JP2002338201A - Method for producing hydrogen - Google Patents

Method for producing hydrogen

Info

Publication number
JP2002338201A
JP2002338201A JP2001152599A JP2001152599A JP2002338201A JP 2002338201 A JP2002338201 A JP 2002338201A JP 2001152599 A JP2001152599 A JP 2001152599A JP 2001152599 A JP2001152599 A JP 2001152599A JP 2002338201 A JP2002338201 A JP 2002338201A
Authority
JP
Japan
Prior art keywords
metal
hydrogen
water
radiation
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001152599A
Other languages
Japanese (ja)
Inventor
Tomoko Yoshida
朋子 吉田
Tetsuro Tanabe
哲朗 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2001152599A priority Critical patent/JP2002338201A/en
Publication of JP2002338201A publication Critical patent/JP2002338201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

PROBLEM TO BE SOLVED: To efficiently generate hydrogen. SOLUTION: Hydrogen is generated by irradiating water with radiation to decomposed water. The generation efficiency is improved by incorporating a metal in water and irradiating the water with radiation. When the metal is a hydrogen storage metal, the generated hydrogen is selectively taken out to increase the improvement of hydrogen production efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、放射線を利用して
水から水素を製造する方法に関する。
[0001] The present invention relates to a method for producing hydrogen from water using radiation.

【0002】[0002]

【従来の技術】水を分解する技術としては、従来より、
TiO(二酸化チタン)等の固体光触媒を利用して、
紫外線や可視光線を照射するシステムがある。このよう
な水分解システムにおいては、光励起した光触媒が水分
子に作用して反応が起るため、適当なバンドギャップを
もつ半導体触媒や一部の絶縁体触媒に限られるという材
料開発上での限界があった。また、紫外線や可視光線を
照射するため、これらが透過する材質の容器に限られ、
金属容器など不透明容器は一切使用できないという制約
もあった。更に、上記光触媒としては、表面積を大きく
するため、固体粉末やその焼結体を利用する場合が多
く、したがって分解反応後の触媒回収や再利用が困難で
あった。
2. Description of the Related Art As a technique for decomposing water, conventionally,
Using a solid photocatalyst such as TiO 2 (titanium dioxide),
There are systems that radiate ultraviolet light or visible light. In such a water splitting system, photoexcited photocatalysts act on water molecules to cause a reaction, which limits the material development to being limited to semiconductor catalysts with an appropriate band gap and some insulator catalysts. was there. In addition, in order to irradiate ultraviolet light or visible light, these are limited to containers made of a material through which they are transmitted,
There was also a restriction that opaque containers such as metal containers could not be used at all. Further, as the photocatalyst, a solid powder or a sintered body thereof is often used in order to increase the surface area. Therefore, it has been difficult to recover and reuse the catalyst after the decomposition reaction.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来の
プロセスとは異なる方法であって、このような制約のな
い水素製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing hydrogen which is different from the above-mentioned conventional process and free from such restrictions.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明者らは、鋭意検討の結果、以下の知見を得
て、本発明を完成した。即ち、本発明で使用するγ線や
電子線等の放射線は、透過性が高いため、水を入れる容
器が金属等の不透明な材質から出来ていても良く、従来
の水分解プロセスのように、ガラス等の透明容器に限ら
れるという制約を克服できる。また、上記放射線を水に
照射することのみによっても、水分子の化学結合は切断
できるが、金属を共存させることにより、照射した放射
線を、化学的効果の高い二次電子線、紫外線、可視光線
等に変換させることができるので、より効率的に水を分
解して、水素を発生させることができる。さらに、上記
金属が水素吸蔵性を有する場合には、水分解により発生
した水素を選択的に取り出すことができるため、水素製
造効率を一層高めることができる。あるいは、酸素は透
過させず、水素のみを選択的に透過させる膜を使用する
ことによっても、生成した水素の分離を容易に行うこと
ができる。
Means for Solving the Problems In order to achieve the above object, the present inventors have made intensive studies and obtained the following findings, and completed the present invention. That is, radiation such as γ-rays and electron beams used in the present invention has a high transparency, so that the container for containing water may be made of an opaque material such as a metal. The limitation of being limited to a transparent container such as glass can be overcome. In addition, the chemical bond of water molecules can be broken only by irradiating the above-mentioned radiation to water. And so on, so that water can be decomposed more efficiently to generate hydrogen. Further, when the metal has a hydrogen absorbing property, hydrogen generated by water splitting can be selectively taken out, so that the hydrogen production efficiency can be further improved. Alternatively, the generated hydrogen can be easily separated by using a membrane that allows only hydrogen to pass therethrough without passing oxygen.

【0005】そこで、本発明の構成は、以下の通りであ
る。 (1)水を分解することにより水素を製造する方法であ
って、水に放射線を照射して、水を分解することを特徴
とする。 (2)水中に金属を存在させ、これに放射線を照射する
と好ましい。 (3)金属としては、鉄、銅、アルミニウム、ニッケ
ル、鉛、タングステン、モリブデン、パラジウム、タン
タル、白金、金及び希土類元素からなる群から選択され
る少なくとも1種を使用することができる。 (4)前記金属が水素吸蔵性を有すると好ましい。 (5)放射線としては、X線、α線、β線、γ線、電子
線、中性子線、及び粒子線からなる群から選択される少
なくとも1種を好ましく使用することができる。
[0005] The configuration of the present invention is as follows. (1) A method for producing hydrogen by decomposing water, the method comprising irradiating water with radiation to decompose water. (2) It is preferable to make a metal exist in water and irradiate the metal with radiation. (3) As the metal, at least one selected from the group consisting of iron, copper, aluminum, nickel, lead, tungsten, molybdenum, palladium, tantalum, platinum, gold, and rare earth elements can be used. (4) It is preferable that the metal has a hydrogen absorbing property. (5) As the radiation, at least one selected from the group consisting of X-rays, α-rays, β-rays, γ-rays, electron beams, neutron beams, and particle beams can be preferably used.

【0006】[0006]

【発明の実施の形態】本発明をより詳細に説明する。本
発明の水素製造方法は、水に放射線を照射して、水を分
解することにより行うが、γ線等の放射線は透過性が高
いため、不透明容器であっても使用できる。本発明でい
う「放射線」とは、水を分解して水素を発生させること
ができるものをいう。また、水中に金属を存在させ、こ
れに放射線を照射すると好ましいが、この場合、金属の
形態は、金属単体であっても当然良いが、酸化物等の化
合物や合金であっても、さらに、固体状に限らず、イオ
ン等で溶解した状態であっても良い。金属あるいは金属
化合物が固体の場合、放射線変換効率の点から照射され
る面積は広い方が好ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in more detail. The hydrogen production method of the present invention is carried out by irradiating water with water to decompose water, but since radiation such as γ-rays has high transparency, it can be used even in an opaque container. The term “radiation” as used in the present invention refers to one that can decompose water to generate hydrogen. In addition, it is preferable that a metal is present in water, and it is preferable to irradiate the metal with water. In this case, the form of the metal may be a simple metal, or a compound such as an oxide or an alloy. It is not limited to a solid state, but may be in a state of being dissolved by ions or the like. When the metal or metal compound is a solid, it is preferable that the irradiated area be large from the viewpoint of radiation conversion efficiency.

【0007】また、金属には、多かれ少なかれ放射線を
二次電子線あるいは紫外線、可視光線等の光線に変換す
る機能があるので、金属種は特には限定されず、アルカ
リ金属、アルカリ土類金属、第3〜5族金属、遷移金属
等の全ての金属を挙げることができるが、大きい原子番
号を有する金属の方が、それより小さい原子番号を有す
る金属より、変換効率が高く効率的である。
[0007] Further, metals have a function of converting radiation more or less into secondary electron beams or light beams such as ultraviolet rays and visible rays. Therefore, the metal species is not particularly limited, and alkali metals, alkaline earth metals, and the like can be used. Although all metals such as metals belonging to Groups 3 to 5 and transition metals can be mentioned, metals having higher atomic numbers have higher conversion efficiency and are more efficient than metals having lower atomic numbers.

【0008】また、入手が容易で、水中で安定であると
いう観点からは、鉄、銅、アルミニウム、ニッケル、
鉛、タングステン、モリブデン、パラジウム、タンタ
ル、白金、金及び希土類元素からなる群から選択される
少なくとも1種を使用することができるが、ニッケル、
アルミニウム等、比較的原子番号が小さい金属と比較し
た場合、タンタル、パラジウム、モリブデン等、比較的
原子番号が大きい金属の方がより好ましい。なお、「二
次電子」とは、一般的には、固体に外部から電子を打ち
込むとき、入射電子の運動エネルギーをもらって固体か
ら放出される電子を意味するが、ここでは、放射線や粒
子線の照射によって物質から放出される電子をも含む広
い概念を意味する。
[0008] From the viewpoint of easy availability and stability in water, iron, copper, aluminum, nickel,
Lead, tungsten, molybdenum, palladium, tantalum, platinum, gold and at least one selected from the group consisting of rare earth elements can be used, nickel,
When compared with a metal having a relatively small atomic number, such as aluminum, a metal having a relatively large atomic number, such as tantalum, palladium, or molybdenum, is more preferable. The term “secondary electron” generally means an electron that is emitted from a solid upon receiving the kinetic energy of an incident electron when the electron is injected into the solid from the outside. It refers to a broad concept that includes electrons emitted from a substance by irradiation.

【0009】前記金属が水素吸蔵性を有すると好ましい
が、これは、上記のように、水素分離効率の点で有利だ
からである。なお、放射線を変換するために入れる金属
が、水素吸蔵性を有していない場合には、別途、水素吸
蔵用に、水素吸蔵性機能を有する固体材料を入れること
ができることはいうまでもない。
It is preferable that the metal has a hydrogen absorbing property, because it is advantageous in terms of hydrogen separation efficiency as described above. It is needless to say that when the metal to be converted into radiation does not have hydrogen storage properties, a solid material having a hydrogen storage function can be separately added for hydrogen storage.

【0010】さらに、放射線としては、X線、α線、β
線、γ線、電子線、中性子線、及び粒子線からなる群か
ら選択される少なくとも1種を好ましく使用することが
できる。金属から二次電子を効率的に放出させるという
観点からは、X線、γ線が好ましい。放射線源として
は、放射性廃棄物を使用すると、放射性廃棄物を利用し
て、付加価値の高い水素を効率的に製造できるので、本
発明における原子力分野等に対する貢献は絶大となる。
放射線の照射線量は、分解すべき水の量、金属種や量等
に応じて適宜設定することができる。
Further, as radiation, X-rays, α-rays, β-rays
At least one selected from the group consisting of radiation, γ-ray, electron beam, neutron beam, and particle beam can be preferably used. X-rays and γ-rays are preferred from the viewpoint of efficiently emitting secondary electrons from the metal. When a radioactive waste is used as a radiation source, high value-added hydrogen can be efficiently produced by using the radioactive waste, so that the contribution of the present invention to the field of nuclear power and the like becomes enormous.
The irradiation dose of the radiation can be appropriately set according to the amount of water to be decomposed, the type and amount of metal, and the like.

【0011】[0011]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。 (実施例1)ステンレス製容器に、蒸留水15mlを入
れ、これに、鉛、タンタル、モリブデン、ニッケル、ア
ルミニウムの各金属片(1金属片の大きき:60×1×
0.2mm)を表1記載の質量分入れて密封し、容器内
のガスを十分排気して真空にした。その後、室温でコバ
ルト60照射装置を用いてγ線を1時間にわたって照射
した(約3.9kGy/h)。その結果、表1に示すよ
うに、蒸留水のみでも水素は発生するが、金属片を入れ
た方が、水素発生量は多くなっている。また、各金属と
も、入れる金属質量(原子数)が多い程、水素発生量は
多く、さらに、原子番号の大きな金属を入れた場合程、
水素発生量は増加する傾向が認められる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. (Example 1) 15 ml of distilled water was put in a stainless steel container, and each metal piece of lead, tantalum, molybdenum, nickel, and aluminum (one metal piece: 60 × 1 ×
0.2 mm) was sealed by inserting the mass shown in Table 1, and the gas in the container was sufficiently evacuated and evacuated. Thereafter, γ rays were irradiated for 1 hour at room temperature using a cobalt 60 irradiation apparatus (about 3.9 kGy / h). As a result, as shown in Table 1, hydrogen is generated only by distilled water, but the amount of generated hydrogen is larger when metal pieces are inserted. In addition, for each metal, the larger the mass of the metal (the number of atoms), the greater the amount of hydrogen generated.
There is a tendency for the amount of generated hydrogen to increase.

【0012】[0012]

【表1】 注)括弧内の水素発生量は、金属内に吸蔵されていた水
素量も測定した補正値を示す。
[Table 1] Note) The amount of hydrogen generation in parentheses indicates a correction value obtained by measuring the amount of hydrogen absorbed in the metal.

【0013】(実施例2)上記実施例1と同様に、ステ
ンレス容器に、蒸留水15mlを入れ、表2に記載する
ように、それぞれタンタルとパラジウムを所定量入れて
密封し、実施例1と同様に、真空にして、γ線を1時間
照射した(約3.9kGy/h)。その結果、表2に示
すように、水素発生量は、補正前の状態で計測すると、
タンタルの場合は、約5マイクロモルであり、パラジム
の場合は、検出限界以下であった。しかし、各金属片を
取り出し、高真空下で1000℃までそれぞれ昇温加熱
したところ、各金属片から水素の脱離が確認された。こ
うして金属内に蓄積されていた水素量をも加算して補正
すると、各金属の場合の水素生成量は、それぞれ約1
1.5マイクロモルと約10.5マイクロモルと見積も
られた。このように、水素吸蔵金属を水中に共存させる
と、水の分解によって生成した水素のみを選択的に取り
出すことができ、水素製造効率を向上させることができ
る。
(Example 2) In the same manner as in Example 1 above, 15 ml of distilled water was placed in a stainless steel container, and as shown in Table 2, predetermined amounts of tantalum and palladium were charged and sealed, respectively. Similarly, a vacuum was applied and gamma rays were irradiated for 1 hour (about 3.9 kGy / h). As a result, as shown in Table 2, when the hydrogen generation amount is measured in a state before correction,
In the case of tantalum, it was about 5 micromoles, and in the case of palladium, it was below the detection limit. However, when each metal piece was taken out and heated to 1000 ° C. under a high vacuum, the desorption of hydrogen from each metal piece was confirmed. In this way, when the amount of hydrogen accumulated in the metal is added and corrected, the amount of hydrogen generated for each metal is about 1
It was estimated to be 1.5 micromolar and about 10.5 micromolar. As described above, when the hydrogen storage metal coexists in water, only hydrogen generated by the decomposition of water can be selectively extracted, and the hydrogen production efficiency can be improved.

【0014】[0014]

【表2】 注)Taのデータは、表1と同じである。[Table 2] Note) Ta data is the same as Table 1.

【0015】[0015]

【発明の効果】以上説明したように、本発明によると、
放射線を利用するので、従来のようにガラス等の透明容
器に限らず、ステンレス等の不透明容器であっても使用
することができ、容器選定の自由度が高まった。また、
金属の存在下で放射線の照射を行うと、放射線を照射さ
れた金属が、化学的効率の高い二次電子線等を発生させ
るため、より効率的に水を分解して水素を発生させるこ
とができる。さらに、水素吸蔵金属、あるいは、水素透
過性膜を使用することにより、発生した水素を選択的に
取り出すことができ、水素製造効率を一層高めることが
できる。また、金属が板状、粒状等の場合は、該金属を
初めとして、共存材料の回収、再利用が容易になるとい
う効果も得られる。本発明は、電力業界、ガス業界、自
動車関連業界、化学メーカー等、水素製造開発を進める
産業分野に有利に利用される。更に、核燃料廃棄物等の
放射性廃棄物処理を行う原子力分野においても有効に利
用できる。
As described above, according to the present invention,
Since radiation is used, not only a conventional transparent container such as glass but also an opaque container such as stainless steel can be used, which increases the degree of freedom in selecting a container. Also,
When radiation is applied in the presence of a metal, the irradiated metal generates secondary electron beams with high chemical efficiency, so it can decompose water more efficiently to generate hydrogen. it can. Further, by using a hydrogen storage metal or a hydrogen permeable membrane, generated hydrogen can be selectively extracted, and the hydrogen production efficiency can be further improved. In addition, when the metal is in the form of a plate, granules, or the like, an effect that collection and reuse of the metal and the coexisting material are facilitated can be obtained. INDUSTRIAL APPLICABILITY The present invention is advantageously used in an industrial field in which hydrogen production and development are advanced, such as an electric power industry, a gas industry, an automobile-related industry, and a chemical manufacturer. Further, the present invention can be effectively used in the field of nuclear power for treating radioactive waste such as nuclear fuel waste.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 FA02 FB02 FB03 FC01 FE01 4G075 AA05 BA05 BB04 BB05 CA02 CA38 CA39 CA54 CA65 EA06 EB01 EB31 EE05 EE12 FB02 FC02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 FA02 FB02 FB03 FC01 FE01 4G075 AA05 BA05 BB04 BB05 CA02 CA38 CA39 CA54 CA65 EA06 EB01 EB31 EE05 EE12 FB02 FC02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水を分解することにより水素を製造する
方法であって、水に放射線を照射して、水を分解するこ
とを特徴とする水素製造方法。
1. A method for producing hydrogen by decomposing water, the method comprising irradiating water with radiation to decompose water.
【請求項2】 水中に金属を存在させ、これに放射線を
照射することを特徴とする請求項1記載の水素製造方
法。
2. The method for producing hydrogen according to claim 1, wherein a metal is present in water, and the metal is irradiated with radiation.
【請求項3】 前記金属が、鉄、銅、アルミニウム、ニ
ッケル、モリブデン、タングステン、鉛、白金、金、タ
ンタル、パラジウム、希土類元素からなる群から選択さ
れる少なくとも1種であることを特徴とする請求項1〜3
のいずれか1項に記載の水素製造方法。
3. The method according to claim 1, wherein the metal is at least one selected from the group consisting of iron, copper, aluminum, nickel, molybdenum, tungsten, lead, platinum, gold, tantalum, palladium, and rare earth elements. Claims 1-3
The hydrogen production method according to any one of the above.
【請求項4】 前記金属が水素吸蔵性を有することを特
徴とする請求項1〜3のうちいずれか1項に記載の水素
製造方法。
4. The hydrogen production method according to claim 1, wherein the metal has a hydrogen absorbing property.
【請求項5】 放射線が、X線、α線、β線、γ線、電
子線、中性子線、及び粒子線からなる群から選択される
少なくとも1種であることを特徴とする請求項1〜4の
いずれか1項に記載の水素製造方法。
5. The radiation according to claim 1, wherein the radiation is at least one selected from the group consisting of X-rays, α-rays, β-rays, γ-rays, electron beams, neutron beams, and particle beams. 5. The method for producing hydrogen according to any one of 4.
JP2001152599A 2001-05-22 2001-05-22 Method for producing hydrogen Pending JP2002338201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152599A JP2002338201A (en) 2001-05-22 2001-05-22 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152599A JP2002338201A (en) 2001-05-22 2001-05-22 Method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2002338201A true JP2002338201A (en) 2002-11-27

Family

ID=18997238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152599A Pending JP2002338201A (en) 2001-05-22 2001-05-22 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2002338201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172772A (en) * 2013-03-07 2014-09-22 Kobe Steel Ltd Fuel generation system and power generation system
JP2016075689A (en) * 2013-05-01 2016-05-12 竹田 眞司 Radioactive waste treatment, and removal method of radioactive contamination material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014172772A (en) * 2013-03-07 2014-09-22 Kobe Steel Ltd Fuel generation system and power generation system
JP2016075689A (en) * 2013-05-01 2016-05-12 竹田 眞司 Radioactive waste treatment, and removal method of radioactive contamination material

Similar Documents

Publication Publication Date Title
Ruben et al. Long-lived radioactive carbon: C 14
EP1202290B1 (en) Nuclide transmutation device and nuclide transmutation method
US11682498B2 (en) Method for producing actinium-225 from a radium-226 target by shielding the target from thermal neutrons in a moderated nuclear reactor
US11826729B2 (en) Photocatalyst and application thereof in environmentally friendly photocatalytic treatment of power battery
KR102236311B1 (en) Purification method for tritium-containing raw water and purification device therefor
JP2002338201A (en) Method for producing hydrogen
JPH08183602A (en) Production of hydrogen
Mitsugashira et al. Alpha-decay from the 3.5 eV isomer of 229 Th
KR101460690B1 (en) Extracting method of radioactive 99Mo from low enriched uranium target
WO2018013733A1 (en) Production of n-13 ammonia radionuclide
Hart Development of the radiation chemistry of aqueous solutions
JP2020144108A (en) Method and device for purifying tritium-containing raw water
Cecal et al. Radiolytic splitting of water molecules in the presence of some supramolecular compounds
CN112090423A (en) Enhancement of Bi based on electron beam radiation2WO6Method for photocatalytic performance
JP2004045254A (en) Nuclide conversion method
JP6636478B2 (en) Radioactive cesium processing system and radioactive cesium processing method
RU2816992C2 (en) Method of producing actinium-225 from radium-226
JP4178245B2 (en) Method for decomposing organic compounds
JP2003054902A (en) Photocatalyst use type hydrogen/oxygen manufacturing method using radiation and apparatus therefor
Kosta et al. High energy photon activation
Yoshida et al. Decomposition of carbon dioxide by metals during gamma irradiation
EP1453063A1 (en) Method for producing actinium-225
JP2865615B2 (en) Water splitting method using gamma ray energy driven semiconductor and water splitting cell
JP2005292151A (en) Nuclear transformation device and method
JP2006248822A (en) Radiation-induced hydrogen production method using as catalyst strong-acid-resistant oxide solid such as quartz or alumina

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050823

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060720