and a filling material 130. Unlike the fixing bracket 120 of the first embodiment, the fixing bracket 120 has one bolt hole for attaching the filling member 130.

また木質系建家の構造枠200は、左右二本の縦材210と、両者をつなぐ上下二本の横材220から形成されている。   The structural frame 200 of the wooden building is formed of two vertical members 210 on the left and right sides, and two horizontal members 220 on the upper and lower sides connecting the two.

耐震部材100の設置方法は、例えば以下の手順で設置を行う。
2本の縦材210の長手方向三分割点に、制震デバイス110を構造枠200の中心方向に向けて、図示しない複数のネジ例えば角ビットビスで固定する。
The installation method of the earthquake-resistant member 100 is installed in the following procedures, for example.
The vibration control device 110 is fixed to a longitudinal three-part dividing point of the two vertical members 210 with a plurality of screws (not shown), for example, square bit screws, toward the center direction of the structural frame 200.

次に、2本の横材210の中央に、固定金具120を構造枠200の中心方向に向けて、図示しないボルトとナットで固定する。   Next, the fixing bracket 120 is fixed to the center of the two cross members 210 with a bolt and a nut (not shown) toward the center of the structural frame 200.

次に、構造枠200の内側に沿った形状に加工した充腹材130を、充腹材130が構造枠200と干渉しないように構造枠200の一方から建て込み、図示しない例えばコーススレッドビスで4つの制震デバイス110に固定し、2つの固定金具120には図示しないボルトおよびナットで固定する。これにより、充腹材130は構造枠200と制震デバイス110および固定金具120(b)を介して連結される。充腹材130の形状については後述する。   Next, the satiety material 130 processed into a shape along the inside of the structural frame 200 is built from one side of the structural frame 200 so that the satiety material 130 does not interfere with the structural frame 200. It fixes to the four seismic control devices 110, and it fixes to the two fixing bracket 120 with the volt | bolt and nut which are not shown in figure. Thereby, the filling material 130 is connected with the structural frame 200 via the vibration control device 110 and the fixing bracket 120 (b). The shape of the satiety material 130 will be described later.

充腹材130は、耐力性を備えた板状体例えば構造用合板であって、構造枠200に固定することで地震による水平力に抵抗することが出来る。また、充腹材130の厚さを厚くすることで、水平力に抵抗する抵抗力を増加させることができる。   The satiety material 130 is a plate-like body having strength, such as a structural plywood, and can be fixed to the structural frame 200 to resist a horizontal force caused by an earthquake. Further, by increasing the thickness of the filling material 130, it is possible to increase the resistance force that resists the horizontal force.

また、充腹材130の形状寸法については、規格サイズである厚さ12mm〜24mmの合板を加工して使用することが望ましい。   Moreover, about the shape dimension of the filling material 130, it is desirable to process and use the plywood of thickness 12mm-24mm which is a standard size.

また、制震デバイス110および固定金具120(b)を縦材210および横材220に固定する際、後で固定される充腹材130が構造枠200の高さ方向中心線上にくるように調節して固定することが望ましい。   Further, when the damping device 110 and the fixing bracket 120 (b) are fixed to the vertical member 210 and the horizontal member 220, the satiety member 130 to be fixed later is adjusted to be on the center line in the height direction of the structural frame 200. It is desirable to fix it.

また、第2の実施の形態では、充腹材130を構造枠200の一方から建て込み、制震デバイス110および固定金具120を介して構造枠200に固定したが、充腹材130を中心に充腹材の上部が表面から、下部が裏面からというように、構造枠200の表裏から、制震デバイス110および固定金具120で充腹材130を挟みこむようにして固定してもよい。   In the second embodiment, the satiety material 130 is built from one side of the structural frame 200 and fixed to the structural frame 200 via the vibration control device 110 and the fixing bracket 120. The satiety material 130 may be sandwiched between the seismic control device 110 and the fixing bracket 120 from the front and back of the structural frame 200 such that the upper portion of the satiety material is from the front surface and the lower portion is from the back surface.

図8は、第2の実施の形態の構造枠に水平力が加わった様子を示す図である。
構造枠200に加わった地震による水平力Pは、制震デバイス110および固定金具120を介して構造枠200に固定された充腹材130に水平力Pが伝わる。充腹材130は制震デバイス110および固定金具120で構造枠200に固定されており、一体となっているので、充腹材130に加わった水平力Pによる応力によって構造枠200は変形しつつ、さらに水平力Pは充腹材130の全体に面上に均一に広がり、充腹材130全体で構造枠200を支えて水平力Pに抵抗する。
FIG. 8 is a diagram illustrating a state in which a horizontal force is applied to the structure frame of the second embodiment.
The horizontal force P due to the earthquake applied to the structural frame 200 is transmitted to the filling material 130 fixed to the structural frame 200 via the vibration control device 110 and the fixing bracket 120. Since the satiety material 130 is fixed to the structural frame 200 by the vibration control device 110 and the fixing bracket 120 and is integrated, the structural frame 200 is deformed by the stress due to the horizontal force P applied to the satiety material 130. Further, the horizontal force P spreads uniformly on the entire surface of the satiety material 130 and supports the structural frame 200 by the entire satiety material 130 to resist the horizontal force P.

一方、充腹材130に伝わった水平力Pによる垂直分力は、充腹材130に連結された制震デバイス110に伝わり、制震デバイス110が上下方向に摺動することで垂直分力を減衰させる。また水平力Pによる応力が充腹材130によって充腹材130の面上に分散されるため、過度の応力が制震デバイス110に伝わること無く、構造枠200にかかった水平力Pを、制震デバイス110が効率よく減衰することができる。上記の水平力Pによる変形は左右交番の水平荷重であるから、圧縮方向と引張り方向で変形方向のみが変わり、変形量は非線形変化で非対称である。   On the other hand, the vertical component force due to the horizontal force P transmitted to the satiety material 130 is transmitted to the seismic control device 110 connected to the satiety material 130, and the seismic control device 110 slides in the vertical direction to generate the vertical component force. Attenuate. In addition, since the stress due to the horizontal force P is dispersed on the surface of the satiety material 130 by the satiety material 130, the horizontal force P applied to the structural frame 200 is suppressed without transmitting excessive stress to the vibration control device 110. The seismic device 110 can be attenuated efficiently. Since the deformation due to the horizontal force P is an alternating horizontal load, only the deformation direction changes between the compression direction and the tension direction, and the deformation amount is non-linear and asymmetric.

図9は、第2の実施の形態に係る固定金具の詳細を示す斜視図である。
図9に示すように、第2の実施形態において固定金具120は縦材210に取り付けるためのベースプレート121と、充腹材130を固定するための充腹材取付板122とを備える。充腹材取付板122は、ベースプレート121の長手方向中心線上に垂直かつベースプレート121短手方向の断面がT形になるように溶着されている。
FIG. 9 is a perspective view showing details of the fixing metal fitting according to the second embodiment.
As shown in FIG. 9, in the second embodiment, the fixing bracket 120 includes a base plate 121 for attaching to the vertical member 210 and a filling material attachment plate 122 for fixing the filling material 130. The satiety material mounting plate 122 is welded so that the cross section in the short direction of the base plate 121 is perpendicular to the longitudinal center line of the base plate 121 and has a T shape.

充腹材取付板122には、充腹材130をボルトで固定するためのボルト孔124が1つ明けられている。充腹材130を固定する際は、取り付け位置に合わせた充腹材130の所望の位置に孔を明け、図示しないボルトとナットで充腹材130と充腹材取付板122とをピン接合する。   The filling material mounting plate 122 has one bolt hole 124 for fixing the filling material 130 with a bolt. When fixing the satiety material 130, a hole is made in a desired position of the satiety material 130 in accordance with the attachment position, and the satiety material 130 and the satiety material mounting plate 122 are pin-joined with bolts and nuts (not shown). .

図10は、第2の実施の形態に係る充腹材の形状を示す正面図である。
図10に示すように充腹材130は、長方形の四隅を切り取った形状をしている。
FIG. 10 is a front view showing the shape of the satiety material according to the second embodiment.
As shown in FIG. 10, the satiety material 130 has a shape in which four corners of a rectangle are cut off.

切欠部133は、水平力Pにより構造枠200が変形した際、充腹材130の隅角部と構造枠200とが干渉する恐れがあるため、あらかじめ切り欠いておく必要がある。   When the structural frame 200 is deformed by the horizontal force P, the notch 133 may need to be cut out in advance because the corners of the filling material 130 and the structural frame 200 may interfere with each other.

切欠部133の形状は特に指定はないが、切欠面積を多くすると、応力によって充腹材130が変形する可能性があるので、切欠部分は必要十分とすることが望ましい。   The shape of the notch 133 is not particularly specified, but if the notch area is increased, the satiety material 130 may be deformed by stress, so it is desirable that the notch is necessary and sufficient.

上記のように、本発明である耐力制震壁による耐震構造、およびその方法を用いることで、縦材210に固定金具および制震デバイスを介して固定された充腹材130が地震による水平力Pに抵抗し、縦材210に固定され充腹材130と連結した制震デバイス110が地震による水平力Pを吸収減衰させる。これにより、耐力性能と制震性能を兼ね備えた耐震構造を簡易かつ低コストで形成でき、建築基準法に合致した耐震性のある設計プランニングの自由度を確保できる。   As described above, by using the earthquake-resistant structure by the load-bearing damping wall and the method thereof according to the present invention, the satiety member 130 fixed to the vertical member 210 via the fixing bracket and the damping device is applied to the horizontal force due to the earthquake. The seismic control device 110 that resists P and is fixed to the longitudinal member 210 and connected to the filling member 130 absorbs and attenuates the horizontal force P caused by the earthquake. As a result, it is possible to easily and inexpensively form an earthquake-resistant structure having both load-bearing performance and vibration control performance, and to ensure freedom of design planning with earthquake resistance that meets the Building Standards Act.

また、上記実施例では、図7、図8のように1枚の充腹材130に対して4個の制震デバイス110と2個の固定金具120を使用したが、これらは設置箇所の状況に応じて制震デバイス110および固定金具120の数量、設置箇所を適宜変更することができる。   Moreover, in the said Example, although the four damping devices 110 and the two fixing brackets 120 were used with respect to one filling material 130 like FIG. 7, FIG. 8, these are the conditions of an installation location. The quantity and installation locations of the vibration control device 110 and the fixing bracket 120 can be changed as appropriate.

また、細幅壁の場合、筋かいを用いた耐力壁は、斜材である筋かいが鈍角に近づき、水平力の入力ロスのため耐震性能が極度に低下し、一般的には耐力壁と認められない乱尺寸法の雑壁として取り扱われることが多い。これに対して上記のような耐力制震部材を用いることで耐力性能と制震性能を兼ね備えた細幅の耐震構造を形成することが可能となる。 Also, in the case of narrow walls, the bearing wall using the brace is that the diagonal brace approaches an obtuse angle, and the seismic performance is extremely reduced due to the input loss of horizontal force. It is often handled as a random wall with irregular dimensions that cannot be recognized. On the other hand, it becomes possible to form a narrow earthquake-resistant structure having both the load-bearing performance and the damping performance by using the load-bearing damping member as described above.

また、構造枠200に制震デバイス110および固定金具120を介して充腹材130を固定することによって構造枠200が構造的に一体化し、当該部分の断面性能である有効断面積、断面係数、および断面二次モーメントなどを向上できる。   Moreover, the structural frame 200 is structurally integrated by fixing the filling material 130 to the structural frame 200 via the vibration control device 110 and the fixing bracket 120, and the effective cross-sectional area, the sectional modulus, which is the sectional performance of the part, In addition, the second moment of the cross section can be improved.

また、筋かいを用いた耐力壁では、細幅になって構造枠200の縦材210の高さと間隔の比率によって筋かいの角度が上がった場合、構造枠200への水平力の入力ロスが発生するが、面状体である充腹材130を使用することによって、垂直分力を均等に制震デバイス110に供給でき、耐震性能が向上する。   Moreover, in the bearing wall using the brace, when the brace angle is increased by the ratio of the height and the interval of the vertical members 210 of the structural frame 200 due to the narrow width, the horizontal force input loss to the structural frame 200 is reduced. Although generated, by using the satiety material 130 that is a planar body, the vertical component force can be evenly supplied to the vibration control device 110, and the earthquake resistance is improved.

また、充腹材130に例えば構造用合板を使用することで、施工現場で建屋の軒高さに合わせて合板の切断調節の加工や取り付け施工が簡単になり、工期を大幅に短縮しコストを低減させることができる。   In addition, by using structural plywood for the filling material 130, for example, it becomes easy to adjust and cut the plywood according to the eave height of the building at the construction site, greatly reducing the construction period and cost. Can be reduced.

100 耐震部材
110 制震デバイス
111 制震素子
112、121 ベースプレート
113 取付面
114 立上部
115、122 充腹材取付板
116 上辺面
117 ネジ穴
120 固定金具
123 ネジ穴
124 ボルト孔
130 充腹材
131、132、133 切欠部
200 構造枠
210 縦材
220 横材
P、Pa、Pb 水平力
DESCRIPTION OF SYMBOLS 100 Earthquake-resistant member 110 Damping device 111 Damping element 112, 121 Base plate 113 Mounting surface 114 Standing upper part 115, 122 Filling material mounting plate 116 Upper side surface 117 Screw hole 120 Fixing bracket 123 Screw hole 124 Bolt hole 130 Filling material 131, 132, 133 Notch 200 Structural frame 210 Vertical member 220 Cross member P, Pa, Pb Horizontal force

Claims (12)

縦材および横材で構成される建家の構造枠内に制震部材を有する耐力耐震構造において、
前記構造枠部材内の対向した面に設けられる固定部と、
前記固定部を介して前記構造枠と連結された充腹材と、
を備え、
前記固定部のうち少なくとも1つが制震デバイスであることを特徴とする耐力耐震構造。
In a load-bearing and earthquake-resistant structure that has a damping member in the structural frame of a building composed of vertical and cross members,
Fixed portions provided on opposing surfaces in the structural frame member;
A satiety material connected to the structural frame via the fixing part;
With
At least one of the fixed parts is a seismic control device.
前記充腹材が、
耐力性を備えた板状体であることを特徴とする請求項1記載の耐力耐震構造。
The satiety material is
The proof earthquake-resistant structure according to claim 1, wherein the proof earthquake-resistant structure is a plate-like body having proof strength.
前記耐力性を備えた板状体が構造用合板であることを特徴とする請求項2記載の耐力耐震構造。   The proof earthquake-resistant structure according to claim 2, wherein the plate-like body having the proof strength is a structural plywood. 前記充腹材は、
前記構造枠を変形する力が加わるときに前記充腹材が前記構造枠と干渉する部分に切欠部を設けたことを特徴とする請求項1記載の耐力耐震構造。
The satiety material is
The load-proof and earthquake-resistant structure according to claim 1, wherein a notch portion is provided in a portion where the filling material interferes with the structural frame when a force for deforming the structural frame is applied.
前記充腹材が、
複数枚の板状部材を重ねて配置され、それぞれの板状部材に対して固定部が設けられていることを特徴とする請求項1記載の耐力耐震構造。
The satiety material is
The load-proof and earthquake-resistant structure according to claim 1, wherein a plurality of plate-like members are arranged so as to overlap each other, and a fixing portion is provided for each plate-like member.
前記板状部材は、
前記構造枠に固定された他の前記板状部材に設けられた前記固定部と干渉する部分に切欠部を備えたことを特徴とする請求項5記載の耐力耐震構造。
The plate-like member is
The load-proof and earthquake-resistant structure according to claim 5, wherein a notch portion is provided in a portion that interferes with the fixing portion provided in the other plate-like member fixed to the structural frame.
前記構造枠内が複数の固定部を備える場合、
前記固定部同士または前記制震デバイス同士、
または前記固定部と前記制震デバイスとを対向する位置に取り付けることができることを特徴とする請求項1記載の耐力耐震構造。
When the structure frame includes a plurality of fixing parts,
Between the fixed parts or between the vibration control devices,
The load-proof and earthquake-resistant structure according to claim 1, wherein the fixed portion and the seismic control device can be attached at opposing positions.
前記制震デバイスは、加力が弾性限界を超えると塑性変形する帯状鋼板で構成される制震素子と、
ベースプレートと、
充腹材取付板と、
を備え、
前記制震素子は、
前記ベースプレートに取り付けるための2つの取付面と、
前記取付面の内側端部から立ち上がる2つの立上部と、
前記立上部間を繋ぎ、前記構造枠から伝達される地震の振動が前記取付板を介して伝わる上辺面と、
を備えることを特徴とする請求項1記載の制震デバイス。
The seismic control device is a seismic control element composed of a strip steel plate that is plastically deformed when the applied force exceeds the elastic limit;
A base plate;
A filling material mounting plate;
With
The vibration control element is
Two mounting surfaces for mounting to the base plate;
Two uprights rising from the inner end of the mounting surface;
An upper side surface that connects between the uprights and transmits vibration of an earthquake transmitted from the structural frame via the mounting plate;
The vibration control device according to claim 1, further comprising:
前記制震素子は、
前記帯状鋼板が低降伏点鋼であることを特徴とする請求項8記載の制震デバイス。
The vibration control element is
The vibration control device according to claim 8, wherein the strip steel plate is a low yield point steel.
前記上辺面の両端辺は、前記立上部外側と同等かこれより突出していることを特徴とする請求項8記載の制震デバイス。   9. The vibration control device according to claim 8, wherein both end sides of the upper side surface are equal to or protrude from the outside of the upright portion. 前記上辺面の両端辺は、前記取付面方向に折り曲げられていることを特徴とする請求項8記載の制震デバイス。   9. The vibration control device according to claim 8, wherein both end sides of the upper side surface are bent in the mounting surface direction. 縦材および横材で構成される建家の構造枠内に制震部材を有する耐力耐震構造において、
前記構造枠内に固定部を設ける工程と、
前記固定部のうち少なくとも1つに制震デバイスを設ける工程と、
前記構造枠に前記固定部を介して前記充腹材を連結する工程と、
を備えることを特徴とする耐力耐震構造の形成方法。
In a load-bearing and earthquake-resistant structure that has a damping member in the structural frame of a building composed of vertical and cross members,
Providing a fixing portion in the structural frame;
Providing a vibration control device on at least one of the fixed parts;
Connecting the satiety material to the structural frame via the fixing portion;
A method for forming a load-bearing earthquake-resistant structure, comprising:
JP2016027695A 2016-02-17 2016-02-17 Seismic structure with plywood web load-bearing damping wall and its formation method Active JP6765822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016027695A JP6765822B2 (en) 2016-02-17 2016-02-17 Seismic structure with plywood web load-bearing damping wall and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016027695A JP6765822B2 (en) 2016-02-17 2016-02-17 Seismic structure with plywood web load-bearing damping wall and its formation method

Publications (2)

Publication Number Publication Date
JP2017145606A true JP2017145606A (en) 2017-08-24
JP6765822B2 JP6765822B2 (en) 2020-10-07

Family

ID=59681232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016027695A Active JP6765822B2 (en) 2016-02-17 2016-02-17 Seismic structure with plywood web load-bearing damping wall and its formation method

Country Status (1)

Country Link
JP (1) JP6765822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109837995A (en) * 2019-03-18 2019-06-04 武汉理工大学 A kind of frame-filling wall flexible connecting structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187157U (en) * 1986-05-19 1987-11-28
JPH0374757U (en) * 1989-07-12 1991-07-26
JP2007077601A (en) * 2005-09-12 2007-03-29 Misawa Homes Co Ltd Installation structure of vibration control panel
JP2008308911A (en) * 2007-06-15 2008-12-25 Satou:Kk Diagonal support device
JP2010007377A (en) * 2008-06-27 2010-01-14 Daiken Corp Seismic response control structure
JP2010261171A (en) * 2009-04-30 2010-11-18 Tokai Rubber Ind Ltd Seismic control device for wooden building
JP2013019233A (en) * 2011-07-14 2013-01-31 Satou:Kk Framework structure for vibration control wall

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187157U (en) * 1986-05-19 1987-11-28
JPH0374757U (en) * 1989-07-12 1991-07-26
JP2007077601A (en) * 2005-09-12 2007-03-29 Misawa Homes Co Ltd Installation structure of vibration control panel
JP2008308911A (en) * 2007-06-15 2008-12-25 Satou:Kk Diagonal support device
JP2010007377A (en) * 2008-06-27 2010-01-14 Daiken Corp Seismic response control structure
JP2010261171A (en) * 2009-04-30 2010-11-18 Tokai Rubber Ind Ltd Seismic control device for wooden building
JP2013019233A (en) * 2011-07-14 2013-01-31 Satou:Kk Framework structure for vibration control wall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109837995A (en) * 2019-03-18 2019-06-04 武汉理工大学 A kind of frame-filling wall flexible connecting structure

Also Published As

Publication number Publication date
JP6765822B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
JP5885950B2 (en) Seismic control wall frame structure
JP6209785B2 (en) Anti-vibration stopper structure and anti-vibration stand having the anti-vibration stopper structure
KR101297416B1 (en) Damping system and construction method of that
KR100798457B1 (en) Vibration control structure
JP6161844B1 (en) Log wall reinforcement structure
JP4070117B2 (en) Vibration control device
JP2010216611A (en) Seismic response control metallic plate
JP6765822B2 (en) Seismic structure with plywood web load-bearing damping wall and its formation method
JP2007146437A (en) Vibration control device of building
JP2011157728A (en) Damper and wood construction using the same
JP5568343B2 (en) Vibration control device for wooden buildings
JP6717636B2 (en) Vibration control device
JP2016017323A (en) Seismic control structure
JP5305756B2 (en) Damping wall using corrugated steel
JP2010024656A (en) Joint damper and structure of joint portion
JP6913174B2 (en) Building panel mounting bracket and building panel mounting structure using it
JP2011137311A (en) Reinforcing fitting for wooden building, and method for reinforcing wooden building
JP4279846B2 (en) Reinforcement structure of wooden frame building
KR102311233B1 (en) Emergency reinforced steel hysteresis damper for secondary deformation control in the event of an earthquake in a wooden structure
JP4354390B2 (en) Vibration control device for wooden houses
JP4825940B1 (en) Seismic panel
JP2010007311A (en) Vibration damper
JP7362534B2 (en) energy absorbing material
KR102462907B1 (en) Seismic reinforceme bracing steel frame and seismic reinforceme method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200916

R150 Certificate of patent or registration of utility model

Ref document number: 6765822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250