JP2017142259A - Radioactive waste processing and removal method of radioactive contaminant - Google Patents

Radioactive waste processing and removal method of radioactive contaminant Download PDF

Info

Publication number
JP2017142259A
JP2017142259A JP2017076318A JP2017076318A JP2017142259A JP 2017142259 A JP2017142259 A JP 2017142259A JP 2017076318 A JP2017076318 A JP 2017076318A JP 2017076318 A JP2017076318 A JP 2017076318A JP 2017142259 A JP2017142259 A JP 2017142259A
Authority
JP
Japan
Prior art keywords
cesium
water
strontium
soil
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017076318A
Other languages
Japanese (ja)
Inventor
竹田眞司
Shinji Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2017142259A publication Critical patent/JP2017142259A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing a radioactive substance from soil or the like having the radioactive substance adsorbed thereon.SOLUTION: Soil or the like having a radioactive substance adsorbed thereon is brought into contact with halogen such as fluorine to obtain halide, and after eluting it with water, a solution is electrolyzed, to thereby recover the radioactive substance.SELECTED DRAWING: Figure 5

Description

原子力発電が何重にもの安全装置で守られていても何かの緊急事態で冷却水が補給できない場合にもウラン燃料ペレット1つとウラン燃料ペレット1つとの間には中性子吸収物質を置いて中性子吸収物質が溶融してウラン燃料ペレットの周りにとりついて核分裂を抑えて崩壊熱も抑えてメルトダウンやメルトスル−しにくい技術、高速増殖炉では液体ナトリュウムは使わなく中性子を高速に跳ね返す他の物質を使う、中性子を高速に跳ね返す物質を容器に入れてそこから外側に有る冷却水を過熱蒸気や過熱高温水にして発電する、中性子を高速に跳ね返す物質を配管の中を長く移動させない、液体ナトリュウムを使用する場合は冷却水と液体ナトリュウムが入っている容器との間は2重構造以上にする、高レベル放射能廃棄物の有効利用や放射能汚染物質の除去方法、 Even if the nuclear power generation is protected by multiple safety devices, even if the cooling water cannot be replenished in some emergency, a neutron absorbing material is placed between one uranium fuel pellet and one uranium fuel pellet. Absorbing material melts around uranium fuel pellets, suppresses fission, suppresses heat of decay, prevents meltdown and meltthrough, and fast breeder reactor does not use liquid sodium but uses other materials that repel neutrons at high speed Uses liquid sodium that does not move the neutron rebounding material in the pipe for a long time, using a superheated steam or superheated high-temperature water as the cooling water on the outside. In order to effectively use and release high-level radioactive waste, the cooling water and the container containing liquid sodium should be at least a double structure. The method of removing the ability pollutants,

今までの原子力発電は何重もの安全装置になっていても何かの緊急事態で冷却水が補給されないと中性子吸収制御棒を注入してもウラン燃料ペレットで核分裂はすべてすぐに止まらなく崩壊熱も出ていてウラン燃料ペレットは非常に高温になってメルトダウン、メルトスル−になって大事故になって行く、高速増殖炉では中性子を跳ね返して冷却に使うのに液体ナトリュウムを使用していてナトリュウムは酸化力が非常に強く水の酸素ともすぐに反応して大事故へとなって行く、高レベル放射能廃棄物の有効利用はなく処分に困っている、放射能汚染物質の除去と処理に困っている、 Even if nuclear power generation so far has been a safety device of multiple layers, if the cooling water is not replenished in some emergency situation, even if the neutron absorption control rod is injected, all nuclear fission does not stop immediately but decay heat The uranium fuel pellets are very hot and melt down, melt through and become a major accident. In the fast breeder reactor, neutrons are bounced and liquid sodium is used for cooling. Has a strong oxidizing power and reacts quickly with oxygen in water, resulting in a major accident. There is no effective use of high-level radioactive waste, and it is difficult to dispose of radioactive pollutants. I'm worried,

何重にも安全装置になっている原子力発電で何かの緊急事態で冷却水が補給されなくてもウラン燃料ペレット1つとウラン燃料ペレット1つとの間に中性子吸収物質を置いて中性子吸収物質が溶融してウラン燃料ペレットの周りにとりついて核分裂をすべてすぐに停止して崩壊熱もそんなに出ないようにしてメルトダウンやメルトスル−などが起きないようにして大事故へとならないようにする、
高速増殖炉では中性子を高速に跳ね返す物質に液体ナトリュウムでなく他の中性子を高速に跳ね返す物質を使用するのと冷却には水を使用する、中性子を高速に跳ね返す物質を容器の中に入れてその外側には冷却水を置いて過熱蒸気や過熱高温水にして発電する、中性子を高速に跳ね返す物質を配管の中を長く移動させない、液体ナトリュウムを使用する場合は液体ナトリュウムが入っている容器と冷却水との間を2重構造以上にする、高レベル放射能廃棄物を細かくしてゲルマニュウム半導体や太陽光発電素子を使用して発電を起こして利用する、放射能汚染物質の中の放射能を放射能とくっ付きやすい物質でくっ付けて除去する、
何重にも安全装置になっている原子力発電で何かの緊急事態で冷却水が補給されなく中性子吸収制御棒を注入してもウラン燃料ペレットの集合体と集合体との間に中性子吸収制御棒が入るのでウラン燃料ペレット集合体の中でのウラン燃料ペレットの間では中性子が飛び交って少しではあるが核分裂を続けているのであってそれと崩壊熱も出ていてウラン燃料ペレットは非常に高温になるのでそれを解決すね為にはウラン燃料ペレット一つとウラン燃料ペレット一つとの間に中性子吸収物質を置いてある中性子吸収物質が溶融してウラン燃料ペレット1つ1つの回り一面に覆う事でウラン燃料ペレット一つ一つの核分裂は止まって崩壊熱も溶融している中性子吸収物質に熱が移行してウラン燃料ペレットは高温にはならなくその間に緊急事態を解決してメルトダウンやメルトスル−などは起きなく大事故へとはならない、
高速増殖炉では中性子を跳ね返す物質に液体ナトリュウムではなく他の中性子を跳ね返す物質を使用して冷却には水を使用する、
中性子を高速で跳ね返す物質を容器に入れてその外側に冷却水を置いて過熱蒸気や過熱高温水にして発電する、中性子を高速に跳ね返す物質を配管の中を長く移動させない、
液体ナトリュウムを使用する場合は液体ナトリュウムが入っている容器と冷却水との灰田を2重構造以上にする、
高レベル放射能廃棄物を細かくして両端からゲルマニゥム半導体や太陽光発電素子で挟んで電気を起こさせる、
放射能汚染物質の中の放射能とくっ付きやすい物質でくっ付けて放射能を除去する、
Even if the nuclear power generation is a multi-layered safety device and cooling water is not replenished in some emergency, a neutron absorbing material is placed between one uranium fuel pellet and one uranium fuel pellet. Melt and stick around uranium fuel pellets, stop all fission immediately and prevent so much decay heat so that meltdown and meltthrough do not occur and cause a major accident,
In a fast breeder reactor, a substance that repels neutrons at high speed is used instead of liquid sodium and a substance that repels other neutrons at high speed and water is used for cooling, and a substance that repels neutrons at high speed is placed in a container. Cooling water is placed on the outside to generate power using superheated steam or superheated high-temperature water. Substances that bounce neutrons at high speed are not moved in the pipe for a long time. If liquid sodium is used, a container containing liquid sodium and cooling is used. The radioactivity in the radioactive pollutant that uses a germanium semiconductor and a photovoltaic power generation device to generate power using a high-level radioactive waste that has a double structure or more between water and finely divided. Stick and remove with radioactive and easy-to-stick substances,
Neutron absorption control between assemblies of uranium fuel pellets even if neutron absorption control rods are injected without cooling water being replenished in some emergency due to nuclear power generation that is a multi-layered safety device As the rod enters, neutrons fly between the uranium fuel pellets in the uranium fuel pellet assembly, and fission continues to a small extent, and decay heat is also emitted, so the uranium fuel pellets are very hot. Therefore, in order to solve this problem, the neutron absorbing material with the neutron absorbing material placed between one uranium fuel pellet and one uranium fuel pellet is melted and covered around one uranium fuel pellet. Each uranium fuel pellet stops fission and heat of decay decays to the neutron-absorbing material. Resolve to melt down and Merutosuru - not to a large accident not happened, such as,
In fast breeder reactors, materials that repel other neutrons instead of liquid sodium are used for materials that repel neutrons, and water is used for cooling.
A substance that bounces neutrons at high speed is put in a container and cooling water is placed outside it to generate power using superheated steam or superheated high-temperature water.
If liquid sodium is used, make the ashes of the container containing liquid sodium and cooling water into a double structure or more.
High-level radioactive waste is made fine and sandwiched between germanium semiconductors and solar power generation elements from both ends to cause electricity.
Remove the radioactivity by sticking with the radioactive substance in the radioactive pollutant.

火力発電などではもし事故が起きてもその火力発電所の地域だけに被害が及ぶが別にこれもいいことではないが、原子力発電で事故が起きれば放射能が広範囲にわたって汚染されて非常に危なくて人などは住むことが出来なく健康的にも経済的にもいろいろな事に多大な被害が被るのであってだからこそ原子力発電の場合は100%安全でなくてはいけないのであってその技術が確立するまでに原子力発電を稼働するものでない、その安全性が高い原子力発電の技術の一つがウラン燃料ペレットが高温になるとウラン燃料ペレット一つ一つの間に置いてあった中性子吸収物質が溶融してそれがウラン燃料ペレット1つ1つの回り一面に覆ってウラン燃料ペレットが非常に高温になるのを防ぐ、その間に緊急事態を解決してメルトダウンやメルトスル−を起こさない、
高速増殖炉でも事故が起きると広範囲にわたって放射能に汚染されてい人間なども住めなくいろいろな事で多大な被害を被ってしまうので中性子を高速に跳ね返す物質で冷却にも使用している液体ナトリュウムを使用するのでなくて他の中性子を高速に跳ね返す物質を使用して冷却に水を使用して事故が起きにくくすることで有るのと、中性子を高速で跳ね返す物質を容器に入れてその外側に冷却水を置いて過熱蒸気や過熱高温水にして発電する、
中性子を高速に跳ね返す物質を配管で長く移動させない、
液体ナトリュウムを使用する場合は液体ナトリュウムが入っている容器と冷却水との間は2重構造以上にする、
ウラン238からプルトニウム239が造られてエネルギ−が増殖される、
高レベル放射能廃棄物を発電に使用することで限りある資源のエネルギ−の足しになる、放射能汚染物質から放射能を除去することで農地や校庭や山川海や住宅地などでの放射能汚染物質が除去されて今まで通りの生活が送れる、
Even if an accident occurs in thermal power generation, etc., it will only damage the area of the thermal power plant, but this is not good, but if an accident occurs in nuclear power generation, the radioactivity is extensively polluted and it is very dangerous. Because people cannot live and suffer a lot of damage from various health and economic reasons, nuclear power generation must be 100% safe and its technology is established. One of the highly safe nuclear power generation technologies that do not operate nuclear power by the time the uranium fuel pellets become hot, the neutron-absorbing material placed between the uranium fuel pellets melts Covers the uranium fuel pellets one by one to prevent the uranium fuel pellets from getting too hot, while solving the emergency situation to melt down or melt Sur - it does not cause,
If an accident occurs even in a fast breeder reactor, it is contaminated by radioactivity over a wide area and humans can not live, so it suffers a lot of damage, so liquid sodium that repels neutrons at high speed is also used for cooling Instead of using a substance that repels other neutrons at high speed, water is used for cooling to make accidents less likely to occur, and a substance that repels neutrons at high speed is put in a container and cooled to the outside Place water to generate electricity with superheated steam or superheated high-temperature water,
Do not move the material that bounces neutrons at high speed in the pipe,
When liquid sodium is used, the space between the container containing liquid sodium and the cooling water should be at least a double structure.
Plutonium 239 is made from uranium 238 to increase energy,
Use of high-level radioactive waste for power generation adds to the energy of limited resources. By removing radioactivity from radioactive pollutants, radioactivity in farmland, schoolyards, mountain river seas and residential areas, etc. The pollutants are removed and you can live as usual

発明を実地するための最良の形態Best Mode for Practicing the Invention

原子力発電や高速増殖炉などから出る高濃度放射性廃棄物や高濃度放射性物質や放射性廃棄物や放射性物質を図1の23の様に粉砕して粒状にして板状にしてその両側面に24の様にゲルマニュウム半導体や他の半導体や太陽光発電素子を付けて発電を行う、
放射能の半減期が過ぎて放射能が弱まるまで発電出来て放射性廃棄物を有効利用する、
放射能を遮断した施設内で行いいろいろな面で安全第一とする事、
High-concentration radioactive waste, high-concentration radioactive material, radioactive waste, and radioactive material from nuclear power generation, fast breeder reactors, etc. are crushed as shown in FIG. In the same way, power is generated by attaching a germanium semiconductor, other semiconductors, or solar power generation elements.
It can generate power until the radioactivity is weakened after the half-life of radioactivity has passed, and effectively use radioactive waste.
Doing in the facility where the radioactivity is cut off, putting safety first in various aspects,

高濃度放射性廃棄物や高濃度放射性物質や放射性廃棄物や放射性物質の放射線は水を水素と酸素に分解する作用が有り高濃度放射性廃棄物や高濃度放射性物質や放射性廃棄物や放射性物質などを粉砕してや粉砕しなくても図2の様な容器の中の26の水の中に27の様に粉砕した高濃度放射性廃棄物や高濃度放射性物質などを入れることによって粉砕された高濃度放射性廃棄物や高濃度放射性物質などから出ている高濃度放射線や放射線が水を分解して酸素と水素になって水素は酸素より軽いので容器の上部に集まって28の取り出し口から回収できる、酸素は水素より重いので容器の水素の下側に溜まって29の取り出し口から回収出来る、
その酸素と水素を利用して自動車の燃料電池や家庭の燃料電池やいろいろな事に使用できる、
High-concentration radioactive waste, high-concentration radioactive material, radioactive waste or radioactive material radiation has the effect of decomposing water into hydrogen and oxygen, and high-concentration radioactive waste, high-concentration radioactive material, radioactive waste, radioactive material, etc. High-concentration radioactive waste crushed by putting high-concentration radioactive waste or high-concentration radioactive material crushed as shown in 27 into 26 water in a container as shown in FIG. High-concentration radiation or radiation from materials or high-concentration radioactive materials decomposes water into oxygen and hydrogen, and hydrogen is lighter than oxygen, so it collects at the top of the container and can be recovered from 28 outlets. Since it is heavier than hydrogen, it collects under the hydrogen in the container and can be recovered from 29 outlets.
The oxygen and hydrogen can be used for automobile fuel cells, household fuel cells and various other things.

高濃度放射性廃棄物や高濃度放射性物質などを粉砕して粒状にしてそれを密閉した容器の中の水の中に入れて水を水素と酸素に分解して水素と酸素になって出てくる装置をいろいろと利用する、
その水を水素と酸素に分解を起こさせる装置の密閉容器の両側面に図3の24の様にゲルマニゥム半導体や他の半導体や太陽光発電素子を付けて発電も行う、
図4は図3を横から見た図である、
水の分子を水素と酸素に分解した放射線の余った放射線で発電も行う、
High-concentration radioactive waste or high-concentration radioactive material is pulverized and granulated, then put into water in a sealed container, and the water is decomposed into hydrogen and oxygen, and comes out as hydrogen and oxygen Use various devices,
Power is also generated by attaching germanium semiconductors, other semiconductors, or solar power generation elements as shown in 24 of FIG. 3 on both sides of the sealed container of the apparatus that causes the water to decompose into hydrogen and oxygen.
4 is a side view of FIG.
Power generation is also performed using the surplus radiation that decomposes water molecules into hydrogen and oxygen.

福島原子力発電所事故で多大な被害を被っており、その被害の中に放射能による土壌汚染や水質汚染やがれき汚染などが有り、農地などの土壌汚染は粘土の層に放射性物質のセシュウムが入り込んで粘土に有る酸素やアルミニウムなどと結合して粘土からセシュウムが出にくくなっている状態で放射能を出し続けているので非常に人体などの健康にいいくない影響を与えているので、セシュウムが入り込んでいる粘土からセシュウムを取り出す方法として、
農地などの汚染された土壌には植物に必要な養分が多く含まれているので農地などの土壌を容器に入れて水で洗浄して養分を洗い流して養分を回収する、
セシュウムは粘土の層にはいっている酸素やアルミニウムなどと結合していて洗浄しても排出されない、養分を取り出したセシュウムの含んだ土壌を図の5の35の様に断熱材で覆った密閉容器の中に36の様に密閉容器の中に入れてその密閉容器の中に32からフッ素(F)を注入して33の様なかき混ぜる装置でかき混ぜると酸素やアルミニウムなどと結合していたセシュウムは酸素やアルミニウムなどよりもフッ素との結合がしやすくフッ化セシュウム(CsF)なる、
セシュウムとフッ素が結合しやすい様に密閉容器の中のセシュウムを含んだ土壌の温度を上たりもする、
フッ化セシュウムとなって土壌に含まれているフッ化セシュウムを回収するのにはフッ化セシュウムは水に溶けやすいので土壌に水を含ませてフッ化セシュウムを水に溶かして34から回収してその溶液を電気分解してフッ素とセシュウムに分解して回収する、
セシュウムなどの放射能に汚染された水質からセシュウムなどの放射能を回収したフェロシアン化鉄(紺青)には多くのセシュウムが混じっているのでそのフェロシアン化鉄も密閉容器の中に入れてフッ素を注入して同じように回収する、
セシュウムなどの放射能を含んだ粘土だけを固めた物や放射能を含んだがれきも上記のようにしてフッ素を注入してセシュウムを回収する、
上記の方法で行うと放射能汚染物質の中に少しだけストロンチュウムやプルトニュウムが有る場合でもフッ化ストロンチュウムやフッ化プルトニウムとなって同じように回収出来る、
フッ化ストロンチュウムは塩酸に溶けやすく、フッ化プルトニウムは水に溶けやすいので両方とも回収出来る、
The Fukushima nuclear power plant accident has caused a great deal of damage, including radioactive soil contamination, water pollution, debris contamination, etc., and soil contamination such as farmland has radioactive cesium entering the clay layer. Since it continues to emit radioactivity in a state where it is difficult to produce cesium from clay by combining with oxygen, aluminum, etc. in clay, cesium is very bad for human health etc. As a method of removing cesium from the clay entering,
Contaminated soil such as farmland contains a lot of nutrients necessary for plants, so the soil such as farmland is put in a container and washed with water to wash out the nutrients and collect the nutrients.
Cesium is combined with oxygen and aluminum contained in the clay layer and is not discharged even if washed. The sealed container containing the soil containing cesium from which nutrients have been removed is covered with a heat insulating material as shown in 35 in FIG. If you put it in a closed container like 36 and inject fluorine (F) from 32 into the closed container and stir with a stirrer like 33, the cesium combined with oxygen, aluminum, etc. will be It becomes easier to bond with fluorine than oxygen or aluminum, and becomes cesium fluoride (CsF).
Increase the temperature of the soil containing cesium in a sealed container so that cesium and fluorine can be easily combined.
To recover cesium fluoride contained in the soil as cesium fluoride, cesium fluoride is easy to dissolve in water, so add water to the soil, dissolve cesium fluoride in water and recover from 34 Electrolyze the solution to decompose it into fluorine and cesium and collect it.
Ferrous ferrocyanide (bituminous), which has recovered radioactivity such as cesium from water contaminated with radioactivity such as cesium, contains a large amount of cesium, so the ferrocyanide is also put in a sealed container to create fluorine. Inject and collect in the same way,
Incorporating fluorine as described above to collect cesium by injecting fluorine or rubble containing only radioactive clay such as cesium.
If the above method is used, even if there is a little strontium or plutonium in the radioactive pollutant, it can be recovered in the same way as strontium fluoride or plutonium fluoride.
Strontium fluoride is easily soluble in hydrochloric acid, and plutonium fluoride is easily soluble in water, so both can be recovered.

放射能に汚染された農地などの土壌を容器の中で洗浄して植物に必要な養分を洗い流して養分を回収して、
洗浄した回収後の土壌を図5の35の様に断熱材で覆った密閉容器の中に36の様に密閉容器に入れて塩素(Cl)を注入して33の様な装置で土壌をかき混ぜると土壌の粘土層に有る酸素やアルミニウムと結合しているセシュウムが酸素やアルミニウムよりも塩素と結びきやすく塩化セシュウム(CsCl)になる、
反応しやすい様に土壌の温度を上げてもいい、
塩化セシュウムは水に溶けるので塩化セシュウムを含んだ土壌に水を混ぜて塩化セシュウムを溶かしてその溶液を電気分解してセシュウムと塩素に分解して回収する、
セシュウムなどの放射能に汚染された水質からセシュウムなどの放射能を回収したフェロシアン化鉄(紺青)には多くのセシュウムが混じっているのでそのフェロシアン化鉄も密閉容器の中に入れて塩素を注入して同じように回収する、
セシュウムなどの放射能を含んだ粘土だけを固めた物や放射能を含んだがれきも上記のように塩素を注入してセシュウムを回収する、
上記の方法で行うと放射能汚染物質の中に少しだけストロンチュウムやプルトニュウムが有る場合でも塩化ストロンチュウム(SrCl2)や塩化プルトニュウム(PuCl3)になって同じように回収出来る、
塩化ストロンチュウムや塩化プルトニウムは水に溶けるので同じく電気分解して回収出来る、
The soil such as farmland contaminated by radioactivity is washed in a container to wash away the nutrients necessary for the plant and recover the nutrients.
The recovered soil after washing is put into a sealed container as shown in 36 in a sealed container covered with a heat insulating material as shown in 35 in FIG. 5, chlorine (Cl) is injected, and the soil is stirred with a device like 33. And the cesium combined with oxygen and aluminum in the clay layer of the soil is more easily combined with chlorine than oxygen and aluminum, and becomes cesium chloride (CsCl).
You can raise the temperature of the soil to make it easier to react,
Cesium chloride dissolves in water, so mix water with soil containing cesium chloride to dissolve cesium chloride, electrolyze the solution, decompose it into cesium and chlorine, and collect it.
Ferrous ferrocyanide (bituminous), which has recovered radioactivity such as cesium from water contaminated with radioactivity such as cesium, contains a large amount of cesium, so iron ferrocyanide is also placed in a sealed container and chlorinated. Inject and collect in the same way,
Incorporating chlorine as described above to recover cesium by injecting chlorine as described above, which is only solidified clay containing radioactivity such as cesium
Even if there is a little strontium or plutonium in radioactive pollutants when the above method is used, it can be recovered in the same way as strontium chloride (SrCl2) or plutonium chloride (PuCl3).
Strontium chloride and plutonium chloride are soluble in water and can be recovered by electrolysis.

放射能に汚染された農地などの土壌を容器の中で洗浄して植物に必要な養分を回収して、
回収した後の土壌を図5の35の様な断熱材で覆った図5の様な密閉容器の中に36の様に入れて臭素(Br)を液体のままで土壌と混ぜたりしたり、熱を加えて気化させてそれを注入して同じく土壌も熱を加えて33の様な装置で土壌をかき混ぜると粘土の層の中の酸素やアルミニウムなどがセシュウムと結合しているのを酸素やアルミニウムよりも臭素と結合しやすくなって臭化セシュウム(CsBr)になる、
反応しやすい様に土壌の温度を臭素が気化する温度よりも高めにしたりもする、
臭化セシュウムは水に溶けるので臭化セシュウムを含んだ土壌に水を含ませて臭化セシュウムを含んだ溶液を電気分解してセシュウムと臭素にして回収する、
放射能に汚染された水質からセシュウムなどの放射能を回収したフェロシアン化鉄(紺青)には多くのセシュウムが混じっているのでそのフェロシアン化鉄を図5の35の様な断熱材で覆った図5の様な密閉容器の中に36の様に入れて臭素を液体のままでフェロシアン化鉄と混ぜてもいいし、臭素に熱を加えて気化させて注入してフェロシアン化鉄も熱を加えて気化させた臭素とフェロシアン化鉄とを33の様な装置で混ぜてフェロシアン化鉄の中に有るセシュウムと臭素を反応させて結合させて臭化セシュウムにして同じように回収する、
セシュウムなどの放射能を含んだ粘土だけを固めた物や放射能汚染物質のがれきなども上記の方法でセシュウムを回収する、
上記の方法で行うと放射能汚染物質の中には少しだけストロンチュウムやプルトニュウムが含んでいる場合が有るので臭化ストロンチュウム(CrBr2)や臭化プルトニウム(PuBr3)となって臭化ストロンチュウムや臭化プルトニウムは水に溶けるので同じように電気分解して回収出来る、
The soil such as farmland contaminated by radioactivity is washed in a container to collect the nutrients necessary for the plant,
The recovered soil is covered with a heat insulating material such as 35 in FIG. 5 and placed in a sealed container as shown in FIG. 5 as in 36 to mix bromine (Br) with the soil in a liquid state. When heat is applied and vaporized, and then the soil is also heated and the soil is stirred with a device such as 33, oxygen and aluminum in the clay layer are bound to cesium, oxygen and It becomes easier to bond with bromine than aluminum and becomes cesium bromide (CsBr).
To make it easier to react, the soil temperature may be higher than the temperature at which bromine vaporizes.
Since cesium bromide is soluble in water, the solution containing cesium bromide contains water and electrolyses the solution containing cesium bromide to recover cesium and bromine.
Iron ferrocyanide (bituminous) that has recovered radioactivity such as cesium from the water quality contaminated with radioactivity contains a lot of cesium, so the ferrocyanide is covered with a heat insulating material such as 35 in FIG. In a closed container as shown in Fig. 5, the bromine can be mixed with the ferric ferrocyanide in the liquid state, or the bromine can be heated and vaporized and injected into the ferric ferrocyanide. In the same way, bromine vaporized with heat and iron ferrocyanide are mixed in a device such as 33, and cesium and bromine in iron ferrocyanide are reacted and combined to form cesium bromide. to recover,
Collect cesium using the above method for solidified clay containing radioactive materials such as cesium and debris of radioactive pollutants.
When the above method is used, some radioactive pollutants may contain a little strontium or plutonium, so it becomes strontium bromide (CrBr2) or plutonium bromide (PuBr3) and strontium bromide. Chuum and plutonium bromide are soluble in water and can be recovered by electrolysis in the same way.

放射能に汚染された農地などの土壌を容器で洗浄して植物の生長に必要な養分を洗い流して回収して、
その土壌を図5の35の様に断熱材で覆った密閉容器の中に36の様に入れて、ヨウ素(I)に熱を加えて液体にして注入してその土壌と混ぜたりもするし、気化させて注入してその土壌と混ぜると粘土の層の酸素やアルミニウムと結合していたセシウムが酸素やアルミニウムよりもヨウ素と結合しやすくなってヨウ化セシウム(CsI)になる,
反応しやすい様に土壌の温度をもっと上げたりもする、
ヨウ化セシウムは水に溶けるのでヨウ化セシウムを含んだ土壌に水分を混ぜてヨウ化セシウムを溶かしてその水溶液を電気分解してヨウ素とセシウムを回収する、
放射能に汚染された水質からセシウムを回収したフェロシアン化鉄(紺青)には多くのセシウムを含んでおりそのフェロシアン化鉄を図39の様に断熱材で覆った密閉容器の中に36の様に入れてヨウ素に熱を加えて液体にしたのを注入してフェロシアン化鉄と混ぜてもいいし、気化させて注入してフェロシアン化鉄と混ぜてフェロシアン化鉄の多孔質の中のセシウムとヨウ素とが結びついて同じように水溶液にして電気分解して回収する、
セシウムを多く含んだ粘土を固めた物や放射能を含んだがれきも上記のようにして回収する、
上記の方法で行うと放射能汚染物質の中には少しのストロンチュウムやプルトニウムが混じっている場合が有り同じようにヨウ化ストロンチュウム(SrI2)やヨウ化プルトニウム(PuI3)として回収出来る、
ヨウ化ストロンチュウムやヨウ化プルトニウムは水に溶けるので水溶液にして電気分解して回収出来る、
Washing and collecting the nutrients necessary for plant growth by washing soil such as farmland contaminated with radioactivity in containers,
The soil is put in a sealed container covered with a heat insulating material as shown in 35 of FIG. 5 as shown in 36, and heat is added to iodine (I) to form a liquid and mixed with the soil. When it is vaporized and injected, and mixed with the soil, cesium bound to oxygen and aluminum in the clay layer becomes easier to bond with iodine than oxygen and aluminum, and becomes cesium iodide (CsI).
To increase the temperature of the soil to make it easier to react,
Since cesium iodide is soluble in water, water is mixed in the soil containing cesium iodide to dissolve cesium iodide, and the aqueous solution is electrolyzed to recover iodine and cesium.
Iron ferrocyanide (bitumen), which has recovered cesium from radioactively contaminated water, contains a large amount of cesium, and the iron ferrocyanide is contained in a sealed container covered with a heat insulating material as shown in FIG. It can be injected into a liquid by adding heat to iodine and mixed with iron ferrocyanide, or it is vaporized and injected and mixed with ferrocyanide porous iron ferrocyanide porous In the same way, cesium and iodine are combined to form an aqueous solution that is electrolyzed and recovered.
Collect hardened cesium-rich clay or radioactive debris as described above.
If the above method is used, some radioactive pollutants may be mixed with a little strontium or plutonium, which can be recovered as strontium iodide (SrI2) or plutonium iodide (PuI3).
Strontium iodide and plutonium iodide are soluble in water and can be recovered by electrolysis in an aqueous solution.

α線やβ線やγ線やχ線などを防護する服はあるが中性子は透過性が強く中性子を防護する服や布や中性子吸収物質がないので、中性子吸収物質のカドミゥ−ムやガドリニウムや金属を溶融させてそれを図6の54の様に噴霧器によって熱風で56の様に細かい粒子として55の様に繊維や布や中性子吸収したい物質に吹き付けてカドミゥ−ムやガドリニウムや金属を付着させる、 Although there are clothes that protect α rays, β rays, γ rays, χ rays, etc., neutrons are highly permeable and there are no clothes, cloths, or neutron absorbing materials to protect neutrons, so cadmium, gadolinium, The metal is melted and sprayed as a fine particle like 56 with a sprayer as shown in 54 of FIG. 6 to a fiber, cloth, or a substance to be absorbed by neutron, and attached to cadmium, gadolinium, or metal. ,

中性子を吸収するホウ素や金属を溶融させてそれを図6の54の様に噴霧器によって熱風で56の様に細かい粒子として55の様に繊維や布や中性子吸収したい物質に吹き付けてホウ素や金属を付着させる、 Boron or metal that absorbs neutrons is melted and sprayed onto the fiber, cloth, or material to be absorbed by neutron as shown in 55 by spraying hot air with a sprayer as shown in 54 of FIG. Attach,

中性子吸収物質や金属を真空メッキで図7の79の様に繊維や布や中性子を吸収したい物質に77の中性子吸収物質を78の電熱加熱器で溶融させて真空中を粒子で飛ばして79にメッキ付着させる、 Neutron-absorbing material or metal is vacuum-plated as shown in 79 of FIG. Plating,

中性子吸収物質や金属が付着した繊維や布や中性子吸収物質製品や放射能防護製品で放射能防護服や中性子防護服やいろいろな放射能遮断製品や中性子遮断製品を造る、中性子吸収したい物質に中性子吸収物質が付着した物でいろいろな放射能遮断製品や中性子吸収遮断製品を造る、 Make neutron-absorbing materials, neutron-absorbing clothing, neutron-protecting clothing, various radiation-blocking products and neutron-blocking products with neutron-absorbing materials and metal-attached fibers and fabrics, neutron-absorbing material products and radiation protection products Make various radioactive blocking products and neutron absorption blocking products with the adhering substances,

カドミュウムやガドリニウムを台の上でハンマ−でたたいて延ばして板にしたりや薄い板にしたりや箔にしたりロ−ラでカドミゥムやガドリニウムを延ばして板にしたりや薄い板にしたりや箔にしてそれを繊維に巻きつけてカドミュウムやガドリニウムが巻きついた繊維で放射能防護服や中性子防護服やいろいろな放射能遮断製品や中性子吸収遮断製品を造る、カドミゥムやガドリニウムを延ばした板や薄い板や箔を中性子を吸収遮断したい物に貼り付けたりや巻きつけたりしていろいろな放射能遮断製品や中性子吸収遮断製品を造る、
薄く伸ばしたカドミュウム箔やガドリニウム箔を中性子吸収したい物や布に貼る、
Stretch cadmium or gadolinium with a hammer on a table to make it into a plate, thin plate, or foil, roll a cadmium or gadolinium with a roller to make a plate or thin plate or foil Wrap it around the fiber and make cadmium and gadolinium wrapped fibers to make radiation protective suits, neutron protective suits, various radiation blocking products and neutron absorption blocking products, cadmium and gadolinium stretched or thin plates, Affixing and wrapping foil around an object that wants to absorb and block neutrons to create various radioactivity blocking products and neutron absorption blocking products,
Paste thin cadmium foil or gadolinium foil on neutron-absorbing material or cloth.

中性子吸収物質や金属を溶融させてそれを噴霧器によって熱風で細かい粒子として中性子を遮断したい板や部材や物に付着させてそれを使用したり、いろいろな放射能遮断製品や中性子遮断製品として造り使用する、 A neutron-absorbing material or metal is melted and sprayed with hot air to form fine particles that adhere to the plate, member, or object that you want to block neutrons, and used as a variety of radioactive blocking products or neutron blocking products. To

セシュウムやストロンチュウムなどを含んだ土壌にフッ素(F)や塩素(Cl)や臭素()やヨウ素(I)を加えて攪拌してセシュウムと反応させて水を加えて攪拌して水に溶け出たセシュウム化合物を電気分解で回収する、回収した残った水をこして、残った土壌にまたフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してストロンチュウムと反応させて水を加えて攪拌して水に溶け出たストロンチュウム化合物を電気分解で回収する、フッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解で回収する、
セシュウム化合物を電気分解で回収した残りの水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)をまた加えてストロンチュウムと反応させてそれを電気分解でストロンチュウムなどを回収する、
Fluorine (F), chlorine (Cl), bromine () and iodine (I) are added to the soil containing cesium and strontium, and stirred to react with cesium, water is added and stirred to dissolve in water. Collect the cesium compound that has come out by electrolysis, scrape the recovered water, add fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) to the remaining soil and stir. React with strontium, add water, stir and recover strontium compound dissolved in water by electrolysis, strontium fluoride is easily dissolved in hydrochloric acid, so dissolve in hydrochloric acid and recover by electrolysis ,
Fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the remaining water recovered from the cesium compound by electrolysis and reacted with strontium, which is electrolyzed to strontium. To collect,

回収方法での熱を加えての回収方法は、セシュウムを回収した土壌や水を断熱材で囲まれた容器に入れて電熱器などで熱を加えてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)をまた加えて攪拌してストロンチュウムと反応しやすいようにしてストロンチュウムと反応させて回収する、土壌の場合には断熱材で囲まれた容器になかにセシュウムを回収した土壌を入れて電熱器などで熱を加えてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)をまた加えて攪拌してストロンチュウムと反応しやすくしてストロンチュウムと反応したストロンチュウム化合物に水を加えて水に溶かして電気分解でストロンチュウムを回収する、フッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解でストロンチュウムを回収する、セシュウムを回収した残りの水を断熱材で囲まれた容器の中に入れて電熱器などで熱を加えてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)をまた加えて攪拌してストロンチュウムと反応させてそれを電気分解でストロンチュウムなどを回収する、 In the recovery method by applying heat in the recovery method, the soil and water from which cesium was recovered are placed in a container surrounded by a heat insulating material, and heat is applied with an electric heater or the like to add fluorine (F), chlorine (Cl), or bromine. (Br) and iodine (I) are added again and stirred to react with strontium so that it reacts with strontium and is recovered. In the case of soil, the container is surrounded by a heat insulating material. Add the soil from which cesium was recovered, heat it with an electric heater, etc., add fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) again and stir to make it easier to react with strontium. Water is added to the strontium compound that has reacted with strontium and dissolved in water, and strontium is recovered by electrolysis. Strontium fluoride is soluble in hydrochloric acid, so dissolve in hydrochloric acid and strontium by electrolysis. Collecting sesameum The remaining water recovered is put in a container surrounded by heat insulating material, heated with an electric heater, etc., and fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added again. Stir and react with strontium and electrolyze it to recover strontium, etc.

セシュウムやストロンチュウムなどで汚染された土壌などに含まれている植物を生育させる養分が含んだままの放射能汚染土壌をフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してセシュウム化合物にして水を加えてセシュウム化合物を水に溶かして電気分解してセシュウムを回収する、放射能が含んでいる物質やがれきも同じようにする、 Radioactive contaminated soil containing nutrients for growing plants contained in soil contaminated with cesium, strontium, etc. is treated with fluorine (F), chlorine (Cl), bromine (Br), iodine (I ) And agitate to form a cesium compound, add water, dissolve the cesium compound in water and electrolyze it to recover cesium. Do the same for substances and debris that contain radioactivity.

セシュウムを回収した水をこした、セシュウムを回収した後の土壌に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してストロンチュウム化合物にして水を加えてストロンチュウム化合物を水に溶かして電気分解でストロンチュウムを回収する、フッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解してストロンチュウムを回収する、放射能を含んだ物質やがれきも同じようにする、 Soil collected from the cesium was rubbed with water, and fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) were added to the soil after the cesium was collected and stirred to form a strontium compound. Strontium compound is dissolved in water and strontium is recovered by electrolysis. Strontium fluoride is easily dissolved in hydrochloric acid, so it is dissolved in hydrochloric acid and electrolyzed to recover strontium. Do the same for substances and debris containing

セシュウムを回収した水に、又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)加えて攪拌させてストロンチュウム化合物にしてそれを電気分解でストロンチュウムを回収する、 Fluorine (F), chlorine (Cl), bromine (Br) and iodine (I) are added to the water from which cesium has been recovered and stirred to form a strontium compound, which is electrolyzed to recover strontium.

セシュウムやストロンチュウムなどで汚染された汚染水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(Iを)を加えて攪拌させてセシュウム化合物にして水を加えてセシュウム化合物を水に溶かしてそれを電気分解してセシュウムを回収する、 Add fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) to the contaminated water contaminated with cesium and strontium, and stir it to make a cesium compound. Dissolved in water and electrolyzed to recover cesium,

セシュウムを回収した水に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌させてストロンチュウム化合物にしてそれを電気分解してストロンチュウムなどを回収する、 Fluorium (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the water from which cesium has been collected and stirred to form a strontium compound, which is electrolyzed to recover strontium, etc. To

放射性物質回収方法で放射能を含んだ物質やがれきや汚染土壌や汚染水などを断熱材で囲まれた容器の中に入れて電熱器などで温めてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)とが放射性物質と反応しやすくして化合物になりやすい様にする、 Put radioactive materials, debris, contaminated soil, contaminated water, etc. in a container surrounded by heat insulating material and warm them with an electric heater etc. in the radioactive material recovery method, and then fluorine (F), chlorine (Cl) or bromine (Br) and iodine (I) are likely to react with radioactive substances and become compounds easily.

地球上のエネルギ−は自然を生かした発電やエネルギ−を利用した再生エネルギ−が非常にいいがそれだけではエネルギ−の足りないところが有り化石燃料も永遠に続くものでないので原子力発電や高速増殖炉発電などはこれからも大事なエネルギ−源になるが事故が起きればそれは人類や他の動植物や地球上に多大の被害が及んでそれが長い年月非常に被害を与えるのであって原子力発電や高速増殖炉発電は何重にもの安全装置になっているようにしなくてはいけないしもし事故が起きも最小限で抑えて100パ−セント安全でなくてはいけない、この特許の技術を使って原子力発電や高速増殖炉発電を行うと地球上のエネルギ−問題も解決するところが有る、 As for the energy on the earth, the power generation that makes use of nature and the regenerative energy using the energy are very good, but there are places where there is not enough energy, and fossil fuels do not last forever, so nuclear power generation and fast breeder reactor power generation Will continue to be an important energy source in the future, but if an accident occurs, it will cause great damage to mankind, other animals and plants and the earth, and it will be very damaging for many years. Reactor power generation must be a number of safety devices that must be 100 percent safe with minimal accidents and use this patented technology to generate nuclear power. And fast breeder reactor power generation can solve the energy problem on the earth,

図1 原子力発電所や高速増殖炉などから出てくる放射性物質や放射性廃棄物を23の様に細かく粉砕して板状にしてその板状の両側面に24の様にゲルマニュ−ム半導体や他の半導体や太陽光発電素子付けて使用して発電を行う、
図2 高濃度放射性廃棄物や高濃度放射性物質などの放射線は水を水素と酸素に分解できるので高濃度放射性廃棄物や高濃度放射性物質などを粉砕して26の様に水が入っている25の様な容器の中に27の様に入れてその水を水素と酸素に分解させる、
水素は軽いので28の出口からと酸素は水素より重いので29の出口からと回収する、
図3 図36の放射線が水を水素と酸素に分解している容器の両側面に24の様にゲルマニュウム半導体や他の半導体や太陽光発電素子を付けて発電もしていろいろと利用する、
図4 図37の放射線で水を水素と酸素に分解している容器に発電素子を付けて発電もしている容器を横から見ている、
図5 請求項59〜63の、放射能を含んでいる土壌汚染を水で洗浄して養分を取り除いた放射能を含んだ土壌や水質汚染やがれき汚染などを断熱材で覆った密閉容器の中に36の様に入れてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を注入して33でかき回して酸素やアルミニウムなどと結合しているセシウムやストロンチュウムやプルトニウムをフッ素や塩素や臭素やヨウ素と結合させて回収する、
図6 中性子吸収物質を溶融させて54の様な噴霧器で中性子吸収物質の細かい56の様な粒子を55の様な繊維や布や板や製品に吹き付けて放射能中性子防護服や放射能中性子防護製品を造る、
図7 真空メッキを利用して77の様な中性子吸収物質を78の様な電熱加熱機で溶融させて79の様な繊維や布や板や製品にメッキをして放射能中性子防護服や放射能中性子防護製品を造る、
Fig. 1 Radioactive materials and radioactive waste from nuclear power plants, fast breeder reactors, etc. are finely crushed as shown in 23 to form a plate on both sides of the plate, such as germanium semiconductors and others Power generation using semiconductors and solar power generation elements
Fig. 2 Radiation such as high-concentration radioactive waste and high-concentration radioactive material can decompose water into hydrogen and oxygen, so high-concentration radioactive waste and high-concentration radioactive material are crushed and water is contained like 26 Put it in a container like 27 and decompose the water into hydrogen and oxygen.
Since hydrogen is light, it is recovered from 28 outlets, and oxygen is heavier than hydrogen, so it is recovered from 29 outlets.
Figure 3 Figure 36 The radiation of water is decomposed into hydrogen and oxygen Both sides of the container are attached with germanium semiconductors, other semiconductors, and solar power generation elements as shown in 24.
Fig. 4 Looking from the side of a container that generates power by attaching a power generation element to a container that decomposes water into hydrogen and oxygen with the radiation of Fig. 37,
Fig. 5 In the sealed container of Claims 59-63, where the soil contamination containing radioactivity is washed with water to remove the nutrients, and the radioactive soil is covered with heat insulating material. Fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are injected in the same way as in Fig. 36, and stirred at 33 to combine with oxygen, aluminum, etc., cesium, strontium, and plutonium Recovered by combining with fluorine, chlorine, bromine or iodine,
Fig. 6 Melting neutron absorbing material and spraying fine particles like 56 of neutron absorbing material on fibers, cloths, plates and products like 55 with a sprayer like 54, radioactive neutron protective clothing and radioactive neutron protection Building products,
Fig. 7 Utilizing vacuum plating, a neutron absorbing material such as 77 is melted with an electric heating machine such as 78 and plated on a fiber, cloth, board or product such as 79, and radioactive neutron protective clothing and radiation Building active neutron protection products,

23 高濃度放射性廃棄物や高濃度放射性物質や放射性廃棄物や放射性物質を粉砕して板状にしている粉砕物
24 23の板状にしている粉砕物を両側からゲルマニゥム半導体や他の半導体や太陽光発電素子で挟んで出ている放射線で発電している半導体など、
放射線で水を水素と酸素に分解している容器の側面にも付けて発電している、
25 放射性廃棄物や放射性物質は水を水素と酸素に分解するので放射性廃棄物や放射性物質を粉砕してや粉砕しなくても水の入った容器の中に入れて水を水素と酸素に分解しているその容器、
26 25の容器の中に入っている水、
27 25の容器の中に入っている放射性廃棄物や放射性物質、
28 25の容器の中で水が水素と酸素に分解されて水素は軽いので上の口から回収する口、
29 25の容器の中で水が水素と酸素に分解されて酸素は水素より重たいので下の口から回収する口、
30 25の容器の中で水が水素と酸素に分解されて軽い水素と重い酸素が分離しやすい様にして有る出っ張り、
31 25の容器で水を水素と酸素に分解している放射能で発電する為に両側面にゲルマニゥム半導体などを付けているのを支えている側壁、容器そのものを形作っている、
32 請求項1,2の、放射能で汚染された土壌や物質やがれきなどを除染するのに放射能汚染土壌に含んでいる養分を水で洗って養分を回収して、残った土壌の粘土質などには放射能セシウムなどが酸素やアルミニウムなどと結びついて水で流れなく付いているのでそれを密閉容器に入れてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を注入してかき混ぜてセシウムと結合させて水に溶かして回収する、フッ素などを注入する口で有る、
33 32の密閉容器の中に放射能汚染土壌や放射能汚染物質などを入れてかき混ぜる機械、
34 32の密閉容器の中に放射能汚染土壌や放射汚染能物質などを入れてフッ素などを注入してかき混ぜてフッ素などとセシウムが結合したのを水で溶かして回収する口、
35 32の密閉容器を全体に覆っている断熱材、フッ素などを注入してセシウムと結合しやすい様に密閉容器の中の温度を上げる場合に温度を逃げなくするように、
36 32の密閉容器の中に入っている放射能汚染土壌や放射能汚染物質など、
54 請求項64,65の、中性子吸収物質を溶融して噴霧器で繊維や布や中性子を遮断したい物質や製品に吹き付けて放射能防護服や中性子防護服や放射能防護製品や中性子防護製品などを造る、その噴霧器、
55 54で吹き付けられている繊維や布や物質や製品など、
56 54で吹き付けている溶融した中性子吸収物質の細かい粒子、
77 請求項66の中性子吸収物質や金属を電熱加熱器で溶融させてその粒子を真空の中を飛ばして繊維や布や物質に付着させて放射能防護服や放射能防護製品や中性子防護服や中性子防護製品を造る、その中性子吸収物質や金属、
78 77で述べてる電熱加熱器、
79 真空メッキで付着させる繊維や布や物質や製品など、
80 真空メッキの容器の中の真空状態、
85 請求項1,2の、放射能に汚染されている土壌や物質を土壌は養分は水で洗い流して回収して、セシュウムなどの放射能は土壌の酸やアルミニウムと結合して水に流れなくその放射能汚染土壌や放射能汚染物質を密閉容器に入れてフッ素などを加えてかき混ぜてフッ素などとセシウムなどを結合させて回収する、その容器の枠、
86 85の放射能汚染土壌や放射能汚染物質を回収する容器の中を温めてフッ素などとセシウムなどとの結合をしやすくする、その加熱電熱器、
23 High-concentration radioactive waste, high-concentration radioactive material, radioactive waste and pulverized material obtained by pulverizing radioactive material and radioactive material 24 23 Semiconductors that generate electricity with radiation that is sandwiched between photovoltaic elements, etc.
Power is also generated by attaching to the side of the vessel that decomposes water into hydrogen and oxygen by radiation.
25 Since radioactive waste and radioactive materials break down water into hydrogen and oxygen, the radioactive waste and radioactive materials can be broken into hydrogen and oxygen by putting them in a container containing water without crushing or crushing them. Its container,
Water in 26 25 containers,
27 radioactive waste and radioactive materials in 25 containers,
28 In the 25 25 container, the water is decomposed into hydrogen and oxygen and the hydrogen is light, so the mouth to recover from the upper mouth,
29 25 In the 25 25 container, water is decomposed into hydrogen and oxygen, and oxygen is heavier than hydrogen.
In the 30 25 container, water is decomposed into hydrogen and oxygen so that light hydrogen and heavy oxygen can be easily separated,
3125 containers form the side walls that support the attachment of germanium semiconductors, etc. on both sides in order to generate electricity with the radioactivity that decomposes water into hydrogen and oxygen.
32 In order to decontaminate radioactively contaminated soil, substances, debris, etc., the nutrients contained in the radioactively contaminated soil are washed with water to recover the nutrients. In clay and the like, radioactive cesium and the like are combined with oxygen and aluminum, so that they do not flow with water, so put them in a sealed container and put fluorine (F), chlorine (Cl), bromine (Br) or iodine (I ), Stir, combine with cesium, dissolve in water and recover, and inject fluorine.
33 A machine that stirs radioactive contaminated soil or radioactive contaminants in 32 sealed containers.
34 A mouth that puts radioactive contaminated soil or radioactive contaminants into 32 32 sealed containers, injects fluorine, stirs, and dissolves and recovers the combination of fluorine and cesium with water,
In order to prevent the temperature from escaping when the temperature inside the sealed container is increased so that it is easy to combine with cesium by injecting fluorine, etc.
36 Radioactive contaminated soil and radioactive contaminants in 32 32 sealed containers
54 According to claims 64 and 65, a neutron absorbing material is melted and sprayed onto a material or product to be blocked from fibers, cloth, or neutrons by a sprayer to provide a radioactive protective suit, a neutron protective suit, a radioactive protective product, a neutron protective product, etc. Building, its sprayer,
55, 54, fibers, cloths, substances, products, etc.
56, 54, fine particles of molten neutron absorbing material sprayed at 54
77 Melting the neutron-absorbing material or metal of claim 66 with an electric heating heater, flying the particles in a vacuum and adhering them to fibers, cloths or materials to protect against radiation protection clothing, radiation protection products, neutron protection clothing, Producing neutron protection products, neutron absorbing materials and metals,
78 Electric heater as described in 77 77,
79 Fibers, cloths, substances and products to be attached by vacuum plating
80 Vacuum state in the vacuum plating container,
85 The soil and substances contaminated by radioactivity according to claims 1 and 2 are recovered by washing the nutrients with water and washing them with water, and the radioactivity such as cesium does not flow into the water by combining with acid and aluminum in the soil. Put the radioactive contaminated soil and radioactive contaminants into a sealed container, add fluorine etc., stir and combine fluorine and cesium etc.
86 Heating heater that heats the 85 contaminated soil and the container that collects radioactive pollutants to facilitate the combination of fluorine and cesium,

Claims (2)

福島原子力発電所事故などで多大な被害が被っており、その被害の中に放射能による、土壌汚染や水質汚染やがれき汚染などが有り、農地などの土壌汚染は粘土の層に放射性物質のセシウムが入り込んで粘土の中に有る酸素やアルミニウムなどと結合して粘土からセシウムが出にくくなっている状態で放射能を出し続けているので非常に人体などの健康にいいくない影響を与えるので、セシウムが入り込んでいる粘土からセシウムをとりだす方法として、農地などのセシウムに汚染された土壌の中には植物に必要な養分が多く含まれているので農地などの土壌を容器に入れて水で洗浄して養分を洗い流して養分を回収する、セシウムは粘土の層に入って酸素やアルミニウムなどと結合しているので洗浄してもセシウムは排出されない、養分が排出されたセシウムを含んでいる土壌を断熱材で覆った密閉容器の中に入れてその土壌の入った密閉容器の中にフッ素(F)を注入して土壌をかき混ぜると、酸素やアルミニウムなどと結合していたセシウムは酸素やアルミニウムなどよりもフッ素と結合しやすくなるのでセシウムはフッ素と結合してフッ化セシウム(CsF)になる装置が一つの部品で、
それに関連してセシウムとフッ素が反応しやすいように密閉容器の中の土壌の温度を上げたりもする装置が一つの部品で、
それに関連してフッ化セシウムになって土壌に含まれているフッ化セシウムを回収するのにはフッ化セシウムは水にとけやすいので、土壌に水を含ませて混ぜてその水にフッ化セシウムを溶かしてそのフッ化セシウムの含んだ水を電気分解してフッ素とセシウムとを回収する装置が一つの部分で、それに関連してセシウムなどの放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄(紺青)には多くのセシウムが混じっているのでそのフェロシアン化鉄も密閉容器の中に入れてフッ素を注入してかき混ぜて同じようにしてセシウムを回収する装置が一つの部品で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めた物や放射能を含んだがれきも上記の方法でフッ素を注入してセシウムを回収する装置が一つの部品で、
それに関連して、上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るのをフッ化ストロンチウムやフッ化プルトニウムとなって回収できる装置が一つの部品で、
それに関連して、フッ化ストロンチウムは塩酸にとけやすい、フッ化プルトニウムは水に溶けるので両方とも回収できる装置が一つの部品で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、回収後の土壌を断熱材で覆った密閉容器に入れて塩素(Cl)を注入して土壌をかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムが酸素やアルミニウムなどよりも塩素と結合しやすくなって塩化セシウム(CsCl)となる装置が一つの部品で
それに関連して反応しやすいように土壌の温度を上げてもいい装置が一つの部品で、
それに関連して塩化セシウムは水に溶けるので塩化セシウムを含んだ土壌に水を含ませて混ぜて塩化セシウムを溶かしてその水溶液を電気分解してセシウムと塩素を回収する装置が一つの部品で、
それに関連して放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄には多くのセシウムなどの放射能が含んでいるのでそのフェロシアン化鉄を密閉容器の中に入れて塩素を注入してかき混ぜて同じようにしてセシウムを回収する装置が一つの部品で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法で塩素を注入してセシウムを回収する装置が一つの部品で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るので塩化ストロンチウム(SrCl2)や塩化プルトニウム(PuCl3)となって回収できる装置が一つの部品で、
それに関連して塩化ストロンチウムや塩化プルトニウムは水に溶けるので水に溶かして電気分解して回収できる装置が一つの部品で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、回収後の土壌を断熱材で覆った密閉容器の中に入れて臭素(Br)を液体のままで土壌と混ぜてもいいし、熱を与えて気化させてそれを注入して同じく土壌に熱を与えて土壌をかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムが酸素やアルミニウムなどよりも臭素と結合しやすくなって臭化セシウム(CsBr)となる装置が一つの部品で、
それに関連して反応しやすいように土壌の温度を臭素が気化する温度よりも高くしてもいい装置が一つの部品で、
それに関連して臭化セシウムは水に溶けるので臭化セシウムを含んだ土壌に水を含ませて臭化セシウムを溶かしその水溶液を電気分解してセシウムと臭素を回収する装置が一つの部品で、
それに関連して放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄には多くのセシウムが含んでいるのでそのフェロシアン化鉄を断熱材で覆った密閉容器の中に入れで臭素に熱を与えて気化した臭素を注入してかき混ぜて同じようにしてセシウムを回収する装置が一つの部品で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法でセシウムを回収する装置が一つの部品で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るので臭化ストロンチウム(SrBr2)や臭化プルトニウム(PuBr3)となって回収できる装置が一つの部品で、
それに関連して臭化ストロンチウムや臭化プルトニウムは水に溶けるので同じく電気分解して回収できる装置が一つの部品で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、
回収した土壌を断熱材で覆った密閉容器の中に入れてヨウ素(I)に熱を与えて液体にして注入してその土壌と混ぜたりもするし、気化させてそれを注入して土壌とかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムは酸素やアルミニウムなどよりもヨウ素と結合しやすくなってヨウ化セシウム(CsI)となる装置が一つの部品で、
それに関連して反応しやすいように土壌の温度をもっと上げてもいい装置が一つの部品で、
それに関連してヨウ化セシウムは水に溶けるのでヨウ化セシウムを含んだ土壌に水を含ませてヨウ化セシウムを溶かしてその水溶液を電気分解してセシウムとヨウ素を回収する装置が一つの部品で、
それに関連して放射能に汚染された水質からセシウムを回収したフェロシアン化鉄(紺青)には多くのセシウムが含んでいるのでそのフェロシアン化鉄を断熱材で覆った密閉容器の中に入れてヨウ素に熱を与えて液体にして注入してフェロシアン化鉄と混ぜてもいいし、気化させたヨウ素を注入してかき混ぜてフェロシアン化鉄の多孔質の中のセシウムとヨウ素とが結びついて同じようにして水溶液にして電気分解してセシウムとヨウ素を回収する装置が一つの部品で、
それに関連してセシウムを含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法でセシウムを回収する装置が一つの部品で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有る場合が有るのでヨウ化ストロンチウム(SrI2)やヨウ化プルトニウム(PuI3)となって回収できる装置が一つの部品で、
それに関連してヨウ化ストロンチウムやヨウ化プルトニウムは水に溶けるので水溶液を電気分解して回収できる装置が一つの部品で、

セシュウムを回収した後の土壌や水からストロンチュ−ムを回収する装置は
セシュウムやストロンチュウムなどの放射能物質の含んだ土壌にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してセシュウムと反応させて水を加えて攪拌して水に溶け出たセシュウムの化合物を電気分解で回収する装置が一つの部品で、
回収した残りの水をこして、残ったセシュウムを回収した土壌に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してストロンチュウムと反応させて水を加えて攪拌してストロンチュウムの化合物を水に溶かして電気分解でストロンチュウムなどを回収する装置が一つの部品で、
でそれに関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解でストロンチュウムなどを回収する装置が一つの部品で、
でそれに関連してセシュウムの化合物を電気分解で回収した残りの水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を又加えて攪拌してストロンチュウムと反応させてそれを電気分解でストロンチュウムなどを回収する装置が一つの部品で、
でそれに関連して上記記載の方法での回収方法に熱を加えて回収する装置が一つの部品で、
で関連してセシュウムを回収した後の土壌や水を断熱材で囲まれた容器の中に入れて電熱器などで熱を加えてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を又加えて攪拌してストロンチュウムと反応させやすくして反応させる装置が一つの部品で、
で関連して土壌の場合にはストロンチュウムと反応させた後に水を加えてストロンチュウムの化合物を水に溶かして電気分解で回収する装置が一つの部品で、
で関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解で回収する装置が一つの部品で、
で関連して水の中のストロンチュウムをストロンチュウム化合物にした場合にはそのまま電気分解によって回収する装置が一つの部品で、
で関連してセシュウムやストロンチュウムなどで汚染された土壌などに含んでいる植物などを生育させる養分も含んだままの放射能汚染土壌にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してセシュウム化合物にして水を加えてセシュウム化合物を水に溶かして電気分解してセシュウムを回収する装置が一つの部品で、
で関連して放射能を含んだ物質やがれきも同じようにする装置が一つの部品で、
上記記載の放射能回収方法に関連してセシュウムを水に溶かして電気分解で回収した水をこした、セシュウムを回収した後の土壌に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌して土壌に含んでいるストロンチュウムをストロンチュウム化合物にする装置が一つの部品で、
でそれに関連してそれに水を加えてストロンチュウム化合物を水に溶かして電気分解してストロンチュウムを回収する装置が一つの部品で、
でそれに関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解でストロンチュウムを回収する装置が一つの部品、でそれに関連して放射能を含んだ物質やがれきも同じようにする装置が一つの部品で、
それに関連してセシュウムを回収した水に、又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)加えて攪拌して水に含んでいるストロンチュウムなどをストロンチュウム化合物にしてそれを電気分解してストロンチュウムを回収する装置が一つの部品で、
でそれに関連してセシュウムやストロンチュウムなどで汚染された汚染水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えてセシュウム化合物にしてそれを電気分解してセシュウムを回収する装置が一つ部品で、
でそれに関連してセシュウムなどを回収した後の汚染水に、又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌して汚染水に含まれているストロンチュウムなどをストロンチュウム化合物にしてそれを電気分解してストロンチュウムを回収する装置が一つの部品で、
でそれに関連して放射性物質回収方法で、放射能を含んだ物質やがれきや汚染土壌や汚染水を断熱材で囲まれた容器の中に入れて電熱器などで温めてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)とが放射性物質と反応しやすくして化合物になりやすい様にする装置が一つの部品で、
上記記載の46装置の部分[部品]を一つにまとめた装置。
The Fukushima nuclear power plant accident has caused a great deal of damage. Among these damages, there are soil pollution, water pollution, debris pollution, etc. due to radioactivity, and soil pollution such as farmland is radioactive cesium in the clay layer. Because it continues to emit radioactivity in a state where cesium is difficult to be released from the clay by combining with oxygen and aluminum etc. in the clay, it has a very bad effect on the health of the human body, etc. As a method of extracting cesium from clay containing cesium, soil contaminated with cesium such as farmland contains a lot of nutrients necessary for plants, so soil such as farmland is put in a container and washed with water Wash the nutrients and collect the nutrients. Cesium enters the clay layer and binds to oxygen, aluminum, etc., so cesium is not discharged even if washed. Put the discharged cesium-containing soil in a sealed container covered with heat insulating material, inject fluorine (F) into the sealed container containing the soil, and stir the soil. The combined cesium is easier to combine with fluorine than oxygen, aluminum, etc., so cesium is combined with fluorine to become cesium fluoride (CsF) as one component.
In connection with this, a device that raises the temperature of the soil in the sealed container so that cesium and fluorine can easily react is one part,
In relation to this, cesium fluoride becomes cesium fluoride and recovers cesium fluoride contained in the soil. Cesium fluoride is easy to dissolve in water. The device that dissolves the cesium fluoride and electrolyzes the water containing cesium fluoride to recover fluorine and cesium is one part, and the radioactivity such as cesium from the water quality contaminated by radioactivity such as cesium is related to it. Ferrocyanide (bituminous) recovered with a large amount of cesium is mixed, so there is a device to recover the cesium in the same way by putting the ferrocyanide into a sealed container, injecting fluorine and stirring it. With one part,
In connection with that, a piece of solidified clay containing radioactivity such as cesium and a device that collects radioactive cesium by injecting fluorine with the above method is one part,
In connection with that, when the above method is used, a device that can recover a small amount of strontium or plutonium in radioactive contaminants as strontium fluoride or plutonium fluoride is a single component,
In connection with that, strontium fluoride is easily dissolved in hydrochloric acid, and plutonium fluoride dissolves in water, so both can be recovered in one part.
In relation to the above equipment, soil such as farmland contaminated by radioactivity is washed with water in a container to collect the nutrients necessary for the plant to grow, and the recovered soil is then insulated with insulation. If you put chlorine (Cl) in a covered airtight container and stir the soil, the cesium that was bound to oxygen and aluminum in the clay layer will be more easily bound to chlorine than oxygen and aluminum, and will be chlorinated. The device that becomes cesium (CsCl) is one part ,
The device that can raise the temperature of the soil so that it reacts easily in connection with it is one part,
In connection with that, cesium chloride dissolves in water, so the soil containing cesium chloride is mixed with water and mixed to dissolve cesium chloride and electrolyze the aqueous solution to recover cesium and chlorine as one part.
In connection with this, ferrous ferrocyanide that recovered radioactivity such as cesium from water contaminated with radioactivity contains a lot of radioactivity such as cesium, so put the ferrocyanide in a sealed container. The device that collects cesium in the same way by injecting chlorine and stirring is one part,
In connection with that, only one piece of clay that contains radioactivity such as cesium or a device that collects radioactivity by injecting chlorine using the above method is one component.
In connection with this, if there is a little strontium or plutonium in radioactive pollutants when the above method is used, the equipment that can be recovered as strontium chloride (SrCl2) or plutonium chloride (PuCl3) is one part,
In connection with that, strontium chloride and plutonium chloride are soluble in water, so the device that can be dissolved in water and electrolyzed and recovered is one part.
In relation to the above equipment, soil such as farmland contaminated by radioactivity is washed with water in a container to collect the nutrients necessary for the plant to grow, and the recovered soil is then insulated with insulation. You can mix bromine (Br) with the soil as it is in a liquid container in a covered container, or vaporize it by injecting it, inject it, and heat the soil to stir the soil. One component is a device in which cesium bonded to oxygen, aluminum, and the like in this layer is more easily bonded to bromine than oxygen, aluminum, etc., and becomes cesium bromide (CsBr).
In order to make it easier to react in connection with that, the equipment that can raise the temperature of the soil above the temperature at which bromine vaporizes is a single component,
In connection with this, cesium bromide dissolves in water, so the water-containing soil contains cesium bromide, dissolves cesium bromide, and electrolyzes the aqueous solution to recover cesium and bromine.
In connection with this, ferrous iron ferrocyanide that recovered cesium and other radioactivity from radioactively contaminated water contains a large amount of cesium, so it is contained in a sealed container covered with heat insulating material. A device that collects cesium in the same way by injecting bromine vaporized by applying heat to bromine and stirring it in one part,
In connection with that, a single component is a device that collects only radioactive clay such as cesium or a device that collects radioactive cesium using the above method.
In connection with this, if there is a little strontium or plutonium in the radioactive pollutant when performed by the above method, the equipment that can be recovered as strontium bromide (SrBr2) or plutonium bromide (PuBr3) is one part,
In connection with that, strontium bromide and plutonium bromide are soluble in water, so a device that can also be electrolyzed and recovered is one part.
Recover the nutrients necessary for plant growth by washing soil such as farmland contaminated with radioactivity with water in a container in relation to the above-mentioned device,
Put the collected soil in a sealed container covered with heat insulating material, heat iodine (I) to make it liquid, mix it with the soil, vaporize it, inject it, When stirring, cesium that is bound to oxygen and aluminum in the clay layer is easier to bond with iodine than oxygen and aluminum, etc., and the device that becomes cesium iodide (CsI) is one part,
A device that can raise the temperature of the soil to make it easier to react is a single component.
In this connection, cesium iodide dissolves in water, so a single device is a device that recovers cesium and iodine by dissolving water in a soil containing cesium iodide, dissolving the cesium iodide, and electrolyzing the aqueous solution. ,
The iron ferrocyanide (bitumen) that recovered cesium from radioactively contaminated water contains a lot of cesium, so put it in a sealed container covered with heat insulating material. You can heat iodine and inject it into a liquid, mix it with ferrocyanide, or inject vaporized iodine and stir to combine cesium and iodine in the iron ferrocyanide porous material. In the same way, a device that recovers cesium and iodine by electrolyzing into an aqueous solution is one part,
In connection with that, only one piece of cesium-contained clay or one that contains radioactivity but also cesium recovery equipment using the above method,
In connection with this, if there is a small amount of strontium and plutonium in radioactive pollutants when the above method is used, there is one device that can be recovered as strontium iodide (SrI2) or plutonium iodide (PuI3). With parts,
In connection with that, strontium iodide and plutonium iodide are soluble in water, so an apparatus that can electrolyze and recover an aqueous solution is one part.

An apparatus for recovering strontium from soil and water after recovering cesium contains fluorine (F), chlorine (Cl), bromine (Br), and iodine (in soil containing radioactive materials such as cesium and strontium). I) is added and stirred to react with cesium, water is added and stirred and the cesium compound dissolved in the water is recovered by electrolysis as one part.
Rub the remaining water collected, and add fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) to the soil from which the remaining cesium was collected and stir to react with strontium. A device that dissolves strontium compound in water and recovers strontium etc. by electrolysis is added as a component.
In connection with it, strontium fluoride is easy to dissolve in hydrochloric acid, so a device that dissolves in hydrochloric acid and recovers strontium etc. by electrolysis is one part,
In this connection, fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the remaining water obtained by electrolysis of the cesium compound and stirred to react with strontium. The device that recovers strontium etc. by electrolysis is one part,
In connection with this, the apparatus for recovering by applying heat to the recovery method in the method described above is one part,
In this case, the soil and water after collecting cesium are put in a container surrounded by a heat insulating material and heated with an electric heater, etc., and fluorine (F), chlorine (Cl), bromine (Br) and iodine are added. (I) is added again and stirred to make it easy to react with strontium.
In the case of soil, in the case of soil, after reacting with strontium, water is added and the strontium compound is dissolved in water and recovered by electrolysis is one part,
In connection with this, strontium fluoride is easy to dissolve in hydrochloric acid, so the device that dissolves in hydrochloric acid and recovers by electrolysis is one part.
In connection with this, when strontium in the water is converted into a strontium compound, a device that recovers by electrolysis as it is is one part.
Fluorine (F), chlorine (Cl) and bromine (Br) in radioactively contaminated soil that still contains nutrients for growing plants contained in soil contaminated with cesium and strontium A device that recovers cesium by adding electrolysis and iodine (I), stirring to make a cesium compound, adding water, dissolving the cesium compound in water and electrolyzing it,
In the same way, a single device is used to do the same for radioactive materials and debris.
In relation to the radioactivity recovery method described above, cesium was dissolved in water and the water recovered by electrolysis was rubbed. The soil after the recovery of cesium was also re-applied to fluorine (F), chlorine (Cl) and bromine (Br). A device that converts strontium contained in soil by adding strontium and iodine (I) to strontium compound as one component,
In connection with that, water is added to it and the strontium compound is dissolved in water and electrolyzed to recover strontium as one part .
In connection with it, strontium fluoride is easily dissolved in hydrochloric acid, so the device that dissolves in hydrochloric acid and recovers strontium by electrolysis is one part, and the same is true for substances containing radioactive materials and debris. The device to make is one part,
In addition, strontium compounds such as strontium contained in water by adding fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) to the water from which cesium was recovered and stirring. The device that electrolyzes it and recovers strontium is one part.
In addition, fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to contaminated water contaminated with cesium and strontium, etc. to make a cesium compound and electrolyze it. The cesium collection device is one part
In addition to this, stront contained in contaminated water after the collection of cesium, etc., and fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the contaminated water and stirred. A device that recovers strontium by electrolyzing it with a strontium compound as a single component,
In connection with that, radioactive materials, debris, contaminated soil and contaminated water are placed in a container surrounded by heat insulating material and warmed with an electric heater, etc., with fluorine (F) and chlorine. (Cl), bromine (Br), and iodine (I) are easy to react with radioactive substances and become a compound.
A device in which the parts [parts] of the 46 devices described above are combined into one.
福島原子力発電所事故などで多大な被害が被っており、その被害の中に放射能による、土壌汚染や水質汚染やがれき汚染などが有り、農地などの土壌汚染は粘土の層に放射性物質のセシウムが入り込んで粘土の中に有る酸素やアルミニウムなどと結合して粘土からセシウムが出にくくなっている状態で放射能を出し続けているので非常に人体などの健康にいいくない影響を与えるので、セシウムが入り込んでいる粘土からセシウムをとりだす方法として、農地などのセシウムに汚染された土壌の中には植物に必要な養分が多く含まれているので農地などの土壌を容器に入れて水で洗浄して養分を洗い流して養分を回収する、セシウムは粘土の層に入って酸素やアルミニウムなどと結合しているので洗浄してもセシウムは排出されない、養分が排出されたセシウムを含んでいる土壌を断熱材で覆った密閉容器の中に入れてその土壌の入った密閉容器の中にフッ素(F)を注入して土壌をかき混ぜると、酸素やアルミニウムなどと結合していたセシウムは酸素やアルミニウムなどよりもフッ素と結合しやすくなるのでセシウムはフッ素と結合してフッ化セシウム(CsF)になる装置の方法が一つの仕方で、
それに関連してセシウムとフッ素が反応しやすいように密閉容器の中の土壌の温度を上げたりもする装置の方法が一つの仕方で、
それに関連してフッ化セシウムになって土壌に含まれているフッ化セシウムを回収するのにはフッ化セシウムは水にとけやすいので、土壌に水を含ませて混ぜてその水にフッ化セシウムを溶かしてそのフッ化セシウムの含んだ水を電気分解してフッ素とセシウムとを回収する装置の方法が一つの仕方で、それに関連してセシウムなどの放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄(紺青)には多くのセシウムが混じっているのでそのフェロシアン化鉄も密閉容器の中に入れてフッ素を注入してかき混ぜて同じようにしてセシウムを回収する装置の方法が一つの仕方で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めた物や放射能を含んだがれきも上記の方法でフッ素を注入してセシウムを回収する装置の方法が一つの部品−−仕方で、
それに関連して、上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るのをフッ化ストロンチウムやフッ化プルトニウムとなって回収できる装置の方法が一つの仕方で、
それに関連して、フッ化ストロンチウムは塩酸にとけやすい、フッ化プルトニウムは水に溶けるので両方とも回収できる装置の方法が一つの仕方で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、回収後の土壌を断熱材で覆った密閉容器に入れて塩素(Cl)を注入して土壌をかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムが酸素やアルミニウムなどよりも塩素と結合しやすくなって塩化セシウム(CsCl)となる装置の方法が一つの仕方で
それに関連して反応しやすいように土壌の温度を上げてもいい装置の方法が一つの仕方で、
それに関連して塩化セシウムは水に溶けるので塩化セシウムを含んだ土壌に水を含ませて混ぜて塩化セシウムを溶かしてその水溶液を電気分解してセシウムと塩素を回収する装置の方法が一つの仕方で、
それに関連して放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄には多くのセシウムなどの放射能が含んでいるのでそのフェロシアン化鉄を密閉容器の中に入れて塩素を注入してかき混ぜて同じようにしてセシウムを回収する装置の方法が一つの仕方で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法で塩素を注入してセシウムを回収する装置が一つの部品で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るので塩化ストロンチウム(SrCl2)や塩化プルトニウム(PuCl3)となって回収できる装置が一つの部品で、
それに関連して塩化ストロンチウムや塩化プルトニウムは水に溶けるので水に溶かして電気分解して回収できる装置が一つの部品で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、回収後の土壌を断熱材で覆った密閉容器の中に入れて臭素(Br)を液体のままで土壌と混ぜてもいいし、熱を与えて気化させてそれを注入して同じく土壌に熱を与えて土壌をかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムが酸素やアルミニウムなどよりも臭素と結合しやすくなって臭化セシウム(CsBr)となる装置の方法が一つの仕方で、
それに関連して反応しやすいように土壌の温度を臭素が気化する温度よりも高くしてもいい装置の方法が一つの仕方で、
それに関連して臭化セシウムは水に溶けるので臭化セシウムを含んだ土壌に水を含ませて臭化セシウムを溶かしその水溶液を電気分解してセシウムと臭素を回収する装置の方法が一つの仕方で、
それに関連して放射能に汚染された水質からセシウムなどの放射能を回収したフェロシアン化鉄には多くのセシウムが含んでいるのでそのフェロシアン化鉄を断熱材で覆った密閉容器の中に入れで臭素に熱を与えて気化した臭素を注入してかき混ぜて同じようにしてセシウムを回収する装置の方法が一つの仕方で、
それに関連してセシウムなどの放射能を含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法でセシウムを回収する装置が一つの部品で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有るので臭化ストロンチウム(SrBr2)や臭化プルトニウム(PuBr3)となって回収できる装置の方法が一つの仕方で、
それに関連して臭化ストロンチウムや臭化プルトニウムは水に溶けるので同じく電気分解して回収できる装置の方法が一つの仕方で、
上記記載の装置に関連して放射能に汚染された農地などの土壌を容器の中で水で洗浄して植物が成長するのに必要な養分を回収して、
回収した土壌を断熱材で覆った密閉容器の中に入れてヨウ素(I)に熱を与えて液体にして注入してその土壌と混ぜたりもするし、気化させてそれを注入して土壌とかき混ぜると粘土の層の中の酸素やアルミニウムなどと結合していたセシウムは酸素やアルミニウムなどよりもヨウ素と結合しやすくなってヨウ化セシウム(CsI)となる装置の方法が一つの仕方で、
それに関連して反応しやすいように土壌の温度をもっと上げてもいい装置の方法が一つの仕方で、
それに関連してヨウ化セシウムは水に溶けるのでヨウ化セシウムを含んだ土壌に水を含ませてヨウ化セシウムを溶かしてその水溶液を電気分解してセシウムとヨウ素を回収する装置の方法が一つの仕方で、
それに関連して放射能に汚染された水質からセシウムを回収したフェロシアン化鉄(紺青)には多くのセシウムが含んでいるのでそのフェロシアン化鉄を断熱材で覆った密閉容器の中に入れてヨウ素に熱を与えて液体にして注入してフェロシアン化鉄と混ぜてもいいし、気化させたヨウ素を注入してかき混ぜてフェロシアン化鉄の多孔質の中のセシウムとヨウ素とが結びついて同じようにして水溶液にして電気分解してセシウムとヨウ素を回収する装置の方法の一つの仕方で、
それに関連してセシウムを含んだ粘土だけを固めたものや放射能を含んだがれきも上記の方法でセシウムを回収する装置の方法が一つの仕方で、
それに関連して上記の方法で行うと放射能汚染物質の中に少しのストロンチウムやプルトニウムが有る場合が有るのでヨウ化ストロンチウム(SrI2)やヨウ化プルトニウム(PuI3)となって回収できる装置の方法が一つの仕方で、
それに関連してヨウ化ストロンチウムやヨウ化プルトニウムは水に溶けるので水溶液を電気分解して回収できる装置の方法が一つの仕方で、

セシュウムを回収した後の土壌や水からストロンチュ−ムを回収する方法は
請求項1のセシュウムやストロンチュウムなどの放射能物質の含んだ土壌にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してセシュウムと反応させて水を加えて攪拌して水に溶け出たセシュウムの化合物を電気分解で回収する装置の方法が一つの仕方で、
回収した残りの水をこして、残ったセシュウムを回収した土壌に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してストロンチュウムと反応させて水を加えて攪拌してストロンチュウムの化合物を水に溶かして電気分解でストロンチュウムなどを回収する装置の方法が一つの仕方、
でそれに関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解でストロンチュウムなどを回収する装置の方法が一つの仕方で、
でそれに関連してセシュウムの化合物を電気分解で回収した残りの水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を又加えて攪拌してストロンチュウムと反応させてそれを電気分解でストロンチュウムなどを回収する装置の方法が一つの仕方で、
でそれに関連して上記記載の方法での回収方法に熱を加えて回収する装置の方法が一つの仕方で、
で関連してセシュウムを回収した後の土壌や水を断熱材で囲まれた容器の中に入れて電熱器などで熱を加えてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を又加えて攪拌してストロンチュウムと反応させやすくして反応させる装置の方法が一つの仕方で、
で関連して土壌の場合にはストロンチュウムと反応させた後に水を加えてストロンチュウムの化合物を水に溶かして電気分解で回収する装置の方法が一つの仕方で、
で関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解で回収する装置の方法が一つの仕方で、
で関連して水の中のストロンチュウムをストロンチュウム化合物にした場合にはそのまま電気分解によって回収する装置の方法が一つの仕方で、
で関連してセシュウムやストロンチュウムなどで汚染された土壌などに含んでいる植物などを生育させる養分も含んだままの放射能汚染土壌にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌してセシュウム化合物にして水を加えてセシュウム化合物を水に溶かして電気分解してセシュウムを回収する装置の方法が一つの仕方で、
で関連して放射能を含んだ物質やがれきも同じようにする装置の方法が一つの仕方で、
上記記載の放射能回収方法に関連してセシュウムを水に溶かして電気分解で回収した水をこした、セシュウムを回収した後の土壌に又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌して土壌に含んでいるストロンチュウムをストロンチュウム化合物にする装置の方法が一つの仕方で、
でそれに関連してそれに水を加えてストロンチュウム化合物を水に溶かして電気分解してストロンチュウムを回収する装置の方法が一つの仕方で、
でそれに関連してフッ化ストロンチュウムは塩酸に溶けやすいので塩酸に溶かして電気分解でストロンチュウムを回収する装置の方法が一つの仕方で、に関連して放射能を含んだ物質やがれきも同じようにする装置の方法が一つの仕方、
それに関連してセシュウムを回収した水に、又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)加えて攪拌して水に含んでいるストロンチュウムなどをストロンチュウム化合物にしてそれを電気分解してストロンチュウムを回収する装置の方法が一つの仕方で、
でそれに関連してセシュウムやストロンチュウムなどで汚染された汚染水にフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えてセシュウム化合物にしてそれを電気分解してセシュウムを回収する装置の方法が一つの仕方で、
でそれに関連してセシュウムなどを回収した後の汚染水に、又フッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)を加えて攪拌して汚染水に含まれているストロンチュウムなどをストロンチュウム化合物にしてそれを電気分解してストロンチュウムを回収する装置の方法が一つの仕方で、
でそれに関連して放射性物質回収方法で、放射能を含んだ物質やがれきや汚染土壌や汚染水を断熱材で囲まれた容器の中に入れて電熱器などで温めてフッ素(F)や塩素(Cl)や臭素(Br)やヨウ素(I)とが放射性物質と反応しやすくして化合物になりやすい様にする装置の方法が一つの仕方で、
上記記載の46の装置の方法の仕方を一つにまとめた方法。
The Fukushima nuclear power plant accident has caused a great deal of damage. Among these damages, there are soil pollution, water pollution, debris pollution, etc. due to radioactivity, and soil pollution such as farmland is radioactive cesium in the clay layer. Because it continues to emit radioactivity in a state where cesium is difficult to be released from the clay by combining with oxygen and aluminum etc. in the clay, it has a very bad effect on the health of the human body, etc. As a method of extracting cesium from clay containing cesium, soil contaminated with cesium such as farmland contains a lot of nutrients necessary for plants, so soil such as farmland is put in a container and washed with water Wash the nutrients and collect the nutrients. Cesium enters the clay layer and binds to oxygen, aluminum, etc., so cesium is not discharged even if washed. Put the discharged cesium-containing soil in a sealed container covered with heat insulating material, inject fluorine (F) into the sealed container containing the soil, and stir the soil. Since the bound cesium is easier to bind to fluorine than oxygen, aluminum, etc., cesium is combined with fluorine to become cesium fluoride (CsF) in one way,
In connection with that, the method of the device that raises the temperature of the soil in the sealed container so that cesium and fluorine can easily react is one way,
In relation to this, cesium fluoride becomes cesium fluoride and recovers cesium fluoride contained in the soil. Cesium fluoride is easy to dissolve in water. The method of the device that recovers fluorine and cesium by electrolyzing the water containing cesium fluoride by dissolving the cesium fluoride is one way, and cesium and the like from cesium and other radioactively contaminated water quality The ferrocyanide (bituminous) recovered from radioactivity contains a lot of cesium, so put the ferrocyanide in a sealed container, inject fluorine, and stir in the same way to recover cesium. The device method is one way,
In connection with this, there is one component--a method of recovering cesium by injecting fluorine with the above method by solidifying only radioactive clay such as cesium or debris containing radioactive material. ,
In connection with that, when the above method is used, there is a method of an apparatus that can recover a small amount of strontium or plutonium in radioactive contaminants as strontium fluoride or plutonium fluoride,
In connection with that, strontium fluoride is easy to dissolve in hydrochloric acid, plutonium fluoride is soluble in water, so there is one way to recover both,
In relation to the above equipment, soil such as farmland contaminated by radioactivity is washed with water in a container to collect the nutrients necessary for the plant to grow, and the recovered soil is then insulated with insulation. If you put chlorine (Cl) in a covered airtight container and stir the soil, the cesium that was bound to oxygen and aluminum in the clay layer will be more easily bound to chlorine than oxygen and aluminum, and will be chlorinated. The method of the device to become cesium (CsCl) is one way ,
In one way, there is a device that can raise the temperature of the soil so that it reacts easily.
In this connection, cesium chloride dissolves in water, so one method is to recover cesium and chlorine by electrolyzing the aqueous solution by dissolving water in cesium chloride-containing soil and mixing it. so,
In connection with this, ferrous ferrocyanide that recovered radioactivity such as cesium from water contaminated with radioactivity contains a lot of radioactivity such as cesium, so put the ferrocyanide in a sealed container. In one way, there is an apparatus that recovers cesium in the same way by injecting chlorine and stirring.
In connection with that, only one piece of clay that contains radioactivity such as cesium or a device that collects radioactivity by injecting chlorine using the above method is one component.
In connection with this, if there is a little strontium or plutonium in radioactive pollutants when the above method is used, the equipment that can be recovered as strontium chloride (SrCl2) or plutonium chloride (PuCl3) is one part,
In connection with that, strontium chloride and plutonium chloride are soluble in water, so the device that can be dissolved in water and electrolyzed and recovered is one part.
In relation to the above equipment, soil such as farmland contaminated by radioactivity is washed with water in a container to collect the nutrients necessary for the plant to grow, and the recovered soil is then insulated with insulation. You can mix bromine (Br) with the soil as it is in a liquid container in a covered container, or vaporize it by injecting it, inject it, and heat the soil to stir the soil. The method of the apparatus in which cesium bonded to oxygen, aluminum, etc. in the layer of this layer becomes easier to bond with bromine than oxygen, aluminum, etc. and becomes cesium bromide (CsBr) is one way,
One way to do this is to allow the temperature of the soil to be higher than the temperature at which bromine vaporizes so that it reacts easily.
In this connection, cesium bromide is soluble in water, so one method is to recover cesium and bromine by dissolving water in cesium bromide soil, dissolving cesium bromide and electrolyzing the aqueous solution. so,
In connection with this, ferrous iron ferrocyanide that recovered cesium and other radioactivity from radioactively contaminated water contains a large amount of cesium, so it is contained in a sealed container covered with heat insulating material. One way is to recover the cesium in the same way by injecting and stirring the bromine vaporized by heating the bromine and stirring.
In connection with that, a single component is a device that collects only radioactive clay such as cesium or a device that collects radioactive cesium using the above method.
In connection with this, there is a small amount of strontium and plutonium in the radioactive pollutant when the above method is used, so there is one way to recover the device as strontium bromide (SrBr2) or plutonium bromide (PuBr3). so,
In connection with that, strontium bromide and plutonium bromide are soluble in water, so the method of the apparatus that can also be electrolyzed and recovered is one way,
Recover the nutrients necessary for plant growth by washing soil such as farmland contaminated with radioactivity with water in a container in relation to the above-mentioned device,
Put the collected soil in a sealed container covered with heat insulating material, heat iodine (I) to make it liquid, mix it with the soil, vaporize it, inject it, In one way, the cesium that is bound to oxygen and aluminum in the clay layer is more easily bound to iodine than oxygen and aluminum, and becomes cesium iodide (CsI).
One way to do that is to increase the temperature of the soil so that it reacts more easily.
In connection with this, cesium iodide is soluble in water, so one method is to recover cesium and iodine by dissolving water in a soil containing cesium iodide, dissolving the cesium iodide, and electrolyzing the aqueous solution. In the way
The iron ferrocyanide (bitumen) that recovered cesium from radioactively contaminated water contains a lot of cesium, so put it in a sealed container covered with heat insulating material. You can heat iodine and inject it into a liquid, mix it with ferrocyanide, or inject vaporized iodine and stir to combine cesium and iodine in the iron ferrocyanide porous material. In the same way, it is one of the methods of the apparatus that recovers cesium and iodine by electrolysis into an aqueous solution,
In connection with that, there is a method of collecting only cesium-containing clay or a device that collects cesium by using the above method even though it contains radioactive material.
In relation to this, there is a case where there is a small amount of strontium or plutonium in radioactive pollutants when the above method is used. In one way,
In connection with that, strontium iodide and plutonium iodide are soluble in water, so there is one way to electrolyze and recover aqueous solutions.

The method for recovering strontium from soil and water after recovering cesium is as follows. Fluorine (F), chlorine (Cl) and bromine (Br) are added to the soil containing radioactive substances such as cesium and strontium. ) And iodine (I) are added and stirred to react with cesium, water is added, stirred and the cesium compound dissolved in water is recovered by electrolysis in one way.
Rub the remaining water collected, and add fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) to the soil from which the remaining cesium was collected and stir to react with strontium. One way is to add water and stir to dissolve the strontium compound in water and recover strontium etc. by electrolysis.
In connection with that, strontium fluoride is easy to dissolve in hydrochloric acid, so the method of the device that dissolves in hydrochloric acid and recovers strontium etc. by electrolysis is one way,
In this connection, fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the remaining water obtained by electrolysis of the cesium compound and stirred to react with strontium. The method of the device that recovers strontium etc. by electrolysis is one way,
In connection with this, the method of the apparatus for recovering by applying heat to the recovery method in the method described above is one way,
In this case, the soil and water after collecting cesium are put in a container surrounded by a heat insulating material and heated with an electric heater, etc., and fluorine (F), chlorine (Cl), bromine (Br) and iodine are added. (I) is added again and stirred to make it easy to react with strontium.
In the case of soil, in the case of soil, one method is an apparatus that recovers by electrolysis after adding water after reacting with strontium and dissolving the compound of strontium in water,
In connection with this, strontium fluoride is easily dissolved in hydrochloric acid.
In connection with the above, when the strontium in the water is converted into a strontium compound, the method of the apparatus for recovering by electrolysis as it is is one way,
Fluorine (F), chlorine (Cl) and bromine (Br) in radioactively contaminated soil that still contains nutrients for growing plants contained in soil contaminated with cesium and strontium And iodine (I) and stirring to make a cesium compound, water is added, the cesium compound is dissolved in water, electrolyzed and cesium is recovered in one way,
In one way, there is a device method that makes radioactive materials and debris the same in connection with
In relation to the radioactivity recovery method described above, cesium was dissolved in water and the water recovered by electrolysis was rubbed. The soil after the recovery of cesium was also re-applied to fluorine (F), chlorine (Cl) and bromine (Br). In one way, there is a method of an apparatus for adding strontium contained in soil by stirring and adding iodine (I) to strontium compound,
In connection with that, in one way , there is an apparatus method for recovering strontium by adding water to it and dissolving the strontium compound in water and electrolyzing it,
In connection with this, strontium fluoride is easily dissolved in hydrochloric acid, so there is one way to recover strontium by dissolving it in hydrochloric acid and electrolyzing it. Is one way to do the same,
In addition, strontium compounds such as strontium contained in water by adding fluorine (F), chlorine (Cl), bromine (Br) or iodine (I) to the water from which cesium was recovered and stirring. In one way, there is a device method for electrolyzing it and recovering strontium.
In addition, fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to contaminated water contaminated with cesium and strontium, etc. to make a cesium compound and electrolyze it. There is one way to collect cesium.
In addition to this, stront contained in contaminated water after the collection of cesium, etc., and fluorine (F), chlorine (Cl), bromine (Br), and iodine (I) are added to the contaminated water and stirred. One method is a device that recovers strontium by electrolyzing it with a strontium compound such as thum,
In connection with that, radioactive materials, debris, contaminated soil and contaminated water are placed in a container surrounded by heat insulating material and warmed with an electric heater, etc., with fluorine (F) and chlorine. (Cl), bromine (Br), and iodine (I) are easy to react with radioactive substances and become a compound.
46. A method in which the methods of the apparatus of 46 described above are combined.
JP2017076318A 2013-05-01 2017-04-06 Radioactive waste processing and removal method of radioactive contaminant Pending JP2017142259A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013096574 2013-05-01
JP2013096574 2013-05-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015217916A Division JP2016075689A (en) 2013-05-01 2015-11-05 Radioactive waste treatment, and removal method of radioactive contamination material

Publications (1)

Publication Number Publication Date
JP2017142259A true JP2017142259A (en) 2017-08-17

Family

ID=52125561

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2014049525A Pending JP2014232099A (en) 2013-05-01 2014-03-12 High safety nuclear power generation, high safety fast breeder reactor, radioactive waste treatment, and radioactive contaminated substance removal method
JP2015217810A Active JP6240819B2 (en) 2013-05-01 2015-11-05 Fast breeder reactor with high safety
JP2015217916A Pending JP2016075689A (en) 2013-05-01 2015-11-05 Radioactive waste treatment, and removal method of radioactive contamination material
JP2015217872A Pending JP2016048249A (en) 2013-05-01 2015-11-05 Highly safe atomic power generation
JP2016195316A Pending JP2017021049A (en) 2013-05-01 2016-10-01 Radioactive waste process, and method for removing radioactive contaminant
JP2017076318A Pending JP2017142259A (en) 2013-05-01 2017-04-06 Radioactive waste processing and removal method of radioactive contaminant

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2014049525A Pending JP2014232099A (en) 2013-05-01 2014-03-12 High safety nuclear power generation, high safety fast breeder reactor, radioactive waste treatment, and radioactive contaminated substance removal method
JP2015217810A Active JP6240819B2 (en) 2013-05-01 2015-11-05 Fast breeder reactor with high safety
JP2015217916A Pending JP2016075689A (en) 2013-05-01 2015-11-05 Radioactive waste treatment, and removal method of radioactive contamination material
JP2015217872A Pending JP2016048249A (en) 2013-05-01 2015-11-05 Highly safe atomic power generation
JP2016195316A Pending JP2017021049A (en) 2013-05-01 2016-10-01 Radioactive waste process, and method for removing radioactive contaminant

Country Status (1)

Country Link
JP (6) JP2014232099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107705868B (en) * 2017-09-14 2024-01-05 华北电力大学 Radionuclide collection device in ocean
JP2019101008A (en) * 2017-12-01 2019-06-24 功 坂上 Spent nuclear fuel detoxification facility

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1023694A (en) * 1973-11-19 1978-01-03 Texas Gas Transmission Corporation Multi-step chemical and radiation process for the production of gas
JPS5388499A (en) * 1977-01-12 1978-08-03 Toshiba Corp Reactor constituting material
JPS53131394A (en) * 1977-04-22 1978-11-16 Hitachi Ltd Safety operation of liquid metal cooling fast reactor
JPS5438783A (en) * 1977-09-01 1979-03-23 Hamasawa Kogyo:Kk Radiation electromotive force type battery
JPS5484103A (en) * 1977-12-19 1979-07-04 Ishikawajima Harima Heavy Ind Co Ltd Steam generator for sodium-cooled fast breeder
US4218622A (en) * 1978-01-17 1980-08-19 The Carborundum Company Neutron absorbing article and method for manufacture thereof
JPS5913987A (en) * 1982-07-01 1984-01-24 ア−ル・アンド・デ−・アソシエイツ・インコ−ポレ−テツド Reactor core catcher device and method of fixing it
JPS60120282A (en) * 1983-12-02 1985-06-27 株式会社日立製作所 Fuel aggregate
JPS6190096A (en) * 1984-10-11 1986-05-08 株式会社東芝 Intermediate heat exchanger
JPS6324196A (en) * 1984-12-21 1988-02-01 株式会社クラレ Thermal neutron absorptive organic fiber composite material
JPS63154992A (en) * 1986-12-19 1988-06-28 株式会社東芝 Heat removing system of fast breeder reactor
JPS6428592A (en) * 1987-07-23 1989-01-31 Toshiba Corp Cooling equipment for containment vessel
JPS6435393A (en) * 1987-07-31 1989-02-06 Power Reactor & Nuclear Fuel Self-safety type liquid metal cooling furnace located in deep stratum
JP2556876B2 (en) * 1988-03-11 1996-11-27 株式会社日立製作所 Fuel element and fuel assembly
JPH01318994A (en) * 1988-06-21 1989-12-25 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel element
JPH03267800A (en) * 1990-03-16 1991-11-28 Ishikawajima Harima Heavy Ind Co Ltd Storage shed for radioactive refuse
JPH0540186A (en) * 1990-12-21 1993-02-19 Nippon Nuclear Fuel Dev Co Ltd Nuclear fuel element
JP3150451B2 (en) * 1992-10-20 2001-03-26 株式会社日立製作所 Reactor equipment
JP2807381B2 (en) * 1992-10-30 1998-10-08 日本原子力研究所 Method for producing large-scale fired solid containing cesium and / or strontium, and heating element obtained from the solid
JPH0749391A (en) * 1993-08-04 1995-02-21 Toshiba Corp Nuclear reactor
JPH07128476A (en) * 1993-10-29 1995-05-19 Hitachi Ltd Reactor safety facilities
US5721462A (en) * 1993-11-08 1998-02-24 Iowa State University Research Foundation, Inc. Nuclear battery
JPH08201581A (en) * 1995-01-30 1996-08-09 Sutaaraito Kogyo Kk Composition for radiation shield and its usage
US5642014A (en) * 1995-09-27 1997-06-24 Lucent Technologies Inc. Self-powered device
JPH1080631A (en) * 1996-09-06 1998-03-31 Mitsubishi Heavy Ind Ltd High temperature water activation device
JP2000009887A (en) * 1998-06-19 2000-01-14 Central Res Inst Of Electric Power Ind Direct contact heat transfer type steam generator
JP2000098078A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Reactor safety installation
JP2000327301A (en) * 1999-05-19 2000-11-28 Toshiba Corp Hydrogen production apparatus, methanol production apparatus and atomic power apparatus
JP2002338201A (en) * 2001-05-22 2002-11-27 Univ Nagoya Method for producing hydrogen
JP2003028975A (en) * 2001-07-10 2003-01-29 Central Res Inst Of Electric Power Ind Reactor
JP3837528B2 (en) * 2002-12-13 2006-10-25 国立大学法人名古屋大学 Power generation method and battery
KR100573744B1 (en) * 2003-03-17 2006-04-25 한국원자력연구소 A steam generator using a liquid metal reactor and heat transfer method thereof
US20060186378A1 (en) * 2005-02-22 2006-08-24 Pentam, Inc. Crystalline of a nuclear-cored battery
JP4746911B2 (en) * 2005-04-27 2011-08-10 財団法人電力中央研究所 Method for constructing fast reactor and fast reactor facility
JP2007303823A (en) * 2005-05-31 2007-11-22 Yutaka Arima Second method of nuclear power generation consisting of alpha ray, phosphor and solar battery
JP2009052951A (en) * 2007-08-24 2009-03-12 Toshiba Corp Core melt cooling device and reactor container
JP4766471B2 (en) * 2008-10-20 2011-09-07 裕 渡邊 Photovoltaic cell using nuclear waste radiation
JP5839648B2 (en) * 2010-04-27 2016-01-06 株式会社日立製作所 Power generation method using solar cell and solar cell power generation system
JP2012230031A (en) * 2011-04-27 2012-11-22 Hitachi-Ge Nuclear Energy Ltd Emergency core cooling system
JP6277466B2 (en) * 2011-05-23 2018-02-14 元浩 岡田 Nuclear power plant equipment.
US8867690B2 (en) * 2011-08-25 2014-10-21 Babcock & Wilcox Mpower, Inc. Pressurized water reactor with compact passive safety systems
JP2013057559A (en) * 2011-09-07 2013-03-28 Mitsubishi Heavy Ind Ltd Water cooling type nuclear power generation facility and emergency stop method for the same
JP2013076694A (en) * 2011-09-14 2013-04-25 Kawahara Technical Research Inc Radiation protection suit

Also Published As

Publication number Publication date
JP2016075689A (en) 2016-05-12
JP2016048249A (en) 2016-04-07
JP2016029393A (en) 2016-03-03
JP2017021049A (en) 2017-01-26
JP2014232099A (en) 2014-12-11
JP6240819B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP2013019734A (en) Processing system and processing method for contaminated soil
JP2017142259A (en) Radioactive waste processing and removal method of radioactive contaminant
JP2016075689A5 (en)
Mawson Management of radioactive wastes
Ueda et al. Removal of radioactive Cs from gravel conglomerate using water containing air bubbles
EP2942782B1 (en) Salt filtration system and method of removing a radioactive material from a gas using the same
KR100688028B1 (en) Method and installation for the treatment of a radioactive wastes
JP6151084B2 (en) Solidification method for radioactive waste
JP2016029393A5 (en)
JP2016048249A5 (en)
WO2006103793A1 (en) Radiation shielding material
CN113257450B (en) Method for treating retired radioactive nuclear graphite
JP6109534B2 (en) Neutron absorbing member, critical state generation prevention method and fissile material recovery method
JP2015141175A (en) Debris recovery method
Liu et al. The conversion of organic sulfur and strontium into inorganic compounds during the molten salt oxidation of mixed resin
RU2123732C1 (en) Method for recovering sodium coolant of nuclear reactor
JP2024039323A (en) Criticality prevention method and criticality prevention device
Fukasawa et al. Nuclear fuel-cycle technologies for a long-term stable supply of energy
Veriuzhsky et al. Radiation Safety for Incineration of Radioactive Waste Contaminated by Cesium
Chelidze New Ways of Radiation Migration into Natural Environment by Means of Cesium-Rich Condensed Micro-Particles (CsMPs)
Borowski et al. Ecological and technical requirements of radioactive waste utilisation
Lopatkin et al. Fuel cycle of BREST-1200 with non-proliferation of plutonium and equivalent disposal of radioactive waste
Sasaoka et al. Utilization of coal ash as a barrier material for radioactive waste disposal
Kim et al. Technology development for waste management and characterization
Akihide et al. Examination of 131I and 137Cs releases during late phase of Fukushima Daiichi NPP accident by using 131I/137Cs ratio of so